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A B S T R A C T

Volatile organic compounds (VOCs) emitted via exhaled breath and bodily fluids are indicative of a diseased state 
within the body and have the potential to be used as a diagnostic tool. The study of VOCs in disease detection is a 
concept that has seen excellent engineering progress recently, namely via developments of electronic noses that 
aim to replicate biological olfactory principles through cross-selective electrode arrays and sensors. However, 
there has yet to be an engineered device that can capture the full breadth, sensitivity, and versatility of biological 
olfaction. This review summarizes common principles in biological olfaction and provides an overview of recent 
techniques to incorporate living systems for VOC detection. We discuss the recent advances, strengths, and 
weaknesses of all three types of living systems-based disease detection approach, which include a) olfactory 
behavioral detection, b) bioelectronic noses and c) ‘cyborg’ biosensors for disease detection.

1. Introduction

Effective diagnostics are essential for the timely detection, preven-
tion, and monitoring of health changes. For diseases, early diagnosis can 
make a tremendous difference in the mortality outcome of patients due 
to the swift administration of proper medical treatment. In addition, 
other areas of life, including financial and social burdens, are lessened 
when disease is caught and treated early. Volatolomics, the study of 
emitted volatile organic compounds (VOCs) from breath and other 
bodily secretions, provides a non-invasive tool for disease diagnostics. 
Blood contains VOCs produced through systemic metabolic processes 
which are then released from the body through the lungs, kidneys, and 
glands. Several diseases, including cancer, alter the concentrations of 
VOCs produced through metabolism [1–14]. As a result, multiple VOC 
concentrations in exhaled breath are changed in the parts-per-billion to 
parts-per-trillion range due to the presence of cancer or other diseases 
[15]. These altered VOC concentrations of disease states are reflected in 
samples easily collected from the body (i.e., breath, blood, urine, sweat); 
however, it is important to note that many studies have presented 

varying VOC profiles for diseases and yet there have been no singular 
compound marker agreed upon for a specific disease condition and 
prognosis. Nonetheless, the analysis of VOC profiles through bodily 
samples offers a reliable avenue for noninvasive and early disease 
detection.

Gas chromatography-mass spectrometry (GC-MS) has been exten-
sively used for noninvasive disease detection [7,8,12,14]. However, in 
this component-wise detection approach, it is difficult to identify correct 
concentrations of several unknown VOCs at very low concentrations (in 
ppb to ppt range). Low mobility of the system, sample preprocessing 
time, and non-standardized analysis techniques also prove challenging 
for clinical applications of several GC-MS devices. Electronic noses 
(e-noses) attempted to replicate biological olfaction through sensors and 
pattern recognition algorithms, for example, Cyranose 320 (Sensigent) 
and Aeonose (The eNose Company) [16]. These relatively inexpensive 
and easy-to-use devices have been successful at diagnosing diseases 
[16], including infections [17–19] and cancers [20–25], but are 
frequently engineered for sensing a specific subset of VOCs, lacking the 
broad generalization of biological olfaction. Even with all the advances 
in chemical sensing devices, developing gas sensors that are sensitive to 
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multiple chemicals at low concentrations, work well in natural envi-
ronments, and perform reliably over time is still challenging.

Living systems have solved the problem of chemical sensing over 
millions of years of evolution and converged to a solution that is 
architecturally and functionally strikingly similar across different spe-
cies. This indicates that there might be an optimal solution for gas 
sensing that is still elusive from an engineering standpoint. Living or-
ganisms (e.g., canines) have been proven to robustly detect multiple 
VOCs with high sensitivity and specificity. Therefore, it is important to 
learn how biology has solved the problem of chemical sensing which 
remains a longstanding challenge for engineered chemical sensors.

This review will first identify common principles that living systems 
employ for chemical sensing. We will review current approaches and 
results in which entire living systems have been employed for behavioral 
disease detection. Next, we will discuss how multiple state-of-the-art gas 
sensing systems have incorporated olfactory components from living 
systems. Finally, we will discuss a relatively new forward-engineered 
biosensing approach where biological olfactory brains are hijacked to 
perform chemical sensing tasks. These types of sensors are also called 
‘cyborg’ sensors. Overall, this review highlights the power of incorpo-
rating biological components and biological neural computations in 
volatile chemical sensing for disease detection.

2. Common principles in biological olfaction

2.1. Olfactory sensory neuron – combinatorial code

At the periphery of the vertebrate olfactory sensory pathway, odor 
molecules first bind to specific G-protein coupled receptors (GPCRs) 
which transduce chemical signals into electrical impulses called action 
potentials or ‘spikes.’ It has been shown that a large family of GPCRs 
work as odorant receptors (ORs) [26] in vertebrates and are conserved 
across many species [27,28]. In insects, these ORs are shown to be 
ligand-gated ion channels, different from the vertebrate GPCRs [29]. 
These ORs form the main functional unit of the biological chemical 
detection array (e.g., dog’s nasal epithelium, insect antenna). The neu-
rons that contain these ORs are called olfactory receptor neurons 
(ORNs). Hundreds and thousands of ORNs are present in the vertebrate 
and invertebrate olfactory pathway. For example, in fruit fly antenna, 
about 60 ORs are expressed in 1200 ORNs, each containing only one 
type of OR and a universally expressed co-receptor [30,31]. In both 
vertebrates and invertebrates, a single ORN generally responds to many 
volatile chemicals in a cross-selective manner [32]. This is a common 
feature of biological sensory neurons, which employ combinations of 
sensory neuronal activity to encode odorants or mixtures. Biological 
olfaction prefers a group of sensors responding to one chemical over 
odor-specific single-sensor organization. These combinations of several 
cross-selective sensors help living organisms detect many chemicals 
using very few sensors (Fig. 1A). For example, using a combinatorial 

coding scheme and only ON and OFF states of the sensor, 60 ORNs in the 
fruit fly antenna can detect ~260 chemicals which is more than one 
quadrillion odors or mixtures.

2.2. The first relay center – spatiotemporal odor code

The first relay of biological olfactory systems performs key roles for 
reliable detection of odorants in dynamic and natural environments 
[33]. In vertebrates and invertebrates, this odor-processing neural cir-
cuitry is known as the olfactory bulb (OB) and the antennal lobe (AL), 

Abbreviations

AL antennal lobe
BSP biosensor platform
C. elegans Caenorhabditis elegans
CNT-FET carbon nanotube field-effect transistor
COVID-19 Coronavirus disease
DDTS detection dog training system
EIS electrochemical impedance spectroscopy
e-noses electronic noses
FRET fluorescence resonance energy transfer
GC-MS gas chromatography-mass spectrometry
GPCR G-protein coupled receptor

hpDNA hairpin DNA
hOPB human odorant binding protein
KC Kenyon cell
OB olfactory bulb
OBP odorant binding proteins
OR odorant receptor
Orco odorant receptor co-receptor
ORN olfactory receptor neuron
pOBP porcine odorant binding protein
PER proboscis extension reflex
SPRi surface plasmon resonance imaging
VOC volatile organic compound

Fig. 1. General Principles in biological olfaction. A. Combinatorial coding 
scheme by cross-selective odor sensors [213]. B. Common principles in the 
biological olfactory pathway. Equivalent brain centers between vertebrates and 
invertebrates, their functional roles as well as general coding principles 
are shown.
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respectively (Fig. 1B). Intriguingly, like the sensory neurons, this neural 
center also shares many similarities across different species. More 
importantly, organizational and functional properties of the first relay 
have many similarities between vertebrates and invertebrates. Gener-
ally, the first relay (OB or AL) contains both excitatory principal neurons 
and inhibitory local neurons which form dense connections with the 
ORN axons in specialized neuropil areas called ‘glomeruli’ [34]. Within 
each glomerulus, usually, all the ORNs containing the same OR gene 
converge and make dense connections with one or several excitatory and 
inhibitory neurons [35]. In this neural circuitry, ‘neural code’ for each 
odorant is generated using complex spatiotemporal response profiles of 
the principal neurons that project their axons to the higher-order brain 
centers. The spatiotemporal coding scheme at this neural circuitry takes 
advantage of both the identity of the activated neurons and the temporal 
response dynamics of individual neurons [36]. Odor-induced evolution 
of principle neuron responses generate odor-specific manifolds in the 
neural response space which has been shown to be odor identity and 
intensity specific [37]. This spatiotemporal coding mechanism allows 
for background-invariant odor recognition, contrast enhancement, and 
novel odor detection [38–41]. The functional roles of the first relay are 
essential for odor detection in natural environments which is lacking in 
most of the current engineered gas sensors. Importantly, most engi-
neered gas sensors account for only ON and/or OFF state of the sensor 
for odor detection and not the temporal response profiles of the sensor. 
However, biology tells us that the temporal response aspects are very 
important as odor stimuli are dynamic and both olfactory sensory neu-
rons and central circuitry neurons track the temporal profile of a stim-
ulus by eliciting complex patterns of spikes. Overall, looking at the first 
relay of biological olfaction, a general principle that emerges is that 
‘spatiotemporal’ odor code is essential for odor stimuli and/or mixture 
detection in dynamic environments.

2.3. The central circuitry – signal sparsening and decoding

Spatiotemporal neural signals generated at the first relay (OB/AL) 
are transmitted to the central circuitry, which includes the olfactory 
cortex for vertebrates and mushroom body for invertebrates (Fig. 1B). In 
this central circuitry, several different functional roles are achieved that 
are essential for context-dependent stimulus decoding in natural settings 
including signal sparsening, gain control, learning, and memory [33,
42]. Here, we will focus on signal sparsening as it is an important aspect 
of biological olfaction for reliable decoding of odor signals. In the insect 
mushroom body, a few hundred projection neurons from the AL 
converge to several thousands of the mushroom body neurons (Kenyon 
cells, KCs). This order of magnitude increase in the neuron numbers 
increases the coding space inside the mushroom body. Although the 
Kenyon cells (KCs), receive inputs from several presynaptic principal 
neurons from the AL [43], contrary to the high-firing and complex 
spatiotemporal response profiles of AL neurons, KCs remain mostly si-
lent at resting potential (without any odor stimulus) and generate only a 
few spikes at the onset and offset of odor stimuli [44,45]. By reducing 
the odor stimulus-evoked spike numbers and by increasing odor speci-
ficity, KCs generate ‘sparse’ odor codes for respective stimuli in the 
brain. It is known that this sparsening of odor representation can achieve 
fast and reliable decoding of chemical stimuli in the presence of different 
background contexts. In several cases, KCs receive negative feedback 
from one or multiple inhibitory neurons which receive inputs from all 
KCs in the mushroom body. This gain control mechanism coupled with 
intrinsic excitatory properties of KCs and oscillatory synchronization 
helps limit KC firing rates to a low level and creates sparse odor repre-
sentation [46]. Overall, biological organisms reformat odor-evoked 
neural responses in the central circuitry to generate sparse and odor 
context-specific representation that is used for behavioral outcomes.

3. Olfactory behavior-based disease detection

3.1. Potential of behavioral animal olfaction

Biological olfaction is powerful in its odor recognition capabilities, 
possessing a robust generalization for chemicals across varying con-
centrations and complex mixtures. When trained, animals can display a 
distinct olfactory behavior in response to a target stimulus throughout 
differing chemical backgrounds. Behavioral animal olfaction has been 
used in a variety of fields for chemical detection as they are capable of 
smelling odors at concentrations as low as parts per trillion [47–49]. 
Biological olfaction has been effective in many real-world applications, 
mentioned briefly, outside of disease detection. Canine sensing is at the 
forefront of applied animal olfaction with uses in explosives, narcotics, 
missing persons, and search and rescue detections [50–52]. Addition-
ally, the use of other animal olfaction, such as rodents and insects, has 
gained popularity for real-world applications. Recently, honeybees have 
been successfully employed for passive explosive detection to locate 
residual landmines [53–55], while locusts and rodents have been used to 
actively detect explosive chemicals [56,57]. The potential of animal 
olfaction offers a non-invasive, accessible, and versatile method for 
detecting a variety of diseases. In this section, we will discuss the use of 
behavioral animal olfaction for clinical diagnostics including condi-
tioning paradigms, animal models used, and recent results.

3.2. Behavioral conditioning paradigms and odor presentation methods

Though animals have an excellent sense of smell, they must first be 
trained for disease detection. Regardless of species, training was done 
through classical (Pavlovian) conditioning where a neutral stimulus was 
paired with a biologically significant one, shown in Fig. 2. Behavioral 
training usually comprised four main phases: habituation, association, 
indication, and discrimination. Habituation allowed the animals to 
familiarize themselves with the training environment and apparatuses 
used for odor delivery. Positive association consists of conditioning the 
animal to the target odor using reinforcement in the form of treats (dogs, 
mice, rats), sugar water (ants, honeybees, mice, rats), and/or clicker 
sounds. The next phase of training was indication, where a specific 
behavior was incorporated into identifying a positive sample. For 
example, dogs were trained to sit or stay-standing in front of a sample 
while honeybees produced a proboscis extension reflex (PER) when they 
identified a positive result [58]. Moreover, rats and mice were trained to 
go to a specific area; y-maze or ledges, corresponding to the target odor 
[59–61]. Finally, distracting odors, such as empty vials or samples from 
healthy patients, were incorporated into training for better discrimina-
tion between a positive and negative target. In some cases, a negative 
association was used for control/negative samples to further the 
discrimination between odors and could take the forms of puffs of water, 
unpleasant-tasting food, or loud noises [58,59,61]. Each animal model 
and study discussed in this section employed different training lengths 
varying from less than an hour to over a year with an exception for 
nematode studies that required no training at all. Once successfully 
trained, testing phases began where disease samples; positive, negative, 
and control, were presented to animals for diagnosis.

Samples used for training and testing were often collected directly 
from patients or created in the lab. The chemical makeup of these 
samples is an important indicator of health and disease progression. 
Urine, breath, and mouth/throat secretions were among the most 
common sample types used in behavioral studies. Other types included 
cultured cells, blood, sweat, smears, and cloth items that were worn. 
Samples were collected through third parties (hospitals, companies), 
frozen, shipped, and thawed/reheated during experimentation. For the 
studies mentioned in this section, each one had some type of apparatus 
that held either the animal or sample for detection, examples shown in 
Figs. 3 and 4. Invertebrates required simple and inexpensive appara-
tuses, such as Petri dishes or 3D-printed harnesses, to perform 
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experimentation. Samples were placed around the Petri dish using filter 
paper, small tubes, or solutions. However, the scale and complexity of 
odor delivery significantly varied for vertebrate studies. While some 
vertebrate studies used simplistic odor deliveries; y-mazes or lined 
canisters, others employed more technologically advanced means. For 
example, Wiesel et al. [62] utilized a novel biosensor platform (BSP) 
system created by EARLY Labs that allows for hands-off, automated 
sample odor presentation, monitoring, and data collection to multiple 
rats simultaneously. Likewise, Jendrny et al. [63], used another fully 
automated training and testing apparatus, the detection dog training 
system (DDTS) available through Kynoscience.

3.3. Vertebrate models in behavioral diagnostics

Canines are the most frequently used animal model for behavioral 
disease diagnostics due to their long history of olfaction-based detection 
in other areas (explosives, drugs, missing persons). Once trained, they 
are an effective diagnostic tool with high sensitivity and specificity, 
presented in Table 1. In the world of disease diagnostics, dogs are 
notably known for detecting several types and stages of cancer including 
lung, breast, and colorectal. In three separate studies [64–66], sniffer 
dogs were able to differentiate blood, breath, and urine samples from 
lung cancer patients with a sensitivity ranging from 65.5 to 96.7 %. The 

study by Feil et al. [66] found canine detection rate of lung cancer using 
breath and urine samples together (96.7 %) was comparable to 
commonly used diagnostic procedures such as CT (100 %), bronchos-
copy (56.1 %), and tumor markers (65.4–93.1 %) (Fig. 3D). Another 
study, employing two dogs, showed very high sensitivities over in vitro 
cultures of breast (94.4 %) and colorectal (92.6 %) cancer cell lines [67]. 
In this study, both dogs were formally trained on one of the cancers; yet 
tested on both. Interestingly, the detection accuracy for the untrained 
cancer was comparable to the trained cancer (93 % vs 94 % average), 
giving insight into the relationship between breast and colorectal can-
cers while demonstrating that trained dogs can be used for multi-scent 
detection. While exciting, this could pose a challenge for diagnostics 
as dogs could be identifying a completely different disease that contains 
a similar VOC profile. This challenge was seen in a study by 
Guerrero-Flores et al. [68] where a dog trained for cervical cancer 
detection showed an interest in every sample containing endometrial 
cancer, endangering correct diagnosis. Recently, infectious disease 
detection using canines has increased with the rise of COVID-19. Mul-
tiple studies have shown that dogs are an effective diagnostic tool for 
COVID-19 with sensitivities ranging from 65 to 100 % [63,69–71], 
comparable to the commonly used rapid antigen test (~70 %) [72,73]. 
However, the study by Mutesa et al. [71] saw a decrease in detection 
sensitivity based on the COVID-19 variant used and speculated this was 

Fig. 2. Disease detection using behavioral olfaction. A. Different diseases detected by behavioral olfaction studies. TB is tuberculosis. B. Sample types collected from 
patients for disease detection. C. Overall process for conditioning target odors to a trained behavior. For example, before training, dogs and honeybees had no 
response to odor samples. They were then conditioned by pairing the odor sample with a reward (treats for canines and sugar water for insects). Once trained, 
animals displayed a specific response (sitting or proboscis extension reflex) when presented with the odor sample. (Images are created with Biorender.com and few 
images were collected from Freepik.com.).
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due to the difference in symptoms and viral load between the delta and 
omicron variants. Varied results seen between studies could be due to a 
variety of reasons including training lengths, sample sizes, and differ-
ences between the dog breeds used [74]. Additionally, handler de-
pendency can become an issue as dogs pick up on the unintentional body 
cues from their handler; in some cases, this was overcome by performing 
double-blind testing where the handler did not know which samples 
were positive. Furthermore, a few studies used dogs that had been 
previously trained in areas such as explosives, hunting, and drug 
detection [63,68–70,75]. The difference in formal training experience 
could also contribute to diagnostic performance. Nonetheless, canines 
have exhibited a robust and versatile ability to detect multiple cancers 
and infectious diseases. With a dog’s long lifespan, continuing disease 
detection can save a multitude of lives and better inform scientists about 
disease-altered VOCs.

Rats and mice are scavenger animals that rely on their sense of smell 

to detect food and prey from a distance. Their highly developed sense of 
smell makes rodents another avenue for disease detection, one that has 
been recently explored. Rodents have been used to detect cancers (lung, 
skin, bladder), bacteria, and tuberculosis with repeatable high sensi-
tivities and specificities (Table 1). As a note, many of the studies 
mentioned here presented one odor at a time or one odor with one 
control, this directly contrasts with many canine studies which pre-
sented multiple odors simultaneously for testing. Three separate studies 
showed that rats were able to detect varying stages of lung cancer with 
sensitivity ranging from 83 to 93 % [59,60,62]. The two studies from Oh 
et al. displayed that rats could detect the odor in varying environmental 
conditions as well as up to 45 days after training [59,60]. Moreover, rats 
were able to discriminate target odors in the presence of distracting 
odors and at low concentrations [59,76], though there was a depen-
dence of response time on odor concentration [59]. The ability to 
perform in different situations, generalize odors of varying 

Fig. 3. Disease detection using vertebrate models. A. Detection dog training system (DDTS) built by Kynoscience and used for identification of COVID-19 samples by 
canine scent [63,71]. Position of positive sample automatically moves and rewards dog upon correct identification. Figure adapted with permission from Ref. [71]. B. 
Biosensor platform (BSP) system for training rats created by EARLY Labs and used by Wiesel et al. for detection of lung cancer by rat olfaction. The conveyor belt 
moves samples into place and automatically senses when a rat has correctly identified the sample. Figure reproduced with permission from Ref. [62]. C. Rat odor 
delivery system with two ledges for trained behavior on multi-discrimination of odors. Odor is delivered in one chamber and the rat must go to the correct cor-
responding ledge in a second chamber. Figure adapted with permission from Ref. [59]. D. Comparing the sensitivity of various diagnostic tests for lung cancer to that 
of canine detection. Canine detection using breath (78 %) and urine (87.8 %) was comparable to that of CT, bronchoscopy, and tumor marker diagnostics. 
Figure adapted with permission from Ref. [66]. E. Female mice detection of melanoma before and after training in the Y-maze. No significant spontaneous attraction 
towards healthy vs non-healthy urine samples. After training, mice were able to detect urine from cancer samples with and without a tumor. Figure adapted with 
permission from Ref. [61]. F. Rats were able to detect additional positive tuberculosis patients over 5 years compared to the directly observed treatments, 
short-course (DOTS) clinics. Figure adapted with permission from Ref. [77].
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concentrations, and retain long-term learning makes rats a reliable an-
imal model for field work without the need for constant reinforcements. 
In some cases, relying solely on lab medical testing can lead to positive 
diagnoses being missed as seen in the study by Mgode et al. where 
trained rats increased tuberculosis detection by 67.6 %, finding 208 
additional positive children those clinics had missed [77] (Fig. 3F). 
Though not as commonly used, mice are like rats in terms of sensitivity 
and disease detection. Mice were able to detect melanoma with a 
sensitivity of 82 % in its earliest stages before a tumor and any other 
clinical symptoms had become visible [61], (Fig. 3E). Another mouse 
behavioral detection study displayed a difference between the urine of 
bladder cancer patients pre- and post-surgery [78]. This remarkable 
ability can be used for early cancer detection and measuring treatment 
success. Due to the less expensive and shorter nature of raising and 
training rodents, studies were able to have a higher sample size for 
detection animals; however, their short lifespans are a limiting factor. 
Nevertheless, rodents have been used in a multitude of research areas 
leading to standardized approaches applicable to disease diagnostics 
and reproducible results.

3.4. Invertebrate models in behavioral diagnostics

Invertebrates are less conventional models used for disease detection 
research, yet recently these easily maintained models have caught the 
attention of scientists. One specific model is the nematode Caeno-
rhabditis elegans (C. elegans) which has developed an innate attraction to 
cancer VOCs in urine and evasive behaviors toward healthy urine, using 
its highly developed chemosensory system [79]. C. elegans are easily 

maintained in lab settings and do not require any odor training, making 
them a useful model for rapid and accurate disease detection. It is 
important to note that all the nematode studies mentioned here, and 
displayed in Table 1, used VOC detection in a liquid state rather than in a 
gaseous state like other animals. For testing, chemotaxis assays were 
performed where nematodes were placed in the middle of a dish with 
one side containing a urine sample, the test would run for 30–60 min, 
and the chemotaxis index was then calculated using the number of 
nematodes on one side of the dish versus the other. As shown in multiple 
studies, C. elegans displayed an attraction to a variety of cancer types and 
stages with high sensitivity and specificity [80–85]. However, two 
cancers (Pancreatic and Lymphoma) tested in the study by Inaba et al. 
had sensitivities below 50 %, a direct contrast to previous results; this 
could be due to a low number of cancer samples (3 or fewer) tested for 
these types [85]. Types of cancers, namely pancreatic, can be extremely 
aggressive forms and early detection is key for many patients when it 
comes to survival. Nematodes were shown to accurately detect cancers 
from stages 0–4 with increased performance for earlier-stage samples 
even when a patient’s tumor marker values were normal [81–83], 
proving extremely useful for early detection. Additionally, C. elegans 
were attracted to urine samples before surgery but not after surgery, 
displaying they can be employed for not only cancer detection but also 
treatment success [84]. Though C. elegans are a versatile cancer 
screening tool for urine, other sample types such as blood serum have 
not been successful; with no significant chemosensory response shown 
at any concentrations when employing blood serum [80]. Moreover, 
little research has been done on diseases outside of cancer using 
C. elegans. Even so, C. elegans show a promising approach for 

Fig. 4. Disease detection using invertebrate models. A. Ants placed in a dish with target odor and reward for conditioning and then transferred to a dish with 
conditioned odor and distracting odor for testing. Reproduced with permission from Ref. [95]. B. Ants conditioned to urine from patient-derived xenograft mice spent 
more time in the vicinity of the conditioned odor (CS) compared to the novel odor (N) after only three training trials. Reproduced with permission from Ref. [96]. C. 
Honeybees are contained in custom-made holders, exposed to a target odor, and given sugar water as a reward. D. Honeybees were conditioned to produce proboscis 
extension reflex (PER) towards positive COVID-19 samples (red line), only 9 conditioning rounds were needed for honeybees to learn the sample. E. Honeybees could 
discriminate between healthy and infected COVID-19 samples with an increased PER (green) and were able to retain training 24 h later (gray). D and E adapted with 
permission from Ref. [58].
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inexpensive easy-to-maintain cancer screenings.
Insects also rely heavily on olfaction for sensing food and predators 

from long distances as well as for communication. Honeybees and ants 
are incredibly social creatures that send information throughout col-
onies using chemicals and detect them using their antennae. Insects have 
been shown extensively to display specific behavioral responses towards 
a variety of odors including simple compounds, plant viruses, and floral 
odors [86–93]. Honeybees and ants can be trained within 30 min uti-
lizing simple protocols. Interestingly, one trial for ants was enough to 
form long-term memory that can remain through multiple extinction 
trials [94]. Recently, ants have been shown to quickly identify breast 
and ovarian cancer using cultured cell lines [95] and urine from 
patient-derived xenograft mice [96], shown in Fig. 4B. In addition to 
ants, honeybees have been used recently for disease detection, specif-
ically COVID-19 (Table 1). Over one hundred honeybees were quickly 
conditioned to exhibit PER to positive COVID-19 samples and once 
tested, could diagnose COVID-19 with 92 % sensitivity, although one 
day after training their ability to do so had decreased [58] (see Fig. 4D 
and E). Honeybees were able to detect COVID-19 with a higher 

sensitivity than many rapid antigen tests [72,73], displaying their po-
tential for clinical diagnostics, especially in less developed regions 
where testing is not readily available. Though not as resistant to 
extinction as ants, the honeybee’s ability to learn quickly allows for 
rapid reinforcement trials to retain training. Due to their social nature, 
one trained honeybee can reinforce a learned odor to an untrained 
honeybee through physical antennae communication, meaning that 
reinforcement to odors could be spread among a whole hive rapidly 
[97]. Insects are a promising avenue for disease detection because of 
their highly sophisticated olfaction, easy and inexpensive rearing, and 
the ability to be trained quickly.

4. Olfactory system component-based detection

4.1. Disease related volatile metabolites

Many volatiles are excreted (e.g. breath, urine) from the human body 
that contain insight into the disease states within. These volatiles are 
produced through metabolic processes in different regions of the body 

Table 1 
Studies utilizing behavioral olfaction for disease detection in the last few years.

Group Animal (n) Disease/Disorder Sample Type Sensitivity (%) Specificity (%) Reference
Vertebrate Canine (1) Cancer – Cervical Bandages 96.36 99.55 [68]

Cervical Smears 92.78 99.1
Canine (2) Cancer – Breast Cultured Cells 94.4 98.6 [67]

Cancer – Colorectal Cultured Cells 92.6 98.1
Canine (5) Cancer – Ovarian Blood Plasma 85 77 [98]
Canine (3) Cancer – Lung Blood Serum 96.7 97.5 [64]
Canine (2) Cancer – Lung Blood Serum 65.5 82 [65]

Breath 68.5 80.5
Canine (1) Cancer – Lung Breath 78 90 [66]

Urine 87.8 94.8
Canine (2) Cancer – Prostate Urine 71 70–76 [99]
Canine (1) Cancer – Bone Cultured Cells 95.95 98.30 [75]

Saliva 100 100
Canine (5) Epilepsy Breath/Sweat 86.8 98 [100]
Canine (6) COVID-19 Sweat 76–100 – [69]
Canine (6) COVID-19 Throat Secretions 65 89 [70]

Used Masks 86 92.9
Canine (8) COVID-19 Tracheobronchial secretions/Saliva 82.83 96.35 [63]
Canine (4) COVID-19 – Delta Variant Sweat 75–89.9 96.1–98.4 [71]

COVID-19 – Omicron Variant Sweat 36.6–41.5 95
Rat (3) Cancer – Lung Breath 83 81 [60]
Rat (3) Cancer – Lung and Diabetes Breath 87 90 [59]
Rat (18) Cancer – Lung Urine 93 91 [62]
Rat (18) Tuberculosis Sputum 67.6 − (detection increase from clinical testing) [77]
Rat (8) Tuberculosis Sputum – – [101]
Rat (9) Bacteria Cultured Cells 93.56 97.65 [76]
Mouse (40) Cancer – Skin Visible tumor Urine 90 N/A [61]

Cancer – Skin Nonvisible tumor Urine 82 N/A
Mouse (23) Cancer – Bladder Urine 100 N/A [78]

Invertebrate Nematode (50–100) Cancer – Pancreatic Urine 71.4 83.3 [80]
Nematode (100) Cancer – Pancreatic Urine 84.6 60 [81]
Nematode (50–100) Cancer – Pancreatic Urine – – [82]
Nematode (50) Cancer – Gastrointestinal Urine 0.86 AUC 0.86 AUC [83]
Nematode (50–100) Cancer – Colorectal Urine 0.716 AUC 0.716 AUC [84]

Cancer – Gastric Urine 0.765 AUC 0.765 AUC
Nematode (50–100) All types (shown below) Urine 87.5 90.2 [85]

Cancer – Esophageal Urine 100 –

Cancer – Gastric Urine 100 –

Cancer – Colorectal Urine 88.9 –

Cancer – Gallbladder Urine 100 –

Cancer – Bile Duct Urine 100 –

Cancer – Pancreatic Urine 50 –

Cancer – Breast Urine 100 –

Lymphoma Urine 33.3 –

Leukemia Urine 100 –

Honeybee (149) COVID-19 Throat Swab 92 86 [58]
Ant (70) Cancer – Breast Urine – – [96]
Ant (36) Cancer – Breast Cultured Cells – – [95]

Cancer – Ovarian Cultured Cells – –

Note. Sample size (n); area under the curve (AUC).
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where metabolites that enter the bloodstream, are carried to the lungs or 
kidneys, and transferred from blood to breath at the alveolar membrane 
or filtered through the glomerulus to end up in urine. The study of 
excreted volatiles concerning disease states of the human body is not a 
new research topic. In 1798 with his classic work “Cases of the Diabetes 
Mellitus” John Rollo, M.D., recorded the “odor of decaying apples” in 
the breath of patients with severe diabetes [102]. It wasn’t until 1857 
that this odor-producing substance was identified as acetone by Petters 
and in 1886 Dreschfeld stated that the odor of acetone in the breath was 
characteristic of diabetic coma [102]. Increases in the production of 
acetone indicate ketoacidosis, a dangerous metabolic state seen in type 1 
diabetes where a shortage of insulin results in uncontrolled metabolism 
of fatty acids producing ketone bodies such as acetone [103,104]. 
Because there is no mechanism to convert acetone, it is either excreted 
through the urine or exhaled breath. Several VOCs have been recorded 
as accepted biomarkers of diseases due to their generation via metabolic 
pathways in the human body [104]. These volatiles have gone through 
extensive studies and regulation processes before being accepted as a 
biomarker; however, many other VOCs seen as putative biomarkers are 
currently being well established. For instance, aldehydes have been 
shown as a putative biomarker for cancer, Alzheimer’s, and cardiovas-
cular diseases [105–108] as it is an indicator of oxidative stress. Alde-
hydes are a secondary product of lipid peroxidation that occurs during 
oxidative stress where free radicals attack cell membrane lipids forming 
lipid peroxides and aldehydes. These then react with oxidizing agents 
resulting in oxidative stress and cell damage [106–108]. The incorpo-
ration of biomarkers and sensing technologies offers a powerful 
non-invasive diagnostic tool for monitoring many diseases.

Subtle changes in volatile metabolites have been shown to be 
indicative of certain types and subtypes of diseases [5,9,109–111]. Li 
et al. [105] found 4 aldehydes (hexanal, heptanal, octanal, and nonanal) 
in the exhaled breath of human patients with significant differences in 
concentrations between breast cancer and control groups. Not only can 
VOCs differ between breast cancer patients and healthy controls but also 
between genetically determined breast-cancer subtypes as shown in 
Barash et al. [112] where the authors found 23 VOCs that were signif-
icantly different including ethanol, benzene, heptane, and 1-hexanol. 
Buszewski et al. [113] found several VOCs concentrations that were 
significantly lower in the healthy group than in the lung cancer group 
including butanal, ethyl acetate, and ethyl benzene. With exhaled 
human breath containing over 3500 known VOCs, the complete list of 
disease related VOCs is beyond the scope of this review [114–116]. The 
VOCs mentioned demonstrate the extent and variety of VOC metabolites 
that have been found and proposed as potential biomarkers for disease 
detection. The incorporation of a biological components into sensors has 

been extensively studied due to the sensitivity and selectivity of these 
biological components for VOC detection. The ability for biological 
systems and components to probe and characterize chemical space has 
fueled many of these studies. Here, we discuss the incorporation of 
biological components into biosensors for disease and disease-related 
VOC detection.

4.2. Odorant binding protein

Several studies have employed odorant binding proteins (OBPs) as 
the biological component in bioelectronic sensors (Table 2). OBPs are 
involved in the initial step of odorant recognition and are small (~20 
kDa) secreted globular proteins that act as transporters [117]. OBPs 
carry odorant molecules across aqueous nasal mucosa (vertebrates) or 
the sensilla lymph (invertebrates) to ORs [118]. OBPs form a complex 
with odorant molecules in the activation of ORs and additionally remove 
odorants from the nasal mucosa or sensillum lymph. OBPs from a variety 
of animals have been incorporated into bioelectronic sensors including 
pigs, honeybees, mosquitoes, rats, flies, moths, and human OBPs.

In the study by Capo et al. [119], the authors use porcine OBP 
(pOBP) for the detection of benzene using a competitive fluorescence 
resonance energy transfer (FRET) assay based on steady-state fluores-
cence spectroscopy. The developed assay displayed a high affinity for 
benzene detection with a limit of detection value of 0.05 μM 
(3.9μg/m3). In Calabrese et al. [120], the authors also use pOBP to 
detect three different volatile organic compounds (1-octen-3-ol, 
trans-2-hexen-1-ol, and hexanal) using an electrochemical biosensor via 
electrochemical impedance spectroscopy (EIS). Using EIS, the authors 
were able to detect each VOC sample at a minimum concentration of 0.1 
μM. In another study utilizing a fluorescent assay, Dimitratos et al. [121] 
used the mosquito (Anopheles gambiae) AgamOBP1 for the detection of 
indole. The authors showed that indole could be detected at concen-
trations of 100 nM (~5 ppb). Interestingly, this sensor was also used to 
detect colony-forming units of E. coli and canine feces contamination in 
an aqueous solution. Soleja et al. [122] employed a FRET-based nano-
sensor for the detection of ethanol via a human OBP (hOBPIIa). In this 
study, the authors used hOBPIIa sandwiched between two fluorophores 
(ECFP and Venus) that had an induced conformation change when 
bound to an odorant. The donor fluorophore transfers its excitation 
energy to a second acceptor fluorophore causing the second fluorophore 
to give off its characteristic fluorescence (Fig. 5A and B) [123].

An important advantage of using OBPs as the biosensing element in 
bioelectronic sensors is that the binding properties can be engineered 
through site-directed mutagenesis. In Hurot et al. [124], the authors 
used rat OBP3 to detect β-ionone, hexanoic acid, and hexanal. 

Table 2 
Odorant binding protein-based bioelectronic sensors.

Odorant Binding 
Protein

Derived from Target Odorant Detection 
range/limit

Detection with Reference

hOBPIIa Human Ethanol 500 nM−12 μM FRET-based 
nanosensor

[122]

OBP2a Human Hexanal, heptanal, benzaldehyde, 2-octenal, decanal, β-cyclocitral, 2-iso-
butyl-3-methoxypyrazine, 2-Methylisoborneol

5–75 μmol/L Fluorescence assay [146]

pOBP Porcine (sus scrofa) Benzene 0.05 μM (3.9 μg/ 
m3)

Fluorescence assay [119]

pOBP Porcine (sus scrofa) 1-octen-3-ol, trans-2-hexen-1-ol, hexanal 0.1 μM EIS [120]
OBP3, OBP3-a, 

OBP3-c
Rat β-ionone, hexanal, hexanoic acid 200 pM SPRi [124]

OBP1 Mosquito (Anopheles 
gambiae)

Indole 100 nM (~5 
ppb)

Fluorescence assay [121]

OBP5, OBP6, 
OBP7

Mosquito (Anopheles 
gambiae)

Hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, 
undecanoic acid, dodecanoic acid

2 ppb SiNW array chip [147]

OBP LUSH 
(OBP76a)

Drosophila 
melanogaster

Ethanol 10−6% of EtOH bio-FET [148]

OBP3, I7 (OR) Rat Octanal, diacetyl, amyl butyrate 0.01 ppm CNT-FETs [139]
Note. Fluorescence resonance energy transfer (FRET); Electrochemical impedance spectroscopy (EIS); Surface plasmon resonance imaging (SPRi); Silicon nanowire 
(SiNW); Nanostructured bio-field-effect transistor (bio-FET); Carbon nanotube field effect transistors (CNT-FETs).
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Additionally, two synthetic OBPs with various binding properties were 
created (OBP3-a and OBP3-c) by modifying the amino acid sequence of 
the OBP3 (wild type) binding pocket. This study showed for the first 
time the use of surface plasmon resonance imaging in combination with 

an OBP for odorant detection. Overall, the use of wildtype and engi-
neered OBPs allowed the biosensors to detect odorants with detection 
limits in the picomolar range. The creation of engineered OBPs tuned to 
a desired odorant molecule represents an important advantage when 

Fig. 5. Odorant binding protein and whole cell-based biosensors for the detection of volatile organic compounds. A. Schematic representation of OBPIIa between two 
fluorophores ECFP and Venus in the presence of a ligand [122]. B. Comparison of wildtype (WT) and three engineered OBPs (E27Q, R58I, and N112F) and their 
concentration-dependent FRET ratio changes. Reproduced with permission from Ref. [122]. C. Bioelectronic sensor incorporating both OBPs and ORs. Schematic 
representation of a bioelectronic sensor platform [139]. D. Normalized signals of the bioelectronic sensor to different concentrations of diacetyl gas. Data points and 
error bars represent averages and standard deviations of the data measured from three devices, respectively. Reproduced with permission from Ref. [139]. E. OR 
nanovesicle-based sensor. SEM image of nanovesicles with OR, hORD11P, derived from HEK293 cells. (scale bar: 200 nm) [140]. F. Calcium signaling assay of 
hOR4D11P-expressing nanovesicles and empty-vector transfected nanovesicles exposed to 1 mM 2-ethyl-1-hexanol, a lung cancer biomarker. Reproduced with 
permission from Ref. [140]. G. Cell-expressing OR sensor schematic representation of GloSensor assay in Hana3A cells showing OR signal transduction pathway 
[153]. H. Real-time measurement of two ORs, Olfr109 and Olfr1411, to 2-heptanone(2H) and methyl benzoate (MB), respectively. Reproduced with permission 
from Ref. [153].
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natural or wildtype proteins are either not known or have insufficient 
binding affinities for specific chemical detection [125–127]. There are 
several other advantages to using OBPs in bioelectronic sensors 
including their ability to be stable in high temperatures (around 70 ◦C) 
and resistant to changes in pH, solvents, and proteolytic digestion 
[128–131]. OBPs can be used in a wide range of environmental condi-
tions. Additionally, OBPs can become denatured by chemicals and easily 
refold upon the removal of the denaturing chemicals to an active 
conformation [118,130–133]. OBPs can also be expressed and purified 
in high yields in eukaryotic and bacterial systems using established 
protocols [134,135].

OBPs are the natural transporters of VOCs in biological olfactory 
systems making them an ideal component to incorporate into bioelectric 
sensors for monitoring and detection applications in clinical diagnostics 
but also in other applications where chemical monitoring is needed. 
OBPs have been used for the detection of drugs (cannabinol, 3,4-meth-
ylenedioxy methamphetamine, cocaine hydrochloride) in a study by 
Cali et al. [136] where the authors used the mosquito (Anopheles gam-
biae) OBP1 and OBP47 immobilized on quartz crystal microbalance for 
detection. Additionally, Scorsone et al. [137] used an array of OBPs from 
the pig, mosquito (Anopheles gambiae), in combination with mouse 
major urinary proteins, another ligand binding protein, for drug and 
explosive detection. These studies show that OBPs can be employed in a 
wide variety of applications. While there are several advantages to 
employing OBPs in bioelectronic sensors there are some limitations. 
There are fewer OBPs in comparison to ORs. For example, there are 
around 1100 OR genes in mice, while there are only 5 known OBPs 
[138]. This limits the ability of OBPs to characterize the chemical space 
as extensively as ORs. The specificity of OBPs could be a limitation due 
to the broad detection range of chemical binding to OBPs.

An interesting study by Choi et al. [139] employed both OBPs and 
ORs in a single bioelectronic sensor that mimicked the biological 
olfaction in the nasal mucosa or the sensilla lymph. The authors used a 
carbon nanotube field-effect transistor (CNT-FET) that had been hy-
bridized with the rat-I7 ORs. Furthermore, the CNT-FET with ORs was 
placed in a chamber covered by a gas-permeable membrane containing a 
solution with rat OBP3. This platform allowed odorant molecules to pass 
through the membrane, forming a complex with OBPs in the solution 
which are then transported to the I7 ORs for detection, just like bio-
logical olfaction (shown in Fig. 5C). The authors showed that the plat-
form with OBPs had 104 times higher sensitivity and amplified signal 
intensity than the platform without the OBPs for the detection of octanal 
down to 0.01 ppm as shown in Fig. 5D. Overall, this study showed the 
importance of OBPs in the detection of odorant molecules that had ap-
plications in clinical diagnostics for VOC detection.

4.3. Odorant receptor

ORs are membrane-bound proteins found on the dendrites of olfac-
tory neurons that bind to odorant molecules. Many of these bio-
electronic sensors have incorporated ORs for odorant/chemical 
detection as presented in Table 3. Cho et al. [140] used the human OR 
4D11P (hOR4D11P) and generated cell-derived nanovesicles to detect a 
lung cancer biomarker. The authors sampled headspace gas mixtures 
from lung cancer cell lines for the identification of a VOC biomarker, 
2-ethyl-1-hexanol, that has been previously reported as a candidate 
biomarker for lung cancer [141]. A field emission scanning electron 
microscope image confirmed nanovesicle formation (Fig. 5E) and using 
a calcium signaling assay the nanovesicles showed significant response 
to 1 mM 2-ethyl-1-hexanol in comparison to nanovesicles without the 

Table 3 
Odorant receptor and whole cell-based bioelectronic sensors.

Odorant Receptor Immobilized on/ 
Expressed in

Derived from Target Odorant Detection 
range/limit

Detection with Reference

OR4D11p Nanovesicles Human 2-ethyl-1-hexanol 1 mM Fluorescent 
imaging

[140]

OR2AG1 Graphene Human Amyl butyrate 500 fM Resistance 
measurements

[142]

OR35a Liposomes Drosophila 
melanogaster

E2-hexenal 1 fM−1 μM EIS [145]

OR10a, OR22a, 
OR71a

Liposomes Drosophila 
melanogaster

Methyl salicylate, methyl hexanoate, ethyl 
hexanoate, E2-hexenal, 4-ethylguaiacol

1 aM−1 μM EIS [149]

OR10a, OR22a, 
OR35a, OR71a

Lipid nanodiscs Drosophila 
melanogaster

Methyl salicylate, methyl hexanoate, trans-2-hexen- 
1-al, 4-ethylguaiacol,

1 fM−10 pM CNT-FETs [150]

OR10a, OR22a, 
OR35a, OR71a, 
Orco

Liposomes Drosophila 
melanogaster

Methyl salicylate, methyl hexanoate, 4-ethylguaia-
col, E2-hexanal

1 aM−1 μM EIS [144]

OR10a, OR22a, Orco Lipid nanodiscs Drosophila 
melanogaster

Methyl salicylate, methyl hexanoate 1 fM GFET [151]

OR22a Lipid nanodiscs Drosophila 
melanogaster

Ethyl hexanoate 5.5 fM EIS [143]

OR8, Orco Bilayer lipid 
membranes

Mosquito (Aedes 
aegypti)

1-octen-3-ol 0.01−0.2 ppm Ion currents [152]

Panel of 31 ORs Hana3a cells Mouse Acetophenone, cyclohexanone, eugenol, heptanal, 
2-heptanone, methyl benzoate, N-amyl acetate

10◦–10−8 (vol/ 
vol)

Luminescence [153]

BmOR3 Sf21 cells Silk moth 
(Bombyx mori)

Bombykal 1–10 μM Fluorescent 
imaging

[154]

OR13a, OR56a Sf21 cells Drosophila 
melanogaster

Geosmin, 1-octen-3-ol 1 μM Fluorescent 
imaging

[155]

OR13a Sf21 cells Drosophila 
melanogaster

1-octen-3-ol 10 μM Fluorescent 
imaging

[156]

OR13a, OR56a, Orco Sf21 cells Drosophila 
melanogaster

Geosmin,1-octen-3-ol 0.1 % (vol/vol) Fluorescent 
imaging

[157]

OR13a, Orco Sf21 cells Drosophila 
melanogaster

1-octen-3-ol, 2-heptanol, 1-hexanol, cis-3-hexen-1- 
ol, 1,8-cineole

0.1 % (vol/vol) Fluorescent 
imaging

[158]

OR13a, OR56a, Orco Sf21 cells Drosophila 
melanogaster

Geosmin, 1-octen-3-ol 0.1 % (vol/vol) Fluorescent 
imaging

[159]

OR13a, OR56a, 
OR49b, Orco

Sf21 cells Drosophila 
melanogaster

Geosmin, 1-octen-3-ol, cis-3-hexen-1-ol, citral, 
decanal

0.1 % (vol/vol) Fluorescent 
imaging

[160]

Note. Electrochemical impedance spectroscopy (EIS); Carbon nanotube field effect transistors (CNT-FETs); Graphene field effect transistor (GFET).
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ORs (Fig. 5F). This study showed how the VOC profiles from lung cancer 
cell lines can have differences in specific volatiles that can be identified 
and displayed the ability of ORs for the detection of lung 
cancer-associated VOCs. However, this study only compares two lung 
cancer cell lines to a media control for the identification of the lung 
cancer VOC, and a more thorough analysis is needed for the comparison 
of a healthy cell line control. Goodwin et al. [142] also used a human 
OR, 2AG1, for the detection of amyl butyrate. Here the authors showed 
that a graphene-based sensor exhibits a linear response for amyl buty-
rate between 0.1 and 500 pM. Cheema et al. [143] used OR, Or22a, from 
the fruit fly, Drosophila melanogaster, for the detection of ethyl hexanoate 
with a limit of detection of 5.5 fM. The ORs were immobilized onto 
nanodiscs using phospholipids and membrane scaffold proteins that 
mimic ORs’ native environment. The nanodiscs were then adhered onto 
a gold electrode and detection of ethyl hexanoate was measured via 
electrochemical impedance spectroscopy. Multiple ORs can be used in 
combination with the odorant receptor co-receptor (Orco), an ion 
channel-forming subunit. The OR functions to bind the odorant mole-
cule which then causes the Orco ion channel to open allowing an influx 
of ions. Khadka et al. [144] used four ORs from the Drosophila mela-
nogaster, OR10a, OR22a, OR35a, and OR71a, and Orco reconstituted 
into lipid bilayers of artificial liposomes to detect methyl salicylate, 
methyl hexanoate, and E2-hexanal. The biosensor could detect these 
target ligands down to sub-femtomolar concentrations which was an 
improvement from a previous study where the same ORs were used 
except without Orco subunit incorporated into the liposomes [145]. 
OR-based sensors have rapid response times and high sensitivity for 
target chemicals, however variability in the sensors’ performance due to 
environmental conditions, such as temperature and humidity, is a 
challenge.

4.4. Whole cell

Whole cell-based systems provide another avenue for bioelectronic 
sensors in the detection of volatiles as presented in Table 3. These sys-
tems use cell cultures that either have olfactory components expressed in 
them or use genetically modified bacteria (without olfactory compo-
nents) as the sensor. Regardless of the system, both approaches use the 
luminescence or fluorescence of the cell to monitor odorant detection. In 
Kida et al. [153], the authors use a panel of mouse ORs expressed in 
mammalian Hana3A cells where the luminescence activity of the cell 
depended on cAMP levels (see Fig. 5G). The authors conducted a 
large-scale screening of mouse ORs against a panel of seven odorants: 
acetophenone, cyclohexanone, eugenol, heptanal, 2-heptanone, methyl 
benzoate, and N-amyl acetate. The large-scale screen identified 29 ORs 
that responded to the panel of odorants. The results of two ORs, Olfr109 
and Olfr1411, responding to methyl benzoate and 2-heptanone at 
several concentrations are shown in Fig. 5H, respectively. Also, the 
authors distinguished between structurally similar odorants using ace-
tophenone and six of its analogs. This differential activation of struc-
turally similar volatiles shows the robust nature of ORs in the detection 
of volatiles.

Several studies have used the insect Sf21 ovarian cells isolated from 
the Fall Armyworm (Spodoptera frugiperda) to express fruit fly, 
Drosophila melanogaster, ORs along with Orco. In these studies, the cells 
give off a fluorescence response via the calcium indicator fluorescent 
protein (GCaMP6). Briefly, when an odorant molecule binds to the OR, a 
cation channel consisting of the OR and Orco opens and allows for the 
influx of Ca2+. The influx of Ca2+ binds to the GCaMP6 inside the cell 
causing a change in the fluorescence intensity. In the study by Sukekawa 
et al. [155], the authors used two ORs, Or13a and Or56a, and Orco from 
the Drosophila melanogaster expressed in Sf21 cells. The authors were 
able to use the specific pattern of multiple randomized cells for the 
identification of odorants, 1-octen-3-ol and geosmin. In the study by 
Deng et al. (2023) [160], the authors simultaneously expressed two ORs, 
Or56a and Or49b, in a single cell line. The usefulness of this system, 

however, is unclear as the partial quantification of a gas mixture 
(o-cresol and geosmin) was only able to quantify o-cresol.

Whole-cell biosensors can detect volatiles and analytes rapidly while 
also elucidating the response of these analytes on the cell’s biological 
activity. Using genetically modified bioluminescence bacterial strains 
and analyzing the differences in the bacterial responses to general 
stresses (i.e., cytotoxicity, genotoxicity, oxidative stress, and quorum- 
sensing stress), these bacterial strains can be used to measure poten-
tially hazardous substances [161]. Multiple studies have shown the 
application of whole-cell biosensors to test the toxic effects of volatile 
chemicals [162–167]. The wide range of volatiles detected in these 
studies include nonanal, 3-methyl-1-butanol, 1-octen-3-ol, 1-octanol, 
phenylethyl alcohol, 2-ethyl hexanol, ethyl propionate, 1-methyl-1 
H-pyrrole, and 2,3 butanediol.

4.5. Peptide

Peptides offer another avenue for the creation of bioelectronic sen-
sors for the detection of VOCs as presented in Table 4. Peptides and their 
affinity for VOCs can be tuned by engineering the peptide’s amino acid 
sequence [168–170]. The main factor contributing to the bond is the 
chemical properties of the volatile compound [171]. There are several 
advantages for the use of peptides in biosensors including their high 
stability, simplicity of development from a combination of 20 amino 
acids, and ease of quality control [172,173].

Sim et al. [174] used peptides functionalized on CNT-FETs to 
discriminate four breath-related VOCs of isopropyl alcohol, acetone, 
isoprene, and toluene. The CNT-FETs functionalized with peptides were 
exposed to VOC concentrations of 10,000 ppm and the FET sensor 
showed distinct responses for each VOC. Gaggiotti et al. [175] used both 
peptides and hairpin DNA (hpDNA) in combination on the same 
biosensor for detection of six VOCs, 1-butanol, 1-pentanol, 1-hexanal, 
1-nonanal, trans-2-nonenal, and 1-hexanoic acid, employing surface 
plasmon resonance imaging (SPRi) as the detection system. Combining 
the responses of peptides and hpDNA and by using hierarchical clus-
tering analysis the biosensor showed perfect separation between the 
chemical classes and separation of VOCs within the same class with 1 
carbon difference. Wasilewski et al. [176] designed a peptide sequence 
associated with an OBP, HarmOBP7 from the Helicoverpa armigera moth, 
that mimics its sites of molecular binding of ligands and immobilizes this 
peptide onto a piezoelectric transducer as shown in Fig. 6A. This sensor 
detected VOCs, octanal, decanal, undecanal, nonanal, and helional with 
the lowest limit of detection of 14 ppm for nonanal (Fig. 6B). In other 
applications, these studies have used OR-derived peptides for the 
detection of trimethylamine, a harmful gas, at concentrations as low as 
0.01 parts per trillion and even parts per quadrillion levels [177,178]. 
While in other studies, pheromones β-ocimene and 4-vinylanisole were 
detected using Hyphantria cunea and the migratory locust (Locust 
migratoria) OR-derived peptides [179,180].

Overall, the possibility of synthesizing peptides in high yield assays, 
their stability as a biosensing element, and simple modification of amino 
acid sequences make peptides an attractive biological component in 
biosensors. However, the number of peptides enabling gas molecule 
analysis is narrow but can be overcome by understanding OBP binding 
sites for the creation of new peptide sequences that can successfully bind 
to VOCs and increase the efficiency of bioelectronic sensors.

4.6. Bacteriophage

Bacteriophage-based biosensors use filamentous phage, such as M13, 
that have been genetically modified to encode specific amino acid se-
quences (peptides) on the surface of the phage [181,182]. These pep-
tides give the phage distinct surface chemistries that can bind and detect 
various targets. The outer coat of these phages is composed of thousands 
of copies of protein VIII for the formation of nanofibers with a high 
surface-to-volume ratio where the altered amino acid sequences or 

A.K. McLane-Svoboda et al.                                                                                                                                                                                                                  Trends in Analytical Chemistry 180 (2024) 117987 

11 



peptides exist [183]. These phages can be self-assembled onto colori-
metric sensors composed of several bundles of these phages [184]. When 
white light is displayed onto the phage film, specific wavelengths of light 
are given off. When VOC molecules interact with the phages and if the 
interaction between the peptide and VOC is strong, the whole phage 
bundle swells and expands thus changing the wavelength or color of the 
bundle of phages [184]. Modifying the peptide sequence and thus 
altering the binding affinity to VOC molecules, will characterize the 
strength of the interaction between the peptide and VOC, which can be 
measured by the optical gap shift (color change) of the biosensor [185]. 
An array of these colorimetric sensors can be constructed with each 
sensor composed of a specific type of modified phage. The whole 
multi-array of colorimetric sensors can then be used as a sensor in 
combination with pattern recognition techniques to classify VOCs or 
VOC mixtures as presented in Table 4.

In Lee et al. [186], the authors use DNA sequences from mammalian 
ORs for the creation of 20 genetically modified phages expressing the 
reactivities of the ORs (Fig. 6C and D). In this study, the authors used 
human breath (200 ml) from 31 healthy subjects and 31 lung cancer 
patients without pretreatment for classification. Using the phage-based 
biosensor the authors were able to achieve 87 % classification via hi-
erarchical clustering analysis (Fig. 6E and F) [186,187]. In Jang et al. 
[188], the phage-based bioelectronic sensor also consisted of 20 
genetically engineered M13 bacteriophages to detect diabetes via VOC 
gas mixtures emitted from cell culture, organoids, and mice. The bac-
teriophages contain peptides with properties of electrically charged side 
chains, polar uncharged side chains, hydrophobic side chains, and other 
special cases. Exhaled breath from four groups of mice (control, dia-
betes, cardiomyopathy, and diabetic cardiomyopathy) were collected 
for classification. Hierarchical cluster analysis with neural pattern sep-
aration achieved a classification success rate of 86.7 % indicating that 
this sensor was able to detect diabetes models and specific complications 
of diabetes (cardiomyopathy) via VOC gas mixtures. These studies 
display the ability to use bacteriophage biosensors for clinical 
diagnostics.

There are several advantages to using M13 bacteriophage-based 
biosensors including the ability to easily manipulate the sequence of 
amino acids via genetic engineering techniques and simple production 
of genetically engineering phage bundles through a spontaneous self- 
assembly process [183,184]. These sensors can respond within a few 
milliseconds to external stimuli and can detect concentrations as low as 

1 ppb as shown in the study by Park et al. [189]. Beyond clinical di-
agnostics, these sensors can also be used for other chemical monitoring 
applications [190–192].

5. ‘Cyborg’- ‘part-brain-part-engineered’ gas sensors for disease 
detection

5.1. The next generation of biosensors

Biosensors where the whole living olfactory brain is coupled with 
technology, such as electrophysiological or functional imaging setup, for 
the detection of volatile chemicals, are termed ‘cyborg’ sensors. Coupled 
with extensive biological detection and computational power, ‘cyborg’ 

sensors capture the complexities of odor-evoked neural activity dy-
namics and the ways in which the whole brain works to process infor-
mation. There are current ‘state-of-the-art’ biohybrid disease detectors, 
where a part of the biological brain or a part of the biological olfactory 
pathway has been ‘hijacked’ by the researchers to perform the gas-based 
disease detection function. The advantages of these types of sensors are 
that they include biological chemical detection, chemical transduction, 
encoding, and decoding biological computations in one single part- 
brain-part-engineered device. However, this novel concept has been 
applied directly for disease detection only a handful of times, rather 
more work has been shown surrounding the detection of single com-
pounds that make up the complex mixture of disease VOC profiles. 
Nonetheless, these sensors are also extremely sensitive for disease 
detection as they use the entire capability of a biological organism (e.g., 
insect brains) for volatile biomarker detection.

5.2. Cyborg disease sensors with electrical neuronal activity as readout

Several of these studies are conducted in insect brains. Insects have a 
powerful sense of smell and the neural coding of odorants in different 
neural circuits of the olfactory brain is well studied from a neuroscience 
perspective [37,39,42,56,197–202]. Insect brains are also accessible for 
physiological recordings from different parts of the olfactory sensory 
pathway. Farnum et al. [203] have created a novel method of combining 
cancer cell-evoked olfactory neural recordings from the locust (Schisto-
cerca americana) antennal lobe with data acquisition and analytical 
techniques for the detection of human oral cancer using the ‘smell’ of 
cell cultures (Fig. 7). For these experiments, three different human oral 

Table 4 
Peptide-based bioelectronic sensors.

Peptide Sequence Identified from Target Odorant Detection 
range/limit

Detection with Reference

IHRIC, LAWHC, TGKFC, WHVSC – 1-butanol, 1-hexanol, 2-methyl-1-propanol, ethanol, 
hex-3-en-1-ol, ethyl acetate, ethyl-methyl-2-butyrate, 
isopentyl acetate

– QCMs [193]

NPAATMA, SIFPVSR, MPRLPPA – Benzaldehyde – Fluorescent 
intensity

[194]

KLLFDSLTDLKKKMSEC HarmOBP7 
(Helicoverpa 
armigera)

Octanal 37.5 ppm QCMs [195]

Panel of 4 peptides – Isopropyl alcohol, acetone, isoprene, and toluene 10,000 ppm Field-effect 
transistors

[174]

TGKFC, KSDSC, IHRIC, WHVSC, 
LAWHC, LGFDC

– 1-butanol, 1-pentanol, 1-hexanal, 1-nonanal, trans-2- 
nonenal and 1-hexanoic acid

3.6−90 ppm SPRi [175]

KLLFDSLTDLKKKMSEC HarmOBP7 
(Helicoverpa 
armigera)

Octanal, decanal, undecanal, nonanal and helional 14 ppm QCMs [176]

Panel of 5 peptides OR19a (Drosophila 
melanogaster)

Limonene 8 pM Graphene field- 
effect transistor

[115]

GGGRGAGAGAR, FLLFGGGRGAGAGAR, 
RRWLLLW GGGRGAGAGAR

– Limonene, methyl salicylate, menthol 10 pM−10 nM Graphene field- 
effect transistor

[196]

20 peptides (bacteriophage) Mammalian ORs Breath from healthy and lung cancer patients – Colorimetric sensor [186]
20 peptides (bacteriophage) – Emitted VOCs from diabetic cells, organoids, and mice – Colorimetric sensor [188]

Note. Quartz crystal microbalances (QCMs); Surface plasmon resonance imaging (SPRi).
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cancer cell lines and a noncancer cell line were cultured using the same 
cell culture media. These cell cultures were kept in closed flasks and 
odor headspace above the cell cultures were delivered to a locust an-
tenna using an olfactometer. Neural recordings were performed from the 
projection neurons in the antennal lobe. Using these odor-evoked pop-
ulation neural responses and biological neuronal computational 

scheme-based analyses, Farnum et al. demonstrated that all three human 
oral cancer cell lines can be distinguished from each other and the 
noncancer cell line with 100 % accuracy (using a leave-one-trial-out 
cross-validation method) [203]. This study also validated that the neu-
ral recordings from the locust olfactory brain were able to distinguish 
between human oral cancer cell lines over several days of culture. This 
detection technique was very fast as it was based on a biological neural 
computational approach, and the authors demonstrated that cancer cell 
classification can be achieved within 500 ms of odor exposure.

Furthermore, Parnas et al., demonstrated that human lung cancer 
biomarker-evoked neural recordings from the honeybee brain can be 
employed to differentiate between several different volatile cancer 
biomarkers [204]. Additionally, the authors showed that a ‘synthetic 
lung cancer’ breath mixture that mimicked the biological concentrations 
of lung cancer biomarkers found in patient’s exhaled breath can be 
successfully distinguished from a synthetic healthy exhaled breath using 
neuronal recordings from the honeybee brain. To validate their tech-
nology, the authors applied their honeybee sensor to human cell lines by 
using the ‘smell’ of cell cultures, demonstrating that the honeybee brain 
could discriminate between healthy, small cell lung cancer, and 
non-small cell lung cancer cell lines. Employing this insect brain-based 
disease detection technology, cyborg sensors (locust or honeybee 
brain-based) have been used in other ongoing studies including early 
and noninvasive detection of endometriosis, differentiation between 
multiple types of cancers (e.g., lung cancer vs. breast cancer), and for 
gas-based detection of bacterial biofilm formation (unpublished data).

Another recent study, done by Neta et al., employed live ex vivo lo-
cust antennae coupled with electroantennogram recordings and ma-
chine learning-based data analysis for chemical detection [47]. The 
authors demonstrated that just the antennae of an insect can be used to 
detect several volatile chemicals and their mixtures at very low con-
centrations [47]. This innovative study establishes that only a part of the 
biological olfactory pathway (e.g., the biological chemosensory array or 
the antennae) can be successfully employed to differentiate between 
multiple volatile chemicals and their mixtures. Moreover, this study 
showed that the sensitivity of this antennae-based gas sensor is better 
than GC-MS-based detection thresholds as this device was able to detect 
the presence of 1 ng of volatile compounds. Due to the ability of this 
sensor to detect chemicals at incredibly low concentrations, this study 
opens the door for testing antennae-based cyborg devices for disease 
detection in the future.

5.3. Cyborg disease sensors with functional imaging as readout

Another methodology that can be applied for disease detection using 
olfactory neuronal excitability in the brain involves functional imaging. 
Using odor-evoked calcium imaging analysis, Strauch et al. [205] 
recorded from a large number of ORNs in the fruit fly antennae. As these 
sensory neurons are located close to the surface of the antennae, spatial 
imaging showed calcium activity in multiple olfactory neuron types. Cell 
culture VOCs corresponding to human breast cancer vs. healthy cell 
lines were used as the target stimuli. Next, the combinatorial patterns of 
activation of the neuronal population were analyzed, and the results 
showed distinction between human breast cancer vs. healthy cell lines. 
This early study demonstrated that human cancer can be detected by the 
combinatorial coding scheme of sensory neurons located in the fruit fly 
antennae. In a more recent study, Carcaud et al. [206] utilized a 
genetically encoded calcium sensor in honeybees to detect 16 different 
odorants. Neural responses were recorded from the AL, lateral horn, and 
mushroom body simultaneously with odor presentation and showed a 
biphasic response (increase after odor followed by undershoot). Odor 
fluorescent response patterns within the AL could be clustered based on 
functional group and carbon chain length, showing a clear neural coding 
and odorant type relationship. While not used for disease detection, this 
work shows promise for disease biomarker detection using cyborg gas 
sensors.

Fig. 6. Peptide- and bacteriophage-based biosensors for the detection of vola-
tile organic compounds. A. Peptide molecules were anchored on the transducer 
using a bond with thiol group. The thiol group allows formation of self- 
assembled monolayers (SAM) on the gold surface [176]. B. Resonant fre-
quency responses of the peptide-based biosensor to aldehydes for low concen-
tration levels in the gas phase: pentanal – 105 ppm and decanal – 60 ppm. 
Reproduced with permission from Ref. [176]. C. Schematic representation 
showing the fundamental principle behind the construction of 
bacteriophage-based biosensors. Amino acid sequences related to DNA for 
mammalian odorant receptors were selected and implanted into phages via 
genetic engineering [186]. D. List of 20 peptide sequences expressed in the 
phages with associated properties [186]. E. Schematic representation of 
bacteriophage-based biosensor showing the array placement of each phage film 
[186]. F. Hierarchical clustering analysis (HCA) dendrogram with a classifica-
tion success rate (CSR) of 87 % and classification success score (CSS) of 458. 
Blue indicates healthy patients and red indicates lung cancer patients. Repro-
duced with permission from Ref. [186].
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6. The future of VOC diagnostics

While VOC analysis has emerged as a promising new diagnostic tool, 
there are still many obstacles within the field. VOC analysis has the 
potential to be cheaper and faster than traditional diagnostic tools, while 
also being non-invasive. Because the VOC profile can carry information 
about the health of the entire body, these analyses can test for many 
different health concerns. However, before real devices can be imple-
mented in medical settings, there are important challenges to overcome. 
Most biomarkers reported in the literature are still putative. This means 
that up- or down-regulation of the biomarker has been correlated with 
the presence of the disease, but a definitive link between the disease 
within the body and the biomarker has not been found. Also, unlike 
type-1 diabetes, which is associated with elevated acetone concentra-
tions [207], most diseases have been correlated with complex changes to 
the breath VOC profile. Most notably, cancers are extremely heteroge-
neous with changes to hundreds of VOCs being observed that are not 
consistent between cancer types [208]. Therefore, a sensor that can only 
detect one or a few VOCs will not be relevant for diagnosing these more 
complex diseases. The two major types of engineered sensors have ad-
vantages and drawbacks: 1) GC-MS and other component-wise VOC 
detection instruments have the capability to sensitively detect an 
extremely broad spectrum of VOCs, however, they are expensive, large, 
and difficult to use. Unfortunately, the portability and inexpensiveness 
of VOC sensors is extremely important for early detection and long-term 
health monitoring. 2) E-noses are easy to use, portable, and relatively 
inexpensive, yet they have issues with long-term reliability, specificity, 
and generalizability across multiple diseases with different VOCs of in-
terest [104]. Biological sensors, a third type of VOC detection platform 
and the newest of these three sensors are broadly sensitive, can rapidly 
detect many VOCs, and are small and portable. Their downsides being 
not enough longevity, difficulty calibrating, and lack of access outside of 
specialized laboratory settings. Each of these three VOC detection 
platforms can take advantage of the large amounts of health information 
carried by VOCs, yet each has their own weaknesses that need to be 
addressed prior to any clinically accepted device.

7. Concluding remarks

While senses other than smell, such as sight and hearing, have been 
reproduced using engineered systems, olfactory systems have not been 
well replicated so far [209]. These other senses can be fully replicated 
using just two dimensions, frequency and amplitude, while olfaction 
theoretically has an infinite number of dimensions as an odor can be the 
result of a single molecule, which could have widely varying chemical 
structures, or even a mixture of molecules at varying concentrations 
[209].

To overcome the natural difficulty of replicating olfaction, engineers 
have sought to employ biological rules of olfaction in e-noses. Cross- 
selectivity, when a single sensor can react to multiple stimuli, 
broadens the sensing capabilities using just a few sensing materials 
[210] and aids in combinatorial coding by having multiple sensors react 
to each molecule. In e-noses, combinatorial coding is achieved by using 
multiple different VOC reactive materials within the same device and 
analyzing the signals using machine learning algorithms such as 
dimensionality reduction and/or artificial neural networks to create a 
‘breath-print’ for each odor [210]. Despite the many studies testing 
e-noses for medical purposes, there is extremely limited use of these 
instruments in clinical settings. E-noses have several limitations, 
including a trade-off between sensitivity to individual compounds and 
broad selectivity to many compounds, and difficulty dealing with hu-
midity and natural conditions [211]. E-noses can be designed to be 
highly sensitive to a few compounds such as ammonia [212]; however, 
many diseases engender complex up- and/or down-regulation of mul-
tiple compounds. For these cases, e-noses have trouble maintaining the 
required sensitivity to all of the essential compounds [21]. To bypass 
this limitation, e-noses can be designed for a specific use [211], however 
then the e-nose is no longer a general sensor for many different diseases.

On the other hand, animal behavior and olfaction have recently been 
presented as a reproducible means for disease detection. Though med-
ical testing has seen great advances with time, not all places have the 
means needed for medical equipment and expert personnel. Animals are 
an abundant resource located worldwide, offering many different 
models to be employed. Vertebrates: dogs, rats, and mice have been 
extensively shown to detect various diseases at high sensitivity and 
retention rates. These models may take longer to train behaviorally 

Fig. 7. Part-brain-part-engineered insect brain-based cyborg VOC sensor for disease detection. In this cyborg sensor, multi-channel electrophysiology recordings 
were combined with data acquisition and analysis platforms for human oral cancer detection. (A) training and (B) testing protocol of a cyborg sensor is shown here 
[203]. Briefly, during training, distinct population neuronal response fingerprints are generated corresponding to each target odor (e.g., cancer vs. non-cancer VOC 
mixtures). During testing phase, unknown gas mixtures were quantified based on the similarity between the unknown vs. training response fingerprints.
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compared to others but are effective in multi-odor presentations offering 
a long lifetime of real-world detection. Invertebrates: nematodes and 
insects are less conventional animal models but require less time and 
supplies to raise and train for scent detection with reliable sensitivities. 
Though they have been utilized less for in-field work compared to their 
vertebrate counterparts, large quantities of invertebrates can be 
employed for high throughput disease detection analysis. Even so, 
behavioral detection protocols between studies are not standardized, 
and confounding variables, such as similar VOC profiles, or comorbid-
ities may skew data. Relying solely on behavior for biological olfaction 
produces binary results. It is worth diving deeper into biological olfac-
tion complexities, studying internal processing and responses to specific 
diseases to gather a more complete picture of biosensing.

The implementation of biological components for constructing bio-
sensors that mimic the olfactory system has been studied for many ap-
plications. The monitoring of VOCs via these biosensors provides an 
avenue for clinical diagnostics. Biosensors have the advantage of 
sensitivity and selectivity, owing to the specificity of biological mate-
rials. By employing olfactory elements, these biosensors make it possible 
to detect what the traditional electronic noses are not able to do. Bio-
electronic sensors that have incorporated a biological recognition 
component into the system can respond in a concentration-dependent 
manner for VOC monitoring. These biological component-based bio-
electronic sensors can provide numerous benefits including low cost, 
ease of operation, portability, and continuous monitoring of VOCs 
without the need for sample preparation. The integration of biological 
components with an analytical platform for signal measurement dis-
plays the robust nature of these components for use in clinical di-
agnostics and other chemical monitoring applications. While these 
biosensors have been extensively studied, clinical application of these 
biosensors is still lacking. The stability and compatibility of the bio-
logical components with fabricated transducers still pose limitations. In 
addition, the analysis of complex mixtures of VOCs does not compare to 
the robust nature of whole-olfactory systems. Only using components of 
biological olfaction limits the biosensor’s ability to extensively charac-
terize chemical space leading to suboptimal outcomes.

Cyborg sensors, which are part-brain-part-engineered biosensors, 
address VOC-based disease detection challenges by combining the entire 
olfactory sensory system of a biological organism with electrophysi-
ology or other physiological recording and data analysis platforms. 
Cyborg sensors employ the entire biological chemosensory array (ol-
factory epithelium for vertebrates, antennae for insects), biological 
signal transduction, and biological neural computations all in one single 
device. All these advantages render cyborg sensors with extraordinary 
power of disease detection. Recent studies have demonstrated that in-
sect brain-based cyborg sensors can not only detect human cancers but 
also differentiate between different cancer cell lines belonging to one 
type of cancer. Although this novel approach is promising for early and 
noninvasive disease and/or disease state detection, cyborg sensors also 
suffer from some limitations. Each cyborg sensor needs to be calibrated 
for the target stimuli of interest (e.g., healthy human exhaled breath vs. 
exhaled breath of cancer patients). However, with more research, this 
step can be accelerated, and we envision in the future, each sensor will 
require only a 15–30 min calibration. Performing surgery for this sensor 
development requires skilled personnel, which may not be easily 
available, and training. By employing precision robotic brain surgery 
this deficiency can be overcome. Currently, the insect brain-based cy-
borg sensor’s lifetime is limited (1–2 days). Nonetheless, these brain- 
based devices are suitable for high-throughput testing with a test able 
to run every 60 s. Therefore, this type of sensor can be used to run 
hundreds of breath samples in a single day. Finally, like other biological 
sensors, cyborg sensors do not indicate which chemical compounds are 
different between two types of gas mixtures. Therefore, to identify 
disease-specific biomarkers, GC-MS-based component-wise analysis of 
gas mixtures is still necessary.

In summary, volatile chemical sensors that can be used for disease 

detection are rare to find to date. One reason for deficiencies in engi-
neered VOC sensors is that most e-noses are not sensitive or specific to a 
broad range of volatiles and their concentrations. On the other hand, 
biological olfaction is both sensitive and specific, but we have not been 
able to back-engineer the components of olfactory sensory systems 
effectively. Therefore, the current approach is to incorporate biological 
components (primarily olfactory chemosensory array and its supporting 
elements) in engineered sensors to increase the efficacy of the sensors by 
the addition of cross-selectivity and combinatorial coding properties 
that biological sensors and components provide. Biological olfaction for 
disease detection has been used in mainly three different forms: whole 
animal (behavioral detection), components of biological olfactory sys-
tem (e.g., few ORs combined with engineered sensors), and cyborg 
sensors, where the entire olfactory neural pathway has been hijacked for 
disease detection. All these living animal-based disease detection ap-
proaches are promising but also have individual advantages and dis-
advantages. More effort is needed in all forms of biological component- 
based disease detection (both new sensor development and clinical 
testing) which will tell us more about biological olfactory coding rules 
and help overcome current challenges faced by engineered chemical 
sensors.
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