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Abstract—This paper develops bounds for learning lossless
source coding under the PAC (probably approximately correct)
framework. The paper considers both iid sources and sources
generated by finite state machines (FSM).

I. INTRODUCTION

Traditionally, there have been two types of source coders:
fixed, optimum coders such as Huffman coders; and universal
source coders, such as Lempel-Ziv [1], [2], [3]. We will
consider a third type of source coders: learned coders. These
are coders that are trained on data of a particular type, and
then used to encode new data of that type. Examples could
be source coders for English texts, DNA data, or protein data
represented as graphs.

In both machine learning and information theory literatures,
there has been some work on learned coding. From a machine
learning perspective, the paper [4] stated the problem precisely
and developed and evaluated some algorithms. A few follow
up papers, e.g., [5], [6], [7], [8], [9], [10] have introduced new
machine learning algorithms. For lossy coding, in particular of
images and video, there has been much more activity recently,
initiated by the paper [11] from Google, see for example [12],
[13], [14]. Our aim is to find theoretical bounds for how well
it is possible to learn coding. In the current paper we will limit
ourselves to lossless coding.

Stating the problem more precisely, we consider the fol-
lowing problem of learned coding [16]. We are given a
training sequence x"; based on the training we develop coders
C(2';2™) with length function L(x!;2™) for encoding test
sequences x'. The codelength is }FEy[L(X';z™)|z™] (the
expectation here is only over z!), and the redundancy is

1
Ri(L,z™,0) = ng[L(Xl;xm)\xm] —He(X). (1)

The redundancy depends on the training sequence ™. One
way to remove this dependency is to average also over x™,

1
Ri(L,m,0) = T Ep[L(X'; X™)] — Ho(X) ()
Rf(m) = min sup Ri(L,m,0). 3)

%
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The paper [17] considers (3), and proves

1 1 o) 1

— ) < Rpt+ < _
2mln2+0<m> < R(m) < mln2+0(m) @
ap ~ 0.50922. (5)

for the IID case. The papers [18], [19] consider some gener-
alizations to the Markov case.

However, in machine learning performance usually is not
measured by average over test sequences, see [20], [21].
One way performance is measured is in the PAC (probability
approximately correct) learning framework [21]. Rather than
usual error probability in classification, we use the redundancy
(1) as risk measure. We can then say that coding in a class or
sources is PAC-learnable if for any a > 0, P, > 0 and for any
sample size m > poly(1/a,1/FP.)

i%fP(Rl(L,Xmﬁ) <a)>1-P,

where the probability is over X™. Alternatively, we can state
this by defining

E(m7a) = SupP(Rl(Lvavg) > a)a (6)
2]

For some given a and small P, the goal is then to ensure
E(m,a) < P,. Thus, we require the redundancy of the learned
codelength to be smaller than a, except with a small error
probability P,.

The idea of learning to code is to obtain information about
the distribution of the source from the training 2™ and then
apply this to code the test sequence x'. One can take two
approaches to the application phase. First, the the coder can
be frozen in the sense that it does not further update from the
test sequence (in that case F(m,a) in (6) does not depend
on [). There are both practical and theoretical reasons for
freezing the coder. Machine learning algorithms usually have
a distinct learning phase, and once the algorithm is trained,
it is not updated with test samples; the reason for this is
both that training is much more computational intensive than
application, often run on specialized hardware, and that there
are few good algorithms for updating for example neural
networks with new data. As a case in point, the LSTM in [4]
was not updated after the training phase, and the theoretical
work in [15] also considered frozen coders. We have some
result for non-frozen coders (online learning), and they show
that only for the uninteresting scenario [ > m does it make
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any difference. We will therefore limit ourselves to the frozen
scenario here.

In [16] we analyzed this problem for the IID with a binary
alphabet. The result is

a(m, P.) >

a(m, P.) = b(P.)

Theorem 1. For estimators that are functions of the sufficient
statistic and P, sufficiently small,
—1(P./2)? 1
QRS2 (1)
2mlIn2 m
For the estimator p = nfiga The optimum value of o that
satisfies Q71 (Pe/2)? —1 < o < $Q71(P./2)? + 1 which
gives an achievable a(m, P.);
—Y(P,/2)? 1
2mIn2 m
where limp, _,ob(P.) = 1.

In the current paper we will generalize this to a general
K-alphabet IID source, and to (binary) sources generated by
finite state machines.

II. LEARNING FOR GENERAL IID SOURCES

We consider an alphabet with K + 1 symbols. The average
case has already been solved in (4), so we we only need to
consider PAC performance. In this case

E(m,a) = sup P(D(P||P) > a) ©)

where P is an estimate of the K parameter probability
distribution. We use the add-« estimator [22], [17]

. ng + o P+ a/m
P, = = (10)
m+(K+1Da 1+ (K+1a/m
where P, = % with nj the number of observations of symbol

k. We let PK+1 =1- Zszl Py and PK+1 =1- E][::l Pk
We can consider sequences of probabilities Pj(m) and then
take supremum of the limits. For each component there are
two possibilities

lim mPy(m) =y <oo and lim Py(m)= P >0
m—oo m—00
We allow v, = 0. We can assume it is the first K, < K +1
components that have finite limit. We first have

Lemma 2. Let

P(m) = [mP(m),..., mPx,(m),
Vm(Pg,1(m) = P, +1(m)), ..., v/m(Pg (m) — P(m))]
then P(m) L5 P, where P is a random vector with

o D =y, ~ Pois(y), independent of other components
o The [Pk, 41,..., Pk] is multivariate Gaussian.

Proof. We define:

mlg, Ok, K+1-K,
Ory1-Kk, Kk, VmIxii_k,

= _ T
b(m) = vm [01,k,, Px,+1,- - -, Px, Pr41]

A(m) =

Then we have P(m) = A(m)P(m) — b(m).
As the n; are multinomial, the characteristic function for
P(m) then is @p () (t) = e~ P (P(m)Tei#A(m)t)
Now we have:

lim In@pm)(t)

m— 00
= lim (—ith(m) +mln (P(m)Tei%A(m)t))
m— 00
K+1
= 1i zt,
<t (i ST Aot (3 nome
k=K, +1
K+1 /2 )
£ % Aom (14 m())
k=K,+1 \/m m m\/ﬁ
(11)
K+1 .
Note that ;7' Pi(m) = 1 and lim,;, 0o mPy(m) = 75, <

oo for k =1,..., K,, so by applying the Taylor expansion of
In(1+ ) we have'

Z'Yk e —

hrn In op (m) (t

K+1
. . - 1
+ lim |~ > zm(Pk—Pk(m))tk+§Pg(m)tz
k=K,+1
1
li Pi(m)P, —
+ lim > Pu(m) l(m)tktl-i-O(\/a)
kAI>K,+1
Ky K+1
= Z'Wc(eztk —-1)=7 Z Pkt + Z P Pt
k=1 k Kp+1 kAI>K,+1

(12)
This is the characteristic function of independent Poisson
random variables and a vector Gaussian random vector. Since

convergence of characteristic functions imply convergence in
distribution [23], we get the lemma. ]

Theorem 3. We have:

mD(P(m)|| P) i> Y

Y = Zxk + Z Y2 (13)
k=K,+1
where
o The Xy, and Yy are all independent and
Xy = v log L. +i(wk+a—’yk) (14)
Y+« In2

with 1y, ~ Pois(i).
o The Yk; NN( ’21112)'
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Proof. We can expand relative entropy as follows

D(P||P)
ZPlog( ) ZKZﬂPlog( )

<1_Z’L 1P Zz Kp+1 )
x log
Z;1P ZzKJrl

P, 1. 1
=N Plog (=) + — (P - P, —
s s () st — R+ ()

K 1-K P
n (1— S P | log (1 E’K_K”H - )

KP
P 1 - 1
= P; 1 — — (P, — PF; —
> rios () + g =+ ()
1 T -1
21n2( Py c (P P)+0( (15)
where Let P = [PKP+17"' ,PK]T, ].S = [PKP+17 ,PK]T
and
C = diag(P) — PPT)

is the covariance matrix of the multinomial distribution. The
first terms of (15) converges towards (14) in distribution while
the second term converges towards a (scaled) x? distribution.
Using the Taylor series expansion for convergence in distribu-
tion can be done as in [24, Theorem 3.3.A]

O

As a consequence of the lemma we have

m— 00 m

lim P (D(P(m)HP) > b) = P(Y >b)

Theorem 4. A lower bound for a K + 1 alphabet source is

P..K ):2;:(1 _ e) + 1 16
> -8 —
a(m, Pe, K) > 2m1n 2 ¢ (m) (16)

where F, 2 is the CDF for a x2-distribution with K degrees
K
of freedom.

Proof. Any estimator of the coding probability can be written
as P = fn(P) , where P is the maximum likelihood
estimator. Equivalently, P = P + g,,,(P). Then

E(m,a) = sup P(D(P||P + gn(P)) >a)  (17)

For the converse we may assume a restricted class of distri-
butions. We consider distributions P with P, > e for some
small € > 0. Then in Lemma 2 none of the components can
converge towards a Poisson distribution, and we achieve a
purely Gaussian limit. It is clear that we must have g, (P) B0
as m — oo , as otherwise we cannot get a(m, P.) — 0. Now
in (15) we then get

D(P||P)

= s (V(P — P) + Vg, (P))TC

< (VP — )+ Vingn @) +e (L) a

We will argue that /mg,,(P) B 0 as m — oo. First,
we must have limsup,, ., v/mgm(P) bounded, as other-
wise we cannot get a(m,P.) — 0 . From this follows
~ D .

that +/mg.,(P) = g¢g(P) for some function g(P). Thus,
(18) converges to a possible non-central x%- distribution. But
among those, the central x7 distribution has the smallest tail
probability, i.e., g(P) = 0, which gives the theorem.

O

What remains is how to choose K, in (13). All our
numerical experiments show that the maximum is obtained for
K, = K, but at the moment we do not have a proof of this. So,
a numerical computations in principle requires trying all values
of K, between 0 and K, which is feasible (but eventually
unnecessary). Fig. 1 numerically compares upper and lower
bounds. One can see that one can use the lower bouund as a
good approximation of performance, and the lower bound is
straightforward to calculate.

Pe=10"%

== PAC upper bound
2004 = = PAC lower bound ~
== = Average performance

150 4

m a(m,Pe,K)

50 A

T T T T T T T T T
0 25 50 75 100 125 150 175 200

Fig. 1. Upper and Lower bounds for K +1 alphabet IID. Average performance
is (4)

III. LEARNING FOR FSM

We consider binary sequences generated by FSM [25]. We
will first discuss universal source coding. Universal coding
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for FSM was first considered in [25]. The coding is done as
follows (slightly changed from [25]). The coder first transmits
the order K of the FSM, with Rissanen’s coder for the integers
[26], which can be done in log™ K + ¢ bits. It then transmits
which FSM of order K it uses, which can be done in log K 3
bits. Finally, it encodes the sequence with the coder in [25].
We then define the minimax redundancy as

Rf(K)=min max }E[L(Xl)]—Hﬁg(X)

19
L feFSM(K),0 [ (19)

While [25] did not directly consider this criterion, we can
conclude that

RN (K)= glogl +0 (})

We now turn to learned coding of FSM. We adopt a strategy
inspired by universal coding. Given the training data, the
learning algorithm trains for all possible FSMs, in principle
for K =1,2,...00; however, it does not decide on a model.
Only when it is presented with a test sequence is the model
decided: given a test sequence, the encoder finds the FSM
giving the shortest codelength, and then informs the decoder
which FSM it used. As for universal coding this can be done
with log* K + ¢ + log K3 bits. We now define

1
Rf(m, K) = mi ZE[L(X: X™)] — H (X
F(m, K) min WX o7 [L(X"5 X™)] — Hyo(X)

(20)
and
a(m,l, P.,, K) =min max max
L feFSM(K),0 a
1
P(YE[L(XZ; X™)]—Hyo(X)>a) <P,
21

which is the PAC criterion.

The "trick" of deciding the model based on each individual
test sequence is something specific to coding that cannot
be done for usual ML problems like classification. If K is
large, the overhead is quite modest. It avoids a complicated
problem of model selection, which is an unsolved problem
(i.e., active research problem), with solutions like structural
risk minimization [20].

Notice that a(K,m,l, P.) depends on K, as does the
performance for universal source coding. The supremum over
K is infinite in either case, and therefore does not make much
sense. However, in PAC learning one would also like to get
a universal bound on m, and (21) is therefore most useful to
give insight into performance. For practical implementation,
non-uniform PAC might be more useful.

The training consists of n sequences of length s, ns = m.
We assume the FSM starts in a specific starting state. The
implication is that all training sequences and test sequences
start in the same state. As a consequence, for analysis purposes
only I = s makes sense, i.e., each training sequence is the same
length as the test sequences. If s < [, some states might not
be seen in the training. On the other hand, any steps s > [

might not tell anything about the first | steps. The latter is
because the performance measure is a minimax criterion. For
many FSM having s > [ does help training. But not in the
worst case. We will therefore assume [ = s.

Let 7 denote the expected proportion of time the state
spends in state ¢ (which is not necessarily a stationary dis-
tribution). The redundancy for coding is

K
ZWtD(PtHﬁt)
t=1

Whether we consider R;r or a we have to consider the
worst case over 7w and p. As m — oo the total number of
state visits becomes unlimited. However, the average number
of visits to specific states could still stay finite, namely if
lim sup,,, _, oo mm(m) < oo.

We will first consider the case when all states are visited
infinitely many times, and later the case when some states are
visited finitely many times. The former case can be specified
as follows: there exists some small £ > 0 so that ™ > e.

Let m; denote the number of visits to state ¢ over all training
sequences. We then have

my P
7—>7Tt>0
m

Let m; = [(m — €)m]| for some small ¢ < . We use the
following genie inhibited training scheme for the achievable
rate
e if m; > my, only the first my visits to state ¢ is used for
estimation of p;.
o if for any ¢, m; < m; the genie adds m; — m; visits to
state ¢. But at the same time the whole training is declared
a failure.

We use (10),

N kt+a kt+a
b my + 200 My + 2a (22)

Here k; is the number of ones in state ¢. Because of the genie,
the k; are independent and binomially distributed, B(p;, my).

Let E5 be a training failure due to not enough visits to a
state, that is

P(Ey) = P(3t : my < my). (23)
We then have
Lemma 5. With P(Es) given by (23) we can bound
P(Ey) < K exp(—3ne”)
for any FSM with K states.

Proof. Let m;; be the number of visits to state ¢ in the ¢-
th training sequence; the total number of visits then is m; =
> i my;, with the my; independent for fixed ¢ and 1 <
mo; <8, 0<my,; <s—1,¢t>0. We can write

P(EQ) = P(Ht Ty < mt)

K
<> P(my < ). (24)
t=1
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We use Hoefding’s inequality [23],

P(my < (m — €)m) = P (my — mpm < —em)

62m2
< 22— ).
“p< n@—lv>

for t > 0 — similar for ¢t = 0. O

For FSM the measures of performance become

K

Rz—'—(m»K) sup E ZWtD pt”]%)] (25
FSM(K) |1
K

E(m,a,K)= sup P (Z e D(pe||De) > ) . (26)
FSM(K) P

Theorem 6. Consider an FSM(K ) model with « > . For the
estimator (22), with o = aq (5) we get

KO{Q 1
im,K) = — 2
Ry (m, K) mln?2 to (m) 27
for any € > 0, while a lower bound is
1
+ -
R (m,K) > 5mln 2+0<m>. (28)

Proof. For the achievable rate, we use the bad genie. When-
ever 5 happens, for reasons of symmetry the learning algo-
rithm still uses (22). The encoder and decoder, however, are
told that the whole training failed, and they therefore transmit
the data uncoded in [ bits; this gives an upper bound,

Zm ptlpt)‘|

t=1

lim mRf (m,K) < lim m sup E

m—o0 m—o0 P, T>e

K
< Z lim m sup m; supE[ (pelpe)]

m—oo me>e

K
< —— sup Ty

T In2 x5 (m—€)

+ IK exp(—3ne®) (29)

= ﬁao

The condition for the first two terms in (29) to converge to g
is just that € — 0. The condition for the last term to converge
to zero is just that n — oo and that € does not converge to
zero too fast. We can always choose a suitable e to satisfy this.

We now turn to the converse. In (25) the maximization is
over FSM(K). In the converse we therefore need to choose
p, 7™ corresponding to a realizable FSM(K). We use a ring
shaped FSM where both arrows from state ¢ go to state ¢ + 1
(and from state K to 1). Then m; = % while p can be arbitrary.
The number of visits to each state is | % |, and it is clear that
the p; are independent. Then

K
n%gnoo mR(m) = n%gnoo 12fmsupE Z: D(p||pe) ]
= ,,}EE%OZE (ptl[De)]
K
> 30
~ 2In2 (30)

The last inequality is due to [17, Theorem 2]. O
For PAC performance we have the following result

Theorem 7. For sufficiently large b and for any € > 0, the
estimator (22) satisfies

K
b
lim sup P (ZWtD (pellDe) > )
m—)oop T>e

t=1

=sup P(Y > b)

v>0

for both n,l — oo, with

Y = ZXk-i- Z \ (31)
k=K,+1
where
o The Xj, and Yy are all independent and
Vk 1
Xk =1 — — 32
k= Tk Og<wk+a>+l 5 Wk +a—m) (32

with 1y, ~ Pois(yg).
o The Y ~ N (0

Proof. Define the event

K
Ey = {ZWtD(PtHﬁt) > a}

while F is still the event that the genie flags a sequence as
invalid. These events are not independent, but we can upper
bound the probability of training error by

’ 21n2)

E(m,a,K) < sup (P(Ey) + P(E2)).
Po,pP1
Of course, the addition of extra artificial data can decrease
P(E,), but whenever artificial data is added E> occurs, and
the total error probability is not decreased. Here

K
=P <Z e D(pel|pe) > a>

Notice that the p; are independent with the way the (aug-
mented) data set is generated. From Theorem 3 with K =1
we have

Tt

Xy
— €

.\ D
mmy D (pe||pe) =

where X is given by (32) in the Poisson case or otherwise
xi- O
Theorem 8. For any FSM(K) a lower bound is

P.,K) > Ba =P ! 33
olm P K) 2 25T o ()09

where F,2 is the CDF for a x2-distribution with K degrees
K
of freedom.

Proof. We allow any estimator of the state probability f,, (p).
We consider the same ring FSM as for the proof of Theorem 6.
Since we are proving the converse we can assume that p > €
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for some € > 0. In that case we are in the CLT regime. We
can now apply Theorem 4) to the case K = 1 and we get

Dl () B st

Since the p; are independent for the ring FSM, we have

X1

K %

ZWtD pf”fm(pt)) 1 2

which proves the theorem. O

We notice that the results are the same as for the K -alphabet
iid case, although the proofs are quite different. Fig. 1 therefore
also applies to the FSM case.

We now consider the case when some states are only visited
finitely many times (on average), that is lim,,, o, mm(m) =
¢ < oo. In that case p, is learned poorly and D(p;||p;) does
not converge to zero. Since m; is also the ratio state ¢ is
visited in training sequences and m;(m) — 0, training is still
possible. The question is if the states with finitely many visits
or those with infinitely many visits dominate performance. For
simplicity we will only analyze average performance.

Let 0 < m;; < s be the the number of visits to state ¢
in the i-the training sequence with m; = Y ., m,,i and the
my; iid with respect to i. Since E[m;| = ¢, E[my;] = £.
Explicitly

cE[D(plp)] E[D(pllp(4))]

=) P

7=0
Here E[D(p||p(j))] is a decreasing function of j for any p. To
maximize E[D(p||p)] as much as possible mass should be at
j = 0, subject to the constraint E[m;] = c. This is achieved
if my; is binomial with P(m;, = 1) = <. Then m; = P,
the Poisson distribution. We can now maximize cE[D(p||p)] =
CZ] _ o Pe(4)E[D(p|lp(4))] over c and p, which much be done
numerically, to get

p=0,c=3.38
sup cE[D(p||p)] = 0.79
c,p

We then get the bound (since at least one state must have

infinitely many visits)
1
+o <) (34)
m

0.79(K —
mln2
which can be compared with (27): the performance is still
O( ) but with the proportionality constant increased from
0.509 to 0.79.

].) (67}
mlin?2

R?'(m,K) =

IV. CONCLUDING REMARKS

While we have treated the K-alphabet case and the binary
FSM case separately, one can see from the similarity of the
proofs that these can readily be combined (for the case of
infinite visits to FSM states). The performance just depends
on the total degrees of freedom, and for example Fig. 1 can
be seen as a plot vs. degrees of freedom.
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