

SYMPOSIUM

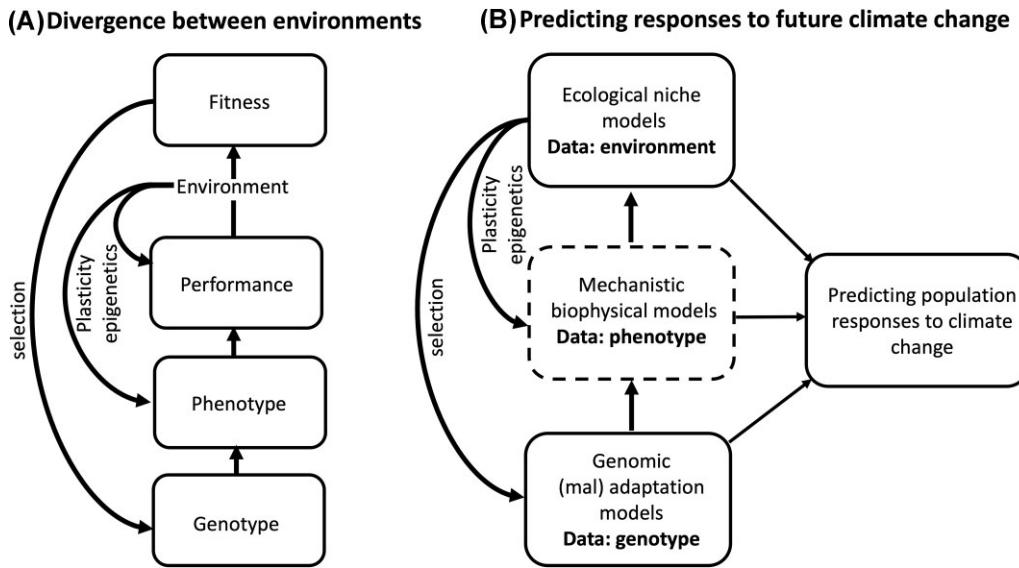
Integrating Spatial Analyses of Genomic and Physiological Data to Understand Avian Responses to Environmental Change

Phred M. Benham and Elizabeth J. Beckman

*Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA 94720, USA; [†]Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA

From the symposium “Recent advances in the mechanistic understanding of avian responses to environmental challenges” presented at the annual meeting of the Society for Integrative and Comparative Biology, January 3–7, 2024.

¹E-mail: phbenham@gmail.com


Synopsis Projected rates of climate change over the next century are expected to force species to shift ranges, adapt, or acclimate to evade extinction. Predicting which of these scenarios may be most likely is a central challenge for conserving biodiversity in the immediate future. Modeling frameworks that take advantage of intraspecific variation across environmental gradients can be particularly important for meeting this challenge. While these space-for-time approaches are essential for climatic and genomic modeling approaches, mechanistic models that incorporate ecological physiology data into assessing species vulnerabilities rarely include intraspecific variation. A major reason for this gap is the general lack of empirical data on intraspecific geographic variation in avian physiological traits. In this review, we outline the evidence for and processes shaping geographic variation in avian traits. We use the example of evaporative water loss to underscore the lack of research on geographic variation, even in traits central to cooling costs in birds. We next demonstrate how shifting the focus of avian physiological research to intraspecific variation can facilitate greater integration with emerging genomics approaches. Finally, we outline important next steps for an integrative approach to advance understanding of avian physiological adaptation within species. Addressing the knowledge gaps outlined in this review will contribute to an improved predictive framework that synthesizes environmental, morphological, physiological, and genomic data to assess species specific vulnerabilities to a warming planet.

Introduction

Understanding animal responses to climate change is one of the most pressing conservation challenges in the 21st century. Detailed assessments of which populations may be the most vulnerable to ongoing warming trends will be essential for directing management efforts to mitigate the negative effects of climate change. To this end, researchers have studied the potential impacts of climate change across different biological and temporal scales. These range from community and ecosystem responses (Walther 2010; Riddell *et al.* 2021) to responses at the level of genotypes (Bay *et al.* 2018; Bi *et al.* 2019). Responses to climate change have also been evaluated at different temporal scales, ranging from a few decades (Araújo *et al.* 2005; Youngflesh *et al.* 2022) to paleoclimatic change using the fossil record (Veloz *et al.* 2012). Comparisons of intraspecific variation may be partic-

ularly relevant to understanding individual species’ responses to climate change. Evaluation of intraspecific variation across space contributes to a mechanistic understanding of how species adapt and acclimatize to environmental change at short evolutionary timescales that can inform predictive models (Hoffmann and Sgró 2011; Fitzpatrick and Keller 2015; Meek *et al.* 2023).

One of the most widely used modeling approaches are ecological niche models (ENMs) that link species occurrence data and environmental parameters to estimate the breadth of climatic conditions tolerable to a species (Elith and Leathwick 2009). An ENM can in turn be used to make predictions about the likelihood of species occupancy under changing climatic conditions (Hijmans and Graham 2006). However, there are limitations to ENM-based models of climate change responses (Buckley *et al.* 2018), and the incorporation

Fig. 1 Schematic showing the process of intraspecific divergence in response to environmental change. (A) The process of divergence between populations in response to environmental variation. Selection will favor individuals with higher fitness, which in turn causes allele frequency shifts at genes related to phenotypes underpinning differences in whole organism performance and fitness. Environment can also directly influence spatial variation at all levels of this hierarchy through developmental or reversible plasticity and trans-generational epigenetic mechanisms. (B) This framework can in turn guide integration of different modeling approaches to robustly infer species vulnerabilities to climate change in the near future. The dashed box highlights models that rarely incorporate intraspecific variation.

of additional genotypic and phenotypic data can contribute to improved predictions of species responses to climate change (Urban *et al.* 2016). For example, spatial associations between genotype and environment are increasingly being leveraged to understand mismatches between the genotypes of a local population and future environmental conditions (reviewed in Capblancq *et al.* 2020). These mismatches provide an assessment of genomic vulnerability and have been validated with population trends (Bay *et al.* 2018) or common garden experiments where genotypes that are more mismatched from local conditions exhibit reduced fitness (Lind *et al.* 2024). Finally, mechanistic models directly leverage data on the physiological capacity of animals to deal with heat stress and water limitations to assess species vulnerabilities to climate change (Chown *et al.* 2010; Bozinovic and Pörtner 2015; Briscoe *et al.* 2023).

Although both ENMs and genomic offset approaches incorporate spatial data, few mechanistic models that include physiological data account for intraspecific spatial variation in measured traits. Data from a single locality without acclimation or acclimatization data are commonly assumed to represent a fixed trait across a species distribution and in response to different treatments (McKechnie and Wolf 2010; Albright *et al.* 2017). This assumption is likely to be false in many species with broader geographic ranges (Prosser 1955; Garland and Adolph 1991; McKechnie 2008). Failure to account for intraspecific variation when making inferences about

climate change vulnerability could mislead predictions in serious ways. For instance, Albright *et al.* (2017) use empirical data on evaporative cooling capacity of six songbird species from a single locality characterized by hot, dry conditions to project lethal dehydration risk across the distribution of these taxa. By assuming that no differences in evaporative cooling capacity exist among populations exposed to mesic versus dry conditions, the model may be underestimating vulnerability to future climatic conditions.

An integrated understanding of how environmental variation contributes to intraspecific divergence will be essential for predicting species responses to climate change (Fig. 1A; Dalziel *et al.* 2009; Storz and Wheat 2010; Storz *et al.* 2015). This will enable the development of a modeling framework that integrates current genomic, mechanistic, and environmental approaches (Fig. 1B). However, an in-depth understanding of how phenotypic divergence across environmental gradients contributes to physiological performance is lacking. In this review, we argue for an expansion of research on avian physiological divergence across environmental gradients. Centering research on geographic variation, which we define as intraspecific spatial variation, will provide a strong framework for investigating the mechanistic underpinnings of avian adaptation to environmental challenges and global change. We specifically discuss: (1) the evidence for geographic variation in avian physiological characters; (2) the different

ecological and evolutionary processes that can shape observed patterns of geographic variation; (3) how knowledge of intraspecific variation in key physiological traits remains sparse; (4) opportunities for combining intraspecific studies with genomic datasets to advance understanding of avian physiology; and (5) how integrating physiological, morphological, and genomic data can improve predictive frameworks for evaluating adaptation to environmental change through space and time.

Evidence for geographic variation in avian physiology

Over two centuries of research have generated abundant evidence for geographic variation in avian morphology, plumage, life history, diet, migratory behavior, physiology, and allele frequencies (Mayr 1963; Zink and Remsen 1986; Avise 2000). The often strong associations between phenotype and environment have led ornithologists to interpret patterns of spatial variation as evidence for adaptation to different climatic pressures (Johnston and Selander 1964; James 1970; Youngflesh *et al.* 2022; Mason *et al.* 2023). For example, variation along latitudinal and thermal gradients in body size and appendage length (e.g., bill and tarsus length) has classically been interpreted in the context of heat dissipation rates across the surface of objects with smaller or larger surface-to-volume ratios (Bergmann 1847; Allen 1877; but see Scholander 1955). However, traits like bill size also vary in relation to diet and foraging ecology and can play important roles in song production (Tattersall *et al.* 2017). Similarly, plumage characters may contribute to thermoregulatory performance in birds, but also play critical roles in camouflage, resistance to wear, flight performance, foraging behavior, and sexual selection (Terrill and Shultz 2023). Ultimately, a deeper, mechanistic understanding of avian adaptation to different environments requires an exploration of geographic variation in whole organism physiological performance and the traits underlying divergence in performance.

Few studies have explored geographic variation in physiological characters beyond the external morphological and plumage characters described above. However, available research suggests that geographic variation in a variety of additional physiological traits may be common (Table 1). These studies identified spatial, intraspecific variation in physiological characters across gradients in elevation (Carey *et al.* 1983; Dubay and Witt 2014), temperature (Blem 1974; Dawson *et al.* 1983; Burger and Denver 2002), aridity (Ambrose and Bradshaw 1988; Noakes *et al.* 2016; Ribeiro *et al.* 2019), salinity (Benham and Cheviron 2020), urbanization (Giraudau and McGraw 2014), and pollution

(Bauerová *et al.* 2017). Divergence across these environmental gradients occurs in a diversity of traits contributing to physiological performance. This includes divergence in kidney size and medullary tissue in response to environments that pose osmotic challenges (Benham and Cheviron 2020). Mesic and arid-adapted house sparrows demonstrate differences in lipid composition of epidermal tissue that underpins differences in cutaneous water loss rates (*Passer domesticus*; Muñoz-Garcia and Williams 2008; Williams *et al.* 2012). Changes in biochemical functions, such as increased hemoglobin oxygen binding affinity, have been tied to allele frequency shifts across elevation gradients (Galen *et al.* 2015; Kumar *et al.* 2017). Last, differences in hormonal levels and hormone receptor activity vary across latitude in white-crowned sparrows (*Zonotrichia leucophrys*; Breuner *et al.* 2003).

Survival and reproduction in different environments will also necessitate adaptive divergence in physiological performance across life stages. Along elevation gradients, the reductions in atmospheric pressure lead to increased diffusivity of water vapor; in response, researchers have documented decreases in egg water vapor conductance with increasing elevation (Sotherland *et al.* 1980; Carey *et al.* 1983). House sparrows in mesic and arid environments also exhibit divergence in cutaneous water loss during development (Muñoz-Garcia and Williams 2011; Clement *et al.* 2012). Finally, recent work suggests that the low partial pressures of oxygen at high elevation also contribute to divergence in hemoglobin loci expressed only in embryos (Beckman *et al.* 2022a). Together, these studies demonstrate that many different ecological pressures will drive within species divergence in physiological performance and subordinate traits at all life stages.

Understanding the ecological and evolutionary processes shaping geographic variation

Following documentation of spatial variation, a major challenge will be determining the degree to which trait variation reflects genotypic divergence, plasticity, maternal effects, or genotype-by-environment interactions (Cheviron *et al.* 2013). Discerning among plastic versus genetic contributions to trait variation is challenging as it often necessitates maintaining birds in captivity (Wikelski *et al.* 2003; Stager *et al.* 2020) or quantitative genetics approaches applied to long-term studies of pedigree populations (Teplitsky *et al.* 2008; Nafstad *et al.* 2023). A direct contribution of the environment to physiological trait variation within adult animals has been widely demonstrated for metabolic rates (McKechnie 2008), evaporative water loss (EWL)

Table 1 Examples of studies that measure physiological traits across three or more populations

Environmental gradient	Species	Continent	Populations	Traits	Acclimation experiment?	Observed change	Citation
Aridity	Karoo scrub-robin (<i>Cerotrichas coryphaeus</i>)	Africa	7	BMR; metabolic expansibility	Seasonal differences	BMR highest in summer, lower in more arid populations, wider ME in arid habitats	Ribeiro et al. 2019
	White-browed scrubwren (<i>Sericornis frontalis</i>)	Australia	3	BMR	Seasonal differences	BMR lower in arid population and in summer	Ambrose and Bradshaw 1988
	Rufous-collared sparrow (<i>Zonotrichia capensis</i>)	South America	4	BMR, organ masses, isotopes	No	BMR increases with aridity and trophic level	Sabat et al. 2009
Elevation	Pied-crested tit-pyrrant (<i>Anairetes reguloides</i>)	South America	7	Hemoglobin; HCT; MCHC; Heart mass	No	Most traits increase with elevation	Dubay and Witt 2014
	House wren (<i>Troglodytes aedon</i>)	South America	14	Hemoglobin AF; Oxygen binding affinity	No	Higher frequency allele at high elevation associated with increased O ₂ binding affinity	Galen et al. 2015
	Cliff swallow (<i>Petrochelidon pyrrhonota</i>)	North America	7	Egg water conductance	No	Decreases with elevation	Sotherland et al. 1980
	Red-winged blackbird (<i>Agelaius phoeniceus</i>)	North America	10	Egg water conductance, permeability, mass	No	Egg water conductance, permeability decrease with elevation; Egg mass increases with elevation	Carey et al. 1983
	American robin (<i>Turdus migratorius</i>)	North America	6	Egg water conductance, permeability, mass	No	Egg water conductance, permeability decrease with elevation; Egg mass increases with elevation	Carey et al. 1983
Latitude	Stonechat (<i>Saxicola torquata</i>)	Europe/Africa	4	BMR	Raised in common garden	RMR lower in tropical sedentary species	Wikelski et al. 2003
	House sparrow (<i>Passer domesticus</i>)	North America	8	Thermal conductance	No	Conductance higher in southern birds	Blem 1974
	White-crowned sparrow (<i>Zonotrichia leucophrys</i>)	North America	3	Corticosterone levels, Corticosteroid-binding globulin capacity, intracellular receptors	No	Northern breeders show: lower free cort, lower number of receptors, CBG binding capacity higher	Breuner et al. 2003

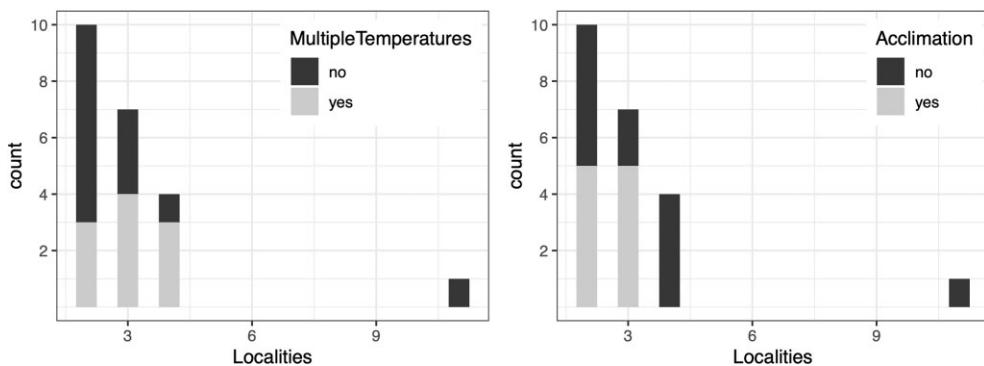
Table I Continued

Environmental gradient	Species	Continent	Populations	Traits	Acclimation experiment?	Observed change	Citation
	Rufous-collared sparrow (<i>Zonotrichia capensis</i>)	South America	3	Digestive track morphology, enzyme activity	Diet	More flexibility in digestive track in more variable environments	Maldonado et al. 2011
	Thorn-tailed rayadito (<i>Aphrastura spinicauda</i>)	South America	3	Baseline CORT, Stress response	No	Baseline but not stress CORT lower in southernmost population	Quirici et al. 2014
Salinity	Savannah sparrow (<i>Passerculus sandwichensis</i>)	North America	13	TEWL; kidney morphology; fluid osmolarity	No	Kidney's larger; higher fluid osmolarity in salt marshes; TEWL variable	Benham and Cheviron 2020
Thermal	Dark-eyed junco (<i>Junco hyemalis</i>)	North America	8	Thermogenic capacity (Msum)	Temperature acclimation	Greater Msum with higher daily temp range; more flexibility in more seasonally variable environments	Stager et al. 2021
	House finch (<i>Haemorhous mexicanus</i>)	North America	4	Cold tolerance	Seasonal acclimatization	Cold tolerance increases in winter and higher in Colorado	Dawson et al. 1983
	Northern cardinal (<i>Cardinalis cardinalis</i>)	North America	6	BMR; TH	TH treatments	T4 hormones vary with latitude; BMR tends to increase with latitude	Burger and Denver 2002
	Tree swallow (<i>Tachycineta bicolor</i>)	North America	4	Corticosterone levels	Breeding season stages	Higher CORT levels in unpredictable thermal environments	Zimmer et al. 2020
	Ostrich (<i>Struthio camelus</i>)	Africa	3	Thermoregulatory capacity	Raised in common garden	Thermoregulatory capacity higher in thermally more unpredictable environments	Svensson et al. 2023
Urban	House finch (<i>Haemorhous mexicanus</i>)	North America	8	Plasma carotenoids, vitamins, and oxidative stress	Seasonal differences	Decreases in vitamin A, certain carotenoid levels in urban environments	Giraudau and McGraw 2014
	Great tit (<i>Parus major</i>)	Europe	13	Blood heavy metal concentration, total red blood cell count, heterophil/lymphocyte ratio, body condition	No	Increased H/L ratio and decreased red blood cell count with heavy metal contamination	Bauerová et al. 2017

Table shows intraspecific variation across a range of different gradients, species, and regions of the world. Trait abbreviations: basal metabolic rate (BMR), summit metabolic rate (Msum), hematocrit (HCT), mean cellular hemoglobin concentration (MCHC), corticosterone (CORT), total evaporative water loss (TEWL), thyroid hormone (TH).

(Tieleman *et al.* 2003; Noakes and McKechnie 2019), and organ sizes (Sabat *et al.* 2004; Peña-Villalobos *et al.* 2013). These experiments performed on adult birds provide evidence for reversible phenotypic plasticity, but the environment can also shape phenotypic variation irreversibly during development (Piersma and Drent 2003). In this case, common garden experiments have been essential for showing that genetic variation likely influences differences in metabolic rates (Wikelski *et al.* 2003). Effects of the environment can also persist across generations via a range of epigenetic mechanisms and maternal effects (Hu and Barrett 2017). Ostriches (*Struthio camelus*) raised in a common garden for multiple generations provide strong evidence for a genetic basis to differences in thermogenic capacity among subspecies from different environments (Svensson *et al.* 2023). Finally, selection can also operate on the degree of plasticity with individuals from more temporally heterogeneous environments exhibiting greater levels of plasticity (Stager *et al.* 2021).

A further challenge to interpreting patterns of geographic variation in physiological traits will be determining whether the observed trait variation is adaptive. Gene flow rates, variation in effective population sizes, and divergence times among populations can influence both local adaptation (Kawecki and Ebert 2004; Savolainen *et al.* 2013) and plasticity (Sultan and Spencer 2002; Chevin and Lande 2011). Further, environmental plasticity can improve or impair physiological performance, adaptive or maladaptive plasticity, respectively. For example, humans exposed to low environmental oxygen (hypoxia) increase hemoglobin concentration, which may contribute to mountain sickness, cardiac strain, and reproductive costs (Storz *et al.* 2010; Storz and Scott 2021). Humans with Himalayan Sherpa ancestry compensate for this apparent maladaptive plasticity by increasing blood plasma volume, resulting in high total blood volume with hemoglobin concentrations similar to individuals at sea level (Stembridge *et al.* 2019). Thus, across elevation, humans with lowland ancestry in hypoxic conditions exhibit maladaptive phenotypic plasticity, while genetic compensation in humans with Himalayan Sherpa ancestry leads to a lack of observable phenotypic variation across space. Within bird species, hemoglobin concentration also increases along elevation gradients (Dubay and Witt 2014; Linck *et al.* 2023; Williamson *et al.* 2023). However, the extent to which these phenotypic trends can be maladaptive in high elevation bird populations remains an outstanding question.


A broader understanding of the ecological and evolutionary context shaping geographic variation in avian responses to different environments will require expanding research efforts across taxonomic groups, lati-

itudes, and hierarchical levels of biological organization. This will be especially important for assessing how variation in physiological traits critical to coping with thermal stress may contribute to adaptation and acclimatization to future climate regimes. However, as we demonstrate in the next section, we lack a broad understanding of how traits vary within species, even for those central to coping with hot and dry conditions.

Lack of geographic variation studies in avian EWL

Analyses of geographic variation for any given physiological trait have rarely been replicated across multiple species. Here, we focus on a key physiological trait widely measured in birds: EWL. The EWL of an individual is often reported as the rate of water lost due to respiration, the rate of water lost from across the skin barrier, or the total evaporative water loss (TEWL) that combines cutaneous and respiratory losses. Birds lose water to the atmosphere even at relatively moderate temperatures. As birds experience rising ambient temperatures, EWL rates begin to steeply increase as an individual comes to rely exclusively on evaporative cooling to thermoregulate. Ultimately, loss of water to keep cool can impose costs on birds and result in lethal dehydration. Vulnerability to lethal dehydration will depend on mode of water loss, body size, rates of water loss, and access to standing water (Bartholomew and Cade 1963; Dawson 1982; McKechnie *et al.* 2021). Understanding patterns of EWL variation among and within species will thus be critically important for evaluating vulnerabilities of different species to climate change (McKechnie and Wolf 2010; Williams *et al.* 2012; Albright *et al.* 2017).

Given the direct importance of EWL to avian responses to thermal stress, we searched the literature for avian studies where rates of EWL were reported. We performed an opportunistic literature search using Google Scholar and a series of search terms, such as avian water economy, avian EWL, and avian water budget. We additionally surveyed all studies included in large meta-analyses of avian EWL (Williams 1996; Song and Beissinger 2020). We restricted our analyses to studies of wild-caught birds and studies that clearly indicated a geographic locality for measured birds. For each study that met these criteria, we assigned the number of localities within species based on how the authors analyzed the data. Specifically, if authors recognized different populations in analyses, we considered those distinct localities, whereas birds analyzed as a single population were considered one locality. We noted whether EWL was

Fig. 2 Summary of studies quantifying EWL from two or more localities. Number of localities sampled is along the x-axis and number of studies on the y-axis. Left panel distinguishes studies that only measured EWL at a single temperature (typically within the thermal neutral zone; black) versus across multiple temperatures (gray). The right panel shows the number of studies where the effects of acclimation or acclimatization to different environmental variables were considered (gray) or not (black).

measured at a single ambient temperature (typically within the thermal neutral zone) or if EWL rates were measured across a range of ambient temperatures. Finally, we noted whether authors considered EWL responses to seasonal acclimatization, experimental acclimation, different temperatures, or water restrictions.

In total, we identified 187 studies that met our criteria; these included 262 species (Supplementary Table S1). Of these, only 22 studies (11.8%), including 13 species (5.0% of 262 species), reported intraspecific data from two or more localities. Nearly half of the studies included comparisons between only two populations ($n = 10$), and a maximum of 11 localities were analyzed in a single study (Fig. 2; Table 2). Approximately half of the studies included measurements of EWL from multiple temperatures. Of the nine studies that measured effects of a treatment on EWL, four measured temperature differences, two seasonal differences, two humidity, and one hydration state.

The scarcity of geographic variation studies in traits like EWL makes it difficult to draw conclusions about how EWL rates may shift in response to environmental change. Over half of the studies ($n = 14$) report statistically significant differences in EWL rates among populations. Among the studies that did not find evidence for spatial variation in EWL were several that accounted for the effects of plasticity. For instance, white-browed sparrow-weavers (*Plocepasser mahali*) did show evidence for spatial and seasonal variation in EWL (Noakes *et al.* 2016), but this stemmed entirely from plastic responses to different temperature regimes (Noakes and McKechnie 2019; Noakes and McKechnie 2020). In contrast, spatial differences in EWL among rufous-collared sparrow (*Zonotrichia capensis*) populations persisted in adult birds exposed to different temperature extremes (Cavieres and Sabat

2008). In both cases, studies explored acclimation responses in adult birds and did not account for environmental contributions during development or due to maternal effects. Only a single study raised birds in a common garden environment to account for developmental plasticity and found no differences in EWL among stonechats (*Saxicola torquata* *sensu lato*) from different environments (Tieleman 2007). Predicting vulnerability of avian populations to changes in thermal and precipitation regimes will necessitate further research on the ecological and evolutionary mechanisms contributing to variation in evaporative cooling capacity within species. Further, combining investigations on spatial variation in EWL with genomic and transcriptomic data will provide important insights into avian responses to future climatic regimes.

Intraspecific variation and omics approaches

A rapidly growing number of studies are applying omic approaches to understand the genetic basis of the adaptation in birds (reviewed in Campagna and Toews 2022). Focusing on geographic variation in traits associated with physiological performance could thus provide unique opportunities to integrate genomic approaches into studies of avian physiology. Many of the analytical approaches for establishing demographic context for phenotypic divergence, comparison of gene expression profiles, and linking phenotype to genotype, or genotype to environment have the greatest statistical power when making intraspecific comparisons (Hoban *et al.* 2016; Bernatchez *et al.* 2024). These genomic approaches will be most relevant for understanding the genetic contributions to physiological variation. Various omics approaches can be leveraged to understand

Table 2 Studies that measured EWL across two or more populations

Common name	Scientific name	Multiple Temps	Significant Differences Reported	Acclimation?	Localities	Citation
Blue tit	<i>Parus caeruleus</i>	Yes	No	No	3	Thomas et al. 2001
Cape white-eye	<i>Zosterops virens</i>	No	No	Season	2	Thompson and Downs 2017
Stonechat	<i>Saxicola torquata</i>	Yes	No	Common garden	3	Tieleman 2007
Freckled nightjar	<i>Caprimulgus tristigma</i>	Yes	Yes	Season	2	O'Connor et al. 2017
Horned lark	<i>Eremophila alpestris</i>	Yes	Yes	No	2	Trost 1972
House finch	<i>Haemorhous mexicanus</i>	No	Yes	Hydration	2	MacMillen and Hinds 1998
House sparrow	<i>Passer domesticus</i>	No	Yes	Humidity, ontogeny	2	Munoz-Garcia and Williams 2008
House sparrow	<i>Passer domesticus</i>	No	Yes	No	2	Munoz-Garcia and Williams 2005
House sparrow	<i>Passer domesticus</i>	Yes	No	No	4	Hudson and Kimzey 1966
House sparrow	<i>Passer domesticus</i>	No	Yes	Ontogeny	2	Munoz-Garcia and Williams 2011
House sparrow	<i>Passer domesticus</i>	No	Yes	Ontogeny, humidity	2	Clement et al. 2012
Rufous-collared sparrow	<i>Zonotrichia capensis</i>	Yes	Yes	No	2	Sabat et al. 2006
Rufous-collared sparrow	<i>Zonotrichia capensis</i>	No	Yes	Temperature	3	Cavieres and Sabat 2008
Rufous-collared sparrow	<i>Zonotrichia capensis</i>	No	Yes	No	3	Maldonado et al. 2012
Savannah sparrow	<i>Passerculus sandwichensis</i>	No	Yes	No	11	Banham and Chevron 2020
Song sparrow	<i>Melospiza melodia</i>	Yes	Yes	No	4	Gambao 2021
Southern fiscal	<i>Lanius collaris</i>	Yes	Yes	No	4	Soobramoney et al. 2003
Western screech-owl	<i>Megascops kennicottii</i>	No	Not determined	No	2	Bartholomew and Dawson 1953
White-browed sparrow-weaver	<i>Plocepasser mahali</i>	No	No	No	4	Noakes et al. 2017
White-browed sparrow-weaver	<i>Plocepasser mahali</i>	Yes	No	Temperature	3	Noakes and McKechnie 2019
White-browed sparrow-weaver	<i>Plocepasser mahali</i>	No	No	Temperature	3	Noakes and McKechnie 2020
White-browed sparrow-weaver	<i>Plocepasser mahali</i>	Yes	Yes	Temperature	3	Noakes et al. 2016

Also included is information on whether studies evaluated EWL at just one temperature (no) or range of temperatures (yes), whether or not statistically significant differences in EWL rates among populations were detected, and whether or not the authors accounted for pristinely using an acclimation experiment or seasonal acclimation.

how plasticity and transgenerational epigenetic mechanisms also contribute to patterns of geographic variation (reviewed in [Hu and Barrett 2017](#); [Bernatchez *et al.* 2024](#)). However, in the remainder of the paper, we focus primarily on methods aimed at illuminating the genetic basis of local adaptation. This focus will provide important advances in understanding how birds adapt to environmental challenges and can represent an important first step in species, like most birds, that are challenging to raise in captivity. We do not provide extensive details on different sequencing methods; however, we give a brief overview of the commonly used genomics approaches in avian studies and appropriate questions for each in the [supplemental materials](#).

Interpreting geographic variation within a demographic and phylogeographic context

The relationship between ecological variation and trait variation can be confounded by phylogeographic structure and isolation-by-distance. This issue has long been recognized in interspecific comparisons where individual species are not independent units and phylogenetic relatedness needs to be accounted for when comparing trait variation across species ([Garland 1992](#); [Garland and Adolph 1994](#)). Conspecific populations can also be connected by varying degrees of gene flow and differ in effective population size, which can both influence patterns of trait divergence ([Stone *et al.* 2011](#); [Savolainen *et al.* 2013](#)) and confound studies of geographic variation ([Garland and Adolph 1994](#); [Stone *et al.* 2011](#)). For instance, divergence in phenotypic traits between urban San Diego dark-eyed juncos (*Junco hyemalis*) and nearby montane birds (*J. h. thurberi*) was originally attributed to rapid adaptation and plasticity; however, phylogeographic analyses later showed the source population for the San Diego birds was from a more northern and phenotypically similar subspecies (*J. h. pinosus*, [Friis *et al.* 2022](#)).

A number of statistical approaches exist to account for the contributions of population genetic differentiation, gene flow, or genetic diversity on spatial patterns of phenotypic variation (reviewed in [Stone *et al.* 2011](#)). Many of these approaches, such as generalized linear mixed models, include an among population genetic distance matrix as a random effect to remove the confounding influences of gene flow and population structure, allowing for conclusions to be made on the influence of an environmental parameter on trait variation. This approach has been used to assess the environmental drivers of morphological variation in *Anolis* lizards ([Jaffe *et al.* 2016](#)) or spatial variation in thermogenic capacity of juncos ([Stager *et al.* 2021](#)). In another approach, [Benham and Chevron \(2020\)](#) employed struc-

tural equation modeling to infer the relative contributions of gene flow and ecological variation on patterns of osmoregulatory trait divergence between Savannah sparrow populations adapted to freshwater and salt marshes. In this model, several environmental parameters from each population were used to generate a latent “ecological differences” variable, and the model included correlations among gene flow, trait divergence, and ecological differences. This analysis revealed that some osmoregulatory traits were constrained by gene flow, other traits varied in response to environmental variation, and some experienced contributions from both sources.

All these methods depend on inferences of population genetic differentiation from molecular datasets. Unlike phylogenetic studies that require one individual per species, phylogeographic methods require dense sampling across space with some studies including dozens to hundreds of individuals ([Ruegg *et al.* 2021](#); [Klicka *et al.* 2023](#)). This requirement may result in mismatches between population sampling of phylogeographic and physiological datasets. Consequently, physiologists may face the prospect of sequencing and analyzing genetic data from the populations where they collected physiological measures. These data can be expensive to generate from across a species distribution, and individual research teams may not have both the physiological and genomic expertise needed to synthesize these different kinds of datasets.

Despite these challenges, the continued decline in sequencing costs is making even whole genome sequencing (WGS) for large numbers of samples more affordable ([Szarmach *et al.* 2021](#)). Generating WGS data from a large number of individuals will enable finer-scale, spatial sampling. Coupling these data with the same individuals measured for physiological assays will allow researchers to account for the influence of both coarser phylogeographic structure patterns and finer-scale isolation-by-distance (e.g., using mantel tests) effects on physiological trait variation. This will also enable analyses linking genotypes with phenotypic and environmental variation.

Genomic approaches for linking phenotype to genotype

Identifying the genetic basis of physiological traits and mapping the allelic variation that contributes to these traits across geographic space is critical to understanding species vulnerabilities to climate change. A number of different approaches can be used to elucidate the genomic regions that contribute to physiological traits. Quantitative trait locus (QTL) mapping has been used to reveal the heritability and underlying genetic

architecture of external morphological traits in birds (Tarka *et al.* 2010; Knief *et al.* 2012; Schielzeth *et al.* 2012). Tarka *et al.* (2010) used QTL mapping, combining genetic markers with pedigree information from a 30-year field program, to identify a locus of large effect impacting wing length among populations of great reed warblers (*Acrocephalus arundinaceus*) that differ in migration distance. QTL mapping is a powerful approach for linking genotype to phenotype, but is labor-intensive, requiring either long-term field studies or making experimental crosses of animals in captivity.

Another approach to elucidate the genetic underpinnings of a trait is through statistical associations between variation in the traits of interest and genotypic variation using genome-wide association studies (GWAS). GWAS methods have been used to identify regions of the genome that contribute to high-level phenotypes, such as tarsus length, wing morphology, and bill morphology (Duntsch *et al.* 2020, Huang *et al.* 2022), as well as life history traits like clutch size (Husby *et al.* 2015) and spatial cognitive ability (Branch *et al.* 2022). QTL mapping and GWAS are robust to the unique evolutionary histories of loci across the genome, including different histories of selection, and can reveal the genetic architecture of a trait. However, the high number of individuals required for these analyses, the difficulty of linking highly plastic traits to genotypes, the need for a pedigree or captive breeding population in the case of QTL mapping, and the importance of accounting for population structure can make these methods difficult for researchers studying non-model organisms (Santure and Garant 2018).

Genomic approaches to linking genotype with environment

Another approach to identifying the underlying genetic basis of physiological traits is to use methods that test for signatures of spatially varying selection within the genome, or significant associations between genetic and environmental variables. One approach is to explore divergence between two populations across genomic windows to detect regions that are significantly divergent between populations relative to the genome-wide background in certain statistics (e.g., Fst, Dxy, nucleotide diversity, Tajima's D; Irwin *et al.* 2018). Candidate outlier loci identified through these genome scan methods can then be queried against existing databases to assess known gene functions (The UniProt Consortium 2017) and pathways (The Gene Ontology Consortium 2019). Genome scan approaches can be used to compare patterns of genomic divergence among populations distributed in different environments and make inferences about which genes are diverging in response

to selective pressures in each environment. For example, Walsh *et al.* (2019) used these approaches to explore patterns of intraspecific genomic divergence among upland and salt marsh populations in four sparrow species to understand the genomic basis of adaptation to high-salinity environments. Although experimental validation will be needed to conclusively link candidate genes with divergent phenotypes, genome scan approaches can also generate new hypotheses about the traits underlying physiological divergence among environments. In the salt marsh sparrow example, several species exhibited divergence in genes associated with cell shape regulation and cytoskeletal organization. Divergence in these genes could relate to an increased capacity to tolerate excess salt levels internally (Benham and Chevron 2020).

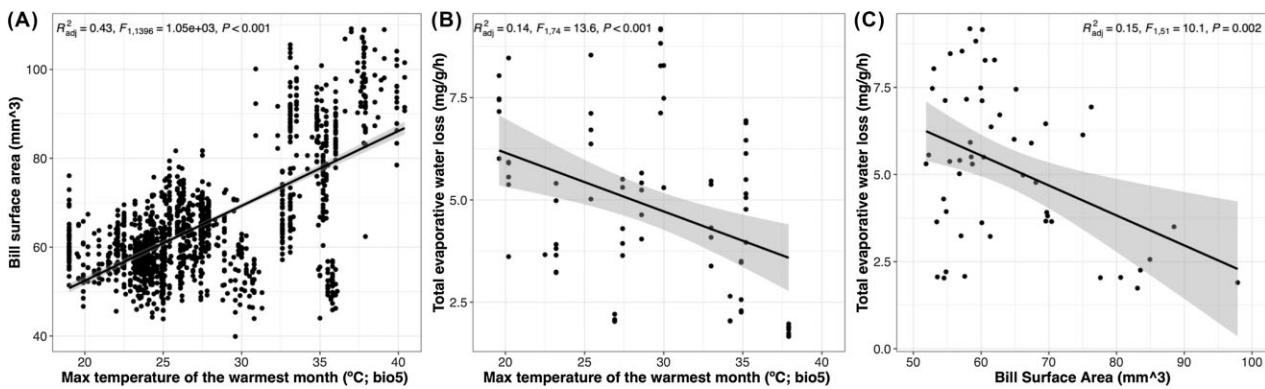
Sequencing individuals that were densely sampled across an environmental gradient, allows researchers to perform genotype-environment associations (GEA; Capblancq *et al.* 2018). GEA methods differ based on whether they allow comparisons of just a single environmental variable (e.g., LFMM; Caye *et al.* 2019), multiple environmental variables (e.g., RDA; Capblancq and Forester 2021), and whether they account for population structure. BayPass (Gautier 2015) can both consider multiple environmental axes and account for population structure. Stonehouse *et al.* (2024) used this program to identify 36 candidate loci associated with different axes of climate variation in European great tits (*Parus major*); this included CALM2, which was strongly associated with precipitation-related variables and was previously identified as an outlier in other desert animals. Latent Factor Mixed Models (LFMM) have also been used in birds to link genotypic variation with thermal variation. Gamboa *et al.* (2022) used this approach in Channel Islands song sparrows (*Melospiza melodia*) to identify outlier loci associated with responses to thermal stress, water homeostasis, and feather development. They also found evidence for selection operating on a number of bill development genes that could be linked to the observed differences in bill size among populations.

When broad geographic sampling is paired with corresponding physiological data, experimental approaches, and biochemical methods, GEA approaches can provide a strong link between genotype and physiological variation. Stager *et al.* (2021) integrated physiological field measurements, acclimation experiments, and an RDA approach, including all junco species and subspecies, to show allelic variation and thermogenic capacity in juncos co-vary across the landscape with environmental thermogenic heterogeneity. As with QTL and GWAS studies, selection scans can reveal the genetic architecture underlying a physiological trait.

Using population genetic analyses, Qu *et al.* (2020) report a polygenic basis for the strong phenotypic differentiation in muscle type between high and low elevation Eurasian tree sparrows (*Passer montanus*). When loci of large effect contribute to the physiological trait, selection scans and GEA tests based on broad spatial sampling complement functional analyses on candidate loci. For example, Beckman *et al.* (2022a) report spatially varying selection on a non-synonymous site in a hemoglobin locus that results in a functional change in the oxygen-binding affinity of a major hemoglobin isoform (Natarajan *et al.* 2016). Further, broad spatial sampling can suggest patterns in the magnitude of selection pressure across an environmental gradient (Galen *et al.* 2015; Lim *et al.* 2021; Beckman *et al.* 2022a; Beckman *et al.* 2022b).

Integrating methods to understand complex traits

Integrating multiple genetic approaches with broad spatial sampling can reveal a deeper understanding of complex traits associated with thermal tolerance. To understand adaptation to novel thermal regimes in house mice (*Mus musculus*), Phifer-Rixey *et al.* (2018) combined phenotypic measures of body mass, GEA analyses, and clinal patterns in allelic variation in a latitudinal transect in eastern North America. They further used *cis*-expression quantitative trait loci (*cis*-eQTL) analysis using wild-derived, lab-born progeny to elucidate the candidates underlying the genetic basis of a complex trait, body mass. To better understand the contribution of expression variation to adaptive body size in house mice, Mack *et al.* (2018) used eQTL analysis and clinal variation in expression in wild-caught house mice from the latitudinal transect to identify two important genes (ADAM17, BCAT2) with expression variation associated with body mass. Additional analyses on house mice across latitude in western North America, including GWAS and GEA analyses, showed the genetic basis of body size is partly shared among eastern and western populations despite reciprocal monophyly between the transects (Ferris *et al.* 2021). The synthesis of these quantitative genetic, genome-environment, and expression analyses with phenotypic data provide a nuanced illustration of the genetic basis of body size in house mice across North America, and identified clear pathways for functional experiments relating to thermal tolerance (Ballinger *et al.* 2023). Similarly, integrative studies of birds across environmental gradients remain rare. Some of the best examples come from well-characterized loci, such as hemoglobin (Galen *et al.* 2015). In another exciting example, Gu *et al.* (2021) used tracking devices, genome scans, cell culture assays, and


epigenetic approaches to demonstrate that a candidate gene associated with long-term memory, ADCY8, contributed to among population differences in migratory distance in peregrine falcons (*Falco peregrinus*).

An integrative framework for understanding intraspecific adaptation to environmental change

We expect the next several years to bring many exciting new advances in avian physiology as research groups take advantage of new technologies. Studies of geographic variation will play a significant role in these advances through evaluation of genotypic and functional phenotypic divergence across environmental gradients. This will in turn provide crucial predictive data for understanding the capacity of populations to adapt and acclimatize to climate change (Williams *et al.* 2008; Urban *et al.* 2016; Meek *et al.* 2023; Urban *et al.* 2024). Given the rapid rate in which global change is creating conservation challenges for many avian species, there is a pressing need for relevant physiological data that can improve predictive models now. Research that explicitly explores connections between external morphology and performance measures could serve as a critical bridge between the decades of research on geographic variation in external morphological characters and an understanding of the thermogenic and evaporative cooling capacity of birds. Towards this goal, we devote the remainder of the review to discussing opportunities for linking morphology, performance, and genotype across spatial and temporal environmental gradients.

Spatial analyses

Geographic variation in body size, bill size, tarsus length, and plumage variation is frequently interpreted within the context of contributions to thermoregulation (see above), yet empirical work connecting these traits to performance remains incomplete. Avian bill size is an example of a trait well known to vary along thermal gradients in birds (Zink and Remsen 1986; Tattersall *et al.* 2017). This pattern may relate to heat loss patterns with smaller-billed birds potentially losing less heat in cold environments and larger-billed birds dissipating more heat in hot environments. A larger bill may also enable birds to rely less on evaporative cooling (at least at moderate temperatures) and allow them to conserve water in water-limited environments like deserts and salt marshes (Greenberg *et al.* 2012a). Thermal imaging confirms that birds regulate blood flow to vascularized regions of the bill to dissipate heat (Hagan and Heath 1980; Tattersall *et al.* 2009) and that

Fig. 3 Comparison of morphological, TEWL, and maximum temperature across Savannah sparrow populations. Both (A) bill surface area (approximated from bill length, width, and depth measures) and (B) TEWL within the thermal neutral zone were significantly correlated with maximum temperature variation across space. (C) Bill size and TEWL were significantly correlated with one another. Benham and Bowie (2021) took advantage of this spatial correlation to infer the amount of water savings that could be gained from a given increase in bill surface area through time. Bill measurements ($n = 1398$), TEWL measurements ($n = 76$), and 53 individuals had data for both. Data from Benham and Chevron (2020) and Benham and Bowie (2021).

larger-billed birds can dissipate more heat across the bill surface (Greenberg *et al.* 2012b). In song sparrows, larger-billed subspecies could dissipate 33% more heat across the bill surface, and this was predicted to allow EWL reductions of 7.7%. These predictions have not been tested. To relate differences in heat dissipation across the bill surface to thermogenic capacity would require measurements of bill size variation with measures of thermogenic performance. For instance, can smaller-billed birds guard body temperatures and maintain functioning in response to cold challenges for longer or vice versa for large-billed birds in hot environments? Similarly, few data exist attempting to confirm a relationship between bill size and levels of EWL. Within Savannah sparrows, we have re-analyzed data from Benham and Chevron (2020) and Benham and Bowie (2021) to show that both bill surface area (Fig. 3A) and TEWL within the thermal neutral zone (Fig. 3B) significantly vary in association with maximum annual temperature. Further, a significant negative correlation between bill size and TEWL exists for Savannah sparrows (Fig. 3C). In contrast, bill size variation in great tits (*Parus major*) does not relate to measures of evaporative cooling capacity (Playá-Montmany *et al.* 2021). Further work will be needed to establish when and where correlations between bill size and TEWL may be expected.

It is unlikely that birds ever rely on change in a single trait (external or internal) such as bill size or body size to increase performance in response to novel thermal challenges. Different species may also arrive at different solutions to common problems due to constraints imposed on certain traits or differences in the genetic variation available for selection to act on. Thermoregulatory capacity is a complex trait that could ultimately

be influenced by body size and shape, appendage length, changes in plumage structure, metabolic rates, and behavioral responses (Briscoe *et al.* 2023). Few intraspecific studies explore how variation in insulative characters (e.g., feather length) varies with climatic gradients, despite the relative ease with which these traits can be measured on museum specimens and a long history of authors suggesting they may be more important for enhancing thermoregulatory performance (Scholander 1955). Across species, plumage length increases in cold environments (Pap *et al.* 2020) and with elevation (Barve *et al.* 2021). Insulative properties of feathers have also been shown to change seasonally with greater feather mass and density in winter relative to summer (Swanson 1991; Nord *et al.* 2023). Intraspecific increases in plumage length have also been documented along elevation gradients (de Zwaan *et al.* 2017; Barve and Cadena 2022). Geographic variation in plumage color may additionally contribute to thermoregulatory adaptation in horned larks (Mason *et al.* 2023). Jointly considering geographic variation in a number of external traits alongside thermoregulatory performance measures will be important for understanding which traits contribute the most to performance in any given species.

Linking these analyses to genomic datasets using methods outlined above can provide insights into the genetic basis of certain traits relevant to thermoregulation. In birds, there is a much better understanding of the genes involved in many external morphological and plumage traits (Toews *et al.* 2016; Bosse *et al.* 2017; Moreira and Smith 2023) than other traits of physiological relevance. While many physiological measures are complex traits shaped by both genetic variation and plastic responses, traits such as basal metabolic rates

have been found to be heritable in several bird species (Ronning *et al.* 2007; Bushuev *et al.* 2012; Nafstad *et al.* 2023). Many of these traits are also likely to be highly polygenic, making it difficult to pinpoint specific loci impacting inter-individual variation (Storz *et al.* 2015), yet within mammalian systems genes influencing complex traits such as metabolic rates (Montaigne *et al.* 2021) and EWL (Hirabayashi *et al.* 2017) have been identified. Future work exploring genomic variation in relation to thermal and precipitation gradients, along with efforts to link genotypes to phenotypes using approaches outlined above will be important for understanding the potential contributions of different traits to physiological performance in response to climate change.

Temporal analyses

A detailed understanding of how external morphological characters and genotypes contribute to physiological measures of performance across spatial gradients will provide essential context for evaluating temporal trends. Analysis of long-term datasets has already revealed temporal declines in body size across dozens of bird species (Jirinic *et al.* 2021; Youngflesh *et al.* 2022). Natural history collections provide another source of time series data with millions of specimens collected between ca. 1850 and the present (Billerman and Walsh 2019). These collections have been used to demonstrate widespread morphological changes in birds related to body size (Gardner *et al.* 2019), bill size (Campbell-Tennant *et al.* 2015), and plumage pigmentation (Mason and Unit 2018). In many cases, the observed changes are correlated with changing temperature over the past century and recapitulate expectations from Bergmann's and Allen's rules. However, whether these temporal changes are enough to keep up with the rate of climate change and the physiological significance of these changes has been questioned (Nord *et al.* 2024). The extent to which these changes reflect plasticity or genetic adaptations remains poorly known as well (Teplitsky and Millien 2014). Although measuring physiological performance in historical materials is largely impossible, researchers could use spatial analyses to evaluate how variation in certain morphological traits that can be measured on specimens (e.g., feather length, body size) directly contribute to performance differences. Studies could then quantify temporal morphological change in traits over time using museum specimens to make inferences about changes in performance over time. For example, Benham and Bowie (2021) took advantage of spatial correlations between bill size and TEWL in Savannah sparrows (Fig. 3C) to project how much daily water savings birds may gain from the ob-

served magnitude of bill size change over the past century.

Technological advances are also making it increasingly feasible to extract DNA from historic museum specimens (reviewed in Benham and Bowie 2023). When compared to modern samples, these data can be used to infer genomic responses to climate and landscape change over the past century (Bi *et al.* 2019; Turbek *et al.* 2023). Efforts to connect genotypic variation with spatial variation in physiological traits along climatic gradients can help illuminate the functional significance of certain loci. Follow-up studies using time-series data can then ask whether temporal changes in allele frequency have occurred at these same loci in association with climate change in the recent past. In the absence of genes with a large effect on the phenotype, time-series data can also be leveraged to assess the importance of selection on many loci of small effect in adaptation to environmental change (Reid *et al.* 2023). Making connections between spatial and temporal allele frequency changes at loci underlying physiological and morphological traits would provide powerful support for the importance of certain genes in responding to climate change.

Conclusions

The central goal of this review is to urge avian physiologists to consider patterns of spatial variation in traits that may be directly involved in organismal responses to climate change. By quantifying the extent of geographic variation in functionally relevant traits across a species range, we can work towards predictive models that integrate across levels of biological organization to understand the capacity of populations to adapt to ongoing warming trends. Despite the inherent challenges in conducting rigorous physiological research involving multiple populations of the same species, technological advances related to sequencing, tracking devices, imaging, and more will provide a host of new opportunities to investigate the mechanisms underpinning avian adaptations to environmental challenges. Additionally, this research agenda will be advanced through the establishment of collaborations among avian biologists with diverse expertise in genomics, physiology, modeling, ecology, and evolution. As anthropogenic changes impacting climate, landscape, and other facets proceed at a rapid pace, we want to echo with renewed urgency the same conclusion made by Prosser (1955) nearly 70 years ago: There is “*An immediate need for the description of phenotypic and genotypic variation of physiological characters within known species. This can only be accomplished by the cooperative effort of physiologists, ecologists, geneticists and systematists.*”

Acknowledgments

We would like to thank Cory Elowe, Alex Gerson, and Maria Stager for the invitation and for organizing the symposium, “Recent advances in the mechanistic understanding of avian responses to environmental challenges,” at the 2024 Society for Integrative and Comparative Biology annual meeting in Seattle, WA.

Supplementary data

Supplementary data available at [ICB](#) online.

Conflict of interest

The authors have no conflict of interest to declare.

References

Albright TP, Mutiibwa D, Gerson AR, Smith EK, Talbot WA, O’Neill JJ, McKechnie AE, Wolf BO. 2017. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration. *Proc Natl Acad Sci USA* 114:2283–8. <https://doi.org/10.1073/pnas.1613625114>

Allen JA. 1877. The influence of physical conditions in the genesis of species. *Radic Rev* 1:108–40.

Ambrose SJ, Bradshaw SD. 1988. Seasonal changes in standard metabolic rates in the white-browed scrubwren *Sericornis frontalis* (Acanthizidae) from arid, semi-arid and mesic environments. *Comp Biochem Physiol A Physiol* 89:79–83.

Araújo MB, Pearson RG, Thuiller W, Erhard M. 2005. Validation of species-climate impact models under climate change. *Glob Chang Biol* 11:1504–13. <https://doi.org/10.1111/j.1365-2486.2005.01000.x>

Avise JC. 2000. *Phylogeography*. Cambridge (MA): Harvard University Press.

Ballinger MA, Mack KL, Durkin SM, Riddell EA, Nachman MW. 2023. Environmentally robust cis-regulatory changes underlie rapid climatic adaptation. *Proc Natl Acad Sci USA* 120:2017. <https://doi.org/10.1073/pnas.2214614120>

Bartholomew GA, Cade TJ. 1963. The water economy of land birds. *Auk* 80:504–39.

Bartholomew GA, Dawson WR. 1953. Respiratory water loss in some birds of the southwestern United States. *Physiol Zool* 26:162–6.

Barve S, Cadena CD. 2022. Variation in insulative feather structure in songbirds replacing each other along a tropical elevation gradient. *Ecol Evol* 12:1–9. <https://doi.org/10.1002/ece3.8698>

Barve S, Ramesh V, Dotterer TM, Dove CJ. 2021. Elevation and body size drive convergent variation in thermo-insulative feather structure of Himalayan birds. *Ecography* 44:680–9. <https://doi.org/10.1111/ecog.05376>

Bauerová P, Vinklerová J, Hraníček J, Čorba V, Vojtek L, Svobodová J, Vinkler M. 2017. Associations of urban environmental pollution with health-related physiological traits in a free-living bird species. *Sci Total Environ* 601–602:1556–65. <https://doi.org/10.1016/j.scitotenv.2017.05.276>

Bay RA, Harrigan RJ, Underwood VL, Gibbs HL, Smith TB, Ruegg K. 2018. Genomic signals of selection predict climate-driven population declines in a migratory bird. *Science* 359:83–6. <https://doi.org/10.1126/science.aan4380>

Beckman EJ, Vargas Campos W, Benham PM, Schmitt CJ, Cheviron ZA, Witt CC. 2022a. Selection on embryonic haemoglobin in an elevational generalist songbird. *Biol Lett* 18:1–6. <https://doi.org/10.1098/rsbl.2022.0105>

Beckman EJ, Martins F, Suzuki TA, Bi K, Keeble S, Good JM, Chavez AS, Ballinger MA, Agwamba K, Nachman MW. 2022b. The genomic basis of high-elevation adaptation in wild house mice (*Mus musculus domesticus*) from South America. *Genetics* 220:iyab226. <https://doi.org/10.1093/genetics/iyab226>

Benham PM, Bowie RCK. 2021. The influence of spatially heterogeneous anthropogenic change on bill size evolution in a coastal songbird. *Evol Appl* 14:607–24. <https://doi.org/10.1111/eva.13144>

Benham PM, Bowie RCK. 2023. Natural history collections as a resource for conservation genomics: understanding the past to preserve the future. *J Hered* 114:367–84. <https://doi.org/10.1093/jhered/esac066>

Benham PM, Cheviron ZA. 2020. Population history and the selective landscape shape patterns of osmoregulatory trait divergence in tidal marsh Savannah sparrows (*Passerculus sandwichensis*). *Evolution* 74:57–72. <https://doi.org/10.1111/evol.13886>

Bergmann C. 1847. Über die verhältnisse der wärmeökonomie der thiere zu ihrer grösse. *Göttinger Studien* 3:595–708.

Bernatchez L, Ferchaud A-L, Berger CS, Venney CJ, Xuereb A. 2024. Genomics for monitoring and understanding species responses to global climate change. *Nat Rev Genet* 25:165–83. <https://doi.org/10.1038/s41576-023-00657-y>

Bi K, Linderroth T, Singhal S, Vanderpool D, Patton JL, Nielsen R, Good JM. 2019. Temporal genomic contrasts reveal heterogeneous evolutionary responses within and among montane chipmunk species during recent climate change. *PLoS Genet* 15:e1008119. <https://doi.org/10.1371/journal.pgen.1008119>

Billerman SM, Walsh J. 2019. Historical DNA as a tool to address key questions in avian biology and evolution: a review of methods, challenges, applications, and future directions. *Mol Ecol Resour* 19:1115–30. <https://doi.org/10.1111/1755-0998.13066>

Blem CR. 1974. Geographic variation of thermal conductance in the house sparrow *Passer domesticus*. *Comp Biochem Physiol A Physiol* 47:101–8.

Bosse M, Spurgin LG, Laine VN, Cole EF, Firth JA, Gienapp P, Gosler AG, McMahon K, Poissant J, Verhagen I et al. 2017. Recent natural selection causes adaptive evolution of an avian polygenic trait. *Science* 358:365–8. <https://doi.org/10.1126/science.aal3298>

Bozinovic F, Pörtner H-O. 2015. Physiological ecology meets climate change. *Ecol Evol* 5:1025–30. <https://doi.org/10.1002/ece3.1403>

Branch CL, Semenov GA, Wagner DN, Sonnenberg BR, Pitera AM, Bridge ES, Taylor SA, Pravosudov VV. 2022. The genetic basis of spatial cognitive variation in a food-caching bird. *Curr Biol* 32:210–219.e4. <https://doi.org/10.1016/j.cub.2021.10.036>

Breuner CW, Orchinik M, Hahn TP, Meddle SL, Moore IT, Owen-Ashley NT, Sperry TS, Wingfield JC. 2003. Differential mechanisms for regulation of the stress response across latitudinal gradients. *Am J Physiol Regul Integr Comp Physiol* 285:R594–600. <https://doi.org/10.1152/ajpregu.00748.2002>

Briscoe NJ, Morris SD, Mathewson PD, Buckley LB, Jusup M, Levy O, Maclean IMD, Pincebourde S, Riddell EA, Roberts JA

et al. 2023. Mechanistic forecasts of species responses to climate change: the promise of biophysical ecology. *Glob Chang Biol* 29:1451–70. <https://doi.org/10.1111/gcb.16557>

Buckley LB, Cannistra AF, John A. 2018. Leveraging organismal biology to forecast the effects of climate change. *Integr Comp Biol* 58:38–51. <https://doi.org/10.1093/icb/icy018>

Burger MF, Denver RJ. 2002. Plasma thyroid hormone concentrations in a wintering passerine bird: their relationship to geographic variation, environmental factors, metabolic rate, and body fat. *Physi Biochem Zool* 75:187–99. <https://doi.org/10.1086/338955>

Bushuev AV, Husby A, Sternberg H, Grinkov VG. 2012. Quantitative genetics of basal metabolic rate and body mass in free-living pied flycatchers. *J Zool* 288:245–51. <https://doi.org/10.1111/j.1469-7998.2012.00947.x>

Campagna L, Toews DPL. 2022. The genomics of adaptation in birds. *Curr Biol* 32:R1173–86. <https://doi.org/10.1016/j.cub.2022.07.076>

Campbell-Tennant DJE, Gardner JL, Kearney MR, Symonds MRE. 2015. Climate-related spatial and temporal variation in bill morphology over the past century in Australian parrots. *J Biogeogr* 42:1163–75. <https://doi.org/10.1111/jbi.12499>

Capblancq T, Fitzpatrick MC, Bay RA, Exposito-Alonso M, Keller SR. 2020. Genomic prediction of (Mal)adaptation across current and future climatic landscapes. *Annu Rev Ecol Evol Syst* 51:245–69. <https://doi.org/10.1146/annurev-ecolsys-020720-042553>

Capblancq T, Forester BR. 2021. Redundancy analysis: a Swiss Army Knife for landscape genomics. *Methods Ecol Evol* 12:2298–309. <https://doi.org/10.1111/2041-210X.13722>

Capblancq T, Luu K, Blum MGB, Bazin E. 2018. Evaluation of redundancy analysis to identify signatures of local adaptation. *Mol Ecol Resour* 18:1223–33. <https://doi.org/10.1111/1755-0998.12906>

Carey C, Garber SD, Thompson EL, James FC. 1983. Avian reproduction over an altitudinal gradient. II. Physical characteristics and water loss of eggs. *Physiol Zool* 56:340–52.

Cavieres G, Sabat P. 2008. Geographic variation in the response to thermal acclimation in rufous-collared sparrows: are physiological flexibility and environmental heterogeneity correlated? *Funct Ecol* 22:509–15. <https://doi.org/10.1111/j.1365-435.2008.01382.x>

Caye K, Jumentier B, Lepeule J, François O. 2019. LFMM 2: fast and accurate inference of gene-environment associations in genome-wide studies. *Mol Biol Evol* 36:852–60. <https://doi.org/10.1093/molbev/msz008>

Chevin L-M, Lande R. 2011. Adaptation to marginal habitats by evolution of increased phenotypic plasticity. *J Evol Biol* 24:1462–76. <https://doi.org/10.1111/j.1420-9101.2011.0279.x>

Cheviron ZA, Bachman GC, Storz JF. 2013. Contributions of phenotypic plasticity to differences in thermogenic performance between highland and lowland deer mice. *J Exp Biol* 216:1160–6. <https://doi.org/10.1242/jeb.075598>

Chown S, Hoffmann A, Kristensen T, Angilletta M, Stenseth N, Pertoldi C. 2010. Adapting to climate change: a perspective from evolutionary physiology. *Clim Res* 43:3–15. <https://doi.org/10.3354/cr00879>

Clement ME, Muñoz-Garcia A, Williams JB. 2012. Cutaneous water loss and covalently bound lipids of the stratum corneum in nestling house sparrows (*Passer domesticus* L.) from desert and mesic habitats. *J Exp Biol* 215:1170–7. <https://doi.org/10.1242/jeb.064972>

Dalziel AC, Rogers SM, Schulte PM. 2009. Linking genotypes to phenotypes and fitness: how mechanistic biology can inform molecular ecology. *Mol Ecol* 18:4997–5017. <https://doi.org/10.1111/j.1365-294X.2009.04427.x>

Dawson WR, Marsh RL, Buttemer WA, Carey C. 1983. Seasonal and geographic variation of cold resistance in house finches *Carpodacus mexicanus*. *Physiol Zool* 56:353–69. <https://doi.org/10.1086/physzool.56.3.30152600>

Dawson WR. 1982. Evaporative losses of water by birds. *Comp Biochem Physiol A Physiol* 71:495–509.

De Zwaan DR, Greenwood JL, Martin K. 2017. Feather melanin and microstructure variation in dark-eyed junco *Junco hyemalis* across an elevational gradient in the Selkirk Mountains. *J Avian Biol* 48:552–62. <https://doi.org/10.1111/jav.01050>

Donald TW, Blondel J, Perret P. 2001. Physiological ecology of Mediterranean Blue Tits (*Parus caeruleus*): I. A test for inter-population differences in resting metabolic rate and thermal conductance as a response to hot climates. *Zoology* 104:33–40. <https://doi.org/10.1078/0944-2006-00004>

Dubay SG, Witt CC. 2014. Differential high-altitude adaptation and restricted gene flow across a mid-elevation hybrid zone in Andean tit-tyrant flycatchers. *Mol Ecol* 23:3551–65. <https://doi.org/10.1111/mec.12836>

Duntsch L, Tomotani BM, De Villemereuil P, Brekke P, Lee KD, Ewen JG, Santure AW. 2020. Polygenic basis for adaptive morphological variation in a threatened Aotearoa | New Zealand bird, the hihi (*Notiomystis cincta*). *Proc R Soc B* 287:20200948.

Elith J, Leathwick JR. 2009. Species distribution models: ecological explanation and prediction across space and time. *Annu Rev Ecol Evol Syst* 40:677–97. <https://doi.org/10.1146/annurev-ecolsys.110308.120159>

Ferris KG, Chavez AS, Suzuki TA, Beckman EJ, Phifer-Rixey M, Bi K, Nachman MW. 2021. The genomics of rapid climatic adaptation and parallel evolution in North American house mice. *PLoS Genet* 17:1–25. <https://doi.org/10.1371/journal.pgen.1009495>

Fitzpatrick MC, Keller SR. 2015. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. *Ecol Lett* 18:1–16. <https://doi.org/10.1111/ele.12376>

Friis G, Atwell JW, Fudickar AM, Greives TJ, Yeh PJ, Price TD, Ketterson ED, Milá B. 2022. Rapid evolutionary divergence of a songbird population following recent colonization of an urban area. *Mol Ecol* 31:2625–43. <https://doi.org/10.1111/mec.16422>

Galen SC, Natarajan C, Moriyama H, Weber RE, Fago A, Benham PM, Chavez AN, Cheviron ZA, Storz JF, Witt CC. 2015. Contribution of a mutational hot spot to hemoglobin adaptation in high-altitude Andean house wrens. *Proc Natl Acad Sci USA* 112:13958–63. <https://doi.org/10.1073/pnas.1507300112>

Gamboa MP, Ghalambor CK, Scott Sillett T, Morrison SA, Chris Funk W. 2022. Adaptive divergence in bill morphology and other thermoregulatory traits is facilitated by restricted gene flow in song sparrows on the California Channel Islands. *Mol Ecol* 31:603–19. <https://doi.org/10.1111/mec.16253>

Gamboa MP. 2021. Evolutionary Underpinnings of Microgeographic Adaptation in Song Sparrows Distributed along a Steep Climate Gradient. Dissertation. Fort Collins, CO: Colorado State University.

Gardner JL, Amano T, Peters A, Sutherland WJ, Mackey B, Joseph L, Stein J, Ikin K, Little R, Smith J et al. 2019. Australian songbird body size tracks climate variation: 82 species over 50 years. *Proc R Soc B* 286:20192258. <https://doi.org/10.1098/rspb.2019.2258>

Garland T, Adolph SC. 1991. Physiological differentiation of vertebrate populations. *Annu Rev Eco Syst* 22: 193–228.

Garland T, Adolph SC. 1994. Why not to do two-species comparative studies: limitations on inferring adaptation. *Physiol Zool* 67:797–828. <https://doi.org/10.1086/physzool.67.4.30163866>

Garland T. 1992. Rate tests for phenotype evolution using phylogenetically independent contrasts. *Am Nat* 140:509–19.

Gautier M. 2015. Genome-wide scan for adaptive divergence and association with population-specific covariates. *Genetics* 201:1555–79. <https://doi.org/10.1534/genetics.115.81453>

Giraudet M, Mcgraw KJ. 2014. Physiological correlates of urbanization in a desert songbird. *Integr Comp Biol* 54:622–32. <https://doi.org/10.1093/icb/icu024>

Greenberg R, Danner R, Olsen B, Luther D. 2012a. High summer temperature explains bill size variation in salt marsh sparrows. *Ecography* 35:146–52. <https://doi.org/10.1111/j.1600-0587.2011.07002.x>

Greenberg R, Cadena V, Danner RM, Tattersall G. 2012b. Heat loss may explain bill size differences between birds occupying different habitats. *PLoS One* 7:1–9. <https://doi.org/10.1371/journal.pone.0040933>

Gu Z, Pan S, Lin Z, Hu L, Dai X, Chang J, Xue Y, Su H, Long J, Sun M et al. 2021. Climate-driven flyway changes and memory-based long-distance migration. *Nature* 591:259–64. <https://doi.org/10.1038/s41586-021-03265-0>

Hagan AA, Heath JE. 1980. Regulation of heat loss in the duck by vasomotion in the bill. *J Therm Biol* 5:95–101. [https://doi.org/10.1016/0306-4565\(80\)90006-6](https://doi.org/10.1016/0306-4565(80)90006-6)

Hijmans RJ, Graham CH. 2006. The ability of climate envelope models to predict the effect of climate change on species distributions. *Glob Chang Biol* 12:2272–81. <https://doi.org/10.1111/j.1365-2486.2006.01256.x>

Hirabayashi T, Anjo T, Kaneko A, Senoo Y, Shibata A, Takama H, Yokoyama K, Nishito Y, Ono T, Taya C et al. 2017. PNPLA1 has a crucial role in skin barrier function by directing acylceramide biosynthesis. *Nat Commun* 8:1–13. <https://doi.org/10.1038/ncomms14609>

Hoban S, Kelley JL, Lotterhos KE, Antolin MF, Bradburd G, Lowry DB, Poss ML, Reed LK, Storfer A, Whitlock MC. 2016. Finding the genomic basis of local adaptation: pitfalls, practical solutions, and future directions. *Am Nat* 188:379–97. <https://doi.org/10.1086/688018>

Hoffmann AA, Sgrò CM. 2011. Climate change and evolutionary adaptation. *Nature* 470:479–85. <https://doi.org/10.1038/nature09670>

Hu J, Barrett RDH. 2017. Epigenetics in natural animal populations. *J Evol Biol* 30:1612–32. <https://doi.org/10.1111/jeb.13130>

Huang J, Wang C, Ouyang J, Tang H, Zheng S, Xiong Y, Gao Y, Wu Y, Wang L, Yan X et al. 2022. Identification of key candidate genes for beak length phenotype by whole-genome resequencing in geese. *Front Vet Sci* 9:1–9. <https://doi.org/10.3389/fvets.2022.847481>

Hudson JW, Kimzey SL. Temperature regulation and metabolic rhythms in populations of the house sparrow, *Passer domesticus*. *Comp Biochem Physiol* 1966;17:203–217.

Husby A, Kawakami T, Rönnegård L, Smeds L, Ellegren H, Qvarnström A. 2015. Genome-wide association mapping in a wild avian population identifies a link between genetic and phenotypic variation in a life-history trait. *Proc R Soc B* 282:20150156. <https://doi.org/10.1098/rspb.2015.0156>

Irwin DE, Milá B, Toews DPL, Brelsford A, Kenyon HL, Porter AN, Grossen C, Delmore KE, Alcaide M, Irwin JH. 2018. A comparison of genomic islands of differentiation across three young avian species pairs. *Mol Ecol* 27:4839–55.

Jaffe AL, Campbell-Staton SC, Losos JB. 2016. Geographical variation in morphology and its environmental correlates in a widespread North American lizard, *Anolis carolinensis* (Squamata: Dactyloidae). *Biol J Linn Soc* 117:760–74. <https://doi.org/10.1111/bij.12711>

James FC. 1970. Geographic size variation in birds and its relationship to climate. *Ecology* 51:365–90. <https://doi.org/10.2307/1935374>

Jirinec V, Burner RC, Amaral BR, Bierregaard RO, Fernández-Arellano G, Hernández-Palma A, Johnson EI, Lovejoy TE, Powell LL, Rutt CL et al. 2021. Morphological consequences of climate change for resident birds in intact Amazonian rainforest. *Sci Adv* 7:eabk1743.

Johnston RF, Selander RK. 1964. House sparrows: rapid evolution of races in North America. *Science* 144:548–50. <https://doi.org/10.1126/science.144.3618.548>

Kawecki TJ, Ebert D. 2004. Conceptual issues in local adaptation. *Ecol Lett* 7:1225–41. <https://doi.org/10.1111/j.1461-0248.2004.00684.x>

Klicka J, Epperly K, Smith BT, Spellman GM, Chaves JA, Escalante P, Witt CC, Canales-Del-Castillo R, Zink RM. 2023. Lineage diversity in a widely distributed New World passerine bird, the House Wren. *Ornithology* 140:1–13. <https://doi.org/10.1093/ornithology/ukad018>

Knief U, Schielzeth H, Kempenaers B, Ellegren H, Forstmeier W. 2012. QTL and quantitative genetic analysis of beak morphology reveals patterns of standing genetic variation in an estrildid finch. *Mol Ecol* 21:3704–17. <https://doi.org/10.1111/j.1365-294X.2012.05661.x>

Kumar A, Natarajan C, Moriyama H, Witt CC, Weber RE, Fago A, Storz JF. 2017. Stability-mediated epistasis restricts accessible mutational pathways in the functional evolution of avian hemoglobin. *Mol Biol Evol* 34:1240–51. <https://doi.org/10.1093/molbev/msx085>

Lim MCW, Bi K, Witt CC, Graham CH, Dávalos LM. 2021. Pervasive genomic signatures of local adaptation to altitude across highland specialist andean hummingbird populations. *J Hered* 112:229–40. <https://doi.org/10.1093/jhered/esab008>

Linck EB, Williamson JL, Bautista E, Beckman EJ, Benham PM, Dubay SG, Flores LM, Gadek CR, Johnson AB, Jones MR et al. 2023. Blood variation implicates respiratory limits on elevational ranges of Andean birds. *Am Nat* 201:741–54. <https://doi.org/10.1086/723222>

Lind. 2024. *Global Change Biology* 1354–1013. <https://doi.org/10.1111/gcb.17227>

Mack KL, Ballinger MA, Phifer-Rixey M, Nachman MW. 2018. Gene regulation underlies environmental adaptation in house mice. *Genome Res* 28:1636–45. <https://doi.org/10.1101/gr.238998.118>

Macmillen RE, Hinds DS. 1998. Water economy of granivorous birds: California house finches. *The Condor* 100:493–503. [http://doi.org/10.2307/1369715](https://doi.org/10.2307/1369715)

Maldonado K, Bozinovic F, Rojas JM, Sabat P. 2011. Within-species digestive tract flexibility in rufous-collared sparrows and the climatic variability hypothesis. *Physiol Biochem Zool* 84:377–84. <https://doi.org/10.1086/660970>

Maldonado K, Van Dongen WFD, Vásquez RA, Sabat P. 2012. Geographic variation in the association between exploratory behavior and physiology in rufous-collared sparrows. *Physiol Biochem Zool* 85:618–24. <https://doi.org/10.1086/667406>

Mason NA, Riddell EA, Romero FG, Cicero C, Bowie RCK. 2023. Plumage balances camouflage and thermoregulation in horned larks (*Eremophila alpestris*). *Am Nat* 201:E23–40. [http://doi.org/10.1086/722560](https://doi.org/10.1086/722560)

Mason NA, Unitt P. 2018. Rapid phenotypic change in a native bird population following conversion of the Colorado Desert to agriculture. *J Avian Biol* 49:1–6. <https://doi.org/10.1111/jav.01507>

Mayr E. 1963. Animal species and evolution. Cambridge (MA): Harvard University Press.

McKechnie AE, Gerson AR, Wolf BO. 2021. Thermoregulation in desert birds: scaling and phylogenetic variation in heat tolerance and evaporative cooling. *J Exp Biol* 224:jeb229211. <https://doi.org/10.1242/jeb.229211>

McKechnie AE, Wolf BO. 2010. Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. *Biol Lett* 6:253–6. <https://doi.org/10.1098/rsbl.2009.0702>

McKechnie AE. 2008. Phenotypic flexibility in basal metabolic rate and the changing view of avian physiological diversity: a review. *J Comp Physiol B* 178:235–47. <https://doi.org/10.1007/s00360-007-0218-8>

Meek MH, Beever EA, Barbosa S, Fitzpatrick SW, Fletcher NK, Mittan-Moreau CS, Reid BN, Campbell-Staton SC, Green NF, Hellmann JJ. 2023. Understanding local adaptation to prepare populations for climate change. *BioScience* 73:36–47. <https://doi.org/10.1093/biosci/biac101>

Montaigne D, Butruille L, Staels B. 2021. PPAR control of metabolism and cardiovascular functions. *Nat Rev Cardiol* 18:809–23. <https://doi.org/10.1038/s41569-021-00569-6>

Moreira LR, Smith BT. 2023. Convergent genomic signatures of local adaptation across a continental-scale environmental gradient. *Sci Adv* 9:eadd0560. <https://doi.org/10.1126/sciadv.add0560>

Muñoz-Garcia A, Williams JB. 2008. Developmental plasticity of cutaneous water loss and lipid composition in stratum corneum of desert and mesic nestling house sparrows. *Proc Natl Acad Sci USA* 105:15611–6. <https://doi.org/10.1073/pnas.0805793105>

Muñoz-Garcia A, Williams JB. 2011. Cutaneous water loss and the development of the stratum corneum of nestling house sparrows (*Passer domesticus*) from desert and mesic environments. *Physiol Biochem Zool* 84:277–86. <https://doi.org/10.1086/659372>

Muñoz-Garcia A, Williams JB. 2005. Cutaneous water loss and lipids of the stratum corneum in house sparrows, *Passer domesticus*, from arid and mesic environments. *J Exp Biol* 208:3689–700.

Nafstad ÅM, Rønning B, Aase K, Ringsby TH, Hagen IJ, Ranke PS, Kvalnes T, Stawski C, Räsänen K, Sæther B-E et al. 2023. Spatial variation in the evolutionary potential and constraints of basal metabolic rate and body mass in a wild bird. *J Evol Biol* 36:650–62. <https://doi.org/10.1111/jeb.14164>

Natarajan C, Hoffmann FG, Weber RE, Fago A, Witt CC, Storz JF. 2016. Predictable convergence in hemoglobin function has unpredictable molecular underpinnings. *Science* 354:336–39.

Noakes MJ, McKechnie AE. 2019. Reaction norms for heat tolerance and evaporative cooling capacity do not vary across a climatic gradient in a passerine bird. *Comp Biochem Physiol A Mol Integr Physiol* 236:110522.

Noakes MJ, McKechnie AE. 2020. Phenotypic flexibility of metabolic rate and evaporative water loss does not vary across a climatic gradient in an afrotropical passerine bird. *J Exp Biol* 223:jeb220137.

Noakes MJ, Wolf BO, McKechnie AE. 2016. Seasonal and geographical variation in heat tolerance and evaporative cooling capacity in a passerine bird. *J Exp Biol* 219:859–69. <https://doi.org/10.1242/jeb.132001>

Noakes MJ, Wolf BO, McKechnie AE. 2017. Seasonal metabolic acclimatization varies in direction and magnitude among populations of an afrotropical passerine bird. *Physiol Biochem Zool* 90:178–89. <https://doi.org/10.1086/689030>

Nord A, Holje V, Judik B, Folkow LP, Pap PL. 2023. Seasonal changes in plumage density, plumage mass, and feather morphology in the world's northernmost land bird, the Svalbard Rock Ptarmigan (*Lagopus muta hyperborea*). *Polar Biol* 46:277–90. <https://doi.org/10.1007/s00300-023-03118-8>

Nord A, Persson E, Tabh JKR, Thoral E. 2024. Shrinking body size may not provide meaningful thermoregulatory benefits in a warmer world. *Nat Ecol Evol* 8:387–9. <https://doi.org/10.1038/s41559-023-02307-2>

O'Connor RS, Wolf BO, Brigham RM, McKechnie AE. 2017. Avian thermoregulation in the heat: efficient evaporative cooling in two southern African nightjars. *J Comp Physiol B* 187:477–91. <https://doi.org/10.1007/s00360-016-1047-4>

Pap PL, Osváth G, Daubner T, Nord A, Vincze O. 2020. Down feather morphology reflects adaptation to habitat and thermal conditions across the avian phylogeny. *Evolution* 74:2365–76. <https://doi.org/10.1111/evo.14075>

Peña-Villalobos I, Valdés-Ferranty F, Sabat P. 2013. Osmoregulatory and metabolic costs of salt excretion in the Rufous-collared sparrow *Zonotrichia capensis*. *Comp Biochem Physiol A Mol Integr Physiol* 164:314–8. <https://doi.org/10.1016/j.cbpa.2012.10.027>

Phifer-Rixey M, Bi K, Ferris KG, Sheehan MJ, Lin D, Mack KL, Keeble SM, Suzuki TA, Good JM, Nachman MW. 2018. The genomic basis of environmental adaptation in house mice. *PLoS Genet* 14:e1007672. <https://doi.org/10.1371/journal.pgen.1007672>

Piersma T, Drent J. 2003. Phenotypic flexibility and the evolution of organismal design. *Trends Ecol Evol* 18:228–33. [https://doi.org/10.1016/S0169-5347\(03\)00036-3](https://doi.org/10.1016/S0169-5347(03)00036-3)

Playà-Montmany N, González-Medina E, Cabello-Vergel J, Parejo M, Abad-Gómez JM, Sánchez-Guzmán JM, Villegas A, Masero JA. 2021. The thermoregulatory role of relative bill and leg surface areas in a Mediterranean population of Great tit (*Parus major*). *Ecol Evol* 11:15936–46. <https://doi.org/10.1002/ece3.8263>

Prosser CL. 1955. Physiological variation in animals. *Biol Rev* 30:229–61.

Qu Y, Chen C, Xiong Y, She H, Zhang YE, Cheng Y, Dubay S, Li D, Ericson PGP, Hao Y et al. 2020. Rapid phenotypic evolution with shallow genomic differentiation during early stages of high elevation adaptation in eurasian Tree Sparrows. *Natl Sci Rev* 7:113–27. <https://doi.org/10.1093/nsr/nwz138>

Quirici V, Venegas CI, González-Gómez PL, Castaño-Villa GJ, Wingfield JC, Vásquez RA. 2014. Baseline corticosterone and stress response in the Thorn-tailed Rayadito (*Aphrastura spinicauda*) along a latitudinal gradient. *Gen Comp Endocrinol* 198:39–46. <https://doi.org/10.1016/j.ygce.2013.12.010>

Reid BN, Star B, Pinsky ML. 2023. Detecting parallel polygenic adaptation to novel evolutionary pressure in wild populations: a case study in Atlantic cod (*Gadus morhua*). *Philos Trans R Soc Lond B Biol Sci* 378:20220190. <https://doi.org/10.1098/rstb.2022.0190>

Ribeiro ÂM, Puetz L, Pattinson NB, Dalén L, Deng Y, Zhang G, Da Fonseca RR, Smit B, Gilbert MTP. 2019. 31° South: the physiology of adaptation to arid conditions in a passerine bird. *Mol Ecol* 28:3709–21. <https://doi.org/10.1111/mec.15176>

Riddell EA, Iknayan KJ, Hargrove L, Tremor S, Patton JL, Ramirez R, Wolf BO, Beissinger SR. 2021. Exposure to climate change drives stability or collapse of desert mammal and bird communities. *Science* 371:633–6. <https://doi.org/10.1126/science.abd4605>

Rønning B, Jensen H, Moe B, Bech C. 2007. Basal metabolic rate: heritability and genetic correlations with morphological traits in the zebra finch. *J Evol Biol* 20:1815–22. <https://doi.org/10.1111/j.1420-9101.2007.01384.x>

Ruegg K, Anderson EC, Somveille M, Bay RA, Whitfield M, Paxton EH, Smith TB. 2021. Linking climate niches across seasons to assess population vulnerability in a migratory bird. *Glob Chang Biol* 27:3519–31. <https://doi.org/10.1111/gcb.15639>

Sabat P, Cavieres G, Veloso C, Canals M, Bozinovic F. 2009. Intraspecific basal metabolic rate varies with trophic level in rufous-collared sparrows. *Comp Biochem Physiol A Mol Integr Physiol* 154:502–7. <https://doi.org/10.1016/j.cbpa.2009.08.009>

Sabat P, Cavieres G, Veloso C, Canals M. 2006. Water and energy economy of an omnivorous bird: population differences in the Rufous-collared Sparrow (*Zonotrichia capensis*). *Comp Biochem Physiol A Mol Integr Physiol* 144:485–90. <https://doi.org/10.1016/j.cbpa.2006.04.016>

Sabat P, Maldonado K, Rivera-Hutinel A, Farfan G. 2004. Coping with salt without salt glands: osmoregulatory plasticity in three species of coastal songbirds (ovenbirds) of the genus *Cinclodes* (Passeriformes: Furnariidae). *J Comp Physiol B* 174:415–20. <https://doi.org/10.1007/s00360-004-0428-2>

Santure AW, Garant D. 2018. Wild GWAS—association mapping in natural populations. *Mol Ecol Resour* 18:729–38. <https://doi.org/10.1111/1755-0998.12901>

Savolainen O, Lascoux M, Merilä J. 2013. Ecological genomics of local adaptation. *Nat Rev Genet* 14:807–20. <https://doi.org/10.1038/nrg3522>

Schielzeth H, Forstmeier W, Kempenaers B, Ellegren H. 2012. QTL linkage mapping of wing length in zebra finch using genome-wide single nucleotide polymorphisms markers. *Mol Ecol* 21:329–39. <https://doi.org/10.1111/j.1365-294X.2011.05365.x>

Scholander PF. 1955. Evolution of climatic adaptation in homeotherms. *Evolution* 9:15–26.

Song S, Beissinger SR. 2020. Environmental determinants of total evaporative water loss in birds at multiple temperatures. *Auk* 137:1–12. <https://doi.org/10.1093/auk/ukz069>

Soobramoney S, Downs CT, Adams NJ. 2003. Physiological variability in the Fiscal Shrike *Lanius collaris* along an altitudinal gradient in South Africa. *J Therm Biol* 28:581–94. <https://doi.org/10.1016/j.jtherbio.2003.08.004>

Sutherland PR, Packard GC, Taigen TL, Boardman TJ. 1980. An altitudinal cline in conductance of cliff swallow (*Petrochelidon pyrrhonota*) eggs to water vapor. *Auk* 97:177–85.

Stager M, Senner NR, Swanson DL, Carling MD, Eddy DK, Greives TJ, Cheviron ZA. 2021. Temperature heterogeneity correlates with intraspecific variation in physiological flexibility in a small endotherm. *Nat Commun* 12:1–11. <https://doi.org/10.1038/s41467-021-24588-6>

Stager M, Senner NR, Tobalske BW, Cheviron ZA. 2020. Body temperature maintenance acclimates in a winter-tenacious songbird. *J Exp Biol* 223:jeb221853.

Stemberger M, Williams AM, Gasho C, Dawkins TG, Drane A, Villafuerte FC, Levine BD, Shave R, Ainslie PN. 2019. The overlooked significance of plasma volume for successful adaptation to high altitude in Sherpa and Andean natives. *Proc Natl Acad Sci USA* 116:16177–9. <https://doi.org/10.1073/pnas.1909002116>

Stone GN, Nee S, Felsenstein J. 2011. Controlling for non-independence in comparative analysis of patterns across populations within species. *Phil Trans R Soc B* 366:1410–24. <https://doi.org/10.1098/rstb.2010.0311>

Stonehouse JC, Spurgin LG, Laine VN, Bosse M, Groenen MAM, Van Oers K, Sheldon BC, Visser ME, Slate J. 2024. The genomics of adaptation to climate in European great tit (*Parus major*) populations. *Evol Lett* 8:18–28.

Storz JF, Bridgham JT, Kelly SA, Garland T. 2015. Genetic approaches in comparative and evolutionary physiology. *Am J Physiol Regul Integr Comp Physiol* 309:R197–214. <https://doi.org/10.1152/ajpregu.00100.2015>

Storz JF, Scott GR. 2021. Phenotypic plasticity, genetic assimilation, and genetic compensation in hypoxia adaptation of high-altitude vertebrates. *Am J Physiol Regul Integr Comp Physiol* 253:110865. <https://doi.org/10.1016/j.cbpa.2020.110865>

Storz JF, Wheat CW. 2010. Integrating evolutionary and functional approaches to infer adaptation at specific loci. *Evolution* 64:2489–509. <https://doi.org/10.1111/j.1558-5646.2010.01044.x>

Storz JF, Scott GR, Cheviron ZA. 2010. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. *J Exp Biol* 213:4125–4136. <https://doi.org/10.1242/jeb.048181>

Sultan SE, Spencer HG. 2002. Metapopulation structure favors plasticity over local adaptation. *Am Nat* 160:271–83.

Svensson EI, Schou MF, Melgar J, Waller J, Engelbrecht A, Brand Z, Cloete S, Cornwallis CK. 2024. Heritable variation in thermal profiles is associated with reproductive success in the world's largest bird. *Evol Lett* 8:200–11.

Swanson DL. 1991. Seasonal adjustments in metabolism and insulation in the dark-eyed junco. *The Condor* 93: 538–45.

Szarmach SJ, Brelsford A, Witt CC, Toews DPL. 2021. Comparing divergence landscapes from reduced-representation and whole genome resequencing in the yellow-rumped warbler (*Setophaga coronata*) species complex. *Mol Ecol* 30:5994–6005.

Tarka M, Åkesson M, Beraldi D, Hernández-Sánchez J, Has selquist D, Bensch S, Hansson B. 2010. A strong quantitative trait locus for wing length on chromosome 2 in a wild population of great reed warblers. *Proc R Soc B* 277:2361–9. <https://doi.org/10.1098/rspb.2010.0033>

Tattersall GJ, Andrade DV, Abe AS. 2009. Heat exchange from the toucan bill reveals a controllable vascular thermal radiator. *Science* 325:468–70. <https://doi.org/10.1126/science.1175553>

Tattersall GJ, Arnaout B, Symonds MRE. 2017. The evolution of the avian bill as a thermoregulatory organ. *Biol Rev* 92:1630–56. <https://doi.org/10.1111/brv.12299>

Teplitsky C, Millien V. 2014. Climate warming and Bergmann's rule through time: is there any evidence? *Evol Appl* 7:156–68. <https://doi.org/10.1111/eva.12129>

Teplitsky C, Mills JA, Alho JS, Yarrant JW, Merilä J. 2008. Bergmann's rule and climate change revisited: disentangling environmental and genetic responses in a wild bird population. *Proc Natl Acad Sci USA* 105:13492–6. <https://doi.org/10.1073/pnas.0800999105>

Terrill RS, Shultz AJ. 2023. Feather function and the evolution of birds. *Biol Rev* 98:540–66. <https://doi.org/10.1111/brv.12918>

The Gene Ontology Consortium. 2019. The gene ontology resource: 20 years and still GOing strong. *Nucleic Acids Res* 47:D330–8. <https://doi.org/10.1093/nar/gky1055>

The UniProt Consortium. 2017. UniProt: the universal protein knowledgebase. *Nucleic Acids Res* 45:D158–69.

Thompson LJ, Downs CT. 2017. Altitudinal variation in metabolic parameters of a small afrotropical bird. *Comp Biochem Physiol A Mol Integr Physiol* 212:88–96.

Tieleman BI, Williams JB, Buschur ME, Brown CR. 2003. Phenotypic variation of larks along an aridity gradient: are desert birds more flexible? *Ecology* 84:1800–15. [https://doi.org/10.1890/0012-9658\(2003\)084\[1800:PVOLAA\]2.0.CO;2](https://doi.org/10.1890/0012-9658(2003)084[1800:PVOLAA]2.0.CO;2)

Tieleman BI. 2007. Differences in the physiological responses to temperature among stonechats from three populations reared in a common environment. *Comp Biochem Physiol A Mol Integr Physiol* 146:194–9. <https://doi.org/10.1016/j.cbpa.2006.10.011>

Toews DPL, Taylor SA, Vallender R, Brelsford A, Butcher BG, Messer PW, Lovette IJ. 2016. Plumage genes and little else distinguish the genomes of hybridizing warblers. *Curr Biol* 26:2313–8. <https://doi.org/10.1016/j.cub.2016.06.034>

Trost CH. 1972. Adaptations of horned larks (*Eremophila alpestris*) to hot environments. *Auk* 89:506–27.

Turbek SP, Bossu C, Rayne C, Gruppi C, Kus BE, Whitfield M, Smith TB, Paxton EH, Bay RA, Ruegg KC. 2023. Historical DNA reveals climate adaptation in an endangered songbird. *Nat Clim Chang* 13:735–41.

Urban MC, Bocedi G, Hendry AP, Mihoub J-B, Pe'er G, Singer A, Bridle JR, Crozier LG, De Meester L, Godsoe W et al. 2016. Improving the forecast for biodiversity under climate change. *Science* 353:aad8466.

Urban MC, Swaegers J, Stoks R, Snook RR, Otto SP, Noble DWA, Moiron M, Hällfors MH, Gómez-Llano M, Fior S et al. 2024. When and how can we predict adaptive responses to climate change? *Evol Lett* 8:172–87. <https://doi.org/10.1093/evlett/qra038>

Veloz SD, Williams JW, Blois JL, He F, Otto-Bliesner B, Liu Z. 2012. No-analog climates and shifting realized niches during the late quaternary: implications for 21st-century predictions by species distribution models. *Glob Chang Biol* 18:1698–713. <https://doi.org/10.1111/j.1365-2486.2011.02635.x>

Walsh J, Benham PM, Deane-Coe PE, Arcese P, Butcher BG, Chan YL, Cheviron ZA, Elphick CS, Kovach AI, Olsen BJ et al. 2019. Genomics of rapid ecological divergence and parallel adaptation in four tidal marsh sparrows. *Evol Lett* 3:324–38. <https://doi.org/10.1002/evl3.126>

Walther G-R. 2010. Community and ecosystem responses to recent climate change. *Phil Trans R Soc B* 365:2019–24. <https://doi.org/10.1098/rstb.2010.0021>

Wikelski M, Spinney L, Schelsky W, Scheuerlein A, Gwinner E. 2003. Slow pace of life in tropical sedentary birds: a common-garden experiment on four stonechat populations from different latitudes. *Proc R Soc Lond B* 270:2383–8. <https://doi.org/10.1098/rspb.2003.2500>

Williams JB, Muñoz-Garcia A, Champagne A. 2012. Climate change and cutaneous water loss of birds. *J Exp Biol* 215:1053–60. <https://doi.org/10.1242/jeb.054395>

Williams JB. 1996. A phylogenetic perspective of evaporative water loss in birds. *Auk* 113:457–72.

Williams SE, Shoo LP, Isaac JL, Hoffmann AA, Langham G. Towards an integrated framework for assessing the vulnerability of species to climate change. *PLOS Biology* 6.

Williamson JL, Linck EB, Bautista E, Smiley A, McGuire JA, Dudley R, Witt CC. 2023. Hummingbird blood traits track oxygen availability across space and time. *Ecology Letters* 26:1223–36. <https://doi.org/10.1111/ele.14235>

Youngflesh C, Saracco JF, Siegel RB, Tingley MW. 2022. Abiotic conditions shape spatial and temporal morphological variation in North American birds. *Nat Ecol Evol* 6:1–35. <https://doi.org/10.1038/s41559-022-01893-x>

Zimmer C, Taff CC, Ardia DR, Rose AP, Aborn DA, Johnson LS, Vitousek MN. 2020. Environmental unpredictability shapes glucocorticoid regulation across populations of tree swallows. *Sci Rep* 10:1–13. <https://doi.org/10.1038/s41598-020-70161-4>

Zink RM, Remsen JV. 1986. Evolutionary processes and patterns of geographic variation in birds. *Curr Ornithol* 4:1–69.