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Abstract
Density dependence in an ecological community has been observed in many macro-organismal ecosystems and is hypoth-
esized to maintain biodiversity but is poorly understood in microbial ecosystems. Here, we analyze data from an experiment 
using quantitative stable isotope probing (qSIP) to estimate per-capita growth and mortality rates of bacterial populations 
in soils from several ecosystems along an elevation gradient which were subject to nutrient addition of either carbon 
alone (glucose; C) or carbon with nitrogen (glucose + ammonium-sulfate; C + N). Across all ecosystems, we found that 
higher population densities, quantified by the abundance of genomes per gram of soil, had lower per-capita growth rates in 
C + N-amended soils. Similarly, bacterial mortality rates in C + N-amended soils increased at a significantly higher rate with 
increasing population size than mortality rates in control and C-amended soils. In contrast to the hypothesis that density 
dependence would promote or maintain diversity, we observed significantly lower bacterial diversity in soils with stronger 
negative density-dependent growth. Here, density dependence was significantly but weakly responsive to nutrients and was 
not associated with higher bacterial diversity.
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Introduction

Negative density dependence is a well-studied phenome-
non in the field of plant ecology wherein larger populations 
experience lower rates of growth or recruitment (Janzen 
1970; Johnson et al. 2012). It is either brought about by 
intraspecific competition, where individual plants compete 
most strongly with individuals of the same species (Chesson 
2000), or by the spread of species-specific pathogens and 
parasites through a population, the rate of spread enhanced 
by increasing density (Connell 1971; Klironomos 2002). 
Both mechanisms create negative density dependence, 
which is understood to reduce competitive exclusion for 
large populations in a community and, therefore, promote 
local diversity (Petermann et al. 2008; Levine and HilleRis-
Lambers 2009; Bever et al. 2012; Johnson et al. 2012). Less 
is known about the existence and causative mechanisms of 
this phenomenon in soil microbial communities, due to both 
the difficulty in measuring population vital rates as well as 
population densities in situ.
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Studies of density dependence of microbial populations in 
microcosms exist in the classical ecological literature (Gause 
1934; Allee 1941; Tilman 1977) and more recently as tests of 
current ecological theory (Jessup et al. 2005; Cadotte et al. 
2006; Letten et al. 2018; Rovere and Fox 2019). Both nega-
tive and positive density dependence have been observed in 
populations of cultured bacteria measuring either survival 
or growth (Phaiboun et al. 2015; Kaul et al. 2016). However, 
the soil environment differs from many microcosm experi-
ments in that its structure constrains microbial interactions 
relative to laboratory cultures. In soil, a small portion of 
habitable surface is colonized by microorganisms who are 
aggregated and isolated from other colonies inside biofilms 
(Young et al. 2008; Flemming and Wuertz 2019). This isola-
tion is thought to underpin the microbial diversity observed 
in soils by avoiding competitive exclusion (Kerr et al. 2002; 
Carson et al. 2010; Tecon and Or 2017). Further, soil micro-
bial communities are primarily limited by available carbon 
or co-limited by carbon and nitrogen (Aldén et al. 2001; 
Demoling et al. 2007). Within soil biofilms and aggregates 
themselves, close associations with between different spe-
cies likely confer important synergistic advantages (Nadell 
et al. 2016). However, the number of different species within 
the local vicinity of any given bacterium (< 20 µm) is likely 
to be low (Raynaud and Nunan 2014) while binary fission 
has been observed in many instances to intensify clonal 
aggregation within the biofilm (Nadell et al. 2016), mak-
ing conspecific interactions quite likely. Thus, in soil, the 
relative strength of conspecific competition merits resolu-
tion. Conspecific negative density dependence, where larger 
populations experience lower growth rates, may suggest that 
competition for nutrients between conspecifics is an impor-
tant mechanism even within the diverse and interactive soil 
community.

A relatively new technique, quantitative stable isotope 
probing (qSIP) with 18O–H2O overcomes the problem of 
measuring microbial populations in situ by estimating rates 
of DNA synthesis by quantifying the rate of 18O incorpora-
tion into nucleic acids from water, and then using a math-
ematical model to estimate growth and mortality rates. qSIP 
can be applied to natural microbiomes to estimate these vital 
rates for each individual taxon in the bacterial assemblage. 
However, the rates estimated through qSIP represent an 
average of many cells from a small volume of soil with-
out accompanying spatial information. Thus, while we use 
the term “population” to describe the collective growth and 
mortality of a single bacterial taxon, it represents an aggre-
gate measure of sub-populations with varying sizes and 
degrees of spatial isolation.

Past observations using qSIP to assess density depend-
ence showed differing patterns. An Arizona grassland 
showed density-dependent mortality, but not growth, meas-
ured over a 10-day period (Koch et al. 2018). In contrast, a 

California grassland showed density independent mortal-
ity during the first 3 h after an early-season wet-up event, 
whereas growth was density dependent during this time 
period (Blazewicz et al. 2020). However, because competi-
tion for nutrients is an important dynamic in soil systems, it 
may be valuable to explore microbial response to nutrients 
in order to understand the degree of competition and den-
sity dependence among soil microorganisms. Higher nutri-
ent availability may either alleviate or intensify competition 
between conspecifics over a set time period which is likely 
to be influenced by population density.

We hypothesized that larger populations would have 
lower per-capita growth rates due to intraspecific competi-
tion than smaller populations (i.e., growth rates will be lower 
as population density increases). Further, nutrient addition 
was hypothesized to alleviate intraspecific competition given 
the short experimental duration (Steen and Scrosati 2004; 
Cabaço et al. 2013), although the opposite patterns have 
been observed (Morris 2003; Wang et al. 2015). Regard-
less of the specific mechanism, negative density dependence 
should promote diversity (Johnson et al. 2012) as larger, 
more slowly growing bacterial populations are unable to out-
compete and exclude smaller, faster growing populations. 
Thus, bacterial diversity was hypothesized to be higher 
in soils where negative density dependence is stronger. 
This hypothesis is predicated on competition for limiting 
resources which is a widespread ecological phenomenon and 
present in microbial communities (Hibbing et al. 2010). The 
absence of any relationship between diversity and density 
dependence may indicate that other mechanisms are more 
important determinants of bacterial diversity in soils.

To summarize, the main hypotheses were:

	H1.	 Larger bacterial populations will have lower per-capita 
growth rates

	H2.	 The strength of the density dependence relationship 
will be lower in nutrient-amended soils

	H3.	 Soils with stronger negative density dependence will 
have higher bacterial diversity

To test these hypotheses, per-capita growth and mortal-
ity rates for individual bacterial populations were quanti-
fied using qSIP with 18O–H2O in soils under ambient and 
elevated nutrient profiles.

Methods

Sample collection and isotope incubation

Data were analyzed from samples collected, manipulated, 
and published previously (Liu et al. 2017, 2020; Morris-
sey et al. 2017, 2019; Li et al. 2019). Reiterated here, three 
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replicate soil samples were collected from the top 10 cm of 
plant-free, open meadow patches in four ecosystems along 
the C. Hart Merriam elevation gradient in Northern Ari-
zona. From low to high elevation, these sites were located in 
the following environments: desert grassland (GL; 1760 m, 
35.58º N, 111.57º W), piñon pine–juniper woodland (PJ; 
2020 m, 35.50º N, 111.62º W), ponderosa pine forest (PP; 
2344 m, 35.42º N, 111.67º W), and mixed conifer forest 
(MC; 2620 m, 35.35º N, 111.73º W). Sites in order of ele-
vation (GL, PJ, PP, MC) were characterized by decreasing 
mean annual temperatures (MAT): 8.5 ºC, 7 ºC, 5.5 ºC, 4 ºC 
and increasing mean annual precipitation (MAP): 230 mm, 
380 mm, 660 mm, 760 mm (Morrissey et al. 2019). In con-
trast, soil pH did not vary in a distinct gradient along eleva-
tion: 6.9, 6.2, 5.8, and 6.3 (GL, PJ, PP, and MC) (Liu et al. 
2017). Soils were air-dried for 24 h at room temperature 
(~ 23 ºC), homogenized, and passed through a 2 mm sieve 
before being stored at 4 ºC for another 24 h. Three treat-
ments were provided to these soils through the addition of 
water at 70% water-holding capacity: water alone (control), 
with glucose (C treatment; 1000 µg C g−1 dry soil), or with 
glucose and a nitrogen source (C + N treatment; [NH4]2SO4 
at 100 µg N g−1 dry soil). Amendment concentrations were 
matched to parallel samples amended with 13C–glucose 
(data not reported here). Glucose additions were chosen to 
facilitate detection of 13C label in microbial DNA. Nitrogen 
was added in a 10:1 ratio, matching the soil C:N ratios of the 
characterized sites (Liu et al. 2017). This design resulted in 
three soil samples per ecosystem per treatment (across four 
ecosystems and three treatments, n = 36). To track growth 
through isotope assimilation, all experimental replicates 
(n = 36) were provided 18O–enriched water in all treatments 
(97 atom %) with a matching set of control samples that 
was provided water at natural-abundance 18O (n = 36). All 
soils samples (n = 72) were incubated in the dark for 1 week 
at room temperature (~ 23 ºC). Following incubation, soils 
were frozen at − 80 ºC for 1 week prior to DNA extraction.

Quantitative stable isotope probing

The following procedure is reiterated here as conducted pre-
viously (Morrissey et al. 2017, 2019; Li et al. 2019). DNA 
extraction was performed on 0.5 g of 18O-incubated soils 
and corresponding controls. To quantify the degree of 18O 
isotope incorporation into bacterial DNA, the qSIP protocol 
(Hungate et al. 2015) was used, though modified slightly as 
reported previously (Morrissey et al. 2017, 2019; Li et al. 
2019). Microbial growth was quantified based on DNA 
buoyant density through the method of density fractionation 
by adding 1 µg of DNA to 2.6 mL of saturated CsCl solu-
tion in combination with a gradient buffer (200 mM Tris, 
200 mM KCL, 2 mM EDTA) in a 3.3 mL OptiSeal ultracen-
trifuge tube (Beckman Coulter, Fullerton, CA, USA). The 

solution was centrifuged to produce a gradient of increas-
ingly labeled (heavier) DNA in an Optima Max bench top 
ultracentrifuge (Beckman Coulter, Brea, CA, USA) with a 
Beckman TLN-100 rotor (127,000 × g for 72 h) at 18 ºC. 
Each post-incubation sample was thus converted from a 
continuous gradient into approximately 20 fractions (150 
µL) using a modified fraction recovery system (Beckman 
Coulter). The density of each fraction was measured with a 
Reichart AR200 digital refractometer (Reichert Analytical 
Instruments, Depew, NY, USA). Following purification from 
CsCl buffer, DNA as measured using the Quant-IT Pico-
Green dsDNA assay (Invitrogen) and a BioTek Synergy HT 
plate reader (BioTek Instruments Inc., Winooski, VT, USA). 
Fractions between densities of 1.640 and 1.735 g cm−3 were 
retained, representing DNA-containing fractions, produc-
ing on average 15–16 fractions per sample in all treatments. 
Bacterial 16S rRNA gene copies were quantified using 
qPCR using primers excluding non-bacterial sequences (Eub 
515F: AAT GAT ACG GCG ACC ACC GAG TGC CAG 
CMG CCG CGG TAA, 806R: CAA GCA GAA GAC GGC 
ATA CGA GGA CTA CVS GGG TAT CTA AT). Follow-
ing qPCR quantification, all retained sample-fractions were 
sequenced for the 16S V4 region (515F: GTG YCA GCM 
GCC GCG GTA A, 806R: GGA CTA CNV GGG TWT 
CTA AT) on an Illumina MiSeq (Illumina, Inc., San Diego, 
CA, USA). In addition to the 18O-incubated qSIP soils, DNA 
from the same soil samples were extracted prior to incuba-
tion and subject to qPCR and Illumina sequencing as above, 
but without fractionation, in order to assess initial bacterial 
population size and identities.

Sequence processing and qSIP analysis

Sequence data and sample metadata have been previously 
deposited in NCBI Sequence Read Archive under the pro-
ject number PRJNA521534. Independently from previous 
publications, we processed raw sequence data of forward 
and reverse reads (FASTQ) within the QIIME 2 environ-
ment (release 2018.6) (Bolyen et al. 2019) and denoised 
sequences with the DADA2 pipeline (Callahan et  al. 
2016); in both cases following standard settings outlined in 
QIIME 2. We resolved the remaining sequences into ampli-
con sequence variants (ASVs, at 100% sequence identity) 
against the SILVA 132 database (Quast et al. 2013) using an 
open-reference Naïve Bayes feature classifier implemented 
within QIIME2 by scikit-learn (Pedregosa et  al. 2011). 
We removed samples with less than 3,000 sequence reads, 
non-bacterial lineages (Archaea: 6.9% of sequence reads; 
Eukarya: < 0.001%; mitochondria: 0.1%; chloroplast: 0.1%), 
and global singletons and doubletons. For the correct quan-
tification of bacterial 16S rRNA gene copies within each 
fraction given our use of bacterial-specific qPCR primers, 
removal of Archaeal lineages was necessary. This produced 
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a dataset of 99,465 bacterial ASVs and 34,886,320 sequence 
reads. For each ASV, we converted the normalized sequence 
read abundances in each fraction to the number of 16S rRNA 
gene copies per gram dry soil based on the known amount 
of dry soil equivalent added to the initial extraction. This 
allows us to express absolute population densities, rather 
than relative abundances. To ensure that estimates of growth 
and mortality did not include infrequent taxa, whose enrich-
ment is difficult to accurately quantify, we removed ASVs 
that failed to appear in two of the three replicates of a site-
treatment combination (n = 3) and at least five of the frac-
tions within each of those two replicates. This allowed any 
ASVs filtered out of one treatment to appear in another if 
they met the frequency threshold. In total, 2,277 bacterial 
ASVs met these thresholds for which we proceeded to cal-
culate growth and mortality rates. These taxa represent only 
2.3% of the total number of ASVs sequenced but correspond 
to 55.8% of all sequence reads.

For each bacterial taxon (i) in a given replicate, we cal-
culated the molecular weight of DNA in samples amended 
with natural-abundance 18O–water (M16O,i) and in the sam-
ples amended with 97 atom % 18O–water (M18O,i) using the 
formulae from Hungate et al. (2015):

where W16O,i indicates the weighted average buoyant 
density of taxon i in replicates amended with water at nat-
ural-abundance 18O (i.e., unlabeled replicates) and W18O,i 
indicates the weighted average buoyant density of taxon i in 
replicates amended with water at 97 atom % 18O–water (i.e., 
labeled replicates). Weighted density values were calculated 
as the sum of taxon i’s proportional abundance across all 
density-separated fractions multiplied by the corresponding 
density (g ml−1) of the fraction. As the density of unlabeled 
DNA for each taxon should be the same across all unlabeled 
replicates, W16O,i here represents the average value of taxon 
i’s unlabeled density while W18O,i represents the per-repli-
cate value of taxon i’s labeled density.

We then calculated per-capita growth and mortality rates 
of each remaining bacterial ASV in a distinct labeled repli-
cate following the approach of Koch et al. (2018). Growth 
rates (b) for each bacterial taxon in each replicate were cal-
culated by

(1)M16O,i = 0.496

(
W16O,i − 1.646057

0.083506

)
+ 307.691

(2)M18o,i =

(
W18o,i − W16o,i

W16o,i

)
⋅M16o,i

(3)bi = 1n

(
Ni,t

N16o,i,t

)
⋅

1

t
= 1n

(
Ni,t

Ni,t ⋅ [(MHeavy,i − M18o,i)∕(MHeavy,i −M16o,i)]

)
⋅

1

t

where Ni,t indicates the total number of bacterial 16S cop-
ies attributed to taxon i after the incubation (i.e., at time t) 
and N16O,i,t indicates the number of unlabeled 16S copies of 
taxon i at time t (i.e., whose oxygen atoms contain no 18O 
labeling) which is estimated by multiplying the total num-
ber of 16S copies of taxon i by the proportion of unlabeled 
16S copies. Here, Mheavy,i indicates the molecular weight of 
18O-labeled DNA labeled at 60%, the theoretical maximum 
(assuming the percentage of oxygen derived from 18O–water 
in a new DNA molecule per Koch et al. (2018)) equal to the 
sum of M16O,i and the constant 7.246482.

Assuming exponential growth, mortality rates (d) were cal-
culated as the log-ratio of initial (and unlabeled) 16S copies to 
remaining unlabeled 16S copies for each taxon i:

where N16O,i,0 indicates the unlabeled 16S gene abundance 
of taxon i at time 0 (measured by qPCR). In other words, 
mortality rates indicate the turnover of the initial popula-
tion and should, therefore, be a negative number. To make 
reporting more intuitive, we multiplied mortality rates by 
− 1 to make them positive.

Correcting 16S gene copy number variance

To account for variation in 16S rRNA gene copy numbers 
across prokaryote taxa, which may affect community-wide 
density dependence patterns, we converted all 16S gene 
abundances to genome abundances (g soil−1) based on 
the estimated number of 16S gene copies per genome. We 
roughly followed the approach of Louca et al. (2018). We 
downloaded the Ribosomal rRNA database (rrnDB, version 
5.7, last modified January 8, 2021) (Stoddard et al. 2015). 
To improve the quality of any matching, we cross-refer-
enced all accession numbers in the rrnDB with those from 
the list of NCBI RefSeq annotated genomes marked as 
“complete genomes” (ftp://​ftp.​ncbi.​nlm.​nih.​gov/​genom​es/​
GENOME_​REPOR​TS/​proka​ryotes.​txt, downloaded Febru-
ary 25, 2022). In addition, we removed any 16S sequences 
in rrnDB greater than 2,000 bp. This produced 16S rRNA 
gene copy estimates for 20,048 complete genomes. Since 
many organisms have multiple listed genome accessions, 
we aligned the representative sequences of our 2,277 qSIP-
resolved ASVs against the longest 16S sequences from each 
unique prokaryote taxon in the rrnDB (8518 distinct taxa) 
using the AlignSeqs function in the DECIPHER package in 

(4)di = 1n

(
N16O,i,t

N16o,i,0

)
⋅

1

t

ftp://ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS/prokaryotes.txt
ftp://ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS/prokaryotes.txt
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R (Wright 2016). Following alignment, we then calculated 
phylogenetic distances using the Jukes–Cantor base substi-
tution model (Jukes and Cantor 1969). Lastly, we identified 
the phylogenetic distance between each qSIP ASV and the 
nearest complete genome (i.e., the nearest sequenced taxon 
distance or NSTD). Louca et al. estimated that NSTD val-
ues greater than 0.15 produced inaccurate 16S gene copy 
number estimates (2018). Following this cut-off, we were 
able to produce accurate 16S gene copy number estimates 
for 1426 (62.6%) of our bacterial ASVs (supplemental 
Fig. 1). For taxa beyond this threshold (i.e., for which an 
estimate was inaccurate), we applied the median 16S rRNA 
gene copy number of 2 per genome.

Statistical analysis

We tested whether initial population density (genomes g 
soil−1) and nutrient amendment significantly affected per-
capita population rates, using two linear hierarchical mixed 
models in the lme4 R package, one for per-capita growth 
rates and another for per-capita mortality rates. In order to 
capture potential changes to per-taxon density-dependent 
slopes across treatments, analyses were limited to 524 bacte-
rial ASVs that occurred in every treatment and at least three 
times per treatment. This group represented 37.0% of all 
bacterial sequence reads. We also examined whether a uni-
versal density dependence relationship, compared to models 
allowing for taxon-specific density-dependent relationships 
produced a more parsimonious fit. By comparing hierarchi-
cal models with and without taxon-specific slopes in the 
random terms, we identified whether taxon-specific density 
dependence was important to growth and mortality rates.

With per-capita growth and mortality rates as the 
response variable, we selected for optimal random com-
ponents by adding individual terms and comparing models 
using AIC scores. With respect to taxon-specific vs. univer-
sal density dependence, the optimal random model structure 
did not feature independent slopes for taxonomic identity 
(i.e., no taxon-specific density dependence relationships) 
(supplemental Table 1). Using individual linear models, we 
further confirmed that there was no trend in per-taxon den-
sity-dependent slopes across population sizes (supplemental 
Fig. 2). Similarly, phylum-specific density dependence was 
not a feature of the optimal random model structure (sup-
plemental Table 1), and we did not observe any significant 
trend in density dependence relationships across taxa from 
different phyla (supplemental Fig. 3). We used the model 
structure with the lowest combined AIC score across both 
growth and mortality rates. We thus applied the following 
model structure:

Here and hereafter, the first two explanatory terms 
separated by asterisks represent interacting fixed effects 
(pop0 = initial population expressed as genomes per g dry 
soil, trt = nutrient treatment) while all others separated by 
addition terms indicate random model effects. We tested the 
effect of growth and mortality-related processes during the 
incubation period on final population densities (pop7) using 
hierarchical models with identical random terms as in Eq. 5:

For the models expressed in Eqs. 5 and 6, we obtained p 
values for fixed effects terms from the lmerTest R package 
using the Satterthwaite method to approximate the necessary 
degrees of freedom for each comparison and we obtained the 
marginal coefficient of determination (Rm

2) values for fixed 
effects terms as well as the conditional coefficient of deter-
mination (Rc

2) values for both fixed and random terms using 
the modified Nakagawa method (2017) as implemented in 
the MuMIn R package.

Lastly, to test H3, we constructed linear hierarchical mod-
els specifying sample-specific density-dependent growth and 
mortality as random terms and extracting the corresponding 
slope coefficients (n = 36):

We then compared these estimates of the density-depend-
ent growth and mortality to both the ASV richness and 
Simpson evenness of each sample post-incubation, using the 
2277 ASVs for which a growth and mortality rate could be 
calculated (thus limiting the influence of dormant or inactive 
organisms, or extracellular DNA on diversity estimates). We 
used linear models to determine whether there was a signifi-
cant relationship between density-dependent processes and 
community diversity.

Results

The relative proportions of major bacterial phyla were con-
sistent across multiple methods of enumeration, as well as 
the multiple subsets of the community utilized for statistical 
analyses (supplemental table 3). Across all 99,465 bacte-
rial ASVs, the largest representative phyla were either the 
Actinobacteria (mean ± 1 SE: 33.7 ± 1.5%) or the Proteo-
bacteria (25.8 ± 2.1%) which together accounted for the 
majority of sequence reads (Fig. 1A) in every soil repli-
cate. Among the 2,277 bacterial ASVs for which growth 
and mortality rates could be resolved, the Actinobacteria 

(5)
per capita rate ∼ log10(pop0) ∗ trt + (1|phylum∕tax ID∕site)

(6)
log10(pop7) ∼ per capita rate ∗ trt + (1|phylum∕tax ID) + (1|site)

(7)
per capita rate ∼ log10(pop0) ∗ trt + (log10(pop0) | sample)
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(36.8 ± 1.5%) and Proteobacteria (20.7 ± 0.8%) again 
accounted for the majority proportion of 16S gene copies 
per gram soil (Fig. 1B). These same phyla were the most 
abundant after correcting for per-genome 16S rRNA copy 
numbers, among the frequently occurring 524 ASVs used in 
statistical analyses. Actinobacteria (36.6% ± 1.6) and Proteo-
bacteria (26.8 ± 1.2%) represented the majority proportion 
of bacterial genomes (Fig. 1C, D). The third most abundant 
lineage was the Acidobacteria, accounting for 8.5 ± 0.6% of 
all sequence reads but representing a higher proportion of 
the community subjected to statistical analyses (16S gene 
abundance: 13.0 ± 0.9%, genomes: 13.2 ± 0.8%) (Fig. 1).

Inconsistent with our first and second hypotheses (H1, 
H2), bacterial growth rates were only negatively affected by 
initial population densities in soils amended with carbon and 
nitrogen (F2, 5520 = 30.9, p < 0.001) (Fig. 2A) (Table 1). Pop-
ulation density did not have a significant negative effect on 
per-capita growth rates in control soils (t = − 1.4, df = 4192, 
p = 0.17) or in soils amended with labile carbon alone 
(t = − 1.3, df = 5497, p = 0.19). Instead, only soils amended 
with labile carbon and nitrogen had a significant decrease 
in per-capita growth rates with initial population density 
(t = − 7.4, df = 5521, p < 0.001) (Fig. 2A). This was counter 
to our hypothesis that unamended soils would experience 

Fig. 1   Composition and abundance of major bacterial lineages. Bars 
represent the relative or absolute abundance of bacterial phyla from 
four ecosystems along an elevational gradient in northern AZ: low-
elevation grassland (GL), Piñon pine–juniper forest (PJ), Ponderosa 
pine forest (PP), and high-elevation mixed conifer forest (MC) and 
subject to three treatments: water-only (control), glucose-amended 
(C), and glucose and ammonium-sulfate amended (C + N). Individual 
bars represent distinct soil replicates collected from each ecosystem 
and subject to each treatment combination (n = 3). a Relative (Rel.) 

abundance of 99,465 bacterial ASVs, grouped by phyla, based on the 
normalized number of 16S amplicon sequence reads (34,886,320). b 
Population (Pop.) density of 524 bacterial ASVs utilized in statisti-
cal analyses based on the number of 16S rRNA gene copies per gram 
of soil. c Rel. abundance of 524 bacterial ASVs utilized in statisti-
cal analyses based on the normalized number of genomes per gram of 
soil. d Pop. density of 524 bacterial ASVs utilized in statistical analy-
ses based on the number of genomes per gram of soil
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Fig. 2   Relationship between initial population densities and per-
capita growth and mortality rates in each treatment measured with 
18O–water qSIP. Single points represent per-capita population rates 
(day−1) plotted against the density of each bacterial population (on a 
log10 scale), prior to stable isotope incubation, and from each indi-
vidual soil sample per treatment and replicate collected from four 
ecosystems along an elevational transect in AZ. Soil treatments are 

water-only (control), glucose-amended (C), and glucose and ammo-
nium-sulfate amended (C + N). a per-capita growth rates. b per-capita 
mortality rates. Lines represent the relationship between per-capita 
rates and population density in each treatment calculated from hier-
archical linear models. Rm

2 values represents the proportional vari-
ance in either growth or mortality rates, across all treatments, that is 
explained by population density in linear hierarchical models

Table 1   Statistical significance 
of initial population size, soil 
treatment, and their interaction 
on per-taxon bacterial growth 
and mortality rates over a 7-day 
incubation

Values represent fixed effects coefficients in hierarchical mixed models which were applied across 524 dis-
tinct bacterial taxa. Initial population sizes of bacterial ASVs are quantified in terms of genomes g−1 dry 
soil. Soil treatments are water-only (control), glucose-amended (C), and glucose and ammonium-sulfate 
amended (C + N)

Initial population Treatment Population:treatment

Rate F P F P F P

Growth 27.8  < 0.001 39.1  < 0.001 30.9  < 0.001
Mortality 124.0  < 0.001 4.7 0.009 7.7  < 0.001

more prominent density-dependent effects (H2). Variance 
explained by model fixed terms (initial population density 
and nutrient amendment) was slight and much lower than 
variance explained when random effects were also included 
(Rm

2 = 0.02, Rc
2 = 0.44).

Larger bacterial populations had higher per-capita mor-
tality rates during the incubation period in all treatments, 
and this relationship was also contingent on nutrient amend-
ment (Fig. 2B). Bacterial mortality rates were positively 

associated with initial population densities—an indica-
tion of density dependence—in all soils (F1, 1733 = 123.9, 
p < 0.001) (Table 1). In parallel with trends in growth rates 
(and in contrast to H2), the slope of the density dependence 
relationship was significantly steeper in soils amended with 
carbon and nitrogen (F2, 5549 = 7.7, p < 0.001) (Fig. 2B). Also 
following with growth rates, model fixed terms explained 
only a small amount of variation in per-capita mortality rates 
(Rm

2 = 0.05, Rc
2 = 0.34).
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While both growth and mortality rates estimated through 
qSIP are based in part on 18O enrichment and initial popula-
tion abundances—and would be expected to both be closely 
related to final population abundances—we observed that 
only mortality rates were strong predictors of final popula-
tion densities (Fig. 3). Per-capita growth rates had a sig-
nificant effect on final population densities (F1, 6281 = 68.1, 
p < 0.001) but the model explained a small proportion of 
overall variance (Rm

2 = 0.01, Rc
2 = 0.60). Further, the rela-

tionship between per-capita growth rates and final population 
densities was inconsistent across treatments (F2, 5755 = 16.6, 
p < 0.001). Conversely, mortality rates were a significant and 
strong predictor of final population densities across all treat-
ments (F1, 5624 = 22,205.7, p < 0.001, Rm

2 = 0.42, Rc
2 = 0.93).

Bacterial diversity (among the ASVs for which growth 
and mortality rates could be calculated) was positively asso-
ciated with stronger density dependence of growth rates. 
However, soils with stronger negative density dependence 
had fewer bacterial ASVs, contrary to our hypothesis for the 

incubation period (H3). Soils with stronger density depend-
ence of bacterial growth rates (indicated by steeper, more 
negative slopes) had fewer bacterial ASVs (F1, 33 = 10.3, 
p = 0.003) (Fig. 4A) and lower evenness among bacterial 
ASVs (Simpson’s evenness: F1, 33 = 4.1, p = 0.05) (Fig. 4C). 
This pattern was not statistically significant when comparing 
density dependence of mortality with richness (F1, 34 = 0.52, 
p = 0.47) or Simpson’s evenness (F1, 34 = 2.41, p = 0.13) 
(Fig. 4D).

Discussion

In the soils studied, bacterial populations across all major 
phyla showed negative conspecific density dependence (H1, 
Fig. 2). However, density-dependent signals were generally 
weak, especially in contrast to the strength of site-specific 
and taxon-specific signals captured in the random terms of 
these models and in more detailed hierarchical modeling 

Fig. 3   Relationship between per-capita population rates and final bac-
terial abundances. Single points represent the density of each bacte-
rial population (on a log10 scale), after stable isotope incubation, 
plotted against per-capita population rates (day−1), and from each 
individual soil sample per treatment and replicate collected from four 
ecosystems along an elevational transect in AZ. Soil treatments are 
water-only (control), glucose-amended (C), and glucose and ammo-

nium-sulfate amended (C + N). a) Final population density against 
per-capita growth rates. b) Final population density against per-capita 
mortality rates. Lines represent the relationship between per-capita 
rates and final population density in each treatment calculated from 
hierarchical linear models. Rm

2 values represents the proportional 
variance in final population density, across all treatments, that is 
explained by initial population density in linear hierarchical models
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(Morrissey et al. 2016, 2019). This suggests that evolution-
ary history and edaphic properties are stronger drivers of the 
growth and turnover response of bacterial lineages in these 
soils than density-dependent processes. In this experiment, 
and two similar studies, mortality rates were higher than 
growth rates for almost all taxa (Koch et al. 2018; Blaze-
wicz et al. 2020), and in all cases, soils were dried prior the 
incubation which was initiated by adding water. Blazewicz 
et al. note that high, density independent mortality occurred 
quickly after soil rewetting which was likely caused by either 
osmotic shock to bacterial cells upon wet-up or the rapid 
degradation of extracellular DNA that accumulated as the 
soil dried prior to incubation (2020). Population densities 
of bacterial ASVs at the end of the incubation corresponded 
closely to per-capita mortality rates, but not growth rates, 
indicating the intense control that mortality and turnover 
processes have on dry-down wet-up design stable isotope 
incubations. Although density dependence signals were 
weak across the 7-day incubation, it is possible that over 
longer time periods, density-dependent dynamics hold a 
larger influence on bacterial population dynamics in soil.

The design of this study did not exclude any specific 
density-dependent mechanism from acting on the bac-
terial community. Intraspecific competition for limited 
resources is one explanation for this phenomenon and is a 
fundamental assumption of density-dependent population 
dynamics, as expressed through habitat carrying capacity 
studied in a homogenous and aqueous environment (Gause 
1934). Phages are also understood to impose negative den-
sity dependence on their hosts (“kill the winner”), thus 
preventing any particular taxa from achieving dominance 
(Maslov and Sneppen 2017). However, this mechanism 
has not been demonstrated in a terrestrial setting. In soils 
and sediments, phage density has been shown to be high, 
though our understanding of their effect in these environ-
ments is nascent (Ashelford et al. 2003; Williamson et al. 
2017; Trubl et al. 2018). Phages are almost certainly active 
in soils, capable of altering soil community structure and 
function (Braga et al. 2020) and influencing biogeochem-
ical cycling (Kuzyakov and Mason-Jones 2018). In ter-
restrial environments, phages may only move when pore 
spaces are saturated, or inside host cells as prophages, 
and must access bacteria within biofilms (Kuzyakov and 
Mason-Jones 2018; Vidakovic et  al. 2018). Here, the 
addition of water to soils at the beginning of the experi-
ment may have allowed phages to proliferate and access 
host cells, causing negative density dependence. A more 
detailed tracking of viral dynamics in soils is critical to 
building a thorough understanding of population dynamics 
and predicting bacterial response to changing conditions 
such as wet-up and nutrient addition.

In addition to the significance of negative density depend-
ence across the soils studied, there was an interaction 

between nutrient addition and population rates (H2, Fig. 2). 
However, there was no evidence that higher nutrient avail-
ability alleviated this phenomenon. Instead, the strongest 
patterns of density dependence were observed where labile 
nutrients were added (Fig. 2). The addition of limiting nutri-
ents has been shown to intensify competition in plant com-
munities (Campbell and Grime 1992). Given the spatial sep-
aration of bacterial populations in soil (Young et al. 2008), it 
is possible that this conspecific competition was important 
in the present study. Nutrient amendments may have initially 
alleviated density dependence patterns in these soils, but 
ultimately promoted more growth and thus greater nega-
tive feedbacks, as higher bacterial densities led to stronger 
intraspecific competition. Alternatively, phage populations 
may have been encouraged to switch from lysogenic to lytic 
stages due to the favorable conditions and higher bacterial 
growth in nutrient-amended soils (Erez et al. 2017; Howard-
Varona et al. 2017).

In addition to conspecific competition and phage preda-
tion, changing conditions brought on by the nutrient amend-
ment may have produced the apparent patterns in bacterial 
density-dependent growth. The use of labile glucose encour-
ages growth across fewer bacterial taxa than amino acids 
(Dang et  al. 2021). Considering growth rates observed 
in the glucose and nitrogen treatment in this experiment, 
amendments seem to have selected for fast-growing organ-
isms that were capable of utilizing the majority of added 
carbon (Stone et al. 2021). The design of the current experi-
ment cannot necessarily disentangle this effect (changes to 
interspecific competition due to changing conditions) from 
conspecific competition or from phage predation. Resolu-
tion may come from efforts to map interactions in situations 
with reduced soil connectivity such as drying, e.g., de Vries 
et al. (2018) or by increasing certain types of interactions 
such as enrichment of soil phage populations, e.g., Albright 
et al. (2022).

In the present experiment, bacterial diversity was 
lower in soils that had stronger negative density depend-
ence contrasting H3 (Fig. 4). Assuming negative density 
dependence promotes diversity by preventing competitive 
exclusion, then a longer experimental duration may pro-
duce some effect. However, given the spatial structure of 
soil bacterial communities, it is possible that conspecific 
density dependence plays very little role in preserving 
soil bacterial diversity even at longer time scales. Previ-
ous studies identified soil edaphic properties and resource 
stoichiometry as the strongest controls on bacterial diver-
sity (Fierer and Jackson 2006; Delgado-Baquerizo et al. 
2017). Larger and more inclusive sequencing data (i.e., 
containing a combination of prokaryote, eukaryote, or 
viral) will be important to resolving the specificity and 
intensity of microbial interactions in soil. Such efforts will 
help clarify the effects and interactions of competition, 
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predation, and soil conditions as controls on the diversity 
of the soil microbiota.
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