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A B S T R A C T   

Human breath contains biomarkers (odorants) that can be targeted for early disease detection. It is well known that honeybees have a keen sense of smell and can 
detect a wide variety of odors at low concentrations. Here, we employ honeybee olfactory neuronal circuitry to classify human lung cancer volatile biomarkers at 
different concentrations and their mixtures at concentration ranges relevant to biomarkers in human breath from parts-per-billion to parts-per-trillion. We also 
validated this brain-based sensing technology by detecting human non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) cell lines using the ‘smell’ of 
the cell cultures. Different lung cancer biomarkers evoked distinct spiking response dynamics in the honeybee antennal lobe neurons indicating that those neurons 
encoded biomarker-specific information. By investigating lung cancer biomarker-evoked population neuronal responses from the honeybee antennal lobe, we 
classified individual human lung cancer biomarkers successfully (88% success rate). When we mixed six lung cancer biomarkers at different concentrations to create 
‘synthetic lung cancer’ vs. ‘synthetic healthy’ human breath, honeybee population neuronal responses were able to classify those complex breath mixtures reliably 
with exceedingly high accuracy (93–100% success rate with a leave-one-trial-out classification method). Finally, we employed this sensor to detect human NSCLC 
and SCLC cell lines and we demonstrated that honeybee brain olfactory neurons could distinguish between lung cancer vs. healthy cell lines and could differentiate 
between different NSCLC and SCLC cell lines successfully (82% classification success rate). These results indicate that the honeybee olfactory system can be used as a 
sensitive biological gas sensor to detect human lung cancer.   

1. Introduction 

Honeybees have a sensitive olfactory system designed to help them 
navigate complex environments encompassing foraging, reproduction, 
brood care, and defense. Consequently, they can be used to reliably 
detect a wide range of volatile chemicals, or the ‘smell’ of objects, while 
also distinguishing between odor mixtures efficiently even at low con-
centrations (Moreno et al., 2022; Reinhard et al., 2010; Sandoz, 2011; 
Bortolotti and Costa, 2014). Here, we hypothesize that the honeybee’s 
powerful olfactory neural circuitry can be leveraged to develop a gas 
sensing system with the ability to detect lung cancer biomarkers present 
in exhaled human breath and differentiate between various non-small 
cell and small cell human lung cancers. 

Lung cancer is the second most commonly diagnosed cancer world-
wide and is the leading cause of cancer-related death among both men 

and women (Sung et al., 2021). It can be divided into two main types, (1) 
non-small cell lung cancer (NSCLC) and (2) small cell lung cancer 
(SCLC), each of which has different morphologic and metabolomic 
characteristics (Kowalczyk et al., 2021; Lim et al., 2018). NSCLC are 
larger cells that grow slower, whereas SCLC are smaller cancer cells that 
can proliferate and metastasize quickly (Pedersen et al., 2021). The al-
terations of cell growth and movement may be related to metabolic 
differences between the two types. Cancers are shown to have different 
concentrations of metabolic substrates compared to healthy cells and 
other sub-types of cancer (Pedersen et al., 2021;(Staal-van den Brekel, 
1997). These differences in metabolism between NSCLC and SCLC can 
alter the VOCs produced by the cells (Kowalczyk et al., 2021; Pedersen 
et al., 2021). 

Additionally, the analysis of volatile organic compounds (VOCs) in 
exhaled human breath is a promising approach for detecting metabolic 
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aberrations in diseases such as cancer at an early stage (Gouzerh et al., 
2022; Fuchs et al., 2010; Hakim et al., 2011; Nardi-Agmon and Peled, 
2017; Peng et al., 2010a; Phillips et al., 1999, 2003, 2006; Raspagliesi 
et al., 2020; Roine et al., 2014). Therefore, breath-based VOC analysis 
can potentially address the critical unmet need for sensitive, early, and 
noninvasive cancer diagnostics (Queralto et al., 2014; Filipiak et al., 
2014). Exhaled human breath contains over 3500 known VOCs (Quer-
alto et al., 2014; Ma et al., 2023; Popov, 2011). Different diseases alter 
the components and concentrations of these VOCs, and thus can reflect 
the metabolic condition, or health, of an individual (Nardi-Agmon and 
Peled, 2017; Gruber et al., 2014; Lim et al., 2014; Mochalski et al., 2018; 
Phillips et al., 2020). Several studies employing exhaled human breath 
and mass spectrometry have shown that cancer can alter specific VOCs 
in exhaled breath at parts-per-billion (ppb) to parts-per-trillion (ppt) 
ranges (Fuchs et al., 2010; Filipiak et al., 2014). In this study, we focus 
on VOCs that are known to be altered in patients with lung cancer 
through the analysis of synthetic human breath and cultured human 
lung cancer cell lines. Studies using different variations of mass spec-
trometry have shown that VOCs produced by cancer cells are different 
from those produced by normal cells in vitro (Thriumani et al., 2016, 
2018; Jia et al., 2018; Serasanambati et al., 2019a; Furuhashi et al., 
2020; Davies et al., 2014; Peled et al., 2013; Brunner et al., 2010; 
Sponring et al., 2010; Barash et al., 2012). The headspace over cultured 
cells have specific VOC compositions that correspond to the cancer type, 
including breast cancer (He et al., 2014; Lavra et al., 2015; Silva et al., 
2017), liver cancer (Amal et al., 2012; Mochalski et al., 2013), prostate 
cancer (Lima et al., 2018), gastric cancer (Zhang et al., 2014), leukemia 
(Tang et al., 2017), and lung cancer (Choueiry et al., 2022; Choueiry and 
Zhu, 2022; Janssens et al., 2022). 

Analytical techniques including most notably gas chromatography 
mass spectrometry (GC-MS) (Nardi-Agmon and Peled, 2017; Gruber 
et al., 2014; Lim et al., 2014; Mochalski et al., 2018; Saidi et al., 2020; 
Altomare et al., 2013, 2020; Amal et al., 2015, 2016; Guo et al., 2015; 
Schallschmidt et al., 2016; Wang et al., 2014; Koureas et al., 2020), but 
also selected-ion flow-tube mass spectrometry (SIFT-MS) (Španěl and 
Smith, 2020), proton transfer reaction mass spectrometry (PTR-MS) 
(Brunner et al., 2010), gas chromatography ion mobility spectrometry 
(GC-IMS) (Chen et al., 2021; Tiele et al., 2019, 2020), and field asym-
metric ion mobility spectrometry (FAIMS) (Arasaradnam et al., 2014, 
2018; Niemi et al., 2018) have been used for disease detection via VOC 
analysis (Gouzerh et al., 2022; Pereira et al., 2015a; Kaloumenou et al., 
2022). Although, GC-MS, the current gold standard, has high sensitivity 
and specificity when identifying known compounds, it has difficulty in 
identifying correct concentrations of unknown compounds at ppb to ppt 
levels and requires pre- and post-processing of data, which is not stan-
dardized. Another technology for VOC sensing is electronic noses 
(e-noses) which employ some biological principles for one-shot gas 
sensing. These e-nose devices are portable and can detect a few target 
compounds at low (ppb) concentrations. E-nose devices have been 
successfully employed to detect multiple types of cancer (Raspagliesi 
et al., 2020; Roine et al., 2014; Amal et al., 2016; Broza et al., 2019; 
Chang et al., 2018; Díaz De León-Martínez et al., 2020; Kononov et al., 
2019; Krauss et al., 2020; Van De Goor et al., 2018; van de Goor et al., 
2017; van Keulen et al., 2020; Waltman et al., 2020; Barash et al., 2015; 
Chen et al., 2016; Peng et al., 2009, 2010b; Shehada et al., 2015). 
However, e-noses are usually targeted for a specific chemical, and these 
engineered sensors cannot match the broad sensitivity and specificity of 
biological chemical sensors (Karakaya et al., 2020; Lüdke and Galizia, 
2014; Hurot et al., 2020; Brooks et al., 2015; Scheepers et al., 2022; 
Baldini et al., 2020; Manzini et al., 2021). 

Biological “noses,” such as the honeybee antennae and olfactory 
brain are extremely sensitive, and honeybees have been shown to learn 
odor identity and perform complex olfactory behavioral tasks (Moreno 
et al., 2022; Sandoz, 2011; Chen et al., 2015). Similar to dogs’ noses 
which have been successful in the detection of different VOCs of in-
terests (Lüdke and Galizia, 2014; Cornu et al., 2011; Willis et al., 2004a, 

2011; Amundsen et al., 2014; Horváth et al., 2009; Urbanová et al., 
2015; Williams and Pembroke, 1989), it has been demonstrated that 
insects’ noses, or antennae, can be exposed to a target smell and rein-
forced with a food reward for detection of that target stimuli, behav-
iorally (Bitterman et al., 1983). Here, we take advantage of the 
honeybees’ sensitive olfactory system to test whether the central olfac-
tory neural circuitry (i.e., the antennal lobe) can generate discrimina-
tory neural responses to single human lung cancer biomarkers, mixtures 
of these VOCs as simulated breath, as well as VOC mixtures emitted from 
cultures of human lung cancer cells. In the honeybee olfactory sensory 
pathway, olfactory receptor neurons (ORNs), located in the antenna 
convert chemical cues into electrical signals. Briefly, VOCs from the 
environment can enter small hair-like follicles (sensilla) on the antennal 
surface through small pores. Once within the sensilla lymph, olfactory 
binding proteins (OBP) bind to the VOCs and transport them to the 
ORNs. Olfactory receptors on the ORN membranes react with specific 
VOC/OBP complexes to change the membrane electrical potential which 
can lead to an action potential (Yang et al., 2012; Brito et al., 2016). 
These action potentials act as information packets and travel from ORNs 
to the antennal lobe where two types of neurons, projection neurons 
(PNs) and local neurons (LNs), form dense clusters of connections called 
glomeruli. Each glomerulus is activated by ORNs that express a single 
type of olfactory receptor. Based on a combinatorial coding scheme and 
the roughly 170 glomeruli within the antennal lobe, honeybees can 
theoretically differentiate between ~2170 odors (Sachse et al., 1999; 
Brill et al., 2013; Robertson and Wanner, 2006). The roughly 60,000 
ORNs present in the honeybee antenna send their output to only 800 PNs 
in the antennal lobe (MaBouDi et al., 2017), which transmit odor-evoked 
spiking responses to 368,000 Kenyon cells in the mushroom body (Groh 
and Rössler, 2020), making the antennal lobe an ideal location for 
neural recordings due to the convergence of VOC-evoked spiking in-
formation. The network of PNs and LNs uniquely respond to odor 
identity and concentration in a highly replicable manner (Stopfer et al., 
2003). This response is akin to a fingerprint, or template. Neural re-
sponses to unknown odors can be compared with these templates for 
odor identification (Figs. 1–4). 

In this study, we have systematically tested three hypotheses: (1) 
honeybee antennal lobe neurons (ALNs) possess discriminatory infor-
mation corresponding to multiple human lung cancer biomarkers, (2) 
these neurons can differentiate between small differences in concen-
trations of the lung cancer biomarker mixtures (i.e., synthetic lung 
cancer vs. synthetic healthy breath mixtures), and (3) this sensing 
approach can detect various human lung cancer cell lines based on their 
‘smell’. To achieve these goals, we have performed in vivo electrophys-
iological recordings from the honeybee antennal lobe while exposing the 
honeybee antennae to lung cancer biomarkers at a variety of concen-
trations, synthetic mixtures of these biomarkers, and natural VOC mix-
tures present in the headspace of human lung cancer cell cultures. We 
analyzed the VOC-evoked neural data using biological neural compu-
tational schemes to classify lung cancer and to test our hypotheses. 

2. Results 

2.1. Human lung cancer biomarkers are detected by the neurons in the 
honeybee antennal lobe 

We obtained individual lung cancer VOC-evoked neural responses 
from the honeybee antennal lobe circuit. The rationale for targeting 
antennal lobe circuitry was twofold: (1) since 60,000 ORNs from the 
antennae converge to only 800 PNs in the honeybee antennal lobe, the 
probability of getting odor evoked responses to diverse VOCs is higher 
from the ALN recordings, and (2) in the honeybee antennal lobe, 
spatiotemporal response properties of ALNs are odor specific (Krofczik 
et al., 2009; Joerges et al., 1997). We chose nine different VOCs which 
are implicated as human exhaled breath lung cancer biomarkers (Phil-
lips et al., 1999; Poli et al., 2010). For these sets of experiments, the 
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Fig. 1. Individual neurons display distinct odor evoked responses to putative lung cancer biomarkers. (a) Schematic of the experimental setup. Starting from 
the left, clean air from a compressed air cylinder enters an olfactometer with a flow rate, L. Prior to odor stimulus, the entire flow rate, L, is delivered directly to the 
honeybee’s antennae. When the odor stimulus starts, the olfactometer diverts a portion of the air, x, into the headspace of an odor vial that contains a single VOC 
mixed with mineral oil (1% v/v). The clean air (L-x) and the odor laden air (x) are combined at the final valve and delivered to the antennae. A custom-built twisted 
wire electrode placed within the honeybee antennal lobe records the VOC-evoked neural responses (shown at the bottom). (b) Representative extracellular lung 
cancer VOC-evoked neural voltage responses from a recording location within the honeybee antennal lobe is shown. Responses to nine putative cancer biomarkers 
mixed in mineral oil (1% v/v) as well as a pure mineral oil control-evoked response are shown. The light blue box indicates the odor presentation window (4 s). (c) 
The representative VOC-evoked voltage responses shown in panel b were spike sorted and the raster and peri-stimulus time histograms (PSTHs) of one antennal lobe 
neuron’s responses to all 10 odors are shown. Each black line in the raster plot indicates an action potential, or spiking event, from the neuron. Raster plots are shown 
for all five trials of each VOC presentation. The PSTHs (in color) show the changes in spiking rate over time for the neuron with an increase in firing rate correlated to 
an increase in density of the raster plots. Trial-averaged PSTHs are plotted with the shaded region indicating the S.E.M. The light blue box in the background indicates 
the 4 s odor presentation window. (d) Pairwise distance plots (see Experimental Section) are shown for all recorded neurons (n = 44 ALNs). Each grey line is the 
average of all possible pairwise distances from a single neuron’s responses to all 10 odors. The black line is the average value of pairwise distances across all 44 
neurons. Notice that the average pairwise distances of most neurons have a maximum value during the transient phase of odor stimulus from 0.25 to 0.75 s after 
stimulus onset. (e) VOC-evoked population neural trajectories of all 10 odors are shown using PCA dimensionality reduction. The trajectories are plotted between 
0.25 and 0.75 s after stimulus onset to highlight the transient response window, which is the most discriminatory segment of the neural response. The colored arrows 
indicate the direction of evolution for each VOC-evoked trajectory. All trajectories are aligned at 0.25 s after odor onset (indicated by a black dot), which corresponds 
to the time of the odor plume hitting the antennae after the opening of the final valve (at 0.0 s). 
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primary goal was to detect the identity of the volatile chemicals using 
honeybee neural recordings, therefore, we tested all nine VOCs at a fixed 
concentration (1% vol/vol, diluted in mineral oil). 

The timing and volume of the VOC delivery to the honeybee 

antennae was carefully controlled while simultaneously conducting in 
vivo extracellular recordings from the ALNs, which contained both PN 
and LN responses (Fig. 1a). We observed that VOC-evoked neural 
voltage traces from a single recording site can display different spiking 

(caption on next page) 
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response properties to each VOC tested (Fig. 1b). Next, we identified 
individual ALNs by spike sorting (see Experimental Section) and plotted 
peri-stimulus time histograms (PSTHs) and raster plots of individual 
neurons (n = 44 ALNs). A representative neuron’s odor-evoked re-
sponses exhibited distinct differences between all nine VOCs and the 
mineral oil control (Fig. 1c). Not only can the honeybees detect each of 
the odors, as shown by the odor-evoked responses, we observed that the 
ALNs also respond to each odor differently. 

Next, we sought to confirm that each ALN contains discriminatory 
information about odor identity and that the population of ALNs en-
codes the odors distinctly. To investigate each ALN, we first calculated 
pairwise distances between all 10 odor-evoked responses and averaged 
them together for each of the 44 neurons (see Experimental Section, 
Supplementary Fig. 1). A nonzero pairwise distance plot for a neuron 
indicates that neuron contains discriminatory information for all stimuli 
tested. The pairwise distance plots showed that the largest separation of 
VOC-evoked responses for most neurons occurred during the transient 
phase of the neural response, which lasts about 1 s from the odor onset 
(Fig. 1d) (Saha et al., 2013a). We chose a time window from 0.25 to 0.75 
s (total 500 ms duration) for data analysis as we found that most neurons 
responded with a 0.25 s delay from the final olfactometer valve opening. 
This analysis confirmed that all the neurons in the recorded population 
contained VOC-specific information which can be used to classify lung 
cancer VOC identity. 

Next, we analyzed the lung cancer biomarker discrimination ability 
of the entire recorded population of ALNs. To achieve this, multiple 
neural recordings across honeybees were combined (n = 44 ALNs) to 
generate a lung cancer VOC-evoked population response matrix (neuron 
× time). Odor-evoked responses from every neuron were aligned to the 
odor onset, trial averaged (n = 5 trials) firing rates of each neuron 
corresponding to each odor were binned into 50 ms nonoverlapping bins 
and then combined to form time-variant, odor-specific, high dimen-
sional population neuronal response vectors. The 50 ms time window 
selection corresponds to 20 Hz oscillations of odor-evoked local field 
potentials observed in insect antennal lobes (Perez-Orive et al., 2002; 
Stopfer et al., 1997; Stopfer and Laurent, 1999). 

To visualize the lung cancer VOC-evoked population neuronal tra-
jectories, a principal component analysis (PCA, see Experimental Sec-
tion) was performed on the high dimensional neural response dataset. 
For this analysis, a 500 ms time window was chosen from 0.25 to 0.75 s 
post-stimulus onset, as the ALNs contained the highest amount of 
discriminatory information about the odor stimuli during this period 
(Fig. 1d). PCA was applied on the entire dataset containing all 10 VOCs 
and the first three principal components with the highest variance were 
chosen to project the data onto three dimensions for visualization pur-
poses (Fig. 1e). In this reduced space, the odor-evoked population 

vectors corresponding to each 50 ms time bin were connected in a 
temporal order to create the neural trajectories for each stimulus and 
temporally aligned with each other at the origin. Using this analytical 
technique, previous studies have demonstrated that distinct neural tra-
jectories represent VOC identities and intensities (Stopfer et al., 2003). 
Here, we observed that neural trajectories corresponding to different 
VOCs traced different paths in the principal component space, validating 
that the identity of each lung cancer VOC was uniquely encoded by the 
honeybee ALN population responses. 

2.2. Odor-evoked spatiotemporal antennal lobe neuron responses can be 
leveraged to identify lung cancer biomarkers 

We then attempted to quantify the ability of the honeybee ALNs to 
classify cancer biomarkers by implementing a high-dimensional, leave- 
one-trial-out (LOTO) analysis scheme (Fig. 2a–f, see Experimental Sec-
tion). First, a high-dimensional population response matrix was con-
structed as described before (Fig. 2a and b). Then, one trial was 
separated from the neural response matrices for each odor and used as a 
‘testing template’ while the remaining four trials were averaged together 
and used to create the ‘training templates’ (Fig. 2c). This resulted in 10 
training and 10 testing templates corresponding to nine lung cancer 
VOCs and the mineral oil control. Time-matched responses within a 50 
ms bin of the training and testing templates were plotted in the high 
dimensional space and the Euclidean distances between each testing 
template and all 10 training templates were calculated. Testing tem-
plates were classified as belonging to the odor whose training template 
minimized a distance metric (Fig. 2d). This LOTO analysis was per-
formed in such a way that each trial (out of the total five trials corre-
sponding to one VOC) becomes the testing template once. Similar to 
trajectory analysis, this high-dimensional classification was also per-
formed within the 0.25–0.75 s post-stimulus onset window. The results 
are summarized in a confusion matrix (Fig. 2e–g), with the testing 
templates along the X-axis and the training templates along the Y-axis. 
The higher classification success rates along the diagonal, shown by the 
darker colors, were indicative of testing templates being classified to the 
correct training template, resulting in an overall 50% success rate using 
a Euclidean distance metric. We would expect that a completely random 
assignment of odors would only yield 10% accurate classification in this 
case. This classification rate reflects how many of the 50 ms population 
response vectors can be classified correctly. To convert that number to 
classification success over the entire 500 ms discriminatory neural 
response window, we took the mode of the 50 ms bin-wise classification 
values over the duration of each 500 ms trial in a winner-take-all manner 
(Fig. 2f–h). Using this method with a Euclidean distance metric, we 
achieved 88% classification success of all cancer biomarkers tested. 

Fig. 2. Population neural responses can classify individual lung cancer biomarkers. (a) Raster plots of spike sorted neuron responses (1–44) to a single odor 
(hexanal) from antennal lobe recordings in honeybees. Each neuron’s response was recorded for five trials. The responses are all aligned using the stimulus onset as 
the reference point and binned into discrete, non-overlapping, 50 ms time bins. (b) The number of spiking events in each time bin is counted and used to populate a 
three-dimensional matrix (neurons x trials x time bins). (c) Four trials are selected and averaged together to create the training template, with the fifth trial being left 
out to create the testing template, known as a leave-one-trial-out (LOTO) analysis. Each time bin, denoted by the different shades of color, is analyzed separately. (d) 
The training and testing templates for each time bin and both odors, solid and checkered circles, respectively, are visualized as high dimensional points, with the 
number of dimensions equal to the number of neurons (n = 44). Testing templates (checkered) are compared to each training template (solid) and assigned using the 
smallest Euclidean distance. For time bin a (left) the green testing template would be assigned to green, and the blue testing template would be assigned to blue. Time 
bin b, (middle) green is assigned to blue and blue is assigned to blue. Time bin c, (right) green is assigned to green and blue is assigned to green. (e) Using the previous 
assignments, a confusion matrix can be populated. The testing templates for each odor are on the x-axis and their assignments are on the y-axis. For two time bins (‘a’ 

and ‘c’), the green testing template was assigned to green, however for one time bin (‘b’) green was mis-assigned to blue. We count the assignments for each of the 
odors. (f) Instead of counting each individual bin, the mode of the bin assignments can be used to assign an entire trial. For the left-out trial visualized here, the mode 
for the green testing template is green (two out of three) and the mode for the blue testing template is blue (two out of three). After completing the analysis for a 
single left out trial, we can iterate until each trial has been left out once and used as a testing template. Each time using the other four trials to create the training 
template. And this can be expanded to include any number of odors. (g) The count of time bin assignments for all nine VOCs and the mineral oil control shows good 
classification; notice that the diagonal elements of the confusion matrix show higher values compared to the off-diagonal elements which indicates that testing 
templates are correctly classified in most cases using this quantitative analysis. Overall success rate of classification for this approach is 50%. (h) Instead of classifying 
each 50 ms bin individually, here, the entire time window between 0.25 and 0.75 s after stimulus onset is being classified in a winner-take-all approach. The mode of 
the classification value of the 10-time bins (each bin is 50 ms in duration over a total time of 500 ms) was used to determine the overall classification success for the 
entire testing trial. Using this approach, 44 of the 50 trials were correctly classified with an accuracy of 88%. 
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2.3. Lung cancer biomarkers can be detected at different concentrations 
employing the honeybee olfactory neural responses 

To further explore the honeybee’s capability of detecting cancer 
biomarkers, we tested varying concentrations of two biomarkers that 
elicited strong neural responses (Fig. 1, hexanal and 2-methylheptane). 
For each biomarker, we mixed three concentrations starting at the 
previously tested value of 1% vol/vol and decreasing towards biologi-
cally relevant concentrations (Fuchs et al., 2010; Poli et al., 2005) 
(0.01% vol/vol and 0.0001% vol/vol, diluted in mineral oil) (Fig. 3a) 

(see Experimental Section). Odor stimuli were presented to the honey-
bee antennae in a pseudorandom order using a procedure controlling for 
timing, delivery, and airflow (see Experimental Section). 

For each biomarker concentration, we recorded odor-evoked re-
sponses from multiple ALNs (Supplementary Fig. 2b). Individual neuron 
responses were observed through raster plots and PSTHs (Fig. 3b, 
representative neuron). Interestingly, odor-evoked responses displayed 
clear differences between biomarkers and between different concen-
trations of the same odor. We employed the spike rate-based analysis 
described earlier with 50 ms time bins (Fig. 2a and b) to visualize and 

Fig. 3. Varying concentrations of lung cancer biomarkers can be classified by population neural responses. (a) Schematic of experimental setup. Single VOCs 
mixed with mineral oil at three concentrations (1% v/v, 0.01% v/v, 0.0001% v/v) are delivered to the honeybee antennae. (b) VOC-evoked voltage responses shown 
in Supplementary Fig. 2 were spike-sorted. The peri-stimulus time histograms (PSTHs) and raster plots of one antennal lobe neuron’s responses to all 7 odors and 
concentrations are shown. Raster plots are shown for all five trials of each VOC (4 s duration of odor presentation). Note the reliability of spiking responses over trials 
separated by 60 s inter-stimulus interval. Trial-averaged PSTHs showing the spiking rate over time are plotted with the shaded region indicating the SEM. The light 
blue and grey box indicate the 4-s odor presentation window. (c) VOC-evoked population neural trajectories of all 7 odors are shown using PCA dimensionality 
reduction. The trajectories are plotted between 0.25 and 0.75 s after stimulus onset. The colored arrows indicate the direction of evolution for each VOC-evoked 
trajectory. All trajectories are aligned at 0.25 s after odor onset (indicated by a black dot), which corresponds to the time of the odor plume hitting the antennae 
after the opening of the final valve (at 0.0 s). (d) Using the high dimensional leave-one-trail-out (LOTO) analysis, the entire time window between 0.25 and 0.75 s 
after stimulus onset is classified with an accuracy of 87%. This indicates that the sensor can detect lung cancer biomarkers at different concentrations. 

M. Parnas et al.                                                                                                                                                                                                                                 



Biosensors and Bioelectronics 261 (2024) 116466

7

classify odor-evoked population neural responses. A population PSTH of 
change in firing rate for every odor was created by averaging the spikes 
of all neurons (n = 45 ALNs) in each time bin (Supplementary Fig. 2a). 
We observed the greatest change in firing rate occurred during 
0.25–0.75 s after the odor onset and chose this time window for data 
analyses. 

By plotting the population neural trajectories of each odor concen-
tration (PCA, see Experimental Section), we observed clear separation 
between biomarkers and concentrations (Fig. 3c). These results showed 
that although the odor chemical is the same, the honeybee antennal lobe 
neurons recognized the change in concentration effectively resulting in a 
different encoding of information. Additionally, we used a second 
dimensionality reduction technique, linear discriminant analysis (LDA) 
(see Experimental Section), which is a supervised algorithm that maxi-
mizes between-cluster separation while minimizing within-cluster 
variance. We saw that all seven odors created separate clusters within 
the space suggesting satisfactory differentiation for classification (Sup-
plementary Fig. 2c). 

Quantitative analysis of classification success rate between the two 
cancer biomarkers and their varying concentrations was performed 

using a high-dimensional LOTO analysis (see Experimental Section, 
Manhattan distance used). For trial-wise classification across the entire 
time window (0.25–0.75 s), the success reached 87% (Fig. 3d). The 
honeybee antennal lobe was able to discriminate between all three 
concentrations of 2-methylheptane at a success rate of 100% whereas 
the classification rate was lower for different concentrations of hexanal 
(Fig. 3d). These results demonstrated that honeybees could distinguish 
between multiple lung cancer biomarkers at very low concentrations (e. 
g., 0.0001 vol/vol). 

2.4. Synthetic human lung cancer breath vs. synthetic healthy breath can 
be differentiated by the honeybee antennal lobe neuronal responses 

After verifying that several human lung cancer biomarkers can be 
detected by the honeybee ALNs at different concentrations (Figs. 1–3), 
we tested if complex mixtures that replicate actual concentrations of 
these VOCs in the exhaled breath of healthy individuals vs. lung cancer 
patients can be detected by the honeybee ALN responses. We defined 
these complex VOC mixtures as ‘Synthetic breath’ mixtures (Fig. 4a). We 
leveraged previously published concentration data of the VOCs (Fuchs 

Fig. 4. Synthetic lung cancer vs. healthy breath mixtures can be distinguished by individual ALN recordings. (a) Schematic of the odor delivery and neural 
recording setup. Notice that instead of single VOCs being delivered, now a complex mixture of VOCs (synthetic lung cancer patient breath or synthetic healthy patient 
breath) is delivered to the honeybee antennae. (b) Table of concentrations for the six VOCs mixed into the two synthetic breath mixtures. These concentrations are 
derived from GC-MS studies (Lim et al., 2018; Chen et al., 2015). (c) Neural voltage responses of a representative ALN recording are shown for synthetic lung cancer 
breath, synthetic healthy breath, and mineral oil control. Notice that even at ppb level concentrations of the VOC mixtures, the neural recordings show clear 
odor-evoked responses during the odor presentation window. (d) R.M.S. filtering has been applied to the voltage traces and averaged across the four channels of the 
twisted wire electrode. The increase in voltage after stimulus onset followed by a slightly above baseline voltage for the remainder of the stimulus preserves the 
response patterns observed in the voltage traces in panel c. (e) Pairwise distance plots are shown using the same method as in Fig. 1d. Here, 23 R.M.S. voltage traces 
are plotted (grey). The red line indicates the pairwise distances for the R.M.S. trace shown in panel d and the black line is the average of all 23 R.M.S. voltage traces. 
Again, notice that the maximum pairwise distances for most positions is between 0.25 and 0.75 s after stimulus onset. 
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et al., 2010; Poli et al., 2005), combined six VOCs at specific concen-
trations as found in lung cancer vs. healthy human exhaled breath 
samples, and mixed them in clean air (80% nitrogen and 20% oxygen) to 
reach the desired biological concentrations at ppb to ppt ranges 
(Fig. 4b). 

Even at these low VOC concentration mixtures, we observed clear 
odor-evoked responses from the ALNs to the synthetic breath stimuli 

(Fig. 4c and d). Instead of employing a spike rate-based analysis, the 
data was processed using a root mean squared (R.M.S.) transform-based 
approach, which can be implemented automatically and in real-time 
(see Experimental Section). The R.M.S. transform preserves the overall 
shape of the voltage trace as shown in our previous work (Farnum et al., 
2023). For example, at a representative position shown in Fig. 4d, the 
synthetic lung cancer breath elicited the largest peak in the R.M.S 

Fig. 5. Population analysis of the synthetic breath mixtures shows reproducibility across multiple odor panels. (a) The population neural responses shown in 
columns one and two are both elicited from the exact same odor vials with a 10-min time interval between stimulus presentations. Here, if we imagine the honeybee 
as a sensor, the two columns are akin to technical or analytical replicates. Population neural responses shown in column three are elicited from a different set of odor 
vials that were produced using the exact same procedure as the first set of vials. Again, if the honeybee is a sensor, this is akin to a sample replicate. (b–d) PCA 
trajectories of the 23 R.M.S. voltage traces of the three odors all project in different directions for each panel. (e–g) 3-class LDA, a supervised dimensionality 
reduction technique, clearly separates the odors into three distinct clusters. (h–j) LOTO analysis of the entire transient response period (0.25–0.75 s after stimulus 
onset), as described for Fig. 2h, correctly classifies every trial except one in Fig. 5j. 
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transformed odor-evoked response while the mineral oil control elicited 
the smallest peak. 

Next, to confirm that the recording sites contain discriminatory in-
formation corresponding to synthetic lung cancer vs. healthy breath 
mixtures, a pairwise distance analysis, previously used for the spike- 
sorted individual cancer biomarker-evoked responses, was imple-
mented for the R.M.S transformed synthetic breath responses. Again, 
most of the recorded positions showed differences in the neural re-
sponses to the synthetic lung cancer vs. healthy breath, with the largest 
difference between the responses occurring during the transient odor 
response window from 0.25 to 0.75 s (Fig. 4e). 

2.5. Honeybee population neural responses classify synthetic lung cancer 
vs. healthy breath reliably and at a high success rate 

How precisely and repeatably can lung cancer vs. healthy breath 
mixtures be classified at the population ALN level? To address this 
question, we performed an experiment where synthetic lung cancer vs. 
healthy breath mixtures were delivered repeatably to the honeybee 
brain. To test the reproducibility of the classification performance, the 
odor samples were varied in two different manners: (1) same odor 
mixtures (from the same odor bottle) were temporally separated by a 10- 
min gap between presentations, and (2) same odor mixtures were 
delivered from a different set of odor bottles that were mixed separately, 
following the same protocol (Fig. 5a). This was done to incorporate any 
variations due to the serial mixing of VOCs at low concentrations. The 
first set of results of synthetic lung cancer vs. healthy odor mixture are 
shown in Fig. 5b–e,h, the 10-min delayed repeated odor presentation 
data is shown in Fig. 5c–f,i, and the results for the odor presentation 
from different bottles are shown in Fig. 5d–g,j. To observe the mixture 
classification results, population neuronal trajectories were plotted 
corresponding to synthetic lung cancer vs. healthy breath mixtures (see 
Experimental Section). Briefly, R.M.S. transformed neural responses 
were binned into discrete 50 ms bins by averaging the voltage values 
within each bin and subsequently converted into odor-specific popula-
tion matrices, using the same procedure as previously implemented on 
individual cancer biomarker data (Fig. 1e and 3c). Within the PCA 
subspace, all three odors (synthetic lung cancer breath mixture, syn-
thetic healthy breath mixture, and mineral oil control) were clearly 
projecting in different directions away from the origin demonstrating 
good separation between the neural responses to all three stimuli 
(Fig. 5b–d). This result indicates that although only small variations in 
concentrations (i.e., ppt level) exist between healthy vs. lung cancer 
synthetic breath mixtures, they are encoded differently by the neuronal 
population in the honeybee antennal lobe, which can be leveraged to 
classify those mixtures using population neuronal response templates. 
These results were similar when we analyzed the data collected after a 
10-min break (Fig. 5c) and from a different set of bottles (Fig. 5d) 
indicating the repeatability of our population response trajectory 
results. 

Next, we tested how well the lung cancer vs. healthy breath mixture- 
evoked neuronal responses are separated using a second technique, LDA. 
We observed that the three odors formed separate, distinct, and cohesive 
clusters (Fig. 5e–g) indicating good separation between them for all 
three different stimulus delivery conditions. 

Finally, to quantify the classification success rates of lung cancer vs. 
healthy breath mixtures, we employed a high dimensional LOTO anal-
ysis (see Experimental Section). When we looked at the classification 
success across the entire 0.25–0.75 s time window, which we already 
established as the most discriminatory part of the neural signal, the 
classification success reached 100% using the LOTO approach (Fig. 5h). 
We performed the same analysis using spike sorted ALN data on the 
synthetic breath mixtures and obtained similar classification results 
(Supplementary Fig. 3). We observed comparable classification success 
results for temporally separated synthetic breath samples (Fig. 5i) and 
the samples from separately mixed bottles (Fig. 5j). 

2.6. Honeybee brain olfactory neurons can detect VOCs from human lung 
cancer cell lines using the ‘smell’ of cultured cell lines 

Finally, we sought to explore the capabilities of our sensor for the 
detection of VOCs produced from cultures of human lung cancer cell 
lines. To achieve this, we cultured six different human lung cancer cell 
lines and a healthy lung fibroblast cell line (see Experimental Section). 
Briefly, cell lines were cultured for four days before being split and 
resuspended in modified sterile T-25 flasks the day prior to experi-
mentation. Additionally, a flask containing the same media used to 
resuspend all other cell lines was created as a control. Out of the six lung 
cancer lines chosen, four were NSCLC (NCI–H1975, NCI–H661, 
NCI–H1437 stage 1, NCI–H1573 stage 4) and two were SCLC (SHP-77, 
H69PR). This selection of cell lines allowed us to test the discrimination 
ability of our sensor between lung cancer vs. healthy cells, the two main 
lung cancer cell types (NSCLC vs. SCLC), as well as the cancer sub-types 
(different cell lines, adenocarcinomas and carcinomas, of the same main 
type). Cell flask caps were tightened 1–2 h before experimentation to 
trap VOCs and then microscopic images were taken to ensure that all the 
cell lines were healthy. Representative images of all cell lines including 
the media flask are presented in Supplementary Fig. 4. During experi-
mentation, cell culture flasks were kept incubated at 37 ◦C and only 
removed when needed for odor presentation (~5 min at room temper-
ature). Cell culture flasks were attached to the olfactometer through 
odor lines and presented to the honeybee antennae in a pseudorandom 
order (Fig. 6a). 

Distinct odor-evoked responses were observed for each cell line with 
multiple neurons firing in the brain tissue. A representative voltage trace 
recording is shown in Supplementary Fig. 5b. PSTHs and raster plots 
were used to visualize individual neuron responses to cell lines. Neurons 
were collected after spike sorting each odor-evoked multiunit voltage 
trace (see Experimental Section). Clear differences in firing rate between 
healthy cells, cancer cells, and media control were seen at the individual 
neuron level, a representative neuron is shown in Fig. 6b. A population 
PSTH of firing rate from all the neurons collected showed that the 
greatest variability of odor-evoked response happened between 0.25 
and 0.75 s after odor stimulation (Supplementary Fig. 5a). This time 
window was used in classification analyses moving forward. 

To further investigate differences in olfactory responses between 
healthy and lung cancer cell lines, odor-evoked population neural tra-
jectories were plotted using a PCA dimensionality reduction technique 
(see Experimental Section). Neural trajectories of each cell line followed 
separate paths through the PCA space, displaying clear distinctions be-
tween healthy, NSCLC, SCLC, and media control (Fig. 6c). A second 
dimensionality reduction technique, LDA, visualized population neuron 
clusters for each cell line. Though not as clear as the PCA, we still 
observe some odor clustering in the center of the LDA space which gets 
more distinct as you move outwards (Supplementary Fig. 5c). These 
dimensionality reduction techniques show that the honeybee olfactory 
system possesses a unique coding mechanism for different lung cell line 
types (healthy, NSCLC, SCLC). 

Finally, a high-dimensional LOTO analysis was used to classify the 
human lung cancer detection success rate of the honeybee olfactory 
system (see Experimental Section, Manhattan distance used). We looked 
at the classification accuracy for healthy human lung cells vs. NSCLC vs. 
SCLC and found that the honeybee was able to classify all cell lines with 
82% accuracy (Fig. 6d). The vast majority of cell lines had a very high 
classification accuracy with media and two NSCLC lines (NCI–H1975 
and NCI–H1437–S1) achieving 100%, one NSCLC (NCI–H661) and SCLC 
(H69PR) cancer line being 90%, healthy human lung fibroblasts (HLF) 
reaching 80%, and the second SCLC (SHP-77) cancer line being 70%. 
The sensor classified one NSCLC cell line (NCI–H1573–S4) 27% 
correctly, which was low compared to the other cell lines tested. Overall, 
these results demonstrate that the honeybee olfactory system is capable 
of identifying the complex VOC mixture differences produced by 
different cell types, uniquely encoding that olfactory information, and 
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correctly classifying it against media control, healthy cells, distinct types 
of lung cancer (NSCLC and SCLC), and most impressively, between 
different cell lines of the same type of lung cancer. 

3. Discussion 

Early detection of cancer with tools that are rapid, available and 
sensitive is essential to improve patient outcomes by allowing for a 
greater chance of successful treatment, and therefore a higher likelihood 

for recovery. The current recommended technology for lung cancer 
screening is a radiation imaging technique called low-dose commuted 
tomography (LDCT) (Oudkerk et al., 2021). Using this method to screen 
high-risk patients has improved overall lung cancer mortality, but this 
technique is not readily available to everyone, has known issues with 
false positives, and the associated risks due to exposure to ionizing ra-
diation prohibit use for screening in the general population (Baldwin 
and Callister, 2016). 

Specific biomarker detection (e.g., DNA, RNA, or proteins) from 

Fig. 6. Human lung cancer cell lines can be classified and distinguished from one another using the brain-based sensor. (a) Schematic of the experimental 
setup. VOC mixtures emitted from human lung cancer cell lines were delivered to the honeybee antennae using cell culture flasks. During experimentation, flasks 
were kept in an incubator at 37 ◦C and were taken out one at a time only for odor presentation. Four NSCLC cell lines, two SCLC cell lines, one healthy lung cell line, 
and the media control were chosen for this experiment. Representative cell culture images are shown in Supplementary Fig. 4. (b) Cell culture-evoked voltage 
responses shown in Supplementary Fig. 5 were spike-sorted. The peri-stimulus time histograms (PSTHs) and raster of one antennal lobe neuron’s responses to all 8 
odors are shown. Raster plots are shown for all five trials of each cell culture presentation with each black line indicating a spike from the neuron. Trial-averaged 
PSTHs showing the spiking rate over time are plotted with the shaded region indicating the SEM. The light blue and grey box indicate the 4-s odor presentation 
window. (c) Cell culture VOC-evoked population neural trajectories of all 8 odors are shown using PCA dimensionality reduction. The trajectories are plotted be-
tween 0.25 and 0.75 s after stimulus onset. The colored arrows indicate the direction of evolution for each cell culture-evoked trajectory. All trajectories are aligned 
at 0.25 s after odor onset (indicated by a black dot), which corresponds to the time of the odor plume hitting the antennae after the opening of the final valve (at 0.0 
s). (d) High dimensional LOTO analysis of the transient response period (0.25–0.75 s after stimulus onset) classifies with an accuracy of 82%. 
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body fluids using advances in material science have shown promising 
results for the early detection of many diseases, including viral in-
fections and cancers (Iqbal et al., 2022; Panicker et al., 2023). Human 
epidermal growth factor receptor 2 (HER2)–positive breast cancer is a 
prime example of targeted detection and therapy, in which a single 
molecule has enabled a radical shift in cancer treatment. However, 
HER2-positive breast cancer only accounts for 20% of all breast cancers 
(Kunte et al., 2020) and while HER2 is specific to a single type of cancer, 
most biomarkers have been generally associated with many different 
cancers (e.g., microRNA-150, a specific microRNA sequence, is associ-
ated with colorectal, gastric, leukemia, and lung cancer) (Iqbal et al., 
2022; Haick et al., 2014). This lack of specificity for many cancer bio-
markers can make diagnoses and treatment difficult. While specific 
biomarker detection can be incredibly sensitive, it is limited by the 
heterogenous nature of cancer. 

Breath-based diagnostics offers a promising alternative cancer 
screening modality due to its inherent noninvasiveness and the possi-
bility for reliable and early detection based on distinct metabolic dif-
ferences. The human body emits a variety of VOCs that are released from 
breath, sweat, urine, feces, and vaginal secretions (Shirasu and Touhara, 
2011). Several factors such as diseases (Nardi-Agmon and Peled, 2017; 
Gruber et al., 2014; Lim et al., 2014; Mochalski et al., 2018; Phillips 
et al., 2020), exercise, food consumption, and drug use (Amann et al., 
2014) are known to alter the components and concentrations of VOCs, 
and thus can reflect the metabolic condition, or health, of an individual. 
A wide variety of VOCs at specific concentrations have been associated 
with cancer (Haick et al., 2014) from multiple in vitro and in vivo studies 
spanning lung (Jia et al., 2018; Thriumani et al., 2018; Davies et al., 
2014; Peled et al., 2013; Janssens et al., 2022; Serasanambati et al., 
2019b), breast (Lavra et al., 2015), leukemia (Tang et al., 2017), gastric 
(Xu et al., 2013), and prostate cancer (Lima et al., 2018). Different 
chemical compounds including hexanal, propanal, pentanal, acetone, 
pentane, 2-butanone, and benzene at specific concentrations have been 
identified as potential lung cancer biomarkers (Jia et al., 2019). Overall, 
there is growing evidence that VOCs in the breath of cancer patients are 
altered compared to healthy individuals (Gower et al., 2023; Binson and 
Subramoniam, 2022; Ratiu et al., 2020; Xiang et al., 2021), and these 
unique compositions of VOCs in exhaled human breath can be used as a 
fingerprint for the early detection of cancer. We have shown that hon-
eybees can detect all nine of the different lung cancer associated VOCs 
we tested, indicating their capacity to be a breath-based diagnostic 
sensor. 

E-noses are portable sensors that implement biological principles of 
gas sensing to achieve one-shot complex VOC mixture classification. 
They detect and quantify VOCs in a breath sample by converting the 
interaction of VOCs with different materials into electrical signals, 
which are then processed using cross-selective sensors and template- 
matching analyses (Baldini et al., 2020; Röck et al., 2008; Ko and 
Park, 2016). These e-nose devices have also been used to effectively 
classify multiple types of cancers, including lung (VA et al., 2021; van 
Geffen et al., 2019), prostate (Filianoti et al., 2022), and head and neck 
(Anzivino et al., 2022). E-noses are simpler and more portable than 
GC-MS, making them suitable for point-of-care and home-based VOC 
analysis. However, e-noses have a lower specificity and sensitivity 
compared to GC-MS and are generally not able to detect all the VOCs in a 
breath sample, especially at low concentrations (Hurot et al., 2020; Röck 
et al., 2008). Some e-noses have recently started incorporating biolog-
ical olfactory receptors and live cells for VOC sensing (Lim et al., 2014; 
Cave et al., 2019; Lu et al., 2014; Wu, 1999; Yang et al., 2017; Jin et al., 
2012; Vidic et al., 2007; Ahn et al., 2015; Sankaran et al., 2011; Larisika 
et al., 2015; Misawa et al., 2010). However, using only one or few 
biological receptors does not provide robust detection capabilities for 
these e-noses and their reliability of detection over time remains an 
issue. Using the broadly sensitive honeybee olfactory sensory system, 
with no need to know or design the sensor for specific VOC identity or 
concentration ranges, we reliably classified all nine potential lung 

cancer biomarkers, synthetic breath mixtures, and six human lung 
cancer cell lines. 

Biological olfaction, such as a dog’s nose, has been used to detect 
several types of cancer, including lung cancer, from human breath 
samples (Cornu et al., 2011; Urbanová et al., 2015; Pickel et al., 2004; 
Willis et al., 2004b; Gordon et al., 2008; Horvath et al., 2011; Ehmann 
et al., 2012; McCulloch et al., 2006; Lee et al., 2015). Similar to dogs, 
more recently, behavioral studies involving other animals including 
rats, honeybees, fruit flies, and ants have been conducted to detect 
different diseases (Lee et al., 2015; Mgode et al., 2012; Weetjens et al., 
2009; Kontos et al., 2022; Suckling and Sagar, 2011; Strauch et al., 2014; 
Piqueret et al., 2022). However, behavioral studies are susceptible to 
behavioral variations due to other sensory cues and result in binary 
outcomes - ‘yes’ or ‘no,’ which limits this approach to detect only one 
disease. Our approach eliminates behavioral variability by directly 
recording the cancer VOC-evoked neural signals from the honeybee’s 
olfactory brain, which is known to be odor identity and intensity specific 
and can detect odor stimuli in natural environments (Stopfer et al., 
1997, 2003; Saha et al., 2013a, 2013b, 2015, 2017, 2020; Raman et al., 
2010; Stopfer, 2014). Also, insect antennae are extremely sensitive, with 
a recent study indicating the detection threshold is sub-ppb (Neta et al., 
2023). Therefore, we expect this honeybee brain-based odor detection 
approach will be robust, sensitive to the minute VOC concentrations in 
human breath, and work efficiently in natural settings. 

Our previous work demonstrates that neural recordings from the 
locust brain can be employed to successfully differentiate between three 
types of human oral cancer cell lines from a human noncancer cell line 
(Farnum et al., 2023). However, in this previous work, we could not 
determine which VOCs were different between the oral cancer vs. 
noncancer cell lines as this biological neural template-based odor clas-
sification approach does not identify individual compounds. Therefore, 
here, we reverse-engineered the mixture of specific lung cancer VOCs 
that have been identified and shown to be different between lung cancer 
vs. healthy human breath samples through GC-MS based studies. We 
mixed those VOCs at precise concentrations to generate synthetic lung 
cancer and healthy breath mixtures. By using this synthetic breath 
approach, we were able to show that these different mixtures of six lung 
cancer associated VOCs can be successfully differentiated by honeybee 
olfactory neural recordings. Ours is the first study to confirm that mix-
tures of multiple volatile lung cancer biomarkers, at ppb to ppt levels, 
that mimic concentrations in exhaled human breath can be detected by 
honeybee olfactory neural circuitry. This study opens the door for 
employing powerful honeybee olfactory neural responses for noninva-
sive cancer detection. 

This honeybee sensor is by no means limited to the detection of in-
dividual biomarkers or synthetic breath mixtures. We have demon-
strated this broad sensitivity through the detection of human lung 
cancer cell lines. VOC-laden air from the headspace of these cell cultures 
was delivered to the honeybee antenna while concurrently recording 
neural responses from antennal lobe neurons for real-time detection. 
These neural responses to the naturally complex cell culture headspace 
VOCs create unique templates for classification. The honeybee olfactory 
system can distinguish between the healthy cell line, media control, and 
the two main types of lung cancer (NSCLC and SCLC). Our results stem 
from the detection of metabolic alterations characteristic of cancer 
leading to altered VOC profiles (Bamji-Stocke et al., 2018; Sertorio et al., 
2018; Zhou et al., 2012). Evidence has shown that metabolites relating 
to lipid metabolism and cellular growth have a significant increase in 
concentration in lung cancer compared to healthy cells as the cancerous 
cells switch from glycolysis to oxidative phosphorylation for energy 
production, changing the emitted VOCs (Puchades-Carrasco et al., 2016; 
Eigenbrodt et al., 1998; Pereira et al., 2015b). For lung cancer, NSCLC 
and SCLC have unique metabolic and morphologic characteristics 
compared to normal, healthy cells (Lim et al., 2018; Pedersen et al., 
2021; Sertorio et al., 2018). There are many differences relating to cell 
morphology (Lim et al., 2018; Puchades-Carrasco et al., 2016), growth 
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rate (Lim et al., 2018; Puchades-Carrasco et al., 2016), and metabolism 
(Lim et al., 2018; Pisters et al., 1993; Maeda et al., 2010) between 
NSCLC and SCLC which contribute to slight differences in emitted VOCs 
that the honeybee is able to detect and differentiate. Based on our data, 
NSCLC can be accurately distinguished from SCLC by the honeybee ol-
factory system, with very little confusion between the cell lines of the 
same type of cancer. The cancer cell lines used for experimentation were 
chosen randomly without bias of the metabolic or morphologic diversity 
between lines. This aligns more with what one would find in a real-world 
application; however, any lack of diversity between cell lines could 
contribute to the classification confusion seen in some of the results. 

Additionally, while our honeybee olfactory sensor successfully clas-
sified most lung cancer cell lines, it struggled with distinguishing NSC- 
NCI-H1573-S4 from others. Interestingly, in our study, this cell line 
was the only one chosen from American Type Culture Collection that 
was officially labeled as stage 4 lung cancer. It is known that as cancer 
progresses, the genetic diversity of the disease increases, thus allowing a 
wide range of genomic mutations that coexist (Goto et al., 2018; Gentric 
et al., 2017; Dagogo-Jack and Shaw, 2018). This range of coexisting 
mutations are the basis of cancer heterogeneity as the disease advances, 
creating an immunocompromised microenvironment that tolerates 
change (Dagogo-Jack and Shaw, 2018). Lung cancer epitomizes 
changing over time by maintaining a significant increase in mutational 
burden, augmenting its heterogeneity with progression (Pucha-
des-Carrasco et al., 2016; Pisters et al., 1993; Goto et al., 2018). This 
leads to various metabolic profiles and varied VOCs emitted as a 
consequence of increasing versatility and diversity (Dagogo-Jack and 
Shaw, 2018; Mendes et al., 2023). An increase in volatile profile het-
erogeneity could allow the odor to be increasingly challenging to 
differentiate, leading to the classification confusion seen within the re-
sults. Moreover, not all cell lines used in this study were specifically 
labeled with cancer stages, therefore additional exploration of late-stage 
cancer classification using our biological sensor should be done. None-
theless, our study is the first to successfully employ a biological hon-
eybee sensor in the detection of human lung cancer cells. 

Reproducibility of the honeybee brain-based sensor’s responses are 
evident from multiple observations: 1) each neuron’s response to stim-
uli, 2) the population neural response to stimuli, and 3) the classification 
performance across replicates of the same stimuli. In each of our ex-
periments, neurons exhibited similar responses to the same stimulus 
throughout five consecutive presentation trials (Fig. 1c, 3b and 6b). 
Therefore, the individual neurons we recorded from the honeybee AL 
were reproducibly responding to stimuli. The reproducibility of the 
population neural response to stimuli was measured by the high 
dimensional LOTO analysis, where the training template was based on 
four trials and the testing template was the left-out trial. As we achieved 
a high classification success rate for all different types of stimuli tested 
(single biomarkers, concentration gradients, VOC mixtures, and cell 
culture headspace VOC mixtures), it demonstrates that population 
neural responses are reproducible for each stimulus over multiple trials 
(Fig. 2h, 3d and 5h,i,j, 6d). Finally, we have demonstrated the repro-
ducibility of the sensor’s classification performance using temporally 
distinct delivery of the same odor mixture (technical replicate) and 
delivery from two different odor bottles mixed using the same procedure 
(sample replicate) (Fig. 5h,i,j). Notice that population neural responses, 
which are generated by combining neuronal responses across multiple 
honeybees, determine the classification performance of the sensor. 
Therefore, reproducibility of the sensor based on individual bees cannot 
be computed unless all the neurons are recorded from the same bee. 
However, in our future work, we plan to record large numbers of neu-
rons from each honeybee, which will help determine reproducibility of 
the sensor based on individual bees. 

The number of neurons recorded for each experiment can be 
increased by improving the multi-electrode configuration or by adjust-
ing the placements of the electrodes within the antennal lobe. In the 
future, we expect to collect ~20–30 ALNs from one single honeybee, 

which would enable spatiotemporal classification of odors. The princi-
ples for achieving reproducibility between different honeybee brain- 
based sensors will depend on the generation of ‘distinct’ neuronal 
response templates corresponding to the target VOC mixtures (e.g., lung 
cancer vs. noncancer) and not on the identity of individual neurons. As 
we perform VOC-evoked extracellular neuronal recordings from the 
honeybee antennal lobe we expect that we will not be recording from the 
same neurons across different brains. Here, we have recorded from both 
PNs and LNs. The antennal lobe contains a dense interconnected 
network of roughly 800 PNs and 4000 LNs, both of which contain 
discriminatory odor information (Fonta et al., 1993; Paoli and Galizia, 
2021). In this brain-based VOC sensing approach, the identity of indi-
vidual neurons is not important, rather the properties of the entire 
recorded ALN population responses are the key. Our high dimensional 
template-based analysis replicates biological olfaction which transfers 
odor identity to higher-order brain centers based on the integrated and 
combined neural response within the antennal lobe. Also, just like bio-
logical systems, we do not specifically detect individual VOCs within a 
mixture, instead the response templates are based on the entire mixture, 
which is classified as a single odor. Our goal will be to create 
VOC-evoked ALN population response templates that are distinct for 
different odors in the neural response space from a single honeybee. 

To show that honeybees can detect lung cancer through breath-based 
analysis, we have used complex gas mixtures of six compounds at ppb to 
ppt levels and mixed them with clean air to replicate lung cancer and 
healthy human breath. However, the exact concentrations of the hun-
dreds of VOCs in the breath of lung cancer patients and healthy in-
dividuals are unknown and therefore we cannot synthetically replicate 
the concentrations of all the VOCs present in actual human breath. While 
cell cultures of different cancer cell lines will have subtle differences in 
VOC concentrations and exhibit many of the same VOC identities as 
exhaled breath, they will not perfectly replicate the VOCs that will be 
found in exhaled breath. Finally, for each analysis, we used known odors 
to create neural response templates for single VOCs, concentration 
gradients of single VOCs, complex mixtures of VOCs, and healthy and 
cancerous cell lines. In the next stage, this honeybee olfactory neural 
circuit-based VOC sensing approach needs to be tested on human breath 
samples of lung cancer patients and healthy subjects. 

Despite the honeybee brain-based sensor’s lifetime being limited 
(~2–3 h), it is capable of running a new VOC test every minute (i.e., high 
throughput). In the future, this sensor can be applied to screen breath 
samples of several at-risk individuals (~40–50 patients) participating in 
a lung cancer clinic. For these sets of experiments, exhaled breath 
samples of patients will be collected in sorbent tubes, stored at −85 ◦C, 
and transported to the biosensing lab within 30 days of collection. 
Breath samples will be thermally desorbed and then the VOC mixtures 
will be delivered to the honeybee brain-based sensor using an olfac-
tometer (following the same procedure used in these experiments). The 
sensor will be calibrated before testing unknown breath samples. During 
the calibration phase of the experiment, known breath samples (lung 
cancer vs. healthy breath) will be used to generate the training odor 
templates, which will be employed later to classify unknown breath 
samples based on the overlap between the lung cancer vs. healthy 
training templates with the exhaled breath testing template. Addition-
ally, with a large and well-defined set of training breath samples, this 
sensor could be calibrated to distinguish between lung cancer subtypes 
of NSCLC and SCLC, as demonstrated in the experiments with cell lines. 

4. Experimental Section 

4.1. Honeybee husbandry 

Foraging honeybees (Apis mellifera) were purchased and shipped 
from the School of Life Sciences at Arizona State University (Tempe 
campus, AZ, USA). The small colonies were maintained in an incubator 
in 24 h of darkness at 32 ◦C and 60% humidity for 4 weeks at a time. For 
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food, the bees were given 50% sucrose solution and pollen patties. 

4.2. Honeybee surgery 

The honeybees were collected individually into plastic vials, then 
placed briefly into ice. As soon as they stopped moving, the bees were 
manipulated into a plastic restraining harness with dental wax (Surgi-
dent Periphery Utility Wax) placed at the back of the head to prevent the 
head from moving while allowing free movement of the antennae and 
mouthparts. The bees were then left undisturbed on the counter for 
30–60 min, after which they were fed 50% sucrose solution until they 
were completely satiated. The bees were then placed into a drawer 
overnight, along with a small cup of water for humidity. The next 
morning, the bees were tested for feeding motivation as a metric to 
determine their health for the electrophysiological recording. This was 
done by exposing the antennae to the 50% sucrose solution, and if a 
subsequent proboscis extension response was not observed, those bees 
were discarded. Eicosane wax (Sigma-Aldrich) was used to immobilize 
the antennae by first applying the wax to the base of the scapes and then 
to the pedicels, and then positioning the antennae so that the flagellum 
were both forward-facing. The top of the head was shaved using a 
microscalpel, and the bees rested undisturbed for 10–20 min. Next, a 
small window was cut into the top of the head just above the antennae 
and below the ocelli. The glands and tracheae were removed to expose 
the brain. The brain was kept hydrated with a Ringer’s solution 
described by Brill et al. (in mM as follows: 37 NaCl, 2.7 KCl, 8 Na2HPO4, 
1.4 KH2PO4; pH 7.2; all chemicals from Sigma-Aldrich)(Brill et al., 
2013). The antennal lobe portion of the brain was desheathed just prior 
to electrode placement. 

4.3. Odor vial preparation 

For the individual cancer biomarkers, the following odorants were 
used: decane, undecane, 2-methylheptane, 2,2,4,6,6-pentam-
ethylheptane (PMH), pentanal, hexanal, nonanal, propylbenzene, and 
trichloroethylene (all from Sigma-Aldrich). These odors were diluted in 
10 mL of mineral oil at 1% vol/vol concentration, and the pure mineral 
oil was used as a control. 

For varying concentrations of two chosen cancer biomarkers, hexa-
nal and 2-methylheptane, we diluted both odors in 10 mL of mineral oil 
at 1% vol/vol and 0.01% vol/vol A serial dilution with the 1% vol/vol 
vials was used to generate the concentration of 0.0001% vol/vol in 10 
mL of mineral oil. 

To generate the synthetic lung cancer and healthy breath mixtures, 
we used the vapor pressure of each VOC and Raoult’s Law to obtain the 
liquid phase volumes necessary to achieve the desired gas phase con-
centrations of each chemical compound that have been previously re-
ported in the literature (Fig. 4b) (Fuchs et al., 2010; Poli et al., 2005). 
For the synthetic lung cancer breath mixture, the following odorants at 
their respective concentrations in the liquid phase were used (concen-
trations in μM): 1.0 pentanal, 1.1 hexanal, 390.9 nonanal, 240.0 decane, 
15.2 2-methylheptane, and 0.8 PMH. For the healthy breath mixtures, 
the following concentrations were used (concentrations in μM): 0.1 
pentanal, 0.0 hexanal, 54.1 nonanal, 88.2 decane, 3.0 2-methylheptane, 
and 0.3 PMH. Serial dilution was used to create these mixtures in 10 mL 
of mineral oil. 

4.4. Cell culture preparation 

T-25 flasks Nunc™ EasYFlask™ (Thermo Fisher Scientific, MA, USA) 
were modified in a sterilized cell culture hood prior to cell culturing. 
Using a handheld Dremel, 0.7 mm holes were drilled through the top of 
the flask near the back and through the cap of each flask. Inlet and outlet 
20-gauge needles were inserted into each hole. The sharp end of the 
needles were sheered, and the base was stabilized using a low-volatile, 
two-part Permatex™ epoxy at least 24-hrs prior to seeding. The ends 

of the needles were capped with an air-tight epoxied tube to culture cell 
lines. 

Six human lung cancer cell lines were purchased from American 
Type Culture Collection (ATCC) including three non-small adenocarci-
noma cell lines: NCI–H1975 (derived from site: in situ; lung), 
NCI–H1437 [stage 1] (derived from site: metastatic; pleural effusion), 
NCI–H1573 [stage 4] (derived from site: in situ; lung), one non-small 
cell carcinoma cell line: NCI–H661 (derived from site: metastatic; 
lymph node), and two small cell carcinoma cell lines: H69PR (derived 
from site: metastatic; pleural effusion), SHP-77, non-adherent cells 
(derived from site: in situ; lung, left upper lobe). As a non-cancer control, 
primary lung fibroblasts, normal, human, HLF (derived from site: in situ, 
lung) were also purchased from ATCC. All cancer cell lines were seeded 
in surface treated sterile tissue culture flasks, vented cap, T75 at a 
density of 1.2 × 106 cells per flask in RPMI 1640 Medium with 10% heat- 
inactivated fetal bovine serum (FBS) and 1% penicillin-streptomycin 
(10,000 U/mL) at 37 ◦C in 5% CO2 (T75 flasks, medium, FBS, and 
penicillin-streptomycin were all purchased from Thermo Fisher Scien-
tific, MA, USA). The HLF line was cultured in Fibroblast Basal Medium 
(ATCC) with Fibroblast Growth Kit-Low serum (ATCC) at 37 ◦C in 5% 
CO2 in the same T75 flasks. After 4 days, all adherent cells were de-
tached using 4 mL of Accutase® solution (Sigma Aldrich) for 5 min, 
centrifuged at 160×g for 6 min, and the supernatant was then decanted. 
All cell lines were resuspended in 4 mL of RPMI complete medium at a 
seeding density of 2.25 × 106 cells per modified T-25 flasks. The cell 
lines and a RPMI complete media control were then incubated at 37 ◦C 
in 5% CO2. Subsequently, the cells were subjected to olfactory testing. 

4.5. Odor stimulation 

Odor delivery was conducted following our pre-established meth-
odology. Briefly, a commercial olfactometer (Aurora Scientific, 220A) 
was used for precision odor stimulus delivery (Fig. 1a). At the beginning 
of each set of trials, 200 standard cubic centimeters per minute (sccm) of 
zero contaminant air was passed through the fresh air flow line via a 1/ 
16 in. diameter PTFE stimulus flow line to the honeybee antenna, and an 
additional 200 sccm of zero contaminant air was passed through the 
dilution flow line to the exhaust. The end of the stimulus flow line was 
positioned approximately 2–3 mm from and pointing at the most distal 
antennal segment. Five seconds prior to stimulus delivery, 40% (80 
sccm) of the dilution line was redirected through the odor flow line 
directly upstream of the odorant vials or cell culture flasks. The dilution 
flow and odor line joined downstream of the odorant vials or cell culture 
flasks, allowing for the complete mixing of the 80 sccm odor flow with 
the 120 sccm of the dilution flow line’s clean air. The air-volatiles 
mixture primed the line with volatiles up to the final valve, where the 
joint dilution + odor flow was directed towards the exhaust. Upon 
stimulus onset, the final valve redirected the fresh air flow to the exhaust 
and the dilution + odor flow via the stimulus flow line to the honeybee 
antennae. After 4 s of constant flow and stimulus delivery, the final valve 
redirected the fresh air flow via the stimulus flow line to the locust 
antenna and the dilution + odor flow back to the exhaust. One second 
after stimulus offset, the 80 sccm flowing through the odor flow line was 
redirected through the dilution flow line, mitigating any potential 
headspace depletion during the odor delivery. This protocol was 
designed to maintain a consistent flow rate through the stimulus flow 
line, thereby eliminating any potentially confounding neuronal re-
sponses due to mechanosensory detection of changes in air pressure. A 6″ 

diameter funnel pulling a slight vacuum was placed immediately behind 
the honeybee during odor delivery to ensure swift removal of odorants. 

4.6. Electrophysiology 

In vivo extracellular neural data for the putative cancer biomarkers 
and concentrations were collected from 34 to 19 honeybees, respec-
tively. All cancer biomarker experiments were conducted using the same 
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stimulus panel made up of nine different VOCs and mineral oil. The 
biomarker concentration experiments were performed using a stimulus 
panel comprised of three varying concentrations (1% v/v, 0.01% v/v, 
and 0.0001% v/v) of two chemicals, hexanal and 2-methylheptane, for a 
total of six odors in addition to pure mineral oil as a control. 

In vivo extracellular data for the synthetic breath mixtures were 
collected from 21 honeybees. For each experiment two separate panels 
of synthetic breath mixtures containing synthetic lung cancer patient 
breath, synthetic healthy patient breath, and mineral oil were created. 
The first panel was presented to the honeybees at two different times 
with a 10-min delay. The second panel, created using the exact same 
protocol, was then presented. Due to the extremely low concentrations 
in the mixtures, these synthetic breath odors were created fresh prior to 
every experiment. 

The human lung cancer cell line data was collected from nine hon-
eybees. The human lung cancer cell lines experiment comprised a panel 
with seven cultured lines and a media control. The cultured cell lines 
contained four NSCLC lines, two SCLC lines, and one healthy fibroblast 
control line. 

The odor panels for each experiment were pseudorandomized prior 
to each recording, and each 4 s duration odor presentation was repeated 
five times with a 60 s inter-stimulus interval. This resulted in five trials 
of neural response data being collected for all odors of each odor panel 
(putative cancer biomarkers, descending concentrations, synthetic 
breath mixtures, and human lung cancer cell lines) presented to the 
insect. Each recording session lasted 1–2 h. Following surgery, a silver- 
chloride ground wire was placed into the ringer solution within the 
honeybee head capsule. Voltage signals from the ALNs were recorded by 
inserting a custom-made 4-channel electrode with impedance between 
350 and 450 kΩ superficially into the center of the antennal lobe. 
Voltage signals were sampled at 20 kHz and then digitized using an 
Intan pre-amplifier board (C3334 RHD 16-channel headstage). The 
digitized signals were transmitted to the Intan recording controller 
(C3100 RHD USB interface board) prior to being visualized and stored 
using the Intan graphical user interface and LabView data acquisition 
system. 

4.7. Spike sorting 

All neural data was imported into MATLAB after high pass filtering 
using a 300Hz Butterworth filter. The data was analyzed by custom- 
written codes in MATLAB R2020b. For spike sorting analysis, all data 
was processed with Igor Pro using previously described methods and one 
to four channels (Pouzat et al., 2002). Detection thresholds for spiking 
events were between 2.5 and 3.5 standard deviations (SD) of baseline 
fluctuations. Single neurons were identified if they passed the following 
criteria: cluster separation > 5 SD and inter-spike intervals (ISI) < 20%. 
For the putative lung cancer biomarker panel, 44 neurons were identi-
fied from 34 honeybees. For the varying concentrations of two different 
lung cancer biomarkers, 45 neurons were identified from 19 honeybees. 
For the synthetic breath mixtures, 27 neurons were identified from 21 
honeybees. For the lung cancer cell culture headspace odors, 27 neurons 
were identified from 9 honeybees. Spike sorted data was used for ana-
lyses in Figs. 1–3, 6, and Supplementary Figs. 2,3,5. 

4.8. R.M.S. Transformation of neural voltage response 

After importing the data into MATLAB and processing using the 
300Hz filter, for R.M.S. analysis, large and wide voltage peaks, caused 
by palp movements, that were greater than 15 standard deviations from 
the mean voltage amplitude were removed by setting the 160 samples 
centered around each peak (8 ms duration) equal to the mean voltage 
value. This was done to remove any movement artifact from the data. 
For synthetic breath mixture analysis, out of a total of 1035 (23 positions 
x 3 odors × 3 odor panels x 5 trials = 1035) recorded R.M.S. responses, 
only 10 voltage traces (each with 1–2 artifacts per recording) contained 

this type of movement artifact. Next, the filtered data was trimmed to 
the time window of interest and passed through an R.M.S. filter as 
described in our previous work (Farnum et al., 2023). In short, a 
continuously moving 500-point R.M.S. filter, followed by a continuously 
moving 500-point averaging filter were applied to the raw voltage data. 
Baseline values calculated as the average of the 2 s prior to stimulus 
onset were subsequently subtracted from the data to obtain the ΔR.M.S. 
values. These ΔR.M.S. values were then binned into non-overlapping 10 
ms or 50 ms bins and the average of each bin was computed. For the 23 
recorded positions, obtained from the 21 honeybees, used for the syn-
thetic breath mixture recordings (multiple recording positions from a 
single bee is possible), R.M.S. transformed voltage data from the 4-chan-
nels of the twisted wire electrode were averaged together. R.M.S. 
transformed data was used for analyses in Figs. 4 and 5. 

4.9. Pairwise distance calculation 

Using the binned spike sorted or binned R.M.S. data, the odor-evoked 
responses across all five trials for each neuron or R.M.S. position were 
averaged together. Then, all possible combinations of two different 
odors (45 combinations for 10 individual biomarkers and 3 combina-
tions for 3 synthetic breath mixtures) were compared by calculating the 
absolute value of the difference between time-matched bins. The 
average of odor-evoked pairwise distances across all 44 neurons for the 
putative cancer biomarkers (Fig. 1d) and all 23 R.M.S. recording posi-
tions for the synthetic breath mixtures were also computed (Fig. 4e). 

4.10. Dimensionality reduction analysis 

We performed two methods of dimensionality reduction – Principal 
Component Analysis (PCA) and Linear Discriminant Analysis (LDA) as 
described in our previous study (Farnum et al., 2023). In PCA, we binned 
baseline subtracted, spike sorted neuronal signals into 50 ms 
non-overlapping time bins and averaged over trials (n = 5, each stimulus 
was repeated 5 times with a 1-min inter-stimulus interval). The baseline 
response was calculated for each neuron by averaging the firing rate 
over the 2 s time windows immediately before stimulus presentation 
across trials. Recorded neurons were pooled across multiple electro-
physiology experiments. For example, in Fig. 1e, spike sorted and binned 
responses of all recorded neurons (44 total) were combined to generate a 
neuron number (n = 44) × time bins (t = 10, number of 50 ms bins between 
250 ms – 750 ms) matrix, where each element in the matrix corresponds 
to the spike count of one neuron in one 50 ms time bin. Similar neuronal 
population time-series data matrices were generated for each stimulus. 
PCA dimensionality reduction analysis was performed on the time-series 
data involving all 10 putative cancer biomarkers and directions of 
maximum variance were found. The resultant high-dimensional vector 
in each time bin was projected along the principal component axes. Only 
three dimensions with the highest eigenvalues were considered for 
visualization purposes and data points in adjacent time bins were con-
nected to generate low-dimensional neural trajectories. The same PCA 
analysis was applied to the varying concentrations of cancer biomarkers 
(Fig. 3c), synthetic breath mixtures (lung cancer, healthy, mineral oil) 
using the baseline subtracted R.M.S transformed population time-series 
data (Fig. 5b,c,d), and lung cancer cell culture odors (Fig. 6c). For LDA 
analysis, the same R.M.S transformed population time-series data matrix 
was used for synthetic breath mixtures and spike-sorted population 
matrix was used for varying concentrations of cancer biomarkers and 
lung cancer cell culture odors. Here, we maximized the separation be-
tween interclass distances while minimizing the within class distances. 
To visualize the data, time bins were plotted as unique points in this 
transformed LDA space and stimulus-specific VOC clusters became 
readily apparent (Fig. 5e,f,g, and Supplementary Figs. 2c, 3b, and 5c). 
All dimensionality reduction analyses were done using custom written 
MATLAB R2020b codes. 
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4.11. Quantitative classification: leave-one-trial-out 

For individual biomarker classification, varying concentrations of 
biomarkers, and lung cancer cell culture odors, the spike sorted data was 
binned into 50 ms bins to create a three-dimensional matrix (e.g., 44 
neurons × 5 trials × 10 time bins). The number of time bins depends on 
the time window of interest, for this analysis, the time window was 
chosen as 0.25–0.75 s after stimulus onset, which corresponds to the 
transient phase of the odor-evoked neural activity that is most 
discriminatory. For leave-one-trial-out (LOTO) analysis, four trials (out 
of total five) were averaged together to form a training template, while 
the fifth trial, the left-out trial, was used as the testing template. This was 
done for all odors to create as many training and testing templates as 
there were odors (e.g., for 10 odors there will be 10 training and 10 
testing templates). For each time bin within the time window of interest, 
the Euclidean or Manhattan distance between the testing templates and 
the training templates were calculated and the testing templates were 
assigned based on the minimum Euclidean or Manhattan distance 
metric. Then, we iterated through the five trials, each time leaving out a 
different trial for the testing template and using the other four trials to 
create new training templates. The results are summarized with a 
confusion matrix (Fig. 2g). A fully diagonal matrix indicates 100% 
classification accuracy with any deviations indicating misclassifications. 
A further analysis was done by calculating the mode for each testing 
template across the 10 time bins in the time window of interest. The 
mode was used to classify the entire trial in a winner-take-all approach 
and the results are summarized in Fig. 2h, 3d and 6d. This same analysis 
was done on the R.M.S. transformed synthetic breath mixtures (Fig. 5h,i, 
j). Here, the three-dimensional matrix created for each odor is 23 posi-
tions × 5 trials × 10 time bins. 

5. Conclusions 

Our study demonstrates for the first time that a powerful biological 
VOC sensor, the honeybee olfactory brain, can be leveraged to detect 
human lung cancer biomarkers, complex mixtures of biomarkers at 
biological concentrations, and actual human lung cancer cell lines. By 
employing in vivo neural recordings from the honeybee brain as a 
noninvasive biosensing approach for lung cancer detection, we are able 
to combine the power of the entire biological olfactory sensory array 
(sensory neurons at the honeybee antennae), biological chemical 
transduction, and downstream neural network computations of the 
antennal lobe in one single brain-based VOC sensing device. We have 
also demonstrated that biological neural computational analyses can be 
performed on the odor-evoked neural data to achieve high classification 
success for synthetic lung cancer vs. healthy breath mixtures and for 
human lung cell lines healthy vs. NSCLC vs. SCLC. This novel study 
opens the door for more forward engineering approaches for cancer 
detection using honeybee olfactory neurons. 
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Groh, C., Rössler, W., 2020. Analysis of synaptic microcircuits in the mushroom bodies of 
the honeybee. Insects 11, 43. 

Gruber, M., et al., 2014. Analysis of exhaled breath for diagnosing head and neck 
squamous cell carcinoma: a feasibility study. Br. J. Cancer 111, 790–798. 

Guo, L., et al., 2015. Exhaled breath volatile biomarker analysis for thyroid cancer. 
Transl. Res. 166, 188–195. https://doi.org/10.1016/j.trsl.2015.01.005. 

Haick, H., Broza, Y.Y., Mochalski, P., Ruzsanyi, V., Amann, A., 2014. Assessment, origin, 
and implementation of breath volatile cancer markers. Chem. Soc. Rev. 43, 
1423–1449. https://doi.org/10.1039/c3cs60329f. 

Hakim, M., et al., 2011. Diagnosis of head-and-neck cancer from exhaled breath. Br. J. 
Cancer 104, 1649–1655. https://doi.org/10.1038/bjc.2011.128. 

He, J., et al., 2014. Fingerprinting breast cancer vs. Normal mammary cells by mass 
spectrometric analysis of volatiles. Sci. Rep. 4, 5196. https://doi.org/10.1038/ 
srep05196. 
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