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Volatile organic compounds (VOCs) emitted via exhaled breath and bodily fluids are indicative of a diseased state
within the body and have the potential to be used as a diagnostic tool. The study of VOCs in disease detection is a
concept that has seen excellent engineering progress recently, namely via developments of electronic noses that
aim to replicate biological olfactory principles through cross-selective electrode arrays and sensors. However,
there has yet to be an engineered device that can capture the full breadth, sensitivity, and versatility of biological
olfaction. This review summarizes common principles in biological olfaction and provides an overview of recent
techniques to incorporate living systems for VOC detection. We discuss the recent advances, strengths, and
weaknesses of all three types of living systems-based disease detection approach, which include a) olfactory
behavioral detection, b) bioelectronic noses and c) ‘cyborg’ biosensors for disease detection.

1. Introduction

Effective diagnostics are essential for the timely detection, preven-
tion, and monitoring of health changes. For diseases, early diagnosis can
make a tremendous difference in the mortality outcome of patients due
to the swift administration of proper medical treatment. In addition,
other areas of life, including financial and social burdens, are lessened
when disease is caught and treated early. Volatolomics, the study of
emitted volatile organic compounds (VOCs) from breath and other
bodily secretions, provides a non-invasive tool for disease diagnostics.
Blood contains VOCs produced through systemic metabolic processes
which are then released from the body through the lungs, kidneys, and
glands. Several diseases, including cancer, alter the concentrations of
VOCs produced through metabolism [1-14]. As a result, multiple VOC
concentrations in exhaled breath are changed in the parts-per-billion to
parts-per-trillion range due to the presence of cancer or other diseases
[15]. These altered VOC concentrations of disease states are reflected in
samples easily collected from the body (i.e., breath, blood, urine, sweat);
however, it is important to note that many studies have presented

varying VOC profiles for diseases and yet there have been no singular
compound marker agreed upon for a specific disease condition and
prognosis. Nonetheless, the analysis of VOC profiles through bodily
samples offers a reliable avenue for noninvasive and early disease
detection.

Gas chromatography-mass spectrometry (GC-MS) has been exten-
sively used for noninvasive disease detection [7,8,12,14]. However, in
this component-wise detection approach, it is difficult to identify correct
concentrations of several unknown VOCs at very low concentrations (in
ppb to ppt range). Low mobility of the system, sample preprocessing
time, and non-standardized analysis techniques also prove challenging
for clinical applications of several GC-MS devices. Electronic noses
(e-noses) attempted to replicate biological olfaction through sensors and
pattern recognition algorithms, for example, Cyranose 320 (Sensigent)
and Aeonose (The eNose Company) [16]. These relatively inexpensive
and easy-to-use devices have been successful at diagnosing diseases
[16], including infections [17-19] and cancers [20-25], but are
frequently engineered for sensing a specific subset of VOCs, lacking the
broad generalization of biological olfaction. Even with all the advances
in chemical sensing devices, developing gas sensors that are sensitive to
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Abbreviations
AL antennal lobe
BSP biosensor platform

C. elegans Caenorhabditis elegans

CNT-FET carbon nanotube field-effect transistor
COVID-19 Coronavirus disease

DDTS detection dog training system

EIS electrochemical impedance spectroscopy

e-noses electronic noses

FRET fluorescence resonance energy transfer
GC-MS  gas chromatography-mass spectrometry
GPCR G-protein coupled receptor

hpDNA  hairpin DNA

hOPB human odorant binding protein
KC Kenyon cell

OB olfactory bulb

OBP odorant binding proteins

OR odorant receptor

Orco odorant receptor co-receptor
ORN olfactory receptor neuron

pOBP porcine odorant binding protein
PER proboscis extension reflex

SPRi surface plasmon resonance imaging
VOC volatile organic compound

multiple chemicals at low concentrations, work well in natural envi-
ronments, and perform reliably over time is still challenging.

Living systems have solved the problem of chemical sensing over
millions of years of evolution and converged to a solution that is
architecturally and functionally strikingly similar across different spe-
cies. This indicates that there might be an optimal solution for gas
sensing that is still elusive from an engineering standpoint. Living or-
ganisms (e.g., canines) have been proven to robustly detect multiple
VOCs with high sensitivity and specificity. Therefore, it is important to
learn how biology has solved the problem of chemical sensing which
remains a longstanding challenge for engineered chemical sensors.

This review will first identify common principles that living systems
employ for chemical sensing. We will review current approaches and
results in which entire living systems have been employed for behavioral
disease detection. Next, we will discuss how multiple state-of-the-art gas
sensing systems have incorporated olfactory components from living
systems. Finally, we will discuss a relatively new forward-engineered
biosensing approach where biological olfactory brains are hijacked to
perform chemical sensing tasks. These types of sensors are also called
‘cyborg’ sensors. Overall, this review highlights the power of incorpo-
rating biological components and biological neural computations in
volatile chemical sensing for disease detection.

2. Common principles in biological olfaction
2.1. Olfactory sensory neuron — combinatorial code

At the periphery of the vertebrate olfactory sensory pathway, odor
molecules first bind to specific G-protein coupled receptors (GPCRs)
which transduce chemical signals into electrical impulses called action
potentials or ‘spikes.” It has been shown that a large family of GPCRs
work as odorant receptors (ORs) [26] in vertebrates and are conserved
across many species [27,28]. In insects, these ORs are shown to be
ligand-gated ion channels, different from the vertebrate GPCRs [29].
These ORs form the main functional unit of the biological chemical
detection array (e.g., dog’s nasal epithelium, insect antenna). The neu-
rons that contain these ORs are called olfactory receptor neurons
(ORNs). Hundreds and thousands of ORNSs are present in the vertebrate
and invertebrate olfactory pathway. For example, in fruit fly antenna,
about 60 ORs are expressed in 1200 ORNs, each containing only one
type of OR and a universally expressed co-receptor [30,31]. In both
vertebrates and invertebrates, a single ORN generally responds to many
volatile chemicals in a cross-selective manner [32]. This is a common
feature of biological sensory neurons, which employ combinations of
sensory neuronal activity to encode odorants or mixtures. Biological
olfaction prefers a group of sensors responding to one chemical over
odor-specific single-sensor organization. These combinations of several
cross-selective sensors help living organisms detect many chemicals
using very few sensors (Fig. 1A). For example, using a combinatorial
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Fig. 1. General Principles in biological olfaction. A. Combinatorial coding
scheme by cross-selective odor sensors [213]. B. Common principles in the
biological olfactory pathway. Equivalent brain centers between vertebrates and
invertebrates, their functional roles as well as general coding principles
are shown.

coding scheme and only ON and OFF states of the sensor, 60 ORNSs in the
fruit fly antenna can detect ~2°° chemicals which is more than one
quadrillion odors or mixtures.

2.2. The first relay center — spatiotemporal odor code

The first relay of biological olfactory systems performs key roles for
reliable detection of odorants in dynamic and natural environments
[33]. In vertebrates and invertebrates, this odor-processing neural cir-
cuitry is known as the olfactory bulb (OB) and the antennal lobe (AL),
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respectively (Fig. 1B). Intriguingly, like the sensory neurons, this neural
center also shares many similarities across different species. More
importantly, organizational and functional properties of the first relay
have many similarities between vertebrates and invertebrates. Gener-
ally, the first relay (OB or AL) contains both excitatory principal neurons
and inhibitory local neurons which form dense connections with the
ORN axons in specialized neuropil areas called ‘glomeruli’ [34]. Within
each glomerulus, usually, all the ORNs containing the same OR gene
converge and make dense connections with one or several excitatory and
inhibitory neurons [35]. In this neural circuitry, ‘neural code’ for each
odorant is generated using complex spatiotemporal response profiles of
the principal neurons that project their axons to the higher-order brain
centers. The spatiotemporal coding scheme at this neural circuitry takes
advantage of both the identity of the activated neurons and the temporal
response dynamics of individual neurons [36]. Odor-induced evolution
of principle neuron responses generate odor-specific manifolds in the
neural response space which has been shown to be odor identity and
intensity specific [37]. This spatiotemporal coding mechanism allows
for background-invariant odor recognition, contrast enhancement, and
novel odor detection [38-41]. The functional roles of the first relay are
essential for odor detection in natural environments which is lacking in
most of the current engineered gas sensors. Importantly, most engi-
neered gas sensors account for only ON and/or OFF state of the sensor
for odor detection and not the temporal response profiles of the sensor.
However, biology tells us that the temporal response aspects are very
important as odor stimuli are dynamic and both olfactory sensory neu-
rons and central circuitry neurons track the temporal profile of a stim-
ulus by eliciting complex patterns of spikes. Overall, looking at the first
relay of biological olfaction, a general principle that emerges is that
‘spatiotemporal’ odor code is essential for odor stimuli and/or mixture
detection in dynamic environments.

2.3. The central circuitry — signal sparsening and decoding

Spatiotemporal neural signals generated at the first relay (OB/AL)
are transmitted to the central circuitry, which includes the olfactory
cortex for vertebrates and mushroom body for invertebrates (Fig. 1B). In
this central circuitry, several different functional roles are achieved that
are essential for context-dependent stimulus decoding in natural settings
including signal sparsening, gain control, learning, and memory [33,
42]. Here, we will focus on signal sparsening as it is an important aspect
of biological olfaction for reliable decoding of odor signals. In the insect
mushroom body, a few hundred projection neurons from the AL
converge to several thousands of the mushroom body neurons (Kenyon
cells, KCs). This order of magnitude increase in the neuron numbers
increases the coding space inside the mushroom body. Although the
Kenyon cells (KCs), receive inputs from several presynaptic principal
neurons from the AL [43], contrary to the high-firing and complex
spatiotemporal response profiles of AL neurons, KCs remain mostly si-
lent at resting potential (without any odor stimulus) and generate only a
few spikes at the onset and offset of odor stimuli [44,45]. By reducing
the odor stimulus-evoked spike numbers and by increasing odor speci-
ficity, KCs generate ‘sparse’ odor codes for respective stimuli in the
brain. It is known that this sparsening of odor representation can achieve
fast and reliable decoding of chemical stimuli in the presence of different
background contexts. In several cases, KCs receive negative feedback
from one or multiple inhibitory neurons which receive inputs from all
KCs in the mushroom body. This gain control mechanism coupled with
intrinsic excitatory properties of KCs and oscillatory synchronization
helps limit KC firing rates to a low level and creates sparse odor repre-
sentation [46]. Overall, biological organisms reformat odor-evoked
neural responses in the central circuitry to generate sparse and odor
context-specific representation that is used for behavioral outcomes.
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3. Olfactory behavior-based disease detection
3.1. Potential of behavioral animal olfaction

Biological olfaction is powerful in its odor recognition capabilities,
possessing a robust generalization for chemicals across varying con-
centrations and complex mixtures. When trained, animals can display a
distinct olfactory behavior in response to a target stimulus throughout
differing chemical backgrounds. Behavioral animal olfaction has been
used in a variety of fields for chemical detection as they are capable of
smelling odors at concentrations as low as parts per trillion [47-49].
Biological olfaction has been effective in many real-world applications,
mentioned briefly, outside of disease detection. Canine sensing is at the
forefront of applied animal olfaction with uses in explosives, narcotics,
missing persons, and search and rescue detections [50-52]. Addition-
ally, the use of other animal olfaction, such as rodents and insects, has
gained popularity for real-world applications. Recently, honeybees have
been successfully employed for passive explosive detection to locate
residual landmines [53-55], while locusts and rodents have been used to
actively detect explosive chemicals [56,57]. The potential of animal
olfaction offers a non-invasive, accessible, and versatile method for
detecting a variety of diseases. In this section, we will discuss the use of
behavioral animal olfaction for clinical diagnostics including condi-
tioning paradigms, animal models used, and recent results.

3.2. Behavioral conditioning paradigms and odor presentation methods

Though animals have an excellent sense of smell, they must first be
trained for disease detection. Regardless of species, training was done
through classical (Pavlovian) conditioning where a neutral stimulus was
paired with a biologically significant one, shown in Fig. 2. Behavioral
training usually comprised four main phases: habituation, association,
indication, and discrimination. Habituation allowed the animals to
familiarize themselves with the training environment and apparatuses
used for odor delivery. Positive association consists of conditioning the
animal to the target odor using reinforcement in the form of treats (dogs,
mice, rats), sugar water (ants, honeybees, mice, rats), and/or clicker
sounds. The next phase of training was indication, where a specific
behavior was incorporated into identifying a positive sample. For
example, dogs were trained to sit or stay-standing in front of a sample
while honeybees produced a proboscis extension reflex (PER) when they
identified a positive result [58]. Moreover, rats and mice were trained to
go to a specific area; y-maze or ledges, corresponding to the target odor
[59-61]. Finally, distracting odors, such as empty vials or samples from
healthy patients, were incorporated into training for better discrimina-
tion between a positive and negative target. In some cases, a negative
association was used for control/negative samples to further the
discrimination between odors and could take the forms of puffs of water,
unpleasant-tasting food, or loud noises [58,59,61]. Each animal model
and study discussed in this section employed different training lengths
varying from less than an hour to over a year with an exception for
nematode studies that required no training at all. Once successfully
trained, testing phases began where disease samples; positive, negative,
and control, were presented to animals for diagnosis.

Samples used for training and testing were often collected directly
from patients or created in the lab. The chemical makeup of these
samples is an important indicator of health and disease progression.
Urine, breath, and mouth/throat secretions were among the most
common sample types used in behavioral studies. Other types included
cultured cells, blood, sweat, smears, and cloth items that were worn.
Samples were collected through third parties (hospitals, companies),
frozen, shipped, and thawed/reheated during experimentation. For the
studies mentioned in this section, each one had some type of apparatus
that held either the animal or sample for detection, examples shown in
Figs. 3 and 4. Invertebrates required simple and inexpensive appara-
tuses, such as Petri dishes or 3D-printed harnesses, to perform
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Fig. 2. Disease detection using behavioral olfaction. A. Different diseases detected by behavioral olfaction studies. TB is tuberculosis. B. Sample types collected from
patients for disease detection. C. Overall process for conditioning target odors to a trained behavior. For example, before training, dogs and honeybees had no
response to odor samples. They were then conditioned by pairing the odor sample with a reward (treats for canines and sugar water for insects). Once trained,
animals displayed a specific response (sitting or proboscis extension reflex) when presented with the odor sample. (Images are created with Biorender.com and few

images were collected from Freepik.com.).

experimentation. Samples were placed around the Petri dish using filter
paper, small tubes, or solutions. However, the scale and complexity of
odor delivery significantly varied for vertebrate studies. While some
vertebrate studies used simplistic odor deliveries; y-mazes or lined
canisters, others employed more technologically advanced means. For
example, Wiesel et al. [62] utilized a novel biosensor platform (BSP)
system created by EARLY Labs that allows for hands-off, automated
sample odor presentation, monitoring, and data collection to multiple
rats simultaneously. Likewise, Jendrny et al. [63], used another fully
automated training and testing apparatus, the detection dog training
system (DDTS) available through Kynoscience.

3.3. Vertebrate models in behavioral diagnostics

Canines are the most frequently used animal model for behavioral
disease diagnostics due to their long history of olfaction-based detection
in other areas (explosives, drugs, missing persons). Once trained, they
are an effective diagnostic tool with high sensitivity and specificity,
presented in Table 1. In the world of disease diagnostics, dogs are
notably known for detecting several types and stages of cancer including
lung, breast, and colorectal. In three separate studies [64-66], sniffer
dogs were able to differentiate blood, breath, and urine samples from
lung cancer patients with a sensitivity ranging from 65.5 to 96.7 %. The

study by Feil et al. [66] found canine detection rate of lung cancer using
breath and urine samples together (96.7 %) was comparable to
commonly used diagnostic procedures such as CT (100 %), bronchos-
copy (56.1 %), and tumor markers (65.4-93.1 %) (Fig. 3D). Another
study, employing two dogs, showed very high sensitivities over in vitro
cultures of breast (94.4 %) and colorectal (92.6 %) cancer cell lines [67].
In this study, both dogs were formally trained on one of the cancers; yet
tested on both. Interestingly, the detection accuracy for the untrained
cancer was comparable to the trained cancer (93 % vs 94 % average),
giving insight into the relationship between breast and colorectal can-
cers while demonstrating that trained dogs can be used for multi-scent
detection. While exciting, this could pose a challenge for diagnostics
as dogs could be identifying a completely different disease that contains
a similar VOC profile. This challenge was seen in a study by
Guerrero-Flores et al. [68] where a dog trained for cervical cancer
detection showed an interest in every sample containing endometrial
cancer, endangering correct diagnosis. Recently, infectious disease
detection using canines has increased with the rise of COVID-19. Mul-
tiple studies have shown that dogs are an effective diagnostic tool for
COVID-19 with sensitivities ranging from 65 to 100 % [63,69-71],
comparable to the commonly used rapid antigen test (~70 %) [72,73].
However, the study by Mutesa et al. [71] saw a decrease in detection
sensitivity based on the COVID-19 variant used and speculated this was
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Fig. 3. Disease detection using vertebrate models. A. Detection dog training system (DDTS) built by Kynoscience and used for identification of COVID-19 samples by
canine scent [63,71]. Position of positive sample automatically moves and rewards dog upon correct identification. Figure adapted with permission from Ref. [71]. B.
Biosensor platform (BSP) system for training rats created by EARLY Labs and used by Wiesel et al. for detection of lung cancer by rat olfaction. The conveyor belt
moves samples into place and automatically senses when a rat has correctly identified the sample. Figure reproduced with permission from Ref. [62]. C. Rat odor
delivery system with two ledges for trained behavior on multi-discrimination of odors. Odor is delivered in one chamber and the rat must go to the correct cor-
responding ledge in a second chamber. Figure adapted with permission from Ref. [59]. D. Comparing the sensitivity of various diagnostic tests for lung cancer to that
of canine detection. Canine detection using breath (78 %) and urine (87.8 %) was comparable to that of CT, bronchoscopy, and tumor marker diagnostics.
Figure adapted with permission from Ref. [66]. E. Female mice detection of melanoma before and after training in the Y-maze. No significant spontaneous attraction
towards healthy vs non-healthy urine samples. After training, mice were able to detect urine from cancer samples with and without a tumor. Figure adapted with
permission from Ref. [61]. F. Rats were able to detect additional positive tuberculosis patients over 5 years compared to the directly observed treatments,
short-course (DOTS) clinics. Figure adapted with permission from Ref. [77].

due to the difference in symptoms and viral load between the delta and
omicron variants. Varied results seen between studies could be due to a

to detect food and prey from a distance. Their highly developed sense of
smell makes rodents another avenue for disease detection, one that has

variety of reasons including training lengths, sample sizes, and differ-
ences between the dog breeds used [74]. Additionally, handler de-
pendency can become an issue as dogs pick up on the unintentional body
cues from their handler; in some cases, this was overcome by performing
double-blind testing where the handler did not know which samples
were positive. Furthermore, a few studies used dogs that had been
previously trained in areas such as explosives, hunting, and drug
detection [63,68-70,75]. The difference in formal training experience
could also contribute to diagnostic performance. Nonetheless, canines
have exhibited a robust and versatile ability to detect multiple cancers
and infectious diseases. With a dog’s long lifespan, continuing disease
detection can save a multitude of lives and better inform scientists about
disease-altered VOCs.

Rats and mice are scavenger animals that rely on their sense of smell

been recently explored. Rodents have been used to detect cancers (lung,
skin, bladder), bacteria, and tuberculosis with repeatable high sensi-
tivities and specificities (Table 1). As a note, many of the studies
mentioned here presented one odor at a time or one odor with one
control, this directly contrasts with many canine studies which pre-
sented multiple odors simultaneously for testing. Three separate studies
showed that rats were able to detect varying stages of lung cancer with
sensitivity ranging from 83 to 93 % [59,60,62]. The two studies from Oh
et al. displayed that rats could detect the odor in varying environmental
conditions as well as up to 45 days after training [59,60]. Moreover, rats
were able to discriminate target odors in the presence of distracting
odors and at low concentrations [59,76], though there was a depen-
dence of response time on odor concentration [59]. The ability to
perform in different situations, generalize odors of varying
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concentrations, and retain long-term learning makes rats a reliable an-
imal model for field work without the need for constant reinforcements.
In some cases, relying solely on lab medical testing can lead to positive
diagnoses being missed as seen in the study by Mgode et al. where
trained rats increased tuberculosis detection by 67.6 %, finding 208
additional positive children those clinics had missed [77] (Fig. 3F).
Though not as commonly used, mice are like rats in terms of sensitivity
and disease detection. Mice were able to detect melanoma with a
sensitivity of 82 % in its earliest stages before a tumor and any other
clinical symptoms had become visible [61], (Fig. 3E). Another mouse
behavioral detection study displayed a difference between the urine of
bladder cancer patients pre- and post-surgery [78]. This remarkable
ability can be used for early cancer detection and measuring treatment
success. Due to the less expensive and shorter nature of raising and
training rodents, studies were able to have a higher sample size for
detection animals; however, their short lifespans are a limiting factor.
Nevertheless, rodents have been used in a multitude of research areas
leading to standardized approaches applicable to disease diagnostics
and reproducible results.

3.4. Invertebrate models in behavioral diagnostics

Invertebrates are less conventional models used for disease detection
research, yet recently these easily maintained models have caught the
attention of scientists. One specific model is the nematode Caeno-
rhabditis elegans (C. elegans) which has developed an innate attraction to
cancer VOCs in urine and evasive behaviors toward healthy urine, using
its highly developed chemosensory system [79]. C. elegans are easily

maintained in lab settings and do not require any odor training, making
them a useful model for rapid and accurate disease detection. It is
important to note that all the nematode studies mentioned here, and
displayed in Table 1, used VOC detection in a liquid state rather than in a
gaseous state like other animals. For testing, chemotaxis assays were
performed where nematodes were placed in the middle of a dish with
one side containing a urine sample, the test would run for 30-60 min,
and the chemotaxis index was then calculated using the number of
nematodes on one side of the dish versus the other. As shown in multiple
studies, C. elegans displayed an attraction to a variety of cancer types and
stages with high sensitivity and specificity [80-85]. However, two
cancers (Pancreatic and Lymphoma) tested in the study by Inaba et al.
had sensitivities below 50 %, a direct contrast to previous results; this
could be due to a low number of cancer samples (3 or fewer) tested for
these types [85]. Types of cancers, namely pancreatic, can be extremely
aggressive forms and early detection is key for many patients when it
comes to survival. Nematodes were shown to accurately detect cancers
from stages 0-4 with increased performance for earlier-stage samples
even when a patient’s tumor marker values were normal [81-83],
proving extremely useful for early detection. Additionally, C. elegans
were attracted to urine samples before surgery but not after surgery,
displaying they can be employed for not only cancer detection but also
treatment success [84]. Though C. elegans are a versatile cancer
screening tool for urine, other sample types such as blood serum have
not been successful; with no significant chemosensory response shown
at any concentrations when employing blood serum [80]. Moreover,
little research has been done on diseases outside of cancer using
C. elegans. Even so, C. elegans show a promising approach for
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Table 1
Studies utilizing behavioral olfaction for disease detection in the last few years.
Group Animal (n) Disease/Disorder Sample Type Sensitivity (%)  Specificity (%) Reference
Vertebrate Canine (1) Cancer - Cervical Bandages 96.36 99.55 [68]
Cervical Smears 92.78 99.1
Canine (2) Cancer — Breast Cultured Cells 94.4 98.6 [67]
Cancer — Colorectal Cultured Cells 92.6 98.1
Canine (5) Cancer — Ovarian Blood Plasma 85 77 [98]
Canine (3) Cancer — Lung Blood Serum 96.7 97.5 [64]
Canine (2) Cancer — Lung Blood Serum 65.5 82 [65]
Breath 68.5 80.5
Canine (1) Cancer — Lung Breath 78 90 [66]
Urine 87.8 94.8
Canine (2) Cancer — Prostate Urine 71 70-76 [99]
Canine (1) Cancer — Bone Cultured Cells 95.95 98.30 [75]
Saliva 100 100
Canine (5) Epilepsy Breath/Sweat 86.8 98 [100]
Canine (6) COVID-19 Sweat 76-100 - [69]
Canine (6) COVID-19 Throat Secretions 65 89 [70]
Used Masks 86 92.9
Canine (8) COVID-19 Tracheobronchial secretions/Saliva 82.83 96.35 [63]
Canine (4) COVID-19 — Delta Variant Sweat 75-89.9 96.1-98.4 [71]
COVID-19 — Omicron Variant Sweat 36.6-41.5 95
Rat (3) Cancer — Lung Breath 83 81 [60]
Rat (3) Cancer — Lung and Diabetes Breath 87 90 [59]
Rat (18) Cancer — Lung Urine 93 91 [62]
Rat (18) Tuberculosis Sputum 67.6 — (detection increase from clinical testing) [77]
Rat (8) Tuberculosis Sputum - - [101]
Rat (9) Bacteria Cultured Cells 93.56 97.65 [76]
Mouse (40) Cancer — Skin Visible tumor Urine 90 N/A [61]
Cancer — Skin Nonvisible tumor Urine 82 N/A
Mouse (23) Cancer — Bladder Urine 100 N/A [78]
Invertebrate Nematode (50-100) Cancer — Pancreatic Urine 71.4 83.3 [80]
Nematode (100) Cancer — Pancreatic Urine 84.6 60 [81]
Nematode (50-100) Cancer — Pancreatic Urine - - [82]
Nematode (50) Cancer — Gastrointestinal Urine 0.86 AUC 0.86 AUC [83]
Nematode (50-100) Cancer — Colorectal Urine 0.716 AUC 0.716 AUC [84]
Cancer — Gastric Urine 0.765 AUC 0.765 AUC
Nematode (50-100) All types (shown below) Urine 87.5 90.2 [85]
Cancer — Esophageal Urine 100 -
Cancer — Gastric Urine 100 -
Cancer — Colorectal Urine 88.9 -
Cancer — Gallbladder Urine 100 -
Cancer — Bile Duct Urine 100 -
Cancer — Pancreatic Urine 50 -
Cancer — Breast Urine 100 -
Lymphoma Urine 33.3 -
Leukemia Urine 100 -
Honeybee (149) COVID-19 Throat Swab 92 86 [58]
Ant (70) Cancer — Breast Urine - - [96]
Ant (36) Cancer — Breast Cultured Cells - - [95]

Cancer — Ovarian

Cultured Cells

Note. Sample size (n); area under the curve (AUC).

inexpensive easy-to-maintain cancer screenings.

Insects also rely heavily on olfaction for sensing food and predators
from long distances as well as for communication. Honeybees and ants
are incredibly social creatures that send information throughout col-
onies using chemicals and detect them using their antennae. Insects have
been shown extensively to display specific behavioral responses towards
a variety of odors including simple compounds, plant viruses, and floral
odors [86-93]. Honeybees and ants can be trained within 30 min uti-
lizing simple protocols. Interestingly, one trial for ants was enough to
form long-term memory that can remain through multiple extinction
trials [94]. Recently, ants have been shown to quickly identify breast
and ovarian cancer using cultured cell lines [95] and urine from
patient-derived xenograft mice [96], shown in Fig. 4B. In addition to
ants, honeybees have been used recently for disease detection, specif-
ically COVID-19 (Table 1). Over one hundred honeybees were quickly
conditioned to exhibit PER to positive COVID-19 samples and once
tested, could diagnose COVID-19 with 92 % sensitivity, although one
day after training their ability to do so had decreased [58] (see Fig. 4D
and E). Honeybees were able to detect COVID-19 with a higher

sensitivity than many rapid antigen tests [72,73], displaying their po-
tential for clinical diagnostics, especially in less developed regions
where testing is not readily available. Though not as resistant to
extinction as ants, the honeybee’s ability to learn quickly allows for
rapid reinforcement trials to retain training. Due to their social nature,
one trained honeybee can reinforce a learned odor to an untrained
honeybee through physical antennae communication, meaning that
reinforcement to odors could be spread among a whole hive rapidly
[97]. Insects are a promising avenue for disease detection because of
their highly sophisticated olfaction, easy and inexpensive rearing, and
the ability to be trained quickly.

4. Olfactory system component-based detection
4.1. Disease related volatile metabolites
Many volatiles are excreted (e.g. breath, urine) from the human body

that contain insight into the disease states within. These volatiles are
produced through metabolic processes in different regions of the body
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where metabolites that enter the bloodstream, are carried to the lungs or
kidneys, and transferred from blood to breath at the alveolar membrane
or filtered through the glomerulus to end up in urine. The study of
excreted volatiles concerning disease states of the human body is not a
new research topic. In 1798 with his classic work “Cases of the Diabetes
Mellitus” John Rollo, M.D., recorded the “odor of decaying apples” in
the breath of patients with severe diabetes [102]. It wasn’t until 1857
that this odor-producing substance was identified as acetone by Petters
and in 1886 Dreschfeld stated that the odor of acetone in the breath was
characteristic of diabetic coma [102]. Increases in the production of
acetone indicate ketoacidosis, a dangerous metabolic state seen in type 1
diabetes where a shortage of insulin results in uncontrolled metabolism
of fatty acids producing ketone bodies such as acetone [103,104].
Because there is no mechanism to convert acetone, it is either excreted
through the urine or exhaled breath. Several VOCs have been recorded
as accepted biomarkers of diseases due to their generation via metabolic
pathways in the human body [104]. These volatiles have gone through
extensive studies and regulation processes before being accepted as a
biomarker; however, many other VOCs seen as putative biomarkers are
currently being well established. For instance, aldehydes have been
shown as a putative biomarker for cancer, Alzheimer’s, and cardiovas-
cular diseases [105-108] as it is an indicator of oxidative stress. Alde-
hydes are a secondary product of lipid peroxidation that occurs during
oxidative stress where free radicals attack cell membrane lipids forming
lipid peroxides and aldehydes. These then react with oxidizing agents
resulting in oxidative stress and cell damage [106-108]. The incorpo-
ration of biomarkers and sensing technologies offers a powerful
non-invasive diagnostic tool for monitoring many diseases.

Subtle changes in volatile metabolites have been shown to be
indicative of certain types and subtypes of diseases [5,9,109-111]. Li
et al. [105] found 4 aldehydes (hexanal, heptanal, octanal, and nonanal)
in the exhaled breath of human patients with significant differences in
concentrations between breast cancer and control groups. Not only can
VOCs differ between breast cancer patients and healthy controls but also
between genetically determined breast-cancer subtypes as shown in
Barash et al. [112] where the authors found 23 VOCs that were signif-
icantly different including ethanol, benzene, heptane, and 1-hexanol.
Buszewski et al. [113] found several VOCs concentrations that were
significantly lower in the healthy group than in the lung cancer group
including butanal, ethyl acetate, and ethyl benzene. With exhaled
human breath containing over 3500 known VOCs, the complete list of
disease related VOCs is beyond the scope of this review [114-116]. The
VOCs mentioned demonstrate the extent and variety of VOC metabolites
that have been found and proposed as potential biomarkers for disease
detection. The incorporation of a biological components into sensors has
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been extensively studied due to the sensitivity and selectivity of these
biological components for VOC detection. The ability for biological
systems and components to probe and characterize chemical space has
fueled many of these studies. Here, we discuss the incorporation of
biological components into biosensors for disease and disease-related
VOC detection.

4.2. Odorant binding protein

Several studies have employed odorant binding proteins (OBPs) as
the biological component in bioelectronic sensors (Table 2). OBPs are
involved in the initial step of odorant recognition and are small (~20
kDa) secreted globular proteins that act as transporters [117]. OBPs
carry odorant molecules across aqueous nasal mucosa (vertebrates) or
the sensilla lymph (invertebrates) to ORs [118]. OBPs form a complex
with odorant molecules in the activation of ORs and additionally remove
odorants from the nasal mucosa or sensillum lymph. OBPs from a variety
of animals have been incorporated into bioelectronic sensors including
pigs, honeybees, mosquitoes, rats, flies, moths, and human OBPs.

In the study by Capo et al. [119], the authors use porcine OBP
(pOBP) for the detection of benzene using a competitive fluorescence
resonance energy transfer (FRET) assay based on steady-state fluores-
cence spectroscopy. The developed assay displayed a high affinity for
benzene detection with a limit of detection value of 0.05 pM
(3.9ug/m3). In Calabrese et al. [120], the authors also use pOBP to
detect three different volatile organic compounds (1-octen-3-ol,
trans-2-hexen-1-ol, and hexanal) using an electrochemical biosensor via
electrochemical impedance spectroscopy (EIS). Using EIS, the authors
were able to detect each VOC sample at a minimum concentration of 0.1
pM. In another study utilizing a fluorescent assay, Dimitratos et al. [121]
used the mosquito (Anopheles gambiae) AgamOBP1 for the detection of
indole. The authors showed that indole could be detected at concen-
trations of 100 nM (~5 ppb). Interestingly, this sensor was also used to
detect colony-forming units of E. coli and canine feces contamination in
an aqueous solution. Soleja et al. [122] employed a FRET-based nano-
sensor for the detection of ethanol via a human OBP (hOBPy,). In this
study, the authors used hOBPy, sandwiched between two fluorophores
(ECFP and Venus) that had an induced conformation change when
bound to an odorant. The donor fluorophore transfers its excitation
energy to a second acceptor fluorophore causing the second fluorophore
to give off its characteristic fluorescence (Fig. 5A and B) [123].

An important advantage of using OBPs as the biosensing element in
bioelectronic sensors is that the binding properties can be engineered
through site-directed mutagenesis. In Hurot et al. [124], the authors
used rat OBP3 to detect B-ionone, hexanoic acid, and hexanal.

Table 2
Odorant binding protein-based bioelectronic sensors.

Odorant Binding Derived from Target Odorant Detection Detection with Reference

Protein range/limit

hOBPy;, Human Ethanol 500 nM—12 uM FRET-based [122]

nanosensor
OBP2a Human Hexanal, heptanal, benzaldehyde, 2-octenal, decanal, $-cyclocitral, 2-iso- 5-75 pmol/L Fluorescence assay [146]
butyl-3-methoxypyrazine, 2-Methylisoborneol
pOBP Porcine (sus scrofa) Benzene 0.05uM (3.9pug/  Fluorescence assay [119]
m®)

pOBP Porcine (sus scrofa) 1-octen-3-ol, trans-2-hexen-1-ol, hexanal 0.1 uM EIS [120]

OBP3, OBP3-a, Rat p-ionone, hexanal, hexanoic acid 200 pM SPRi [124]
OBP3-c

OBP1 Mosquito (Anopheles Indole 100 nM (~5 Fluorescence assay [121]

gambiae) ppb)

OBP5, OBP6, Mosquito (Anopheles Hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, 2 ppb SiNW array chip [147]
OBP7 gambiae) undecanoic acid, dodecanoic acid

OBP LUSH Drosophila Ethanol 10-%% of EtOH bio-FET [148]
(OBP76a) melanogaster

OBP3, 17 (OR) Rat Octanal, diacetyl, amyl butyrate 0.01 ppm CNT-FETs [139]

Note. Fluorescence resonance energy transfer (FRET); Electrochemical impedance spectroscopy (EIS); Surface plasmon resonance imaging (SPRi); Silicon nanowire
(SiNW); Nanostructured bio-field-effect transistor (bio-FET); Carbon nanotube field effect transistors (CNT-FETSs).
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Fig. 5. Odorant binding protein and whole cell-based biosensors for the detection of volatile organic compounds. A. Schematic representation of OBPy;, between two
fluorophores ECFP and Venus in the presence of a ligand [122]. B. Comparison of wildtype (WT) and three engineered OBPs (E27Q, R58I, and N112F) and their
concentration-dependent FRET ratio changes. Reproduced with permission from Ref. [122]. C. Bioelectronic sensor incorporating both OBPs and ORs. Schematic
representation of a bioelectronic sensor platform [139]. D. Normalized signals of the bioelectronic sensor to different concentrations of diacetyl gas. Data points and
error bars represent averages and standard deviations of the data measured from three devices, respectively. Reproduced with permission from Ref. [139]. E. OR
nanovesicle-based sensor. SEM image of nanovesicles with OR, hORD11P, derived from HEK293 cells. (scale bar: 200 nm) [140]. F. Calcium signaling assay of
hOR4D11P-expressing nanovesicles and empty-vector transfected nanovesicles exposed to 1 mM 2-ethyl-1-hexanol, a lung cancer biomarker. Reproduced with
permission from Ref. [140]. G. Cell-expressing OR sensor schematic representation of GloSensor assay in Hana3A cells showing OR signal transduction pathway
[153]. H. Real-time measurement of two ORs, Olfr109 and Olfr1411, to 2-heptanone(2H) and methyl benzoate (MB), respectively. Reproduced with permission

from Ref. [153].

Additionally, two synthetic OBPs with various binding properties were
created (OBP3-a and OBP3-c) by modifying the amino acid sequence of
the OBP3 (wild type) binding pocket. This study showed for the first
time the use of surface plasmon resonance imaging in combination with

an OBP for odorant detection. Overall, the use of wildtype and engi-
neered OBPs allowed the biosensors to detect odorants with detection
limits in the picomolar range. The creation of engineered OBPs tuned to
a desired odorant molecule represents an important advantage when
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natural or wildtype proteins are either not known or have insufficient
binding affinities for specific chemical detection [125-127]. There are
several other advantages to using OBPs in bioelectronic sensors
including their ability to be stable in high temperatures (around 70 °C)
and resistant to changes in pH, solvents, and proteolytic digestion
[128-131]. OBPs can be used in a wide range of environmental condi-
tions. Additionally, OBPs can become denatured by chemicals and easily
refold upon the removal of the denaturing chemicals to an active
conformation [118,130-133]. OBPs can also be expressed and purified
in high yields in eukaryotic and bacterial systems using established
protocols [134,135].

OBPs are the natural transporters of VOCs in biological olfactory
systems making them an ideal component to incorporate into bioelectric
sensors for monitoring and detection applications in clinical diagnostics
but also in other applications where chemical monitoring is needed.
OBPs have been used for the detection of drugs (cannabinol, 3,4-meth-
ylenedioxy methamphetamine, cocaine hydrochloride) in a study by
Cali et al. [136] where the authors used the mosquito (Anopheles gam-
biae) OBP1 and OBP47 immobilized on quartz crystal microbalance for
detection. Additionally, Scorsone et al. [137] used an array of OBPs from
the pig, mosquito (Anopheles gambiae), in combination with mouse
major urinary proteins, another ligand binding protein, for drug and
explosive detection. These studies show that OBPs can be employed in a
wide variety of applications. While there are several advantages to
employing OBPs in bioelectronic sensors there are some limitations.
There are fewer OBPs in comparison to ORs. For example, there are
around 1100 OR genes in mice, while there are only 5 known OBPs
[138]. This limits the ability of OBPs to characterize the chemical space
as extensively as ORs. The specificity of OBPs could be a limitation due
to the broad detection range of chemical binding to OBPs.
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An interesting study by Choi et al. [139] employed both OBPs and
ORs in a single bioelectronic sensor that mimicked the biological
olfaction in the nasal mucosa or the sensilla lymph. The authors used a
carbon nanotube field-effect transistor (CNT-FET) that had been hy-
bridized with the rat-I7 ORs. Furthermore, the CNT-FET with ORs was
placed in a chamber covered by a gas-permeable membrane containing a
solution with rat OBP3. This platform allowed odorant molecules to pass
through the membrane, forming a complex with OBPs in the solution
which are then transported to the I7 ORs for detection, just like bio-
logical olfaction (shown in Fig. 5C). The authors showed that the plat-
form with OBPs had 10* times higher sensitivity and amplified signal
intensity than the platform without the OBPs for the detection of octanal
down to 0.01 ppm as shown in Fig. 5D. Overall, this study showed the
importance of OBPs in the detection of odorant molecules that had ap-
plications in clinical diagnostics for VOC detection.

4.3. Odorant receptor

ORs are membrane-bound proteins found on the dendrites of olfac-
tory neurons that bind to odorant molecules. Many of these bio-
electronic sensors have incorporated ORs for odorant/chemical
detection as presented in Table 3. Cho et al. [140] used the human OR
4D11P (hOR4D11P) and generated cell-derived nanovesicles to detect a
lung cancer biomarker. The authors sampled headspace gas mixtures
from lung cancer cell lines for the identification of a VOC biomarker,
2-ethyl-1-hexanol, that has been previously reported as a candidate
biomarker for lung cancer [141]. A field emission scanning electron
microscope image confirmed nanovesicle formation (Fig. 5E) and using
a calcium signaling assay the nanovesicles showed significant response
to 1 mM 2-ethyl-1-hexanol in comparison to nanovesicles without the

Table 3
Odorant receptor and whole cell-based bioelectronic sensors.
Odorant Receptor Immobilized on/ Derived from Target Odorant Detection Detection with Reference
Expressed in range/limit
OR4D11p Nanovesicles Human 2-ethyl-1-hexanol 1 mM Fluorescent [140]
imaging
OR2AG1 Graphene Human Amyl butyrate 500 fM Resistance [142]
measurements
OR35a Liposomes Drosophila E2-hexenal 1fM-1puM EIS [145]
melanogaster
OR10a, OR22a, Liposomes Drosophila Methyl salicylate, methyl hexanoate, ethyl 1aM-1pM EIS [149]
OR71a melanogaster hexanoate, E2-hexenal, 4-ethylguaiacol
OR10a, OR22a, Lipid nanodiscs Drosophila Methyl salicylate, methyl hexanoate, trans-2-hexen- 1 fM—10 pM CNT-FETs [150]
OR35a, OR71a melanogaster 1-al, 4-ethylguaiacol,
OR10a, OR22a, Liposomes Drosophila Methyl salicylate, methyl hexanoate, 4-ethylguaia- 1aM-1pM EIS [144]
OR35a, OR71a, melanogaster col, E2-hexanal
Orco
OR10a, OR22a, Orco Lipid nanodiscs Drosophila Methyl salicylate, methyl hexanoate 1fM GFET [151]
melanogaster
OR22a Lipid nanodiscs Drosophila Ethyl hexanoate 5.5 fM EIS [143]
melanogaster
ORS8, Orco Bilayer lipid Mosquito (Aedes 1-octen-3-ol 0.01-0.2 ppm Ion currents [152]
membranes aegypti)
Panel of 31 ORs Hana3a cells Mouse Acetophenone, cyclohexanone, eugenol, heptanal, 10°-108 (vol/  Luminescence [153]
2-heptanone, methyl benzoate, N-amyl acetate vol)
BmOR3 Sf21 cells Silk moth Bombykal 1-10 pM Fluorescent [154]
(Bombyx mori) imaging
OR13a, OR56a Sf21 cells Drosophila Geosmin, 1-octen-3-ol 1M Fluorescent [155]
melanogaster imaging
OR13a Sf21 cells Drosophila 1-octen-3-ol 10 pM Fluorescent [156]
melanogaster imaging
OR13a, OR56a, Orco Sf21 cells Drosophila Geosmin,1-octen-3-ol 0.1 % (vol/vol) Fluorescent [157]
melanogaster imaging
OR13a, Orco Sf21 cells Drosophila 1-octen-3-o0l, 2-heptanol, 1-hexanol, cis-3-hexen-1- 0.1 % (vol/vol) Fluorescent [158]
melanogaster ol, 1,8-cineole imaging
OR13a, OR56a, Orco Sf21 cells Drosophila Geosmin, 1-octen-3-ol 0.1 % (vol/vol) Fluorescent [159]
melanogaster imaging
OR13a, OR564, Sf21 cells Drosophila Geosmin, 1-octen-3-ol, cis-3-hexen-1-ol, citral, 0.1 % (vol/vol) Fluorescent [160]
OR49b, Orco melanogaster decanal imaging

Note. Electrochemical impedance spectroscopy (EIS); Carbon nanotube field effect transistors (CNT-FETSs); Graphene field effect transistor (GFET).
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ORs (Fig. 5F). This study showed how the VOC profiles from lung cancer
cell lines can have differences in specific volatiles that can be identified
and displayed the ability of ORs for the detection of lung
cancer-associated VOCs. However, this study only compares two lung
cancer cell lines to a media control for the identification of the lung
cancer VOC, and a more thorough analysis is needed for the comparison
of a healthy cell line control. Goodwin et al. [142] also used a human
OR, 2AG]1, for the detection of amyl butyrate. Here the authors showed
that a graphene-based sensor exhibits a linear response for amyl buty-
rate between 0.1 and 500 pM. Cheema et al. [143] used OR, Or22a, from
the fruit fly, Drosophila melanogaster, for the detection of ethyl hexanoate
with a limit of detection of 5.5 fM. The ORs were immobilized onto
nanodiscs using phospholipids and membrane scaffold proteins that
mimic ORs’ native environment. The nanodiscs were then adhered onto
a gold electrode and detection of ethyl hexanoate was measured via
electrochemical impedance spectroscopy. Multiple ORs can be used in
combination with the odorant receptor co-receptor (Orco), an ion
channel-forming subunit. The OR functions to bind the odorant mole-
cule which then causes the Orco ion channel to open allowing an influx
of ions. Khadka et al. [144] used four ORs from the Drosophila mela-
nogaster, OR10a, OR22a, OR35a, and OR71a, and Orco reconstituted
into lipid bilayers of artificial liposomes to detect methyl salicylate,
methyl hexanoate, and E2-hexanal. The biosensor could detect these
target ligands down to sub-femtomolar concentrations which was an
improvement from a previous study where the same ORs were used
except without Orco subunit incorporated into the liposomes [145].
OR-based sensors have rapid response times and high sensitivity for
target chemicals, however variability in the sensors’ performance due to
environmental conditions, such as temperature and humidity, is a
challenge.

4.4. Whole cell

Whole cell-based systems provide another avenue for bioelectronic
sensors in the detection of volatiles as presented in Table 3. These sys-
tems use cell cultures that either have olfactory components expressed in
them or use genetically modified bacteria (without olfactory compo-
nents) as the sensor. Regardless of the system, both approaches use the
luminescence or fluorescence of the cell to monitor odorant detection. In
Kida et al. [153], the authors use a panel of mouse ORs expressed in
mammalian Hana3A cells where the luminescence activity of the cell
depended on cAMP levels (see Fig. 5G). The authors conducted a
large-scale screening of mouse ORs against a panel of seven odorants:
acetophenone, cyclohexanone, eugenol, heptanal, 2-heptanone, methyl
benzoate, and N-amyl acetate. The large-scale screen identified 29 ORs
that responded to the panel of odorants. The results of two ORs, Olfr109
and Olfr1411, responding to methyl benzoate and 2-heptanone at
several concentrations are shown in Fig. 5H, respectively. Also, the
authors distinguished between structurally similar odorants using ace-
tophenone and six of its analogs. This differential activation of struc-
turally similar volatiles shows the robust nature of ORs in the detection
of volatiles.

Several studies have used the insect Sf21 ovarian cells isolated from
the Fall Armyworm (Spodoptera frugiperda) to express fruit fly,
Drosophila melanogaster, ORs along with Orco. In these studies, the cells
give off a fluorescence response via the calcium indicator fluorescent
protein (GCaMP6). Briefly, when an odorant molecule binds to the OR, a
cation channel consisting of the OR and Orco opens and allows for the
influx of Ca2*. The influx of Ca®" binds to the GCaMP6 inside the cell
causing a change in the fluorescence intensity. In the study by Sukekawa
et al. [155], the authors used two ORs, Or13a and Or56a, and Orco from
the Drosophila melanogaster expressed in Sf21 cells. The authors were
able to use the specific pattern of multiple randomized cells for the
identification of odorants, 1-octen-3-ol and geosmin. In the study by
Deng et al. (2023) [160], the authors simultaneously expressed two ORs,
Or56a and Or49b, in a single cell line. The usefulness of this system,
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however, is unclear as the partial quantification of a gas mixture
(o-cresol and geosmin) was only able to quantify o-cresol.

Whole-cell biosensors can detect volatiles and analytes rapidly while
also elucidating the response of these analytes on the cell’s biological
activity. Using genetically modified bioluminescence bacterial strains
and analyzing the differences in the bacterial responses to general
stresses (i.e., cytotoxicity, genotoxicity, oxidative stress, and quorum-
sensing stress), these bacterial strains can be used to measure poten-
tially hazardous substances [161]. Multiple studies have shown the
application of whole-cell biosensors to test the toxic effects of volatile
chemicals [162-167]. The wide range of volatiles detected in these
studies include nonanal, 3-methyl-1-butanol, 1-octen-3-ol, 1-octanol,
phenylethyl alcohol, 2-ethyl hexanol, ethyl propionate, 1-methyl-1
H-pyrrole, and 2,3 butanediol.

4.5. Peptide

Peptides offer another avenue for the creation of bioelectronic sen-
sors for the detection of VOCs as presented in Table 4. Peptides and their
affinity for VOCs can be tuned by engineering the peptide’s amino acid
sequence [168-170]. The main factor contributing to the bond is the
chemical properties of the volatile compound [171]. There are several
advantages for the use of peptides in biosensors including their high
stability, simplicity of development from a combination of 20 amino
acids, and ease of quality control [172,173].

Sim et al. [174] used peptides functionalized on CNT-FETs to
discriminate four breath-related VOCs of isopropyl alcohol, acetone,
isoprene, and toluene. The CNT-FETs functionalized with peptides were
exposed to VOC concentrations of 10,000 ppm and the FET sensor
showed distinct responses for each VOC. Gaggiotti et al. [175] used both
peptides and hairpin DNA (hpDNA) in combination on the same
biosensor for detection of six VOCs, 1-butanol, 1-pentanol, 1-hexanal,
1-nonanal, trans-2-nonenal, and 1-hexanoic acid, employing surface
plasmon resonance imaging (SPRi) as the detection system. Combining
the responses of peptides and hpDNA and by using hierarchical clus-
tering analysis the biosensor showed perfect separation between the
chemical classes and separation of VOCs within the same class with 1
carbon difference. Wasilewski et al. [176] designed a peptide sequence
associated with an OBP, HarmOBP?7 from the Helicoverpa armigera moth,
that mimics its sites of molecular binding of ligands and immobilizes this
peptide onto a piezoelectric transducer as shown in Fig. 6A. This sensor
detected VOCs, octanal, decanal, undecanal, nonanal, and helional with
the lowest limit of detection of 14 ppm for nonanal (Fig. 6B). In other
applications, these studies have used OR-derived peptides for the
detection of trimethylamine, a harmful gas, at concentrations as low as
0.01 parts per trillion and even parts per quadrillion levels [177,178].
While in other studies, pheromones p-ocimene and 4-vinylanisole were
detected using Hyphantria cunea and the migratory locust (Locust
migratoria) OR-derived peptides [179,180].

Overall, the possibility of synthesizing peptides in high yield assays,
their stability as a biosensing element, and simple modification of amino
acid sequences make peptides an attractive biological component in
biosensors. However, the number of peptides enabling gas molecule
analysis is narrow but can be overcome by understanding OBP binding
sites for the creation of new peptide sequences that can successfully bind
to VOCs and increase the efficiency of bioelectronic sensors.

4.6. Bacteriophage

Bacteriophage-based biosensors use filamentous phage, such as M13,
that have been genetically modified to encode specific amino acid se-
quences (peptides) on the surface of the phage [181,182]. These pep-
tides give the phage distinct surface chemistries that can bind and detect
various targets. The outer coat of these phages is composed of thousands
of copies of protein VIII for the formation of nanofibers with a high
surface-to-volume ratio where the altered amino acid sequences or
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Table 4
Peptide-based bioelectronic sensors.
Peptide Sequence Identified from Target Odorant Detection Detection with Reference
range/limit
IHRIC, LAWHC, TGKFC, WHVSC - 1-butanol, 1-hexanol, 2-methyl-1-propanol, ethanol, - QCMs [193]
hex-3-en-1-ol, ethyl acetate, ethyl-methyl-2-butyrate,
isopentyl acetate
NPAATMA, SIFPVSR, MPRLPPA - Benzaldehyde - Fluorescent [194]
intensity
KLLFDSLTDLKKKMSEC HarmOBP7 Octanal 37.5 ppm QCMs [195]
(Helicoverpa
armigera)
Panel of 4 peptides - Isopropyl alcohol, acetone, isoprene, and toluene 10,000 ppm Field-effect [174]
transistors
TGKFC, KSDSC, IHRIC, WHVSC, - 1-butanol, 1-pentanol, 1-hexanal, 1-nonanal, trans-2- 3.6—90 ppm SPRi [175]
LAWHC, LGFDC nonenal and 1-hexanoic acid
KLLFDSLTDLKKKMSEC HarmOBP7 Octanal, decanal, undecanal, nonanal and helional 14 ppm QCMs [176]
(Helicoverpa
armigera)
Panel of 5 peptides OR19a (Drosophila Limonene 8 pM Graphene field- [115]
melanogaster) effect transistor
GGGRGAGAGAR, FLLFGGGRGAGAGAR,  — Limonene, methyl salicylate, menthol 10 pM—10nM  Graphene field- [196]
RRWLLLW GGGRGAGAGAR effect transistor
20 peptides (bacteriophage) Mammalian ORs Breath from healthy and lung cancer patients - Colorimetric sensor [186]
20 peptides (bacteriophage) - Emitted VOCs from diabetic cells, organoids, and mice ~ — Colorimetric sensor [188]

Note. Quartz crystal microbalances (QCMs); Surface plasmon resonance imaging (SPRi).

peptides exist [183]. These phages can be self-assembled onto colori-
metric sensors composed of several bundles of these phages [184]. When
white light is displayed onto the phage film, specific wavelengths of light
are given off. When VOC molecules interact with the phages and if the
interaction between the peptide and VOC is strong, the whole phage
bundle swells and expands thus changing the wavelength or color of the
bundle of phages [184]. Modifying the peptide sequence and thus
altering the binding affinity to VOC molecules, will characterize the
strength of the interaction between the peptide and VOC, which can be
measured by the optical gap shift (color change) of the biosensor [185].
An array of these colorimetric sensors can be constructed with each
sensor composed of a specific type of modified phage. The whole
multi-array of colorimetric sensors can then be used as a sensor in
combination with pattern recognition techniques to classify VOCs or
VOC mixtures as presented in Table 4.

In Lee et al. [186], the authors use DNA sequences from mammalian
ORs for the creation of 20 genetically modified phages expressing the
reactivities of the ORs (Fig. 6C and D). In this study, the authors used
human breath (200 ml) from 31 healthy subjects and 31 lung cancer
patients without pretreatment for classification. Using the phage-based
biosensor the authors were able to achieve 87 % classification via hi-
erarchical clustering analysis (Fig. 6E and F) [186,187]. In Jang et al.
[188], the phage-based bioelectronic sensor also consisted of 20
genetically engineered M13 bacteriophages to detect diabetes via VOC
gas mixtures emitted from cell culture, organoids, and mice. The bac-
teriophages contain peptides with properties of electrically charged side
chains, polar uncharged side chains, hydrophobic side chains, and other
special cases. Exhaled breath from four groups of mice (control, dia-
betes, cardiomyopathy, and diabetic cardiomyopathy) were collected
for classification. Hierarchical cluster analysis with neural pattern sep-
aration achieved a classification success rate of 86.7 % indicating that
this sensor was able to detect diabetes models and specific complications
of diabetes (cardiomyopathy) via VOC gas mixtures. These studies
display the ability to use bacteriophage biosensors for clinical
diagnostics.

There are several advantages to using M13 bacteriophage-based
biosensors including the ability to easily manipulate the sequence of
amino acids via genetic engineering techniques and simple production
of genetically engineering phage bundles through a spontaneous self-
assembly process [183,184]. These sensors can respond within a few
milliseconds to external stimuli and can detect concentrations as low as
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1 ppb as shown in the study by Park et al. [189]. Beyond clinical di-
agnostics, these sensors can also be used for other chemical monitoring
applications [190-192].

5. ‘Cyborg’- ‘part-brain-part-engineered’ gas sensors for disease
detection

5.1. The next generation of biosensors

Biosensors where the whole living olfactory brain is coupled with
technology, such as electrophysiological or functional imaging setup, for
the detection of volatile chemicals, are termed ‘cyborg’ sensors. Coupled
with extensive biological detection and computational power, ‘cyborg’
sensors capture the complexities of odor-evoked neural activity dy-
namics and the ways in which the whole brain works to process infor-
mation. There are current ‘state-of-the-art’ biohybrid disease detectors,
where a part of the biological brain or a part of the biological olfactory
pathway has been ‘hijacked’ by the researchers to perform the gas-based
disease detection function. The advantages of these types of sensors are
that they include biological chemical detection, chemical transduction,
encoding, and decoding biological computations in one single part-
brain-part-engineered device. However, this novel concept has been
applied directly for disease detection only a handful of times, rather
more work has been shown surrounding the detection of single com-
pounds that make up the complex mixture of disease VOC profiles.
Nonetheless, these sensors are also extremely sensitive for disease
detection as they use the entire capability of a biological organism (e.g.,
insect brains) for volatile biomarker detection.

5.2. Cyborg disease sensors with electrical neuronal activity as readout

Several of these studies are conducted in insect brains. Insects have a
powerful sense of smell and the neural coding of odorants in different
neural circuits of the olfactory brain is well studied from a neuroscience
perspective [37,39,42,56,197-202]. Insect brains are also accessible for
physiological recordings from different parts of the olfactory sensory
pathway. Farnum et al. [203] have created a novel method of combining
cancer cell-evoked olfactory neural recordings from the locust (Schisto-
cerca americana) antennal lobe with data acquisition and analytical
techniques for the detection of human oral cancer using the ‘smell’ of
cell cultures (Fig. 7). For these experiments, three different human oral
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Fig. 6. Peptide- and bacteriophage-based biosensors for the detection of vola-
tile organic compounds. A. Peptide molecules were anchored on the transducer
using a bond with thiol group. The thiol group allows formation of self-
assembled monolayers (SAM) on the gold surface [176]. B. Resonant fre-
quency responses of the peptide-based biosensor to aldehydes for low concen-
tration levels in the gas phase: pentanal — 105 ppm and decanal — 60 ppm.
Reproduced with permission from Ref. [176]. C. Schematic representation
showing the fundamental principle behind the construction of
bacteriophage-based biosensors. Amino acid sequences related to DNA for
mammalian odorant receptors were selected and implanted into phages via
genetic engineering [186]. D. List of 20 peptide sequences expressed in the
phages with associated properties [186]. E. Schematic representation of
bacteriophage-based biosensor showing the array placement of each phage film
[186]. F. Hierarchical clustering analysis (HCA) dendrogram with a classifica-
tion success rate (CSR) of 87 % and classification success score (CSS) of 458.
Blue indicates healthy patients and red indicates lung cancer patients. Repro-
duced with permission from Ref. [186].

cancer cell lines and a noncancer cell line were cultured using the same
cell culture media. These cell cultures were kept in closed flasks and
odor headspace above the cell cultures were delivered to a locust an-
tenna using an olfactometer. Neural recordings were performed from the
projection neurons in the antennal lobe. Using these odor-evoked pop-
ulation neural responses and biological neuronal computational
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scheme-based analyses, Farnum et al. demonstrated that all three human
oral cancer cell lines can be distinguished from each other and the
noncancer cell line with 100 % accuracy (using a leave-one-trial-out
cross-validation method) [203]. This study also validated that the neu-
ral recordings from the locust olfactory brain were able to distinguish
between human oral cancer cell lines over several days of culture. This
detection technique was very fast as it was based on a biological neural
computational approach, and the authors demonstrated that cancer cell
classification can be achieved within 500 ms of odor exposure.

Furthermore, Parnas et al., demonstrated that human lung cancer
biomarker-evoked neural recordings from the honeybee brain can be
employed to differentiate between several different volatile cancer
biomarkers [204]. Additionally, the authors showed that a ‘synthetic
lung cancer’ breath mixture that mimicked the biological concentrations
of lung cancer biomarkers found in patient’s exhaled breath can be
successfully distinguished from a synthetic healthy exhaled breath using
neuronal recordings from the honeybee brain. To validate their tech-
nology, the authors applied their honeybee sensor to human cell lines by
using the ‘smell’ of cell cultures, demonstrating that the honeybee brain
could discriminate between healthy, small cell lung cancer, and
non-small cell lung cancer cell lines. Employing this insect brain-based
disease detection technology, cyborg sensors (locust or honeybee
brain-based) have been used in other ongoing studies including early
and noninvasive detection of endometriosis, differentiation between
multiple types of cancers (e.g., lung cancer vs. breast cancer), and for
gas-based detection of bacterial biofilm formation (unpublished data).

Another recent study, done by Neta et al., employed live ex vivo lo-
cust antennae coupled with electroantennogram recordings and ma-
chine learning-based data analysis for chemical detection [47]. The
authors demonstrated that just the antennae of an insect can be used to
detect several volatile chemicals and their mixtures at very low con-
centrations [47]. This innovative study establishes that only a part of the
biological olfactory pathway (e.g., the biological chemosensory array or
the antennae) can be successfully employed to differentiate between
multiple volatile chemicals and their mixtures. Moreover, this study
showed that the sensitivity of this antennae-based gas sensor is better
than GC-MS-based detection thresholds as this device was able to detect
the presence of 1 ng of volatile compounds. Due to the ability of this
sensor to detect chemicals at incredibly low concentrations, this study
opens the door for testing antennae-based cyborg devices for disease
detection in the future.

5.3. Cyborg disease sensors with functional imaging as readout

Another methodology that can be applied for disease detection using
olfactory neuronal excitability in the brain involves functional imaging.
Using odor-evoked calcium imaging analysis, Strauch et al. [205]
recorded from a large number of ORNs in the fruit fly antennae. As these
sensory neurons are located close to the surface of the antennae, spatial
imaging showed calcium activity in multiple olfactory neuron types. Cell
culture VOCs corresponding to human breast cancer vs. healthy cell
lines were used as the target stimuli. Next, the combinatorial patterns of
activation of the neuronal population were analyzed, and the results
showed distinction between human breast cancer vs. healthy cell lines.
This early study demonstrated that human cancer can be detected by the
combinatorial coding scheme of sensory neurons located in the fruit fly
antennae. In a more recent study, Carcaud et al. [206] utilized a
genetically encoded calcium sensor in honeybees to detect 16 different
odorants. Neural responses were recorded from the AL, lateral horn, and
mushroom body simultaneously with odor presentation and showed a
biphasic response (increase after odor followed by undershoot). Odor
fluorescent response patterns within the AL could be clustered based on
functional group and carbon chain length, showing a clear neural coding
and odorant type relationship. While not used for disease detection, this
work shows promise for disease biomarker detection using cyborg gas
Sensors.
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6. The future of VOC diagnostics

While VOC analysis has emerged as a promising new diagnostic tool,
there are still many obstacles within the field. VOC analysis has the
potential to be cheaper and faster than traditional diagnostic tools, while
also being non-invasive. Because the VOC profile can carry information
about the health of the entire body, these analyses can test for many
different health concerns. However, before real devices can be imple-
mented in medical settings, there are important challenges to overcome.
Most biomarkers reported in the literature are still putative. This means
that up- or down-regulation of the biomarker has been correlated with
the presence of the disease, but a definitive link between the disease
within the body and the biomarker has not been found. Also, unlike
type-1 diabetes, which is associated with elevated acetone concentra-
tions [207], most diseases have been correlated with complex changes to
the breath VOC profile. Most notably, cancers are extremely heteroge-
neous with changes to hundreds of VOCs being observed that are not
consistent between cancer types [208]. Therefore, a sensor that can only
detect one or a few VOCs will not be relevant for diagnosing these more
complex diseases. The two major types of engineered sensors have ad-
vantages and drawbacks: 1) GC-MS and other component-wise VOC
detection instruments have the capability to sensitively detect an
extremely broad spectrum of VOCs, however, they are expensive, large,
and difficult to use. Unfortunately, the portability and inexpensiveness
of VOC sensors is extremely important for early detection and long-term
health monitoring. 2) E-noses are easy to use, portable, and relatively
inexpensive, yet they have issues with long-term reliability, specificity,
and generalizability across multiple diseases with different VOCs of in-
terest [104]. Biological sensors, a third type of VOC detection platform
and the newest of these three sensors are broadly sensitive, can rapidly
detect many VOCs, and are small and portable. Their downsides being
not enough longevity, difficulty calibrating, and lack of access outside of
specialized laboratory settings. Each of these three VOC detection
platforms can take advantage of the large amounts of health information
carried by VOCs, yet each has their own weaknesses that need to be
addressed prior to any clinically accepted device.
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7. Concluding remarks

While senses other than smell, such as sight and hearing, have been
reproduced using engineered systems, olfactory systems have not been
well replicated so far [209]. These other senses can be fully replicated
using just two dimensions, frequency and amplitude, while olfaction
theoretically has an infinite number of dimensions as an odor can be the
result of a single molecule, which could have widely varying chemical
structures, or even a mixture of molecules at varying concentrations
[209].

To overcome the natural difficulty of replicating olfaction, engineers
have sought to employ biological rules of olfaction in e-noses. Cross-
selectivity, when a single sensor can react to multiple stimuli,
broadens the sensing capabilities using just a few sensing materials
[210] and aids in combinatorial coding by having multiple sensors react
to each molecule. In e-noses, combinatorial coding is achieved by using
multiple different VOC reactive materials within the same device and
analyzing the signals using machine learning algorithms such as
dimensionality reduction and/or artificial neural networks to create a
‘breath-print’ for each odor [210]. Despite the many studies testing
e-noses for medical purposes, there is extremely limited use of these
instruments in clinical settings. E-noses have several limitations,
including a trade-off between sensitivity to individual compounds and
broad selectivity to many compounds, and difficulty dealing with hu-
midity and natural conditions [211]. E-noses can be designed to be
highly sensitive to a few compounds such as ammonia [212]; however,
many diseases engender complex up- and/or down-regulation of mul-
tiple compounds. For these cases, e-noses have trouble maintaining the
required sensitivity to all of the essential compounds [21]. To bypass
this limitation, e-noses can be designed for a specific use [211], however
then the e-nose is no longer a general sensor for many different diseases.

On the other hand, animal behavior and olfaction have recently been
presented as a reproducible means for disease detection. Though med-
ical testing has seen great advances with time, not all places have the
means needed for medical equipment and expert personnel. Animals are
an abundant resource located worldwide, offering many different
models to be employed. Vertebrates: dogs, rats, and mice have been
extensively shown to detect various diseases at high sensitivity and
retention rates. These models may take longer to train behaviorally
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compared to others but are effective in multi-odor presentations offering
a long lifetime of real-world detection. Invertebrates: nematodes and
insects are less conventional animal models but require less time and
supplies to raise and train for scent detection with reliable sensitivities.
Though they have been utilized less for in-field work compared to their
vertebrate counterparts, large quantities of invertebrates can be
employed for high throughput disease detection analysis. Even so,
behavioral detection protocols between studies are not standardized,
and confounding variables, such as similar VOC profiles, or comorbid-
ities may skew data. Relying solely on behavior for biological olfaction
produces binary results. It is worth diving deeper into biological olfac-
tion complexities, studying internal processing and responses to specific
diseases to gather a more complete picture of biosensing.

The implementation of biological components for constructing bio-
sensors that mimic the olfactory system has been studied for many ap-
plications. The monitoring of VOCs via these biosensors provides an
avenue for clinical diagnostics. Biosensors have the advantage of
sensitivity and selectivity, owing to the specificity of biological mate-
rials. By employing olfactory elements, these biosensors make it possible
to detect what the traditional electronic noses are not able to do. Bio-
electronic sensors that have incorporated a biological recognition
component into the system can respond in a concentration-dependent
manner for VOC monitoring. These biological component-based bio-
electronic sensors can provide numerous benefits including low cost,
ease of operation, portability, and continuous monitoring of VOCs
without the need for sample preparation. The integration of biological
components with an analytical platform for signal measurement dis-
plays the robust nature of these components for use in clinical di-
agnostics and other chemical monitoring applications. While these
biosensors have been extensively studied, clinical application of these
biosensors is still lacking. The stability and compatibility of the bio-
logical components with fabricated transducers still pose limitations. In
addition, the analysis of complex mixtures of VOCs does not compare to
the robust nature of whole-olfactory systems. Only using components of
biological olfaction limits the biosensor’s ability to extensively charac-
terize chemical space leading to suboptimal outcomes.

Cyborg sensors, which are part-brain-part-engineered biosensors,
address VOC-based disease detection challenges by combining the entire
olfactory sensory system of a biological organism with electrophysi-
ology or other physiological recording and data analysis platforms.
Cyborg sensors employ the entire biological chemosensory array (ol-
factory epithelium for vertebrates, antennae for insects), biological
signal transduction, and biological neural computations all in one single
device. All these advantages render cyborg sensors with extraordinary
power of disease detection. Recent studies have demonstrated that in-
sect brain-based cyborg sensors can not only detect human cancers but
also differentiate between different cancer cell lines belonging to one
type of cancer. Although this novel approach is promising for early and
noninvasive disease and/or disease state detection, cyborg sensors also
suffer from some limitations. Each cyborg sensor needs to be calibrated
for the target stimuli of interest (e.g., healthy human exhaled breath vs.
exhaled breath of cancer patients). However, with more research, this
step can be accelerated, and we envision in the future, each sensor will
require only a 15-30 min calibration. Performing surgery for this sensor
development requires skilled personnel, which may not be easily
available, and training. By employing precision robotic brain surgery
this deficiency can be overcome. Currently, the insect brain-based cy-
borg sensor’s lifetime is limited (1-2 days). Nonetheless, these brain-
based devices are suitable for high-throughput testing with a test able
to run every 60 s. Therefore, this type of sensor can be used to run
hundreds of breath samples in a single day. Finally, like other biological
sensors, cyborg sensors do not indicate which chemical compounds are
different between two types of gas mixtures. Therefore, to identify
disease-specific biomarkers, GC-MS-based component-wise analysis of
gas mixtures is still necessary.

In summary, volatile chemical sensors that can be used for disease
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detection are rare to find to date. One reason for deficiencies in engi-
neered VOC sensors is that most e-noses are not sensitive or specific to a
broad range of volatiles and their concentrations. On the other hand,
biological olfaction is both sensitive and specific, but we have not been
able to back-engineer the components of olfactory sensory systems
effectively. Therefore, the current approach is to incorporate biological
components (primarily olfactory chemosensory array and its supporting
elements) in engineered sensors to increase the efficacy of the sensors by
the addition of cross-selectivity and combinatorial coding properties
that biological sensors and components provide. Biological olfaction for
disease detection has been used in mainly three different forms: whole
animal (behavioral detection), components of biological olfactory sys-
tem (e.g., few ORs combined with engineered sensors), and cyborg
sensors, where the entire olfactory neural pathway has been hijacked for
disease detection. All these living animal-based disease detection ap-
proaches are promising but also have individual advantages and dis-
advantages. More effort is needed in all forms of biological component-
based disease detection (both new sensor development and clinical
testing) which will tell us more about biological olfactory coding rules
and help overcome current challenges faced by engineered chemical
Sensors.
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