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Abstract

Density dependence in an ecological community has been observed in many macro-organismal ecosystems and is hypoth-
esized to maintain biodiversity but is poorly understood in microbial ecosystems. Here, we analyze data from an experiment
using quantitative stable isotope probing (qSIP) to estimate per-capita growth and mortality rates of bacterial populations
in soils from several ecosystems along an elevation gradient which were subject to nutrient addition of either carbon
alone (glucose; C) or carbon with nitrogen (glucose + ammonium-sulfate; C +N). Across all ecosystems, we found that
higher population densities, quantified by the abundance of genomes per gram of soil, had lower per-capita growth rates in
C+ N-amended soils. Similarly, bacterial mortality rates in C+ N-amended soils increased at a significantly higher rate with
increasing population size than mortality rates in control and C-amended soils. In contrast to the hypothesis that density
dependence would promote or maintain diversity, we observed significantly lower bacterial diversity in soils with stronger
negative density-dependent growth. Here, density dependence was significantly but weakly responsive to nutrients and was
not associated with higher bacterial diversity.
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Introduction

Negative density dependence is a well-studied phenome-
non in the field of plant ecology wherein larger populations
experience lower rates of growth or recruitment (Janzen
1970; Johnson et al. 2012). It is either brought about by
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intraspecific competition, where individual plants compete
most strongly with individuals of the same species (Chesson
2000), or by the spread of species-specific pathogens and
parasites through a population, the rate of spread enhanced
by increasing density (Connell 1971; Klironomos 2002).
Both mechanisms create negative density dependence,
which is understood to reduce competitive exclusion for
large populations in a community and, therefore, promote
local diversity (Petermann et al. 2008; Levine and HilleRis-
Lambers 2009; Bever et al. 2012; Johnson et al. 2012). Less
is known about the existence and causative mechanisms of
this phenomenon in soil microbial communities, due to both
the difficulty in measuring population vital rates as well as
population densities in situ.
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Studies of density dependence of microbial populations in
microcosms exist in the classical ecological literature (Gause
1934; Allee 1941; Tilman 1977) and more recently as tests of
current ecological theory (Jessup et al. 2005; Cadotte et al.
2006; Letten et al. 2018; Rovere and Fox 2019). Both nega-
tive and positive density dependence have been observed in
populations of cultured bacteria measuring either survival
or growth (Phaiboun et al. 2015; Kaul et al. 2016). However,
the soil environment differs from many microcosm experi-
ments in that its structure constrains microbial interactions
relative to laboratory cultures. In soil, a small portion of
habitable surface is colonized by microorganisms who are
aggregated and isolated from other colonies inside biofilms
(Young et al. 2008; Flemming and Wuertz 2019). This isola-
tion is thought to underpin the microbial diversity observed
in soils by avoiding competitive exclusion (Kerr et al. 2002;
Carson et al. 2010; Tecon and Or 2017). Further, soil micro-
bial communities are primarily limited by available carbon
or co-limited by carbon and nitrogen (Aldén et al. 2001;
Demoling et al. 2007). Within soil biofilms and aggregates
themselves, close associations with between different spe-
cies likely confer important synergistic advantages (Nadell
et al. 2016). However, the number of different species within
the local vicinity of any given bacterium (< 20 um) is likely
to be low (Raynaud and Nunan 2014) while binary fission
has been observed in many instances to intensify clonal
aggregation within the biofilm (Nadell et al. 2016), mak-
ing conspecific interactions quite likely. Thus, in soil, the
relative strength of conspecific competition merits resolu-
tion. Conspecific negative density dependence, where larger
populations experience lower growth rates, may suggest that
competition for nutrients between conspecifics is an impor-
tant mechanism even within the diverse and interactive soil
community.

A relatively new technique, quantitative stable isotope
probing (qSIP) with '*0-H,O overcomes the problem of
measuring microbial populations in situ by estimating rates
of DNA synthesis by quantifying the rate of '*0 incorpora-
tion into nucleic acids from water, and then using a math-
ematical model to estimate growth and mortality rates. qSIP
can be applied to natural microbiomes to estimate these vital
rates for each individual taxon in the bacterial assemblage.
However, the rates estimated through qSIP represent an
average of many cells from a small volume of soil with-
out accompanying spatial information. Thus, while we use
the term “population” to describe the collective growth and
mortality of a single bacterial taxon, it represents an aggre-
gate measure of sub-populations with varying sizes and
degrees of spatial isolation.

Past observations using qSIP to assess density depend-
ence showed differing patterns. An Arizona grassland
showed density-dependent mortality, but not growth, meas-
ured over a 10-day period (Koch et al. 2018). In contrast, a

@ Springer

California grassland showed density independent mortal-
ity during the first 3 h after an early-season wet-up event,
whereas growth was density dependent during this time
period (Blazewicz et al. 2020). However, because competi-
tion for nutrients is an important dynamic in soil systems, it
may be valuable to explore microbial response to nutrients
in order to understand the degree of competition and den-
sity dependence among soil microorganisms. Higher nutri-
ent availability may either alleviate or intensify competition
between conspecifics over a set time period which is likely
to be influenced by population density.

We hypothesized that larger populations would have
lower per-capita growth rates due to intraspecific competi-
tion than smaller populations (i.e., growth rates will be lower
as population density increases). Further, nutrient addition
was hypothesized to alleviate intraspecific competition given
the short experimental duration (Steen and Scrosati 2004;
Cabaco et al. 2013), although the opposite patterns have
been observed (Morris 2003; Wang et al. 2015). Regard-
less of the specific mechanism, negative density dependence
should promote diversity (Johnson et al. 2012) as larger,
more slowly growing bacterial populations are unable to out-
compete and exclude smaller, faster growing populations.
Thus, bacterial diversity was hypothesized to be higher
in soils where negative density dependence is stronger.
This hypothesis is predicated on competition for limiting
resources which is a widespread ecological phenomenon and
present in microbial communities (Hibbing et al. 2010). The
absence of any relationship between diversity and density
dependence may indicate that other mechanisms are more
important determinants of bacterial diversity in soils.

To summarize, the main hypotheses were:

H1. Larger bacterial populations will have lower per-capita
growth rates

H2. The strength of the density dependence relationship
will be lower in nutrient-amended soils

H3. Soils with stronger negative density dependence will
have higher bacterial diversity

To test these hypotheses, per-capita growth and mortal-
ity rates for individual bacterial populations were quanti-
fied using qSIP with '*0-H,0 in soils under ambient and
elevated nutrient profiles.

Methods
Sample collection and isotope incubation
Data were analyzed from samples collected, manipulated,

and published previously (Liu et al. 2017, 2020; Morris-
sey et al. 2017, 2019; Li et al. 2019). Reiterated here, three
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replicate soil samples were collected from the top 10 cm of
plant-free, open meadow patches in four ecosystems along
the C. Hart Merriam elevation gradient in Northern Ari-
zona. From low to high elevation, these sites were located in
the following environments: desert grassland (GL; 1760 m,
35.58° N, 111.57° W), pifion pine—juniper woodland (PJ;
2020 m, 35.50° N, 111.62° W), ponderosa pine forest (PP;
2344 m, 35.42° N, 111.67° W), and mixed conifer forest
(MC; 2620 m, 35.35° N, 111.73° W). Sites in order of ele-
vation (GL, PJ, PP, MC) were characterized by decreasing
mean annual temperatures (MAT): 8.5 °C, 7 °C, 5.5°C, 4 °C
and increasing mean annual precipitation (MAP): 230 mm,
380 mm, 660 mm, 760 mm (Morrissey et al. 2019). In con-
trast, soil pH did not vary in a distinct gradient along eleva-
tion: 6.9, 6.2, 5.8, and 6.3 (GL, PJ, PP, and MC) (Liu et al.
2017). Soils were air-dried for 24 h at room temperature
(~23 °C), homogenized, and passed through a 2 mm sieve
before being stored at 4 °C for another 24 h. Three treat-
ments were provided to these soils through the addition of
water at 70% water-holding capacity: water alone (control),
with glucose (C treatment; 1000 ug C g~! dry soil), or with
glucose and a nitrogen source (C+ N treatment; [NH,],SO,
at 100 pg N g~! dry soil). Amendment concentrations were
matched to parallel samples amended with '*C—glucose
(data not reported here). Glucose additions were chosen to
facilitate detection of 1*C label in microbial DNA. Nitrogen
was added in a 10:1 ratio, matching the soil C:N ratios of the
characterized sites (Liu et al. 2017). This design resulted in
three soil samples per ecosystem per treatment (across four
ecosystems and three treatments, n=36). To track growth
through isotope assimilation, all experimental replicates
(n=36) were provided 30—enriched water in all treatments
(97 atom %) with a matching set of control samples that
was provided water at natural-abundance B0 (n=36). All
soils samples (n="72) were incubated in the dark for 1 week
at room temperature (~23 °C). Following incubation, soils
were frozen at — 80 °C for 1 week prior to DNA extraction.

Quantitative stable isotope probing

The following procedure is reiterated here as conducted pre-
viously (Morrissey et al. 2017, 2019; Li et al. 2019). DNA
extraction was performed on 0.5 g of '®0-incubated soils
and corresponding controls. To quantify the degree of '30
isotope incorporation into bacterial DNA, the gSIP protocol
(Hungate et al. 2015) was used, though modified slightly as
reported previously (Morrissey et al. 2017, 2019; Li et al.
2019). Microbial growth was quantified based on DNA
buoyant density through the method of density fractionation
by adding 1 pg of DNA to 2.6 mL of saturated CsCl solu-
tion in combination with a gradient buffer (200 mM Tris,
200 mM KCL, 2 mM EDTA) in a 3.3 mL OptiSeal ultracen-
trifuge tube (Beckman Coulter, Fullerton, CA, USA). The

solution was centrifuged to produce a gradient of increas-
ingly labeled (heavier) DNA in an Optima Max bench top
ultracentrifuge (Beckman Coulter, Brea, CA, USA) with a
Beckman TLN-100 rotor (127,000 X g for 72 h) at 18 °C.
Each post-incubation sample was thus converted from a
continuous gradient into approximately 20 fractions (150
pL) using a modified fraction recovery system (Beckman
Coulter). The density of each fraction was measured with a
Reichart AR200 digital refractometer (Reichert Analytical
Instruments, Depew, NY, USA). Following purification from
CsCl buffer, DNA as measured using the Quant-IT Pico-
Green dsDNA assay (Invitrogen) and a BioTek Synergy HT
plate reader (BioTek Instruments Inc., Winooski, VT, USA).
Fractions between densities of 1.640 and 1.735 g cm™ were
retained, representing DNA-containing fractions, produc-
ing on average 15-16 fractions per sample in all treatments.
Bacterial 16S rRNA gene copies were quantified using
gPCR using primers excluding non-bacterial sequences (Eub
515F: AAT GAT ACG GCG ACC ACC GAG TGC CAG
CMG CCG CGG TAA, 806R: CAA GCA GAA GAC GGC
ATA CGA GGA CTA CVS GGG TAT CTA AT). Follow-
ing qPCR quantification, all retained sample-fractions were
sequenced for the 16S V4 region (515F: GTG YCA GCM
GCC GCG GTA A, 806R: GGA CTA CNV GGG TWT
CTA AT) on an [llumina MiSeq (Illumina, Inc., San Diego,
CA, USA). In addition to the '80-incubated qSIP soils, DNA
from the same soil samples were extracted prior to incuba-
tion and subject to qPCR and Illumina sequencing as above,
but without fractionation, in order to assess initial bacterial
population size and identities.

Sequence processing and gSIP analysis

Sequence data and sample metadata have been previously
deposited in NCBI Sequence Read Archive under the pro-
ject number PRINAS521534. Independently from previous
publications, we processed raw sequence data of forward
and reverse reads (FASTQ) within the QIIME 2 environ-
ment (release 2018.6) (Bolyen et al. 2019) and denoised
sequences with the DADA2 pipeline (Callahan et al.
2016); in both cases following standard settings outlined in
QIIME 2. We resolved the remaining sequences into ampli-
con sequence variants (ASVs, at 100% sequence identity)
against the SILVA 132 database (Quast et al. 2013) using an
open-reference Naive Bayes feature classifier implemented
within QIIME2 by scikit-learn (Pedregosa et al. 2011).
We removed samples with less than 3,000 sequence reads,
non-bacterial lineages (Archaea: 6.9% of sequence reads;
Eukarya: <0.001%; mitochondria: 0.1%; chloroplast: 0.1%),
and global singletons and doubletons. For the correct quan-
tification of bacterial 16S rRNA gene copies within each
fraction given our use of bacterial-specific gPCR primers,
removal of Archaeal lineages was necessary. This produced
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a dataset of 99,465 bacterial ASVs and 34,886,320 sequence
reads. For each ASV, we converted the normalized sequence
read abundances in each fraction to the number of 16S rRNA
gene copies per gram dry soil based on the known amount
of dry soil equivalent added to the initial extraction. This
allows us to express absolute population densities, rather
than relative abundances. To ensure that estimates of growth
and mortality did not include infrequent taxa, whose enrich-
ment is difficult to accurately quantify, we removed ASVs
that failed to appear in two of the three replicates of a site-
treatment combination (n=3) and at least five of the frac-
tions within each of those two replicates. This allowed any
ASVs filtered out of one treatment to appear in another if
they met the frequency threshold. In total, 2,277 bacterial
ASVs met these thresholds for which we proceeded to cal-
culate growth and mortality rates. These taxa represent only
2.3% of the total number of ASVs sequenced but correspond
to 55.8% of all sequence reads.

For each bacterial taxon (i) in a given replicate, we cal-
culated the molecular weight of DNA in samples amended
with natural-abundance '*0-water (M 160,) and in the sam-
ples amended with 97 atom % '*O-water (M, s0,) using the
formulae from Hungate et al. (2015):

Wigo; — 1.646057
0.083506

Mo, = 0.496< > +307.691 (1)

Mg, )

where W4, ; indicates the weighted average buoyant
density of taxon i in replicates amended with water at nat-
ural-abundance '®0 (i.e., unlabeled replicates) and Wiso.i
indicates the weighted average buoyant density of taxon i in
replicates amended with water at 97 atom % 80 _water (.e.,
labeled replicates). Weighted density values were calculated
as the sum of taxon i’s proportional abundance across all
density-separated fractions multiplied by the corresponding
density (g ml™") of the fraction. As the density of unlabeled
DNA for each taxon should be the same across all unlabeled
replicates, W4, ; here represents the average value of taxon
i’s unlabeled density while W g, ; represents the per-repli-
cate value of taxon i’s labeled density.

We then calculated per-capita growth and mortality rates
of each remaining bacterial ASV in a distinct labeled repli-
cate following the approach of Koch et al. (2018). Growth
rates (b) for each bacterial taxon in each replicate were cal-
culated by

where N, , indicates the total number of bacterial 16S cop-
ies attributed to taxon i after the incubation (i.e., at time ¢)
and N4 ; , indicates the number of unlabeled 16S copies of
taxon i at time 7 (i.e., whose oxygen atoms contain no 30
labeling) which is estimated by multiplying the total num-
ber of 16S copies of taxon i by the proportion of unlabeled
16S copies. Here, M, ; indicates the molecular weight of
180.1abeled DNA labeled at 60%, the theoretical maximum
(assuming the percentage of oxygen derived from '80-water
in a new DNA molecule per Koch et al. (2018)) equal to the
sum of M, ; and the constant 7.246482.

Assuming exponential growth, mortality rates (d) were cal-
culated as the log-ratio of initial (and unlabeled) 16S copies to
remaining unlabeled 16S copies for each taxon i:

N .
d,' _ 1n< 160,1,1) . % (4)

N16n,i,0

where N4, ; o indicates the unlabeled 16S gene abundance
of taxon i at time O (measured by qPCR). In other words,
mortality rates indicate the turnover of the initial popula-
tion and should, therefore, be a negative number. To make
reporting more intuitive, we multiplied mortality rates by
— 1 to make them positive.

Correcting 16S gene copy number variance

To account for variation in 16S rRNA gene copy numbers
across prokaryote taxa, which may affect community-wide
density dependence patterns, we converted all 16S gene
abundances to genome abundances (g soil™!) based on
the estimated number of 16S gene copies per genome. We
roughly followed the approach of Louca et al. (2018). We
downloaded the Ribosomal rRNA database (rrnDB, version
5.7, last modified January 8, 2021) (Stoddard et al. 2015).
To improve the quality of any matching, we cross-refer-
enced all accession numbers in the rrnDB with those from
the list of NCBI RefSeq annotated genomes marked as
“complete genomes” (ftp://ftp.ncbi.nlm.nih.gov/genomes/
GENOME_REPORTS/prokaryotes.txt, downloaded Febru-
ary 25, 2022). In addition, we removed any 16S sequences
in rrnDB greater than 2,000 bp. This produced 16S rRNA
gene copy estimates for 20,048 complete genomes. Since
many organisms have multiple listed genome accessions,
we aligned the representative sequences of our 2,277 qSIP-
resolved ASVs against the longest 16S sequences from each
unique prokaryote taxon in the rrnDB (8518 distinct taxa)
using the AlignSeqs function in the DECIPHER package in

N; N,
b,.=1n< M )-1=1n< N >-1 3
N16o,i,l t Ni,t : [(MHeavy,i - M180,i)/(MHeavy,i - M16o,i)] t
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R (Wright 2016). Following alignment, we then calculated
phylogenetic distances using the Jukes—Cantor base substi-
tution model (Jukes and Cantor 1969). Lastly, we identified
the phylogenetic distance between each gSIP ASV and the
nearest complete genome (i.e., the nearest sequenced taxon
distance or NSTD). Louca et al. estimated that NSTD val-
ues greater than 0.15 produced inaccurate 16S gene copy
number estimates (2018). Following this cut-off, we were
able to produce accurate 16S gene copy number estimates
for 1426 (62.6%) of our bacterial ASVs (supplemental
Fig. 1). For taxa beyond this threshold (i.e., for which an
estimate was inaccurate), we applied the median 16S rRNA
gene copy number of 2 per genome.

Statistical analysis

We tested whether initial population density (genomes g
soil™!) and nutrient amendment significantly affected per-
capita population rates, using two linear hierarchical mixed
models in the Ime4 R package, one for per-capita growth
rates and another for per-capita mortality rates. In order to
capture potential changes to per-taxon density-dependent
slopes across treatments, analyses were limited to 524 bacte-
rial ASVs that occurred in every treatment and at least three
times per treatment. This group represented 37.0% of all
bacterial sequence reads. We also examined whether a uni-
versal density dependence relationship, compared to models
allowing for taxon-specific density-dependent relationships
produced a more parsimonious fit. By comparing hierarchi-
cal models with and without taxon-specific slopes in the
random terms, we identified whether taxon-specific density
dependence was important to growth and mortality rates.

With per-capita growth and mortality rates as the
response variable, we selected for optimal random com-
ponents by adding individual terms and comparing models
using AIC scores. With respect to taxon-specific vs. univer-
sal density dependence, the optimal random model structure
did not feature independent slopes for taxonomic identity
(i.e., no taxon-specific density dependence relationships)
(supplemental Table 1). Using individual linear models, we
further confirmed that there was no trend in per-taxon den-
sity-dependent slopes across population sizes (supplemental
Fig. 2). Similarly, phylum-specific density dependence was
not a feature of the optimal random model structure (sup-
plemental Table 1), and we did not observe any significant
trend in density dependence relationships across taxa from
different phyla (supplemental Fig. 3). We used the model
structure with the lowest combined AIC score across both
growth and mortality rates. We thus applied the following
model structure:

per capitarate ~ log,o(popy) * trt + (1|phylum/tax ID [site)
)

Here and hereafter, the first two explanatory terms
separated by asterisks represent interacting fixed effects
(popy =initial population expressed as genomes per g dry
soil, trt=nutrient treatment) while all others separated by
addition terms indicate random model effects. We tested the
effect of growth and mortality-related processes during the
incubation period on final population densities (pop-) using
hierarchical models with identical random terms as in Eq. 5:

log,o(pop;) ~ percapitarate % trt + (1|phylum/tax ID) + (1|site)
(6)

For the models expressed in Egs. 5 and 6, we obtained p
values for fixed effects terms from the ImerTest R package
using the Satterthwaite method to approximate the necessary
degrees of freedom for each comparison and we obtained the
marginal coefficient of determination (R,) values for fixed
effects terms as well as the conditional coefficient of deter-
mination (Rcz) values for both fixed and random terms using
the modified Nakagawa method (2017) as implemented in
the MuMIn R package.

Lastly, to test H3, we constructed linear hierarchical mod-
els specifying sample-specific density-dependent growth and
mortality as random terms and extracting the corresponding
slope coefficients (n=36):

per capita rate ~ log,,(popy) * trt + (log,,(pop,) | sample)
(N
We then compared these estimates of the density-depend-
ent growth and mortality to both the ASV richness and
Simpson evenness of each sample post-incubation, using the
2277 ASVs for which a growth and mortality rate could be
calculated (thus limiting the influence of dormant or inactive
organisms, or extracellular DNA on diversity estimates). We
used linear models to determine whether there was a signifi-
cant relationship between density-dependent processes and
community diversity.

Results

The relative proportions of major bacterial phyla were con-
sistent across multiple methods of enumeration, as well as
the multiple subsets of the community utilized for statistical
analyses (supplemental table 3). Across all 99,465 bacte-
rial ASVs, the largest representative phyla were either the
Actinobacteria (mean=+ 1 SE: 33.7 +1.5%) or the Proteo-
bacteria (25.8 +£2.1%) which together accounted for the
majority of sequence reads (Fig. 1A) in every soil repli-
cate. Among the 2,277 bacterial ASVs for which growth
and mortality rates could be resolved, the Actinobacteria

@ Springer



776 Oecologia (2023) 201:771-782
a) control c C+N b)  control c C+N
(L (Ll |
(L1 Hl | Hl | MC
N || [l | [l |
Il ] T ]
] L1l Il | PP
HN || LT L L
(LI m ([ ]
(L Hl | L1 PJ
Il | LT LTI
m LG |
T T T T T T T T T 1 _D:l. T T !J:.l T T ‘!]]]l T T
0.25 0.75 0.25 0.75 0.25 0.75 100K 100K 100K
O Actinobacteria W Verrucomicrobia O Bacteroidetes
O Proteobacteria E Chloroflexi O Planctomycetes
Bl Acidobacteria B Gemmatimonadetes [O Other
c) d) ]
Tl i | m ||
[T MC
LIl ] [ [ LT il | {il |
[ T | (T | [T T I | Tl il |
Bl (1| O | ] 0 | I | PP
0] [ [T T (LT [N | (i |
[T D BT | ([T I [T m ([
1T 1| ([N | il | PJ
T [ T N | il | i |
[ B T Il 1m m [
I | 1] [l [ LN {1 Il GL
T T n T | T |-[! T |. -.-].— g T T 'IDll T T 'Il:[I T T
0.25 0.75 0.25 0.75 0.25 0.75 100K 100K 100K
Rel. abundance (genomes) Pop. density (genomes g soil™")

Fig. 1 Composition and abundance of major bacterial lineages. Bars
represent the relative or absolute abundance of bacterial phyla from
four ecosystems along an elevational gradient in northern AZ: low-
elevation grassland (GL), Pifion pine—juniper forest (PJ), Ponderosa
pine forest (PP), and high-elevation mixed conifer forest (MC) and
subject to three treatments: water-only (control), glucose-amended
(C), and glucose and ammonium-sulfate amended (C + N). Individual
bars represent distinct soil replicates collected from each ecosystem
and subject to each treatment combination (n=3). a Relative (Rel.)

(36.8+1.5%) and Proteobacteria (20.7 +0.8%) again
accounted for the majority proportion of 16S gene copies
per gram soil (Fig. 1B). These same phyla were the most
abundant after correcting for per-genome 16S rRNA copy
numbers, among the frequently occurring 524 ASVs used in
statistical analyses. Actinobacteria (36.6% + 1.6) and Proteo-
bacteria (26.8 + 1.2%) represented the majority proportion
of bacterial genomes (Fig. 1C, D). The third most abundant
lineage was the Acidobacteria, accounting for 8.5 +0.6% of
all sequence reads but representing a higher proportion of
the community subjected to statistical analyses (16S gene
abundance: 13.0+0.9%, genomes: 13.2 +0.8%) (Fig. 1).
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abundance of 99,465 bacterial ASVs, grouped by phyla, based on the
normalized number of 16S amplicon sequence reads (34,886,320). b
Population (Pop.) density of 524 bacterial ASVs utilized in statisti-
cal analyses based on the number of 16S rRNA gene copies per gram
of soil. ¢ Rel. abundance of 524 bacterial ASVs utilized in statisti-
cal analyses based on the normalized number of genomes per gram of
soil. d Pop. density of 524 bacterial ASVs utilized in statistical analy-
ses based on the number of genomes per gram of soil

Inconsistent with our first and second hypotheses (H1,
H2), bacterial growth rates were only negatively affected by
initial population densities in soils amended with carbon and
nitrogen (F, 5s550=30.9, p<0.001) (Fig. 2A) (Table 1). Pop-
ulation density did not have a significant negative effect on
per-capita growth rates in control soils (t=— 1.4, df=4192,
p=0.17) or in soils amended with labile carbon alone
(r=—1.3,df=5497, p=0.19). Instead, only soils amended
with labile carbon and nitrogen had a significant decrease
in per-capita growth rates with initial population density
(t=—17.4,df=5521, p<0.001) (Fig. 2A). This was counter
to our hypothesis that unamended soils would experience
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Fig.2 Relationship between initial population densities and per-
capita growth and mortality rates in each treatment measured with
180—water qSIP. Single points represent per-capita population rates
(day™") plotted against the density of each bacterial population (on a
log,, scale), prior to stable isotope incubation, and from each indi-
vidual soil sample per treatment and replicate collected from four
ecosystems along an elevational transect in AZ. Soil treatments are

water-only (control), glucose-amended (C), and glucose and ammo-
nium-sulfate amended (C + N). a per-capita growth rates. b per-capita
mortality rates. Lines represent the relationship between per-capita
rates and population density in each treatment calculated from hier-
archical linear models. R, values represents the proportional vari-
ance in either growth or mortality rates, across all treatments, that is
explained by population density in linear hierarchical models

Table 1 Statistical significance

. ) > . Initial population Treatment Population:treatment
of initial population size, soil
treatment, and their interaction Rate F F P F P
on per-taxon bacterial growth
and mortality rates over a 7-day Growth 27.8 <0.001 39.1 <0.001 30.9 <0.001
incubation Mortality 124.0 <0.001 4.7 0.009 7.7 <0.001

Values represent fixed effects coefficients in hierarchical mixed models which were applied across 524 dis-
tinct bacterial taxa. Initial population sizes of bacterial ASVs are quantified in terms of genomes g~! dry
soil. Soil treatments are water-only (control), glucose-amended (C), and glucose and ammonium-sulfate

amended (C+N)

more prominent density-dependent effects (H2). Variance
explained by model fixed terms (initial population density
and nutrient amendment) was slight and much lower than
variance explained when random effects were also included
(R,2=0.02, R >=0.44).

Larger bacterial populations had higher per-capita mor-
tality rates during the incubation period in all treatments,
and this relationship was also contingent on nutrient amend-
ment (Fig. 2B). Bacterial mortality rates were positively

associated with initial population densities—an indica-
tion of density dependence—in all soils (F; 733 =123.9,
p<0.001) (Table 1). In parallel with trends in growth rates
(and in contrast to H2), the slope of the density dependence
relationship was significantly steeper in soils amended with
carbon and nitrogen (F, s549=7.7, p<0.001) (Fig. 2B). Also
following with growth rates, model fixed terms explained

only a small amount of variation in per-capita mortality rates
(R,2=0.05,R>=0.34).
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Fig. 3 Relationship between per-capita population rates and final bac-
terial abundances. Single points represent the density of each bacte-
rial population (on a log,, scale), after stable isotope incubation,
plotted against per-capita population rates (day™!), and from each
individual soil sample per treatment and replicate collected from four
ecosystems along an elevational transect in AZ. Soil treatments are
water-only (control), glucose-amended (C), and glucose and ammo-

While both growth and mortality rates estimated through
qSIP are based in part on ‘80 enrichment and initial popula-
tion abundances—and would be expected to both be closely
related to final population abundances—we observed that
only mortality rates were strong predictors of final popula-
tion densities (Fig. 3). Per-capita growth rates had a sig-
nificant effect on final population densities (F; ¢5;=638.1,
p<0.001) but the model explained a small proportion of
overall variance (R,,>=0.01, R >=0.60). Further, the rela-
tionship between per-capita growth rates and final population
densities was inconsistent across treatments (F, s755=16.6,
p<0.001). Conversely, mortality rates were a significant and
strong predictor of final population densities across all treat-
ments (F;_ 5q,,=22,205.7, p<0.001, R, >=0.42, R >=0.93).

Bacterial diversity (among the ASVs for which growth
and mortality rates could be calculated) was positively asso-
ciated with stronger density dependence of growth rates.
However, soils with stronger negative density dependence
had fewer bacterial ASVs, contrary to our hypothesis for the

@ Springer

nium-sulfate amended (C+N). a) Final population density against
per-capita growth rates. b) Final population density against per-capita
mortality rates. Lines represent the relationship between per-capita
rates and final population density in each treatment calculated from
hierarchical linear models. R,* values represents the proportional
variance in final population density, across all treatments, that is
explained by initial population density in linear hierarchical models

incubation period (H3). Soils with stronger density depend-
ence of bacterial growth rates (indicated by steeper, more
negative slopes) had fewer bacterial ASVs (F 33=10.3,
p=0.003) (Fig. 4A) and lower evenness among bacterial
ASVs (Simpson’s evenness: F; ;3=4.1, p=0.05) (Fig. 4C).
This pattern was not statistically significant when comparing
density dependence of mortality with richness (F; ;,=0.52,
p=0.47) or Simpson’s evenness (F; ;,=2.41, p=0.13)
(Fig. 4D).

Discussion

In the soils studied, bacterial populations across all major
phyla showed negative conspecific density dependence (H1,
Fig. 2). However, density-dependent signals were generally
weak, especially in contrast to the strength of site-specific
and taxon-specific signals captured in the random terms of
these models and in more detailed hierarchical modeling
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(Morrissey et al. 2016, 2019). This suggests that evolution-
ary history and edaphic properties are stronger drivers of the
growth and turnover response of bacterial lineages in these
soils than density-dependent processes. In this experiment,
and two similar studies, mortality rates were higher than
growth rates for almost all taxa (Koch et al. 2018; Blaze-
wicz et al. 2020), and in all cases, soils were dried prior the
incubation which was initiated by adding water. Blazewicz
et al. note that high, density independent mortality occurred
quickly after soil rewetting which was likely caused by either
osmotic shock to bacterial cells upon wet-up or the rapid
degradation of extracellular DNA that accumulated as the
soil dried prior to incubation (2020). Population densities
of bacterial ASVs at the end of the incubation corresponded
closely to per-capita mortality rates, but not growth rates,
indicating the intense control that mortality and turnover
processes have on dry-down wet-up design stable isotope
incubations. Although density dependence signals were
weak across the 7-day incubation, it is possible that over
longer time periods, density-dependent dynamics hold a
larger influence on bacterial population dynamics in soil.

The design of this study did not exclude any specific
density-dependent mechanism from acting on the bac-
terial community. Intraspecific competition for limited
resources is one explanation for this phenomenon and is a
fundamental assumption of density-dependent population
dynamics, as expressed through habitat carrying capacity
studied in a homogenous and aqueous environment (Gause
1934). Phages are also understood to impose negative den-
sity dependence on their hosts (“’kill the winner”), thus
preventing any particular taxa from achieving dominance
(Maslov and Sneppen 2017). However, this mechanism
has not been demonstrated in a terrestrial setting. In soils
and sediments, phage density has been shown to be high,
though our understanding of their effect in these environ-
ments is nascent (Ashelford et al. 2003; Williamson et al.
2017; Trubl et al. 2018). Phages are almost certainly active
in soils, capable of altering soil community structure and
function (Braga et al. 2020) and influencing biogeochem-
ical cycling (Kuzyakov and Mason-Jones 2018). In ter-
restrial environments, phages may only move when pore
spaces are saturated, or inside host cells as prophages,
and must access bacteria within biofilms (Kuzyakov and
Mason-Jones 2018; Vidakovic et al. 2018). Here, the
addition of water to soils at the beginning of the experi-
ment may have allowed phages to proliferate and access
host cells, causing negative density dependence. A more
detailed tracking of viral dynamics in soils is critical to
building a thorough understanding of population dynamics
and predicting bacterial response to changing conditions
such as wet-up and nutrient addition.

In addition to the significance of negative density depend-
ence across the soils studied, there was an interaction

between nutrient addition and population rates (H2, Fig. 2).
However, there was no evidence that higher nutrient avail-
ability alleviated this phenomenon. Instead, the strongest
patterns of density dependence were observed where labile
nutrients were added (Fig. 2). The addition of limiting nutri-
ents has been shown to intensify competition in plant com-
munities (Campbell and Grime 1992). Given the spatial sep-
aration of bacterial populations in soil (Young et al. 2008), it
is possible that this conspecific competition was important
in the present study. Nutrient amendments may have initially
alleviated density dependence patterns in these soils, but
ultimately promoted more growth and thus greater nega-
tive feedbacks, as higher bacterial densities led to stronger
intraspecific competition. Alternatively, phage populations
may have been encouraged to switch from lysogenic to lytic
stages due to the favorable conditions and higher bacterial
growth in nutrient-amended soils (Erez et al. 2017; Howard-
Varona et al. 2017).

In addition to conspecific competition and phage preda-
tion, changing conditions brought on by the nutrient amend-
ment may have produced the apparent patterns in bacterial
density-dependent growth. The use of labile glucose encour-
ages growth across fewer bacterial taxa than amino acids
(Dang et al. 2021). Considering growth rates observed
in the glucose and nitrogen treatment in this experiment,
amendments seem to have selected for fast-growing organ-
isms that were capable of utilizing the majority of added
carbon (Stone et al. 2021). The design of the current experi-
ment cannot necessarily disentangle this effect (changes to
interspecific competition due to changing conditions) from
conspecific competition or from phage predation. Resolu-
tion may come from efforts to map interactions in situations
with reduced soil connectivity such as drying, e.g., de Vries
et al. (2018) or by increasing certain types of interactions
such as enrichment of soil phage populations, e.g., Albright
et al. (2022).

In the present experiment, bacterial diversity was
lower in soils that had stronger negative density depend-
ence contrasting H3 (Fig. 4). Assuming negative density
dependence promotes diversity by preventing competitive
exclusion, then a longer experimental duration may pro-
duce some effect. However, given the spatial structure of
soil bacterial communities, it is possible that conspecific
density dependence plays very little role in preserving
soil bacterial diversity even at longer time scales. Previ-
ous studies identified soil edaphic properties and resource
stoichiometry as the strongest controls on bacterial diver-
sity (Fierer and Jackson 2006; Delgado-Baquerizo et al.
2017). Larger and more inclusive sequencing data (i.e.,
containing a combination of prokaryote, eukaryote, or
viral) will be important to resolving the specificity and
intensity of microbial interactions in soil. Such efforts will
help clarify the effects and interactions of competition,
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Fig.4 Relationship between strength of density dependence and bac-
terial alpha diversity. Single points represent bacterial alpha diversity
in replicates from four ecosystems (low-elevation grassland, Pifion
pine—juniper forest, Ponderosa pine forest, and high-elevation mixed
conifer forest; n=3 of each) plotted against the slopes of the density
dependence of per-capita growth and mortality rates. Density depend-
ence slopes represent the change in growth or mortality rate per
change in population density (log;,-transformed), calculated across

predation, and soil conditions as controls on the diversity
of the soil microbiota.
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