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AbstractÐThis paper develops bounds for learning lossless
source coding under the PAC (probably approximately correct)
framework. The paper considers both iid sources and sources
generated by finite state machines (FSM).

I. INTRODUCTION

Traditionally, there have been two types of source coders:

fixed, optimum coders such as Huffman coders; and universal

source coders, such as Lempel-Ziv [1], [2], [3]. We will

consider a third type of source coders: learned coders. These

are coders that are trained on data of a particular type, and

then used to encode new data of that type. Examples could

be source coders for English texts, DNA data, or protein data

represented as graphs.

In both machine learning and information theory literatures,

there has been some work on learned coding. From a machine

learning perspective, the paper [4] stated the problem precisely

and developed and evaluated some algorithms. A few follow

up papers, e.g., [5], [6], [7], [8], [9], [10] have introduced new

machine learning algorithms. For lossy coding, in particular of

images and video, there has been much more activity recently,

initiated by the paper [11] from Google, see for example [12],

[13], [14]. Our aim is to find theoretical bounds for how well

it is possible to learn coding. In the current paper we will limit

ourselves to lossless coding.

Stating the problem more precisely, we consider the fol-

lowing problem of learned coding [16]. We are given a

training sequence xm; based on the training we develop coders

C(xl;xm) with length function L(xl;xm) for encoding test

sequences xl. The codelength is 1
l
Eθ[L(X

l;xm)|xm] (the

expectation here is only over xl), and the redundancy is

Rl(L, x
m,θ) =

1

l
Eθ[L(X

l;xm)|xm]−Hθ(X). (1)

The redundancy depends on the training sequence xm. One

way to remove this dependency is to average also over xm,

Rl(L,m,θ) =
1

l
Eθ[L(X

l;Xm)]−Hθ(X) (2)

R+
l (m) = min

L
sup
θ

Rl(L,m,θ). (3)

The research was funded in part by the NSF grant CCF-1908957.

The paper [17] considers (3), and proves

1

2m ln 2
+ o

(

1

m

)

≤ R+
l (m) ≤ α0

m ln 2
+ o

(

1

m

)

(4)

α0 ≈ 0.50922. (5)

for the IID case. The papers [18], [19] consider some gener-

alizations to the Markov case.

However, in machine learning performance usually is not

measured by average over test sequences, see [20], [21].

One way performance is measured is in the PAC (probability

approximately correct) learning framework [21]. Rather than

usual error probability in classification, we use the redundancy

(1) as risk measure. We can then say that coding in a class or

sources is PAC-learnable if for any a > 0, Pe > 0 and for any

sample size m > poly(1/a, 1/Pe)

inf
θ

P (Rl(L,X
m,θ) ≤ a) ≥ 1− Pe

where the probability is over Xm. Alternatively, we can state

this by defining

E(m, a) = sup
θ

P (Rl(L,X
m,θ) > a), (6)

For some given a and small Pe the goal is then to ensure

E(m, a) ≤ Pe. Thus, we require the redundancy of the learned

codelength to be smaller than a, except with a small error

probability Pe.

The idea of learning to code is to obtain information about

the distribution of the source from the training xm and then

apply this to code the test sequence xl. One can take two

approaches to the application phase. First, the the coder can

be frozen in the sense that it does not further update from the

test sequence (in that case E(m, a) in (6) does not depend

on l). There are both practical and theoretical reasons for

freezing the coder. Machine learning algorithms usually have

a distinct learning phase, and once the algorithm is trained,

it is not updated with test samples; the reason for this is

both that training is much more computational intensive than

application, often run on specialized hardware, and that there

are few good algorithms for updating for example neural

networks with new data. As a case in point, the LSTM in [4]

was not updated after the training phase, and the theoretical

work in [15] also considered frozen coders. We have some

result for non-frozen coders (online learning), and they show

that only for the uninteresting scenario l ≫ m does it make
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any difference. We will therefore limit ourselves to the frozen

scenario here.

In [16] we analyzed this problem for the IID with a binary

alphabet. The result is

Theorem 1. For estimators that are functions of the sufficient

statistic and Pe sufficiently small,

a(m,Pe) ≥
Q−1(Pe/2)

2

2m ln 2
+ o

(

1

m

)

. (7)

For the estimator p̂ = k+α
m+2α . The optimum value of α that

satisfies 1
6Q

−1(Pe/2)
2 − 1 ≤ α ≤ 1

6Q
−1(Pe/2)

2 + 1 which

gives an achievable a(m,Pe);

a(m,Pe) = b(Pe)
Q−1(Pe/2)

2

2m ln 2
+ o

(

1

m

)

, (8)

where limPe→0 b(Pe) = 1.

In the current paper we will generalize this to a general

K-alphabet IID source, and to (binary) sources generated by

finite state machines.

II. LEARNING FOR GENERAL IID SOURCES

We consider an alphabet with K +1 symbols. The average

case has already been solved in (4), so we we only need to

consider PAC performance. In this case

E(m, a) = sup
P

P (D(P ||P̂ ) > a) (9)

where P̂ is an estimate of the K parameter probability

distribution. We use the add-α estimator [22], [17]

P̂k =
nk + α

m+ (K + 1)α
=

P̌k + α/m

1 + (K + 1)α/m
(10)

where P̌k = nk

m
with nk the number of observations of symbol

k. We let PK+1 = 1−∑K
k=1 Pk and P̂K+1 = 1−∑K

k=1 P̂k.

We can consider sequences of probabilities Pk(m) and then

take supremum of the limits. For each component there are

two possibilities

lim
m→∞

mPk(m) = γk <∞ and lim
m→∞

Pk(m) = P̄k > 0

We allow γk = 0. We can assume it is the first Kp < K + 1
components that have finite limit. We first have

Lemma 2. Let

P(m) =
[

mP̌1(m), . . . ,mP̌Kp
(m),√

m(P̌Kp+1(m)− PKp+1(m)), . . . ,
√
m(P̌K(m)− PK(m))

]

then P(m)
D−→ P, where P is a random vector with

• Pk = ψk ∼ Pois(γk), independent of other components

• The [PKp+1, . . . , PK ] is multivariate Gaussian.

Proof. We define:

A(m) =

[

mIKp
0Kp,K+1−Kp

0K+1−Kp,Kp

√
mIK+1−Kp

]

b(m) =
√
m
[

01,Kp
, P̄Kp+1, . . . , P̄K , P̄K+1

]T

Then we have P(m) = A(m)P̌(m)− b(m).

As the nk are multinomial, the characteristic function for

P(m) then is φP(m)(t) = e−itTb(m)
(

P(m)T ei
1

m
A(m)t

)m

.

Now we have:

lim
m→∞

lnφP(m)(t)

= lim
m→∞

(

−itTb(m) +m ln
(

P(m)T ei
1

m
A(m)t

))

= lim
m→∞



−i√m
K+1
∑

k=Kp+1

P̄ktk +m ln





Kp
∑

k=1

Pk(m)eitk

+

K+1
∑

k=Kp+1

Pk(m)

(

1 +
itk√
m

− t2k
m

+ o

(

1

m
√
m

))









(11)

Note that
∑K+1

k=1 Pk(m) = 1 and limm→∞mPk(m) = γk <
∞ for k = 1, . . . ,Kp, so by applying the Taylor expansion of

ln(1 + x) we have:

lim
m→∞

lnφP(m)(t) =

Kp
∑

k=1

γk(e
itk − 1)

+ lim
m→∞



−
K+1
∑

k=Kp+1

i
√
m(P̄k − Pk(m))tk +

1

2
P 2
k (m)t2k





+ lim
m→∞

∑

k ̸=l≥Kp+1

Pk(m)Pl(m)tktl + o(
1√
m
)

=

Kp
∑

k=1

γk(e
itk − 1)− 1

2

K+1
∑

k=Kp+1

P̄ 2
k t

2
k +

∑

k ̸=l≥Kp+1

P̄kP̄ltktl

(12)

This is the characteristic function of independent Poisson

random variables and a vector Gaussian random vector. Since

convergence of characteristic functions imply convergence in

distribution [23], we get the lemma.

Theorem 3. We have:

mD(P (m)∥P̂ ) D−→ Y

Y =

Kp
∑

k=1

Xk +
K
∑

k=Kp+1

Y 2
k (13)

where

• The Xk and Yk are all independent and

Xk = γk log

(

γk
ψk + α

)

+
1

ln 2
(ψk + α− γk) (14)

with ψk ∼ Pois(γk).
• The Yk ∼ N

(

0, 1
2 ln 2

)

.
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Proof. We can expand relative entropy as follows

D(P ||P̂ )

=

Kp
∑

i=1

Pi log

(

Pi

P̂i

)

+

K
∑

i=Kp+1

Pi log

(

Pi

P̂i

)

+



1−
Kp
∑

i=1

Pi −
K
∑

i=Kp+1

Pi





× log

(

1−∑Kp

i=1 Pi −
∑K

i=Kp+1 Pi

1−∑Kp

i=1 P̂i −
∑K

i=Kp+1 P̂i

)

=

Kp
∑

i=1

Pi log

(

Pi

P̂i

)

+
1

ln 2
(P̂i − Pi) + o

(

1

m

)

+
K
∑

i=Kp+1

Pi log

(

Pi

P̂i

)

+



1−
K
∑

i=Kp+1

Pi



 log

(

1−∑K
i=Kp+1 Pi

1−∑K
i=Kp+1 P̂i

)

=

Kp
∑

i=1

Pi log

(

Pi

P̂i

)

+
1

ln 2
(P̂i − Pi) + o

(

1

m

)

+
1

2 ln 2
(P̂−P)TC−1(P̂−P) + o

(

1

m

)

(15)

where Let P = [PKp+1, . . . , PK ]T , P̂ = [P̂Kp+1, . . . , P̂K ]T

and

C = diag(P)−PPT )

is the covariance matrix of the multinomial distribution. The

first terms of (15) converges towards (14) in distribution while

the second term converges towards a (scaled) χ2 distribution.

Using the Taylor series expansion for convergence in distribu-

tion can be done as in [24, Theorem 3.3.A]

As a consequence of the lemma we have

lim
m→∞

P

(

D(P (m)∥P̂ ) > b

m

)

= P (Y > b)

Theorem 4. A lower bound for a K + 1 alphabet source is

a(m,Pe,K) ≥
F−1
χ2

K

(1− Pe)

2m ln 2
+ o

(

1

m

)

(16)

where Fχ2

K
is the CDF for a χ2-distribution with K degrees

of freedom.

Proof. Any estimator of the coding probability can be written

as P̂ = fm(P̌ ) , where P̌ is the maximum likelihood

estimator. Equivalently, P̂ = P̌ + gm(P̌ ). Then

E(m, a) = sup
P

P (D(P ||P̌ + gm(P̌ )) > a) (17)

For the converse we may assume a restricted class of distri-

butions. We consider distributions P with Pk > ε for some

small ε > 0. Then in Lemma 2 none of the components can

converge towards a Poisson distribution, and we achieve a

purely Gaussian limit. It is clear that we must have gm(P̌ )
D→ 0

as m→ ∞ , as otherwise we cannot get a(m,Pe) → 0. Now

in (15) we then get

mD(P ||P̂ )

=
1

2 ln 2
(
√
m(P̌−P) +

√
mgm(P̌))TC−1

× (
√
m(P̌−P) +

√
mgm(P̌)) + ϵ

(

1

m

)

(18)

We will argue that
√
mgm(P̌ )

D→ 0 as m → ∞. First,

we must have lim supm→∞

√
mgm(P ) bounded, as other-

wise we cannot get a(m,Pe) → 0 . From this follows

that
√
mgm(P̌ )

D→ g(P ) for some function g(P ). Thus,

(18) converges to a possible non-central χ2
K distribution. But

among those, the central χ2
K distribution has the smallest tail

probability, i.e., g(P ) ≡ 0 , which gives the theorem.

What remains is how to choose Kp in (13). All our

numerical experiments show that the maximum is obtained for

Kp = K, but at the moment we do not have a proof of this. So,

a numerical computations in principle requires trying all values

of Kp between 0 and K, which is feasible (but eventually

unnecessary). Fig. 1 numerically compares upper and lower

bounds. One can see that one can use the lower bouund as a

good approximation of performance, and the lower bound is

straightforward to calculate.

0 25 50 75 100 125 150 175 200
K

0

50

100

150

200

m
 a

(m
,P

e,K
)

Pe = 10 5

PAC upper bound
PAC lower bound
Average performance

Fig. 1. Upper and Lower bounds for K+1 alphabet IID. Average performance
is (4)

III. LEARNING FOR FSM

We consider binary sequences generated by FSM [25]. We

will first discuss universal source coding. Universal coding
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for FSM was first considered in [25]. The coding is done as

follows (slightly changed from [25]). The coder first transmits

the order K of the FSM, with Rissanen’s coder for the integers

[26], which can be done in log∗K + c bits. It then transmits

which FSM of order K it uses, which can be done in logK3

bits. Finally, it encodes the sequence with the coder in [25].

We then define the minimax redundancy as

R+
l (K) = min

L
max

f∈FSM(K),θ

1

l
E[L(X l)]−Hf,θ(X) (19)

While [25] did not directly consider this criterion, we can

conclude that

R+
l (K) =

K

2l
log l +O

(

1

l

)

We now turn to learned coding of FSM. We adopt a strategy

inspired by universal coding. Given the training data, the

learning algorithm trains for all possible FSMs, in principle

for K = 1, 2, . . .∞; however, it does not decide on a model.

Only when it is presented with a test sequence is the model

decided: given a test sequence, the encoder finds the FSM

giving the shortest codelength, and then informs the decoder

which FSM it used. As for universal coding this can be done

with log∗K + c+ logK3 bits. We now define

R+
l (m,K) = min

L
max

f∈FSM(K),θ

1

l
E[L(X l;Xm)]−Hf,θ(X)

(20)

and

a(m, l, Pe,K) = min
L

max
f∈FSM(K),θ

max
a

P (
1

l
E[L(X l;Xm)]−Hf,θ(X) > a) ≤ Pe

(21)

which is the PAC criterion.

The "trick" of deciding the model based on each individual

test sequence is something specific to coding that cannot

be done for usual ML problems like classification. If K is

large, the overhead is quite modest. It avoids a complicated

problem of model selection, which is an unsolved problem

(i.e., active research problem), with solutions like structural

risk minimization [20].

Notice that a(K,m, l, Pe) depends on K, as does the

performance for universal source coding. The supremum over

K is infinite in either case, and therefore does not make much

sense. However, in PAC learning one would also like to get

a universal bound on m, and (21) is therefore most useful to

give insight into performance. For practical implementation,

non-uniform PAC might be more useful.

The training consists of n sequences of length s, ns = m.

We assume the FSM starts in a specific starting state. The

implication is that all training sequences and test sequences

start in the same state. As a consequence, for analysis purposes

only l = s makes sense, i.e., each training sequence is the same

length as the test sequences. If s < l, some states might not

be seen in the training. On the other hand, any steps s > l

might not tell anything about the first l steps. The latter is

because the performance measure is a minimax criterion. For

many FSM having s > l does help training. But not in the

worst case. We will therefore assume l = s.
Let πt denote the expected proportion of time the state

spends in state t (which is not necessarily a stationary dis-

tribution). The redundancy for coding is

K
∑

t=1

πtD(pt∥p̂t)

Whether we consider R+
l or a we have to consider the

worst case over π and p. As m → ∞ the total number of

state visits becomes unlimited. However, the average number

of visits to specific states could still stay finite, namely if

lim supm→∞mπt(m) <∞.

We will first consider the case when all states are visited

infinitely many times, and later the case when some states are

visited finitely many times. The former case can be specified

as follows: there exists some small ε > 0 so that π > ε.
Let mt denote the number of visits to state t over all training

sequences. We then have

mt

m

P→ πt > 0

Let m̄t = ⌊(πt − ϵ)m⌋ for some small ϵ < ε. We use the

following genie inhibited training scheme for the achievable

rate

• if mt > m̄t, only the first m̄t visits to state t is used for

estimation of pt.
• if for any t, mt < m̄t the genie adds m̄t −mt visits to

state t. But at the same time the whole training is declared

a failure.

We use (10),

p̂t =
kt + α

mt + 2α
=

kt + α

m̄t + 2α
(22)

Here kt is the number of ones in state t. Because of the genie,

the kt are independent and binomially distributed, B(pt, m̄t).
Let E2 be a training failure due to not enough visits to a

state, that is

P (E2) = P (∃t : mt < m̄t). (23)

We then have

Lemma 5. With P (E2) given by (23) we can bound

P (E2) ≤ K exp(−3nϵ2)

for any FSM with K states.

Proof. Let mt,i be the number of visits to state t in the i-
th training sequence; the total number of visits then is mt =
∑n

i=1mt,i, with the mt,i independent for fixed t and 1 ≤
m0,i ≤ s, 0 ≤ mt,i ≤ s− 1, t > 0. We can write

P (E2) = P (∃t : mt < m̄t)

≤
K
∑

t=1

P (mt < m̄t). (24)
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We use Hoefding’s inequality [23],

P (mt < (πt − ϵ)m) = P (mt − πtm < −ϵm)

≤ exp

(

−2
ϵ2m2

n(s− 1)2

)

.

for t > 0 ± similar for t = 0.

For FSM the measures of performance become

R+
l (m,K) = sup

FSM(K)

E

[

K
∑

t=1

πtD(pt∥p̂t)
]

(25)

E(m, a,K) = sup
FSM(K)

P

(

K
∑

t=1

πtD(pt∥p̂t) ≥ a

)

. (26)

Theorem 6. Consider an FSM(K) model with π > ε. For the

estimator (22), with α = α0 (5) we get

R+
l (m,K) =

Kα0

m ln 2
+ o

(

1

m

)

(27)

for any ε > 0, while a lower bound is

R+
l (m,K) ≥ K

2m ln 2
+ o

(

1

m

)

. (28)

Proof. For the achievable rate, we use the bad genie. When-

ever E2 happens, for reasons of symmetry the learning algo-

rithm still uses (22). The encoder and decoder, however, are

told that the whole training failed, and they therefore transmit

the data uncoded in l bits; this gives an upper bound,

lim
m→∞

mR+
l (m,K) ≤ lim

m→∞
m sup

p,π>ε
E

[

K
∑

t=1

πtD(pt∥p̂t)
]

≤
K
∑

t=1

lim
m→∞

m sup
πt>ε

πt sup
pt

E [D(pt∥p̂t)]

≤ K

ln 2
sup
πt>ε

πt
α0

(πt − ϵ)
+ lP (E2)

≤ K

ln 2
α0

ε

ε− ϵ
+ lK exp(−3nϵ2) (29)

The condition for the first two terms in (29) to converge to α0

is just that ϵ→ 0. The condition for the last term to converge

to zero is just that n → ∞ and that ϵ does not converge to

zero too fast. We can always choose a suitable ϵ to satisfy this.

We now turn to the converse. In (25) the maximization is

over FSM(K). In the converse we therefore need to choose

p,π corresponding to a realizable FSM(K). We use a ring

shaped FSM where both arrows from state t go to state t+ 1
(and from state K to 1). Then πt =

1
K

while p can be arbitrary.

The number of visits to each state is ⌊m
K
⌋, and it is clear that

the p̂t are independent. Then

lim
m→∞

mR(m) = lim
m→∞

inf
π̂

m sup
p

E

[

K
∑

t=1

1

K
D(pt∥p̂t)

]

= lim
m→∞

K
∑

t=1

E [D(pt∥p̂t)]

≥ K

2 ln 2
(30)

The last inequality is due to [17, Theorem 2].

For PAC performance we have the following result

Theorem 7. For sufficiently large b and for any ε > 0, the

estimator (22) satisfies

lim
m→∞

sup
p,π>ε

P

(

K
∑

t=1

πtD(pt∥p̂t) ≥
b

m

)

= sup
γ>0

P (Y > b)

for both n, l → ∞, with

Y =

Kp
∑

k=1

Xk +

K
∑

k=Kp+1

Y 2
k (31)

where

• The Xk and Yk are all independent and

Xk = γk log

(

γk
ψk + α

)

+
1

ln 2
(ψk + α− γk) (32)

with ψk ∼ Pois(γk).
• The Yk ∼ N

(

0, 1
2 ln 2

)

.

Proof. Define the event

E1 =

{

K
∑

t=1

πtD(pt∥p̂t) ≥ a

}

while E2 is still the event that the genie flags a sequence as

invalid. These events are not independent, but we can upper

bound the probability of training error by

E(m, a,K) ≤ sup
p0,p1

(P (E1) + P (E2)).

Of course, the addition of extra artificial data can decrease

P (E1), but whenever artificial data is added E2 occurs, and

the total error probability is not decreased. Here

P (E1) = P

(

K
∑

t=1

πtD(pt∥p̂t) ≥ a

)

Notice that the p̂t are independent with the way the (aug-

mented) data set is generated. From Theorem 3 with K = 1
we have

mπtD(pt∥p̂t) D→ πt
πt − ϵ

Xt

where Xt is given by (32) in the Poisson case or otherwise

χ2
1.

Theorem 8. For any FSM(K) a lower bound is

a(m,Pe,K) ≥
F−1
χ2

K

(1− Pe)

2m ln 2
+ o

(

1

m

)

(33)

where Fχ2

K
is the CDF for a χ2-distribution with K degrees

of freedom.

Proof. We allow any estimator of the state probability fm(p̂t).
We consider the same ring FSM as for the proof of Theorem 6.

Since we are proving the converse we can assume that p > ϵ
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for some ϵ > 0. In that case we are in the CLT regime. We

can now apply Theorem 4) to the case K = 1 and we get

mD(pt∥fm(p̂t))
D→ K

ln 2
χ2
1

Since the p̂t are independent for the ring FSM, we have

K
∑

t=1

πtD(pt∥fm(p̂t))
D→ K

ln 2
χ2
K

which proves the theorem.

We notice that the results are the same as for the K-alphabet

iid case, although the proofs are quite different. Fig. 1 therefore

also applies to the FSM case.

We now consider the case when some states are only visited

finitely many times (on average), that is limm→∞mπt(m) =
c < ∞. In that case p̂t is learned poorly and D(pt∥p̂t) does

not converge to zero. Since πt is also the ratio state t is

visited in training sequences and πt(m) → 0, training is still

possible. The question is if the states with finitely many visits

or those with infinitely many visits dominate performance. For

simplicity we will only analyze average performance.

Let 0 ≤ mt,i ≤ s be the the number of visits to state t
in the i-the training sequence with mt =

∑n
i=1mt, i and the

mt,i iid with respect to i. Since E[mt] = c, E[mt,i] =
c
n

.

Explicitly

cE[D(p∥p̂)] = c

∞
∑

j=0

P (mt = j)E[D(p∥p̂(j))]

Here E[D(p∥p̂(j))] is a decreasing function of j for any p. To

maximize E[D(p∥p̂)] as much as possible mass should be at

j = 0, subject to the constraint E[mt] = c. This is achieved

if mt,i is binomial with P (mt,i = 1) = c
n

. Then mt
D→ Pc,

the Poisson distribution. We can now maximize cE[D(p∥p̂)] =
c
∑∞

j=0 Pc(j)E[D(p∥p̂(j))] over c and p, which much be done

numerically, to get

p = 0, c = 3.38

sup
c,p

cE[D(p∥p̂)] = 0.79

We then get the bound (since at least one state must have

infinitely many visits)

R+
l (m,K) =

0.79(K − 1)

m ln 2
+

α0

m ln 2
+ o

(

1

m

)

(34)

which can be compared with (27): the performance is still

O
(

1
m

)

but with the proportionality constant increased from

0.509 to 0.79.

IV. CONCLUDING REMARKS

While we have treated the K-alphabet case and the binary

FSM case separately, one can see from the similarity of the

proofs that these can readily be combined (for the case of

infinite visits to FSM states). The performance just depends

on the total degrees of freedom, and for example Fig. 1 can

be seen as a plot vs. degrees of freedom.
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