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Synopsis Proj e cte d rates of climate chan g e ov er the next century are expe cte d to force species to shift ran g es, adapt, or accli- 
mat e t o evade ext inct ion. Pre dict ing which of these scenarios may be most likely is a cent ra l cha l len g e fo r co n servin g biodiv er- 
sity in the immediat e future . Modelin g framew orks t hat t ak e adva n tage of in t raspe cific variat ion acr oss envir onmenta l g radients 
ca n be pa rticula rly importa nt f or me et ing thi s ch a l len g e. Whi le these sp ace-for-t ime appro aches are essent ia l for climat ic and 
gen omic m ode ling approach es, m ech ani stic m ode l s th at inco rpo rate e colog ica l physiology data into as ses sing s pe cies vu lner- 
ab ili ties rarely include int raspe cific variat ion. A maj o r reaso n fo r thi s gap i s th e gen eral lack o f emp iric al d a ta on in t raspe cific 
ge og ra phic varia tion in av i an p hysio log ica l t raits. In this re vie w, we out line t h e eviden ce f or a n d processes s hapin g g e og raphic 
vari ation in av i an traits. We use the example of evaporative water loss to underscore the lack of r esear ch on ge og ra phic varia tion, 
even in traits central to cooling costs in birds. We n ext dem onstrate h ow s hif ting t he focus of av i an p hysio log ica l r esear c h t o 
int raspe cific variat ion can facilitate greater integ rat io n wi th emer gin g g eno mics app ro aches. Fina l ly, we ou tline impo rtant next 
steps for an in tegra tive a pproac h t o advan ce un derstan ding of av i an p hysio log ica l ada pta tio n wi thin s pecies. Addres sing the 
kn owledge gaps outlin ed in this re vie w wi l l cont ribut e t o an imp roved p re dict iv e framew ork tha t syn th esizes environm ental, 
m orph olog ica l, physiolog ica l, and genomic data to as ses s s pecies s pe cific vu lnerabi lit ies to a warming planet. 
Introduction 
Un derstan din g animal respon ses to clim ate ch an g e is 
o ne o f the most p ressing co nservatio n challen g es in the 
21st century. D et ai le d as ses sments of which po p u lat ions 
may be the most vulnerable to o ngo ing warming trends 
wi l l be essent ia l for dire ct ing m an agement efforts to 
mitigate th e n egat ive effe cts of c limat e c han g e. To this 
end, r esear chers have studied the potent ia l imp acts of 
c limat e c han g e acr oss differ ent biolog ica l and tempora l 
s cales. Thes e ran g e fro m co mmuni ty and ecosystem re- 
spo nses ( Wal th er 2010 ; Ridde ll et al. 2021 ) to responses 
at the level of genotypes ( Bay et al. 2018 ; Bi et al. 2019 ). 
Responses t o c limat e c han g e hav e a lso be en eva luate d 
a t differen t tem pora l sca les, rang ing from a few decades 
( Araújo et a l. 2005 ; Yo ungflesh et a l. 2022 ) to p a le ocli- 
m atic ch an g e usin g the fossi l re cord ( Veloz et al. 2012 ). 
Co mpariso ns o f int raspe cific variat ion may be p art ic- 

ular ly re levant to un derstan ding in div idu a l spe cies’ re- 
sponses t o c limat e c han g e. Eva luat ion of int raspe cific 
variation across space co ntribu t es t o a mec h ani stic un- 
derstanding of how species adapt and acclimatize to 
environmental chan g e at s h o rt evol u tio nary t imesca les 
that can inform pre dict ive m ode l s ( Hoffm a nn a nd Sgró
2011 ; Fitzp at rick an d Ke l ler 2015 ; Me ek et al. 2023 ). 

One of the most widely used modeling approaches 
are e colog ica l nich e m ode l s (ENMs) th at lin k spe cies 
occur rence dat a an d environm enta l p a ra met er s t o es- 
timate the b read th o f climatic co ndi tio n s tolera ble to 
a species ( E lit h and Le at hwick 2009 ). An ENM can in 
turn be used to make p redictio n s a bout th e like lih o o d 
of sp ecies o ccupan cy un der chan gin g climatic condi- 
tio ns ( Hi jma ns a nd Graha m 2006 ). How ev er, ther e ar e 
limi tatio ns to ENM-based m ode l s of clim ate ch an g e re- 
sp onses ( Buck ley et al. 2018 ), and the inco rpo ratio n 
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Fig. 1 Schematic showing the process of intraspecific divergence in response to environmental change. (A) The process of divergence 
between populations in response to environmental variation. Selection will favor individuals with higher fitness, which in turn causes allele 
frequency shifts at genes related to phenotypes underpinning differences in whole organism performance and fitness. Environment can also 
directly influence spatial variation at all levels of this hierarchy through developmental or reversible plasticity and trans-generational 
epigenetic mechanisms. (B) This framework can in turn guide integration of different modeling approaches to robustly infer species 
vulnerabilities to climate change in the near future. The dashed box highlights models that rarely incorporate intraspecific variation. 
o f addi tio nal genotyp ic an d ph en ot ypic d ata c an con- 
tribut e t o imp roved p re dict io ns o f s pecies res ponses to 
c limat e c han g e ( Urban et al. 2016 ). F or exam ple, spa- 
t ia l associat ion s betw een g en otype an d environm ent are 
increasin gly bein g lev erag ed t o under stand mi sm at c hes 
between the genotypes of a local po p u lat ion and fu- 
tur e envir o nmental co ndi tio ns (re vie wed in Capblancq 
et al. 2020 ). These mi sm at c hes provide an as ses sment 
o f geno mic vulnerab ili ty and have been validated with 
po p u lat ion t rends ( Bay et al. 2018 ) o r co mmo n gar- 
den experiments where genotypes that are more mis- 
mat c he d from loca l co ndi tio ns exhib i t red uced fitness 
( Lind et al. 2024 ). Fina l ly, me ch ani stic model s directly 
lev erag e data on the p hysio log ica l cap aci ty o f anim al s 
to deal with heat s tres s and water limi tatio ns to as ses s 
spe cies vu lnerabi lit ies t o c limat e c han g e ( Chown et al. 
2010 ; Bozinovic and Pörtner 2015 ; Briscoe et al. 2023 ). 

Altho ugh bo th ENMs and geno mic o ffset app roaches 
inco rpo ra te spa ti al d ata, f ew mecha nistic m ode ls that 
include p hysio log ica l da ta accoun t for in t raspe cific sp a- 
t ia l variat ion in measure d t raits. D at a from a single lo- 
c alit y w ithout acclimation or acclima tiza tion da ta are 
co mmo nly as s umed to r epr esent a fixe d t rait across a 
s pecies dis tribu tio n and in response to different treat- 
m ents ( McKechnie an d Wolf 2010 ; Al bright et al. 2017 ). 
Thi s a s s umpt ion is li kely to be fa l se in m any species with 
bro ader ge og raphic ra nges ( P rosser 1955 ; Ga rla nd a nd 
Ado lp h 1991 ; McKechnie 2008 ). Failure to account for 
int raspe cific variat ion when ma kin g inferences a bout 

c limat e c han g e vulnera b ili ty could mislead p redictio ns 
in serious ways. For instan ce, Al bright et al. (2017) 
use empirical data o n evapo rati ve coo ling c apacit y of 
six so ngb ir d species fr o m a single locali ty c haract er- 
ized by hot, dry co ndi tio ns to project lethal dehydration 
r isk across t he distr ibu tio n o f t hese t axa. By as s uming 
that n o differen ces in eva pora ti ve coo ling c apacit y exist 
among po p u lat ions expose d to mesic versus dry condi- 
tions, th e m ode l may be underest imat ing vu lnerabi lity 
to future climatic co ndi tio ns. 

An in tegra ted un derstan ding of h ow environm en- 
t al var iatio n co ntribu t es t o int raspe cific div er g ence wi l l 
be essent ia l fo r p re dict ing spe cies responses t o c limat e 
chan g e (Fig. 1 A; Dalziel et al. 2009 ; Storz and Wheat 
2010 ; Storz et al. 2015 ). This wi l l ena ble the dev elop- 
ment of a modelin g framew ork tha t in tegra tes curren t 
gen omic, m ech ani stic, an d environm en tal a pproaches 
(Fig. 1 B). How ev er, an in-depth un derstan ding of how 
ph en otypic div er g ence acr oss envir onmenta l g radients 
co ntribu t es t o p hysio log ica l per for m ance i s l acking . 
In this re vie w, w e ar gue f or a n expa nsio n o f r esear ch 
on av i an p hysio log ica l div er g ence acr oss envir onmen- 
ta l g radien ts. Cen tering r esear ch on ge og raphic varia- 
tion, which we define a s intra s pecific s pati al vari ation, 
wi l l provide a stron g framew ork for invest igat ing the 
mech ani stic underpinnings of av i an ad a pta tion to en- 
vironmenta l cha l len g es and glob a l chan g e. We specif- 
ica l ly di scu ss: (1) th e eviden ce for ge og raphic varia- 
tion in av i an p hysio logical c haract er s; (2) the different 
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e colog ica l and evol u tio nary p rocesses th at can sh ape 
observe d p atterns of ge og ra phic varia tion; (3) how 
knowle dge of int raspe cific variat ion in key p hysio log- 
ica l t ra its rema ins spa rse; (4) o p po rtuni ties fo r co mb in- 
ing int raspe cific studies with genomic datasets to ad- 
van ce un derstan ding of av i an p hysio logy; and (5) how 
in tegra ting p hysio logical, morp ho log ica l, and genomic 
d ata c an imp rove p re dict iv e framew o rks fo r eval uating 
ada pta tion to environmental chan g e through space and 
time. 
Evidence for g eo graphic variation in 
a vian ph ysiology 
Ov er tw o centur ies of rese arch have generated abun- 
d ant ev idence for ge og ra phic varia tion in avian mor- 
p ho logy, p lum age, life hi st ory, diet, migrat ory behavior, 
p hysio logy, and a l lele fre quencies ( Mayr 1963 ; Zink and 
R emsen 1986 ; Av ise 2000 ). The often strong associa- 
tion s betw een ph en otype an d environm ent have led or- 
nithologists to interpret patterns of sp at ia l variat ion as 
ev idence for ad a pta tion to differen t clima tic pres s ures 
( Johnston and Sela nder 1964 ; Ja mes 1970 ; Youngflesh 
e t al. 2022 ; Mason e t al. 2023 ). F or exam ple, varia tion 
a long lat itudina l an d th erma l g radients in b o dy size and 
appendag e len gth ( e.g . , bi l l a nd ta rsu s length) h a s cla ssi- 
ca l ly be en int erpret ed in the cont ext o f heat dissi p at ion 
rates across the surface of obj e cts with sma l ler or lar g er 
surface-to-volume ratios ( Bergmann 1847 ; Allen 1877 ; 
but see Sch olan der 1955 ). How ev er, t raits li ke bi l l size 
also vary in relation to diet and foraging ecology and can 
play im portan t roles in so ng p rod uctio n ( Tatt er sa l l et al. 
2017 ). Similarl y, p lum age ch aracters m ay co ntribu te to 
t her mo regulato ry perfo rmance in b irds, bu t also play 
crit ica l roles in camoufla ge, resis t ance to we ar, flight 
per for man ce, foraging be havior, an d sexual sele ct ion 
( Ter r i l l and Shu l tz 2023 ). Ul t imately, a de eper, me cha- 
nis tic unders tanding of av i an ad a pta tion to differen t en- 
vir onments r equir es an explo ratio n o f ge og raphic vari- 
ation in whole organism p hysio log ica l per for man ce an d 
the traits underlying div er g ence in per for mance. 

Few studies have explore d ge og ra phic varia tion in 
p hysio log ica l c haract er s beyon d th e external m orph o- 
log ica l and plumage c haract er s describ ed ab o ve. Ho w- 
ev er, availa ble r esear ch s ugges ts that ge og raphic varia- 
tion in a variety of addit iona l p hysio log ica l t raits may 
be co mmo n ( Table 1 ). These studies ident ifie d sp a- 
t ia l, int raspe cific variat ion in p hysio log ica l c haract er s 
across gradients in elevation ( Carey et al. 1983 ; Dubay 
and Witt 2014 ), tem pera ture ( Blem 1974 ; Dawson et al. 
1983 ; Bur g er and Denv er 2002 ), aridi ty ( Amb rose and 
Brad sh aw 1988 ; No a kes e t al. 2016 ; Ribeiro e t al. 
2019 ), sa linity ( Ben ha m a n d Ch eviron 2020 ), urban- 
iza tion ( Gira udea u and McGraw 2014 ), and poll u tio n 

( Bauerová e t al. 2017 ). Di v er g en ce across th ese en- 
vironmenta l g radients occurs in a diversity of traits 
co ntribu ting to p hysio logical per for m ance. Thi s in- 
cludes div er g en ce in kidn ey size an d m e du l lary t is- 
s ue in res po nse to enviro nmen ts tha t pose osmotic 
cha l len g es ( Benha m a n d Ch eviron 2020 ). Mesic an d 
arid-adap ted ho use s parrows demons trate differences 
in li p id co mposi tio n o f ep iderma l t is s ue that underpins 
differences in cuta neous water loss rates ( Pas ser do mes- 
ti cus ; Muñoz-Garcia an d Wi l liams 2008 ; Wi l liams et al. 
2012 ). Chan g es in biochemical functions, such as in- 
creased h em oglob in oxygen b inding affini ty, have been 
t ie d to a l lele fre quen cy s hifts across e levat ion g radients 
( Galen e t al. 2015 ; Kumar e t al. 2017 ). Last, differences 
in h orm onal leve ls an d h orm on e re ceptor act iv it y vary 
across latitude in white-crowne d sp arrows ( Z ono tric hia 
l eu cophrys ; Breun er et al. 2003 ). 

Survival and r epr oduction in differ ent envir onments 
wi l l a lso ne cessita te ada pti ve di vergence in p hysio logi- 
cal per for mance across life s ta g es. Alon g elevat ion g ra- 
dients, the re duct ions in atm osph eric pres s ure lead to 
incre ased diffusiv it y of water vapor; in r esponse, r e- 
searc her s have document e d de cre ases in eg g water va- 
po r co nd uctance wi t h incre asing elevation ( Sot herland 
e t al. 1980 ; Carey e t al. 1983 ). House sparrows in mesic 
a nd a rid environm ents also exhi b i t div er g ence in cuta- 
neous water loss durin g dev e lopm ent ( Muñoz-Garcia 
and Wi l liams 2011 ; C lement et al. 2012 ). Fina l ly, re- 
cent w ork sugg ests t hat t he low p art ia l pres s ures of oxy- 
gen at high elevation also co ntribu t e t o div er g ence in 
h em oglob in loci exp ressed o nly in emb ryos ( Beckman 
et al. 2022a ). Toget her, t hese studies demonstrate that 
ma ny different e colog ica l pres s ures wi l l dr ive wit hin 
species div er g ence in p hysio log ica l per for man ce an d 
subo rdinate trai ts at a l l life s ta ges. 
Understanding the ecological and 
evolutionary processes shaping 
g eo graphic variation 
F ollowing documen ta tio n o f sp at ia l variat ion, a ma- 
j or cha l len g e wi l l be deter mining t he deg re e t o whic h 
tra it va ri ation reflects genot ypic di vergence, p l asticit y, 
m atern a l effe cts, or genot ype-by-env ironmen t in terac- 
t ions ( C he viron et al. 2013 ). Dis cernin g amon g plastic 
v ersus g enet ic cont ribut ions to t ra it va riation i s ch al- 
len gin g as it of ten necessit a tes main taining birds in 
c aptiv it y ( Wike ls ki e t al. 2003 ; Stager e t al. 2020 ) or 
quan tita tiv e g en etics approach es applied to long-term 
studies of pe dig re e d po p u lat io ns ( Tepli tsky et al. 2008 ; 
Nafstad et al. 2023 ). A direct co ntribu tio n o f the en- 
vironment to p hysio log ica l t ra it va ri ation w ithin adult 
anim al s h a s been widely demonst rate d for metabolic 
rat es ( McKec hnie 2008 ), eva pora tive wa ter loss (EWL) 
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( Tieleman et al. 2003 ; No a kes and McKechnie 2019 ), 
a nd orga n sizes ( Sabat e t al. 2004 ; Peña-Villalobos e t al. 
2013 ). Th ese experim ents per for med o n ad ul t b irds 
prov ide ev iden ce for reversi b le p h en ot ypic pl asticit y, 
but the environment can also shape phenotypic vari- 
ation irreversib l y durin g dev e lopm ent ( Piersma and 
Drent 2003 ). In thi s ca se, co mmo n garden experiments 
have be en essent ia l for s h owin g that g enet ic variat ion 
like ly influen ces differen ces in m etabolic rates ( Wike ls ki 
et al. 2003 ). Effects of the env ironment c an also persist 
across g eneration s v i a a ran g e o f ep igen etic m ech ani sms 
and m atern a l effe cts ( Hu and Barrett 2017 ). O stric hes 
( St rut hio c am elus ) raised in a co mmo n garden fo r mul- 
t iple generat ions provide st rong evidence for a genetic 
ba si s to differences in t her mogenic c apacit y am ong su b- 
species fr om differ ent envir onments ( Sv en sson et al. 
2023 ). Fina l ly, sele ct ion can a lso operate on the de- 
g re e of plast icit y w ith indiv idu als fr om mor e tempora l ly 
h eterogen ous environm ents exhi bit ing g reater levels of 
pl asticit y ( Stager et al. 2021 ). 

A f urt her cha l len g e to interpretin g pattern s of geo- 
gra phic varia tion in p hysio logic al traits w ill be deter- 
mining wh eth er th e observed trait variation is adap- 
tive . Gene flow rat es, va riation in effective po p ula- 
tion sizes, and div er g ence times amon g po p u lat ions 
can influence both loc al ad a pta tio n ( K awecki an d E bert 
2004 ; Savo lainen e t al. 2013 ) and p l asticit y ( Sulta n a nd 
Spen cer 2002 ; Ch evin an d Lan de 2011 ). Furth er, envi- 
ronmenta l plast icit y c an imp rove o r impair p hysio logi- 
cal per for m ance, adaptive or m al ad apti ve p l asticit y, re- 
spe ct i vel y. F or exam ple, h umans exposed to low envi- 
ronmental o xygen (hypo xia) in crease h em oglob in co n- 
cen tra tio n, which may co ntribu t e t o mountain sic kness, 
c ardi ac strain, and r epr oductive costs ( Storz et al. 2010 ; 
Storz and Scott 2021 ). Humans w ith Himal ayan Sherpa 
ancestry com pensa te for this a pparen t mal ad aptive 
pl asticit y by increasing blo o d pla sm a vol ume, resul ting 
in high total blo o d vol ume wi th h em oglob in co ncentra- 
t ions simi l ar to indiv idu als at s ea le v el ( Stembridg e et al. 
2019 ). Th us, across eleva tion, h umans with lowland an- 
cestry in hypoxic co ndi tio ns exhib i t mal ad apti ve p he- 
not ypic pl asticit y, whi le genet ic com pensa tion in h u- 
mans with Hima layan Sherp a ancest ry leads to a lack 
of observable ph en ot ypic vari ation acros s s pace. Within 
bird species, h em oglob in co ncen tra tion al so increa ses 
a long elevat ion g radients ( D ub ay and Witt 2014 ; Linck 
et al. 2023 ; Wi l liam son et al. 2023 ). How ev er, the extent 
t o whic h th ese ph en otypic tren d s can be m al ad aptive in 
high elevation bird po p u lat ion s remain s a n outsta nding 
question. 

A broader un derstan ding of th e e colog ica l and evo- 
l u tio nary co n text sha pin g g e og ra phic varia tion in av i an 
r esponses to differ ent envir onments wi l l re quire ex- 
pa nding resea rch efforts across taxo no mic grou ps, lat- 

itudes, a nd hiera rchical levels of biolog ica l organiza- 
t ion. This wi l l be espe cia l ly im portan t for as ses sing how 
variation in p hysio logical trai ts cri tical to coping with 
t her ma l st ress may co ntribu t e t o ada pta tion and ac- 
clima tiza tio n to fu ture c limat e regimes. How ev er, as w e 
demonstrate in the next se ct ion, we lack a broad un- 
derstanding of how traits vary within species, even for 
those cent ra l to cop ing wi th h ot an d dry con ditions. 
Lack of g eo graphic variation studies in 
avian EWL 
A n a lyses of ge og ra phic varia tio n fo r any gi ven p hys- 
iolog ica l t ra it have ra r ely been r eplicated acr oss mul- 
t iple spe cies. Here, we focus on a key p hysio log ica l 
trait widely measured in b irds: E WL. The E WL o f 
an indiv idu al is o ften repo rt ed as the rat e of wat er 
lost due to resp iratio n, the rate of water lost from 
across th e s kin bar r ier, or t he tot al eva pora tive wa- 
ter loss (TEWL) that combin es cutan eous an d respi- 
ratory losses. Birds lose water to the atmosphere even 
a t rela ti vel y moderat e t emperatur es. As bir ds experi- 
ence rising ambien t tem pera tures, EWL ra tes begin to 
steep l y increase as an indiv idu al comes to rely exclu- 
si vel y on eva pora ti ve coo ling to t her moregulat e . U l- 
tima tely, loss of wa ter to keep cool can impose costs 
o n b ir ds and r esu lt in letha l dehydrat ion. Vu lnerabi l- 
ity to letha l dehydrat ion wi l l depen d on m ode of wa- 
ter loss, b o dy size , rat es of wat er loss, and access to 
sta nding water ( Ba rth olom ew an d Cade 1963 ; Dawson 
1982 ; McKechnie et al. 2021 ). Un derstan ding pat- 
terns o f E WL variatio n amo ng and wi thin spe cies wi l l 
thus be crit ica l ly im portan t fo r eval uatin g vulnera bili- 
ties of different species to clim ate ch an g e ( McKechnie 
and Wolf 2010 ; Wi l li ams et al. 2012 ; A lbright et al. 
2017 ). 

G iv en the direct importance of EWL to av i an re- 
sponses to t her ma l st r ess, we sear ch ed th e literature 
for av i an studies where rates of EWL were report ed . 
We per for med an o p po rtunistic li teratur e sear ch us- 
ing Google Scholar and a series of searc h t erms, suc h 
as av i an water eco no my, av i a n EWL, a nd av i an wa- 
ter budget. We addi tio nally surv ey ed all studies in- 
cluded in lar g e meta-analyses of av i an EWL ( Wi l liams 
1996 ; Song and Beissinger 2020 ). We rest ricte d our 
analyses to studies of w ild-c a ugh t birds and stud- 
ies t hat cle ar ly in dicate d a ge og raphic loca li ty fo r 
measur ed bir ds. For each study that met these cri- 
teria, we assig ne d the number o f locali ties wi thin 
spe cies b ase d on h ow th e auth ors ana lyze d t he dat a. 
Spe cifica l ly, if au tho rs re cog nize d different po p u lat ions 
in analyses, w e con sidered those distinct localities, 
wher eas bir ds ana lyze d as a single po p u lat ion were 
co nsidered o ne locali ty. We n oted wh eth er EWL was 
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Fig. 2 Summary of studies quantifying EWL from two or more localities. Number of localities sampled is along the x-axis and number of 
studies on the y-axis. Left panel distinguishes studies that only measured EWL at a single temperature (typically within the thermal neutral 
zone; black) versus across multiple temperatures (gray). The right panel shows the number of studies where the effects of acclimation or 
acclimatization to different environmental variables were considered (gray) or not (black). 
measured at a single ambient temperature (t ypic a l ly 
wit hin t he t her ma l neut ra l zone) or if EWL rates 
wer e measur ed acr oss a ran g e o f amb ien t tem pera- 
tures. Fina l ly, we note d whet her aut ho rs co nsidered 
E WL respo ns es to s eas ona l acclimat izat ion, experimen- 
ta l acclimat ion, differ ent temperatur es, or water restric- 
tions. 

In t otal , we ident ifie d 187 studies t hat met our cr i- 
ter ia; t h ese in clude d 262 spe cies ( Supp lementary Tab le 
S1 ). Of these, only 22 studies (11.8%), including 13 
species (5.0% of 262 sp ecies), rep orted intrasp ecific data 
from two or more loca lit ies. Nearly ha lf of the stud- 
ies incl uded co mpariso n s betw een only tw o po p ulations 
( n = 10), and a maximum of 11 loca lit ies were ana lyze d 
in a single study (Fig. 2 ; Table 2 ). Approximately half of 
the studies included measurements of EWL from mul- 
tiple tem pera tures. Of th e nin e studies that m easured 
effects of a trea tmen t o n E WL, four measured tempera- 
tur e differ ences, two s eas onal differences, two humidity, 
an d on e hydra tion sta t e . 

The sc arcit y of ge og ra phic varia t ion studies in t raits 
li ke EWL ma kes it difficu lt to draw conclusion s a bout 
how EWL rates may shift in response to environ- 
mental chan g e. Ov er half of the studies ( n = 14) re- 
port s tatis tic ally signific a nt differences in EWL rates 
among po p u lat ion s. Amon g the studies that did not 
fin d eviden ce for sp at ia l variat io n in E WL were s e v- 
eral that accounted for the effects of pl asticit y. For 
instance , whit e-browe d sp ar row-we avers ( Pl o ce p asser 
m ah ali ) did s h ow eviden ce for sp at ia l and s eas onal vari- 
ation in EWL ( No a kes et a l. 2016 ), b ut this stemmed 
entir ely fr om plastic r esponses to differ en t tem pera- 
tur e r eg imes ( No a k es a nd McKe chnie 2019 ; No a kes 
and McKechnie 2020 ). In contras t, s patial differences 
in E WL amo ng ruf ous-colla red spa rrow ( Zonot ri chi a 
ca pensis ) po p u lat ions per sist ed in ad ul t b irds exposed 
to different tem pera tur e extr emes ( Cavier es and Sabat 

2008 ). In both cases, studies explore d acclimat ion re- 
sponses in adult birds and did not account for envi- 
ro nmental co ntribu tio ns d uring develop ment o r d ue 
t o mat erna l effe cts. On ly a single study raised birds 
in a co mmo n garden environment to account for de- 
ve lopm enta l plast icity a nd f ound no differences in 
E WL amo ng sto nechats ( Saxico la t o rquat a sensu lato) 
fr om differ ent envir onm ents ( Tie lema n 2007 ). P re- 
dict ing vu lnerabi lit y of av i an po p u lat ions t o c han g es 
in t her ma l and pre cipitat ion reg imes wi l l ne cessitate 
f urt her rese arch on t he e colog ica l and evol u tio nary 
mech ani sms co ntribu ting to variatio n in evapo rative 
cooling c apacit y w it hin species. Furt her, combining 
invest igat io ns o n sp at ia l variat io n in E WL wi th ge- 
n omic an d transcri pto mic d ata w i l l p rovide impo r- 
tan t insigh ts in to av i an respo nses to fu ture climatic 
regimes. 
Intraspecific variation and omics 
approaches 
A rapid ly g rowing number of studies are app l ying omic 
approac hes t o under st and t he genetic ba si s of the adap- 
tatio n in b ir ds (r e vie we d in Camp ag na and Toews 
2022 ). Focusing on ge og ra phic varia t ion in t raits associ- 
ated with p hysio logical per for mance could t hus provide 
unique o p po rtuni ties t o int egrat e genomic approaches 
into studies of av i an p hysio logy. Many of the analyt- 
ica l appro ach es for establis hing dem ogra phic con text 
for ph en otypic div er g ence, comparison of g ene expres- 
sio n p ro files, and lin king ph en otype to gen otype, or 
genot ype to env ironment have t he gre ates t s tatis tical 
power when ma king int raspe cific comp arisons ( Hob an 
et al. 2016 ; Bernat c hez et al. 2024 ). Th ese gen omic ap- 
pro aches wi l l be m ost re leva nt f or understa nding the 
genet ic cont ribut ions to p hysio log ica l variat ion. Vari- 
o us omics ap proaches can be lev erag ed t o under stand 
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1800 P. M. Benham and E. J. Beckman 
how pl asticit y a nd tra n sg enerat iona l epigenet ic me ch- 
ani sms al so co ntribu t e t o patt ern s of g eographic varia- 
tion (re vie wed in Hu and Bar rett 2017 ; Ber nat c hez et al. 
2024 ). How ev er, in th e remain der of th e pap er, we fo cus 
pr imar ily on m eth ods aim e d at i l luminat in g the g enetic 
ba si s of local ada pta tion. Thi s focu s will provide impor- 
ta nt adva n ces in un derstan ding h ow birds adapt to en- 
vironmenta l cha l len g es a nd ca n r epr esen t an im portan t 
firs t s tep in s pe cies, li ke most bird s, th at are ch a l leng- 
ing to raise in c aptiv it y. We do not provide exten siv e 
deta ils on different sequen cing m eth ods; h ow ev er, w e 
give a brief overview of th e comm on ly use d genomics 
approaches in av i a n studies a nd ap pro priate questions 
for each in the supplemental m aterial s . 
Interpreting g eo graphic variation within a 
demographic and phylogeographic context 
Th e re lations hip betwe en e colog ica l variat ion and trait 
vari ation c an be confounded by p hylogeograp hic struc- 
ture and i solation-by-di stance. Thi s i s s ue h a s long been 
re cog nize d in int er spe cific comp arisons where individ- 
ua l spe cies are n ot in depen dent units an d phylogen etic 
re latedn ess n eeds to be accounted for when compar- 
ing trait variation acros s s pecies ( Ga rla nd 1992 ; Ga rla nd 
and Ado lp h 1994 ). Consp ecific p o p u lat ions can a lso be 
conne cte d by varying deg re es of gene flow a nd differ in 
effe ct ive po p u lat ion size , whic h can both influence pat- 
terns o f trai t div er g en ce ( Ston e e t al. 2011 ; Savo lainen 
et al. 2013 ) a nd conf ound studies of ge og raphic varia- 
tion ( Ga rla nd a nd Ado lp h 1994 ; Stone e t al. 2011 ). For 
in stance, div er g ence in phenotypic traits between ur- 
ba n Sa n Diego da r k-eyed jun cos ( Jun c o hyem alis ) and 
n earby m ontan e bir ds ( J. h. thu rberi ) wa s origin ally at- 
t ribute d to rapid adaptation and pl asticit y; how ev er, 
phyloge og raphic ana lyses later s h owed th e so urce po p- 
u lat io n fo r the San Diego b ird s wa s fro m a mo re no rth- 
ern and phenot ypic a l ly simi lar s ubs pecies ( J. h. p inos us , 
Friis et al. 2022 ). 

A number of s tatis tical approaches exis t to account 
fo r the co ntribu tio ns o f popu lat ion genet ic different ia- 
tion, gene flow, or g enetic div ersity on sp at ia l p atterns 
of ph en ot ypic vari ation (rev iewed in Stone et al. 2011 ). 
Many of these approac hes, suc h as genera lize d linear 
mixed m ode ls, in clude a n a mong po p u lat ion genet ic 
di stance m atrix a s a ra ndom effect to rem ove th e con- 
foun ding influen ces of gen e flow an d po p u lat ion st ruc- 
ture, a l lowing for conc lusions t o be made on the influ- 
ence of an environmental pa ra meter on tra it va riation. 
This approach has been used to as ses s th e environm en- 
t al dr ivers o f mo rp ho log ica l variat ion in Anolis lizards 
( Ja ffe et al. 2016 ) or sp at ia l variat ion in t her mogenic 
c apacit y of juncos ( Stager et al. 2021 ). In another ap- 
pro ach, Ben ha m a n d Ch eviron (2020) employe d st ruc- 

tura l e quat ion m ode ling to infer th e re la tive con tri- 
bu tio ns o f gene flow and e colog ica l variat io n o n pat- 
terns o f osmo regulato ry trai t div er g ence betw een Sa- 
vanna h sp arrow po p u lat ions adapte d to freshwater and 
salt mars h es. In this m ode l, s e vera l environmenta l p a- 
ramet er s from eac h po p u lat ion were use d t o generat e 
a la ten t “e colog ica l differences” va riable, a n d th e m ode l 
incl uded co rrelatio ns amo n g g ene flow, trait div er g ence, 
and e colog ica l differences. This a na lysis revea le d that 
som e osm oregu latory t raits w ere con st raine d by gene 
flow, other traits varied in response to environmen- 
t al var iatio n, and so me experienced co ntribu tio ns fro m 
bo th so urces. 

All these methods depend on inferences of po p u- 
lat ion genet ic different iat io n fro m mole cu l ar d atasets. 
Un li ke phylogenet ic studies that r equir e on e in divid- 
ual p er sp ecies, p hylogeograp hic m eth ods r equir e dense 
sampling across space with some studies including 
do zens t o hun dreds of in div idu als ( Ruegg et al. 2021 ; 
Klicka et al. 2023 ). This r equir ement may r esult in 
mi sm at c hes between po p u lat ion sampling of phylogeo- 
graphic and physiolog ica l datas ets. Cons equentl y, p hys- 
iologi sts m ay face the p rospect o f sequen cing an d an- 
alyzin g g enetic data from the po p u lat ions where they 
col le cte d physiolog ica l m easures. Th ese data can be ex- 
pen siv e to g enerate fr om acr os s a s pecies dis t ribut ion, 
an d in div idu al r esear c h t eams m ay not h ave bot h t he 
p hysio log ica l an d gen omic expertise n e e de d to synthe- 
size these different kinds of datasets. 

Desp i t e these c ha l len g es, the con tin ued decline in se- 
quencing costs is making even wh ole gen om e sequen c- 
ing (WGS) f or la rge numbers of samples more a fford- 
able ( Szarmach et al. 2021 ). Genera ting WGS da ta from 
a lar g e number o f individ ua ls wi l l enable finer-sca le, 
sp at ia l samp ling. Coup ling t hese dat a wit h t he s ame 
indiv idu al s mea sured for p hysio logic al assays w ill al- 
low r esear c her s t o account fo r the influence o f both 
co arser phyloge og raphic st ructure p atterns an d fin er- 
s cale is olation-by-di stance (e.g., u sing m ant el t ests) ef- 
fects on p hysio logical tra it va ri ation. This w ill also en- 
ab le anal yses linkin g g enot ypes w ith ph en otypic an d 
environment al var iation. 
Genomic approaches for linking phenotype to 
genotype 
Identifyin g the g enet ic b a si s of p hysio log ica l t ra its a nd 
mapping the a l lelic variat io n that co ntribu t es t o these 
traits across geographic space is critical to un derstan d- 
ing species vulnerab ili ties t o c limat e c han g e. A num- 
ber of different approaches can be used to elucidate 
th e gen o mic regio ns that co ntribu t e t o p hysio log ica l 
t raits. Q uant itat ive t rait locu s (QTL) m apping h a s been 
used to reveal th e h eri tab ili ty and underlying genetic 
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Geographic variation in avian physiology 1801 
arc hit ecture of ext ernal m orph olog ica l t rai ts in b irds 
( Tarka e t al. 2010 ; K nief e t al . 2012 ; Schielzeth e t al . 
2012 ). Tarka et al. (2010) u sed QTL m app ing, co mb in- 
in g g en etic mar kers with pe dig re e informat ion from a 
30-yea r field progra m, to identify a locus of lar g e ef- 
fe ct imp act in g win g len gth amon g po p u lat io ns o f great 
re e d warblers ( Acro ce phal us aru nd i naceus ) that differ 
in mig rat ion distance . Q TL mapping is a power f ul ap- 
p roach fo r linkin g g en otype to ph en o type, b u t is labo r- 
inten siv e, requirin g ei ther lo ng-term field studies or 
making exper iment al crosses of anim al s in c aptiv it y. 

An oth er approach to elucidate the genetic under- 
p innings o f a trai t is t hrough st at ist ica l associat ions 
bet ween vari ation in the trai ts o f interest and geno- 
t ypic vari ation usin g g en om e-w ide associ ation stud- 
ies (GW AS). GW AS m eth o ds have b e en use d to iden- 
t ify reg io ns o f th e gen om e tha t con tribut e t o high- 
leve l ph en otypes, suc h as tar sus len gth, win g m orph ol- 
ogy, and bi l l morp ho logy ( Duntsch et al. 2020 , Huang 
et al. 2022 ), as well as life history traits like c lut c h size 
( Husby et al. 2015 ) and sp at ia l cog nit iv e a b ili ty ( Branch 
et al. 2022 ). QTL mapping a nd GWAS a r e r o bus t to the 
unique evol u tio n ary hi sto ries o f loci across th e gen om e, 
inc luding different hist ories of sele ct ion, a nd ca n reveal 
th e gen etic arc hit ecture of a trait. How ev er, the high 
number o f individ ua ls re quire d for these analyses, the 
difficul ty o f linking highly plastic traits to genotypes, 
th e n e e d for a pe dig re e or capt ive bre e ding po p u lat ion 
in the case of QTL mapping, and the importance of ac- 
counting for popu lat ion st ructure can ma ke th ese m eth- 
ods difficul t fo r r esear c her s studying n on-m ode l organ- 
isms ( Santure and Garant 2018 ). 
Genomic approaches to linking genotype with 
environment 
An oth er approac h t o identifying th e un der lyin g g enetic 
ba si s of p hysio logical traits is to use m eth ods that test 
fo r signatures o f sp at ia l ly varying sele ct io n wi t hin t he 
gen om e, or significant asso ciations b etw een g en etic an d 
environment al var iables. One approach is to explore di- 
v er g ence betw een tw o po p u lat ion s across g enomic win- 
dows to detect regions that are significantly div er g ent 
b etween p o p ul ations rel ative to th e gen om e-wide back- 
ground in certain s tatis tics (e.g., Fs t, Dxy, nucle ot ide di- 
versity, Tajima’s D; Irwin et al. 2018 ). Candidate out- 
lier loci ident ifie d t hrough t h ese gen om e scan m eth ods 
can then be queried a gains t exis tin g data ba ses to a s- 
sess known g ene function s ( The UniProt Co nso rti um 
2017 ) and pathways ( The Gene Ontology Co nso rti um 
2019 ). Gen om e scan approaches can be used to com- 
p are p attern s of g enomic div er g en ce am ong po p ula- 
t ions dist ribute d in different environm ents an d make 
inferences about which genes are diverging in response 

to sele ct ive pres s ures in each environmen t. F or exam- 
p le, Walsh e t al. (2019) us ed thes e approac hes t o explore 
pa tterns of in traspecific g enomic div er g ence amon g 
upla nd a nd salt ma rsh po p u lat ions in four sparrow 
species t o under st and t he genomic ba si s of ada pta tion 
to high-salinit y env ironments. A lt hough exper iment al 
va lidat ion wi l l be ne e de d t o conc lusi vel y link candi- 
date genes with div er g ent ph en otypes, gen om e scan ap- 
proaches can also generate new hypotheses about the 
traits un der l ying p hysio log ica l div er g en ce am ong envi- 
ronm ents. In th e salt mars h spa rrow exa mple, s e veral 
species exhib i ted div er g ence in genes associated with 
ce ll s ha pe regula tion and cytosk eletal orga nization. Di- 
v er g ence in these genes could relate to an increased ca- 
pacity to tolerate excess salt levels interna l ly ( Ben ham 
an d Ch eviron 2020 ). 

Sequen cing in div idu al s th at w ere den sel y samp led 
across an environmenta l g radient, a l lows r esear c her s 
to per for m genot ype-env ironment associ ations (GEA; 
Capb lancq e t al. 2018 ). GEA methods differ b ase d on 
wh eth er th ey a l low comp ariso ns o f just a single envi- 
ronment al var i able (e.g ., LFMM; Caye et al. 2019 ), mul- 
ti ple enviro nment al var i ables (e.g ., RDA; Capbl ancq 
and Forester 2021 ), and whether they account for pop- 
u lat ion st ructure. BayPass ( Gaut ier 2015 ) can both con- 
sider mu lt iple environmenta l axes and account for pop- 
u lat ion st ructure . St on e h o use et a l. (2024) u sed thi s 
program to identify 36 c andid ate loci associated with 
different axes of c limat e variation in European great 
tits ( Pa rus ma jor ); this inc luded CALM2, whic h was 
s trongly as soci ated w i th p reci p i tatio n-rel ated vari ables 
and was previously ident ifie d as an outlier in other 
desert anim al s. La ten t Factor Mixed Models (LFMM) 
h ave al so been u sed in bird s to link genotypic vari- 
atio n wi t h t her mal var iation. Gamboa et al. (2022) 
u sed thi s approach in Chann e l Is lan ds song sparrows 
( Me lospiza me lodia ) to identify outlier loci associated 
wi th respo nses to t her ma l st ress, water h om eosta si s, 
a nd f e at her de velopment. The y als o found e vidence for 
sele ct ion operat ing on a number of bi l l deve lopm ent 
genes that could be linked to the observed differences 
in bi l l size among po p u lat ions. 

W hen b ro ad ge og ra phic sam pling is p aire d with 
co rrespo nding p hysio log ica l dat a, exper iment al ap- 
proach es, an d bioch emical m eth ods, GEA approach es 
c an prov ide a st rong lin k betwe en gen otype an d phys- 
iolog ica l variat ion. Stager et al. (2021) in tegra ted phys- 
iolog ica l field mea surements, acclim ation experiments, 
a nd a n RDA approac h, inc luding a l l junco spe cies and 
s ubs pe cies, to show a l lelic variat ion an d th erm ogenic 
c apacit y in juncos co-vary across the l andsc ape w ith en- 
vironment al t her mog enic heterog eneit y. As w ith QTL 
an d GWAS studies, se le ct ion sc ans c an reve al t he 
genetic arc hit ecture un der l ying a p hysio log ica l t rait. 
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1802 P. M. Benham and E. J. Beckman 
Using po p u lat ion genet ic ana lyses, Q u et al. (2020) re- 
port a po l ygenic ba si s fo r the stro ng ph en otypic differ- 
en tia tion in muscle type between high and low eleva- 
tion Eurasian tree sparrows ( Pas ser mo nt anus ). When 
loci of lar g e effe ct cont ribut e t o the p hysio log ica l t rait, 
sele ct ion scans and GEA tests b ase d on broad spatial 
sam pling com plemen t funct iona l ana lyses on c andid ate 
loci. F or exam p le, Beckman e t al. (2022a) report spa- 
t ia l ly varying sele ct io n o n a no n-syno nymous si te in a 
h em og lobin loc u s th at resu lts in a funct iona l chan g e in 
th e oxygen-bin ding affinity of a major h em oglobin iso- 
for m ( Nat arajan et al. 2016 ). Further, bro ad sp at ia l sam- 
pling can s ugges t patterns in the magnitude of sele ct ion 
pres s ure acros s an environmental gradient ( Galen et al. 
2015 ; Lim e t al. 2021 ; Beckman e t al. 2022a ; Beckman 
et al. 2022b ). 
Integrating methods to understand complex 
traits 
In tegra ting m ul ti ple genetic app roaches wi th b road spa- 
t ia l sa mpling ca n reveal a deeper un derstan ding of com- 
plex traits associ ated w it h t her mal t olerance . To un- 
derst and adapt ation to n ove l th erma l reg im es in h ouse 
mice ( Mu s mu sculu s ), Phifer-R ixey et al . (2018) com- 
bin ed ph en otypic m easures of b o dy m a ss, GEA an aly- 
ses, and clinal patterns in allelic variation in a latitudinal 
t ranse ct in e aster n Nort h Amer ica. They f urt her used 
cis- exp ressio n quanti tat ive t ra it loci ( cis- eQTL) a naly- 
si s u sin g wild-deriv ed, la b-bo rn p rogeny to el ucidate 
th e can didates un der lying th e gen et ic b a si s o f a co m- 
plex trait, b o dy m a ss. To bett er under st and t he con- 
t ribut ion of expression variation to adaptive b o dy size 
in house mice , Mac k et al. (2018) used eQTL analysis 
and clinal variation in expression in w ild-c a ugh t house 
mice from the lat itudina l t ranse ct to ident ify two im- 
portant genes (ADAM17, BCAT2) with expression vari- 
a tion associa ted with b o dy m a ss. Addition al an alyses 
on house mice across latitude in western North Amer- 
ica, in cluding GWAS an d GEA analyses, s h owed th e ge- 
net ic b a si s of b o d y size is partl y sha red a mong e aster n 
and western po p u lat io ns desp i te reci p rocal mo nop hyl y 
betwe en the t ranse cts ( Fer r is et al. 2021 ). Th e synth e- 
sis of these quan tita tiv e g enetic, g en om e-environm ent, 
and exp ressio n analyses wi th ph en ot ypic d ata prov ide a 
nuance d i l lust rat io n o f th e gen et ic b a si s of b o dy size in 
house mice across Nort h Amer ica, and ident ifie d clear 
pathways for funct iona l experiments relating to ther- 
ma l tolerance ( Ba l lin g er e t al. 2023 ). Similarl y, integra- 
tive studies of bir ds acr oss envir onmenta l g radients re- 
ma in ra re. So me o f the best examples co me fro m well- 
c haract erized loci , suc h as h em oglobin ( Galen et al. 
2015 ). In an oth er ex citin g examp le, Gu e t al. (2021) used 
trackin g devices, g en om e scans, ce l l cu lture assays, and 

ep igenetic app roac hes t o demonstrat e that a c andid ate 
gene associated wi th lo ng-term m em o ry, ADCY8, co n- 
t ribute d to among po p u lat ion differences in migratory 
distance in peregrine falcons ( Falco peregrinus ). 
An integrative framework for 
understanding intraspecific adaptation to 
environmental change 
We expect the next s e v eral y ear s t o brin g many ex citin g 
n ew advan ces in av i an p hysio logy as r esear ch gr oups 
tak e adva ntage of new t ec hnologies. Studies of geo- 
gra phic varia tion w ill pl ay a significant role in these ad- 
vances through eva luat ion of genotypic and funct iona l 
ph en otypic div er g ence acr oss envir onmenta l g radients. 
This wi l l in turn prov ide cruci a l pre dict ive data for un- 
derst anding t he c apacit y of po p u lat ions to adapt and ac- 
c limatize t o c limat e c han g e ( Wi l liams et al . 2008 ; Urb an 
e t al . 2016 ; Meek e t al . 2023 ; Urban e t al . 2024 ). G iv en 
the rapid rate in which glob a l chan g e is creating con- 
servat ion cha l len g es f or ma ny av i an species, there is a 
pressing ne e d f or releva nt p hysio log ica l dat a t hat can 
imp rove p re dict ive m ode ls n ow. Rese arch t hat explic- 
itl y exp lores conne ct ion s betw e en externa l m orph ol- 
ogy and per for man ce m easures could serve as a crit- 
ical bridge between the decades of r esear ch on geo- 
gra phic varia tion in external m orph olog ica l c haract er s 
a nd a n understa nding of the t her mogenic and evapora- 
ti ve coo ling c apacit y of bir ds. Towar ds this go a l, we de- 
vote the remainder of the re vie w to dis cussing o p portu- 
ni ties fo r linking mo rp ho logy, per for man ce, an d gen o- 
type across sp at ia l and tempora l environmenta l g radi- 
ents. 
Spatial analyses 
Ge og ra phic varia tion in b o dy size, bi l l size , tar sus 
len gth, and plumag e variation is frequently int erpret ed 
wit hin t he context of cont ribut ions to t her moregula- 
t ion (se e a bov e), y et empirical w o rk co nne ct ing these 
tra its to perf orma nce rema ins incomplet e . Av i an bi l l 
size is an example of a trait well known to vary along 
t her ma l g radients in birds ( Zink and Remsen 1986 ; 
Tatt er sa l l et al . 2017 ). Thi s pattern m ay relat e t o heat 
loss patter ns wit h sma l ler-bi l le d birds potent ia l ly losing 
less heat in cold environments a nd la r g er-bi l le d birds 
dissip at ing more heat in hot env ironments. A l ar g er 
bi l l may also enable birds to rely less on eva pora tive 
cooling (at least at moderate tem pera tures) and a l low 
them to con serv e wa ter in wa t er-limit ed environments 
like deserts and salt mars h es ( G reenber g et al . 2012a ). 
Therm al im agin g confirm s th at bird s regulate blo o d 
flow to vascu larize d reg io ns o f the b i l l to dissip a te hea t 
( Haga n a nd He at h 1980 ; Tatt er sa l l et al . 2009 ) and that 
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Fig. 3 Comparison of morphological, TEWL, and maximum temperature across Savannah sparrow populations. Both (A) bill surface area 
(appr oximated fr om bill length, width, and depth measur es) and (B) TEWL within the thermal neutral zone w er e significantl y cor related 
with maximum temperature variation across space. (C) Bill size and TEWL were significantly correlated with one another. Benham and 
Bowie (2021) took advantage of this spatial correlation to infer the amount of water savings that could be gained from a given increase in 
bill surface area through time. Bill measurements ( n = 1398), TEWL measurements ( n = 76), and 53 individuals had data for both. Data 
from Benham and Cheviron (2020) and Benham and Bowie (2021) . 
lar g er-bi l le d birds can dissipate more heat across the 
bi l l surface ( Gre enberg et al . 2012b ). In song sparrows, 
lar g er-bi l le d s ubs pe cies cou ld dissip ate 33% more heat 
across the bi l l sur face, and t hi s wa s pre dicte d to a l- 
low E WL red uctio ns o f 7.7%. These p re dict ion s hav e 
not been t est ed . To relat e differen ces in h eat dissipa- 
tion across the bi l l surface to th erm ogenic c apacit y 
wou ld re quire m easurem ents o f b i l l size variat io n wi th 
measures of th erm ogenic perf orma nce. For insta nce, 
can sma l ler-bi l le d bir ds guar d b o dy temp eratures and 
ma inta in functioning in response to cold cha l len g es 
fo r lo n g er or vice versa for lar g e-bi l le d birds in hot 
env ironments? Simil a rly, f ew data exist attempting to 
confirm a re lations hip between bi l l size and levels of 
E WL. Wi thin Savanna h sp arrows, w e hav e re-ana lyze d 
data from Benham an d Ch eviron (2020) and Benham 
and Bowie (2021) to show that both bi l l surface area 
(Fig. 3 A) and TE WL wi t hin t he t her ma l neut ra l zone 
(Fig . 3 B) signific a ntly va ry in associ ation w ith maxi- 
m um ann ual tem pera ture. Further, a significan t nega- 
t ive correlat ion betwe en bi l l size a nd TEWL exists f or 
Savanna h sp arrows (Fig. 3 C). In co ntrast, b ill size vari- 
at ion in g reat t its ( Pa rus ma jor ) does not relat e t o mea- 
sures o f evapo rati ve coo ling c apacit y ( Pl ayá-Montmany 
et al . 2021 ). Furth er wor k wi l l be ne e de d to estab- 
lis h wh en an d wh er e corr el ations bet we en bi l l size and 
TEWL may be expe cte d. 

It is un li kely that birds ever rely on chan g e in a single 
t rait (externa l or interna l) such as bi l l size or b o dy size 
to increase perf orma nce in response to novel t her mal 
cha l len g es. Different species may also ar r ive at differ- 
ent sol u tio ns to co mmo n p roblems d ue to co nstraints 
imposed on certain traits or differences in the genetic 
va riation ava ilable f or sele ct io n to act o n. Th erm oreg- 
ul atory c apacit y is a complex trait that could ultimately 

be influenced by body size an d s ha pe, a ppendag e len gth, 
chan g es in plumag e structure, meta b olic rates, and b e- 
havio ral respo n ses ( B riscoe et al . 2023 ). F ew in traspe- 
cific studies explore how variation in insu lat ive char- 
act er s (e .g., fe at her lengt h) var ies wit h climat ic g radi- 
ents, desp i te the relative ease with which these traits 
can be measured on museum specimens and a long 
histo ry o f au tho rs s ugges ting they may be more im- 
porta nt f or enha n cing th erm o regulato ry perfo rmance 
( Sch olan der 1955 ). Across species, plumage length in- 
creases in cold environments ( Pap et al . 2020 ) and with 
elevation ( Barve et al . 2021 ). Insu lat ive propert ies of 
fe at hers have also been s h own t o c han g e s eas ona l ly with 
gre ater fe at her m a ss and densit y in w inter rel ative to 
summer ( Swanso n 1991 ; No rd et a l . 2023 ). Int raspe cific 
increa ses in plum ag e len gth hav e a lso be en documente d 
a long elevat ion g radients ( de Zwaan et al . 2017 ; Barve 
and Cadena 2022 ). Ge og ra phic varia tio n in pl umage 
colo r may addi tio na l ly cont ribut e t o t her mo regulato ry 
ada pta tion in h orn ed lar ks ( Maso n et al . 2023 ). Jo intly 
con siderin g g e og ra phic varia tion in a number of ex- 
terna l t raits a longside t her mo regulato ry perfo rmance 
measures wi l l b e imp orta nt f or understa nding which 
trai ts co ntribu te th e m ost to per for mance in any given 
species. 

L inking t hes e analys es to genomic data sets u sing 
m eth ods outlin ed a bov e c an prov ide insigh ts in to the 
genet ic b a si s of certa in tra its releva nt to t her moregu- 
latio n. In b ir ds, ther e is a muc h bett er under standing 
of the genes invo l ved in many external m orph olog ica l 
and plumage traits ( Toews et al . 2016 ; Bosse et al . 2017 ; 
Moreira and Smith 2023 ) than other traits of physio- 
log ica l re levan ce. While man y ph ysiolog ica l measures 
a re complex tra its shaped by both genetic variation and 
plas tic res po nses, trai ts such as bas al met abolic rates 
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have been found to be her it able in s e vera l bird spe cies 
( Ronning e t al . 2007 ; B ushuev e t al . 2012 ; Nafstad e t al . 
2023 ). Many of these traits are also likely to be highly 
po l yg enic, makin g i t difficul t to p inpo int sp ecific lo ci 
imp act ing inter-indiv idu al vari atio n ( Sto rz et al . 2015 ), 
yet within m amm alian system s g en es influen cing com- 
plex traits such as metabolic ra tes ( Mon taigne et al . 
2021 ) an d EWL ( Hirabayas hi et al . 2017 ) have been 
ident ifie d. Fu ture wo rk explo rin g g eno mic variatio n in 
re lation to th ermal an d p reci p i tatio n gradients, alo ng 
wi th effo rts t o link genotypes t o ph en otypes using ap- 
p roaches ou tlined a bov e wi l l b e imp orta nt f or under- 
st anding t he potent ia l cont ribut ions of different traits 
to p hysio log ica l per for mance in response to climate 
chan g e. 
Temporal analyses 
A detai le d un derstan ding of how external m orph olog- 
ical c haract er s an d gen otypes contri but e t o p hysio log- 
ical measures o f perfo rmance across sp at ia l g radients 
wi l l provide essent ia l co ntext fo r eval ua ting tem poral 
trend s. A n alysi s o f lo ng-ter m dat a sets h a s alr eady r e- 
vea le d tempora l de clines in b o dy size across dozens of 
bird species ( Jirinic et a l . 2021 ; Yo ungflesh et a l . 2022 ). 
Natura l history col le ct ions provide an oth er source of 
time series data with mi l lio ns o f specimens col le cte d be- 
t ween c a. 1850 an d th e present ( Bi l lerma n a n d Wals h 
2019 ). These col le ct ion s hav e be en use d to demonst rate 
widesp read mo rp ho log ica l chan g es in bir ds r elat ed t o 
b o dy size ( Gardner et al . 2019 ), bi l l size ( C ampb ell- 
Tenna nt et al. 2015 ), a nd pl umage p igmen ta tio n ( Maso n 
and Unitt 2018 ). In m any ca s es, the obs erv ed chan g es 
ar e corr el ated w ith chan gin g tem pera ture over the past 
century and recap i tu late expe ctat io ns fro m Bergmann’s 
and Allen’s rules. How ev er, wh eth er th ese temporal 
chan g es are enough to keep up with the rate of cli- 
mat e c han g e and the p hysio log ica l sig nificance of these 
chan g es has be en quest ione d ( Nord et al . 2024 ). The ex- 
t ent t o whic h these c han g es refle ct plast ici ty o r genetic 
ada pta tion s remain s p o or ly kn own as we ll ( Teplits ky 
and Mi l lien 2014 ). Although me asur ing p hysio log ica l 
per for mance in historical materials is lar g ely impos- 
sible, r esear chers could use spatial analyses to evalu- 
a te how varia tio n in certain mo rp ho log ica l t raits that 
can be measured on specimens (e.g., fe at her lengt h, 
b o dy size) dire ctly cont ribut e t o per for mance differ- 
en ces. Studies could th en quan tify tem po ral mo rpho- 
log ica l chan g e in traits ov er time usin g museum speci- 
mens to make inferences about chan g es in per for mance 
over time. F or exam ple, Benha m a nd Bowie (2021) took 
advanta ge of s p at ia l correlat ion s betw e en bi l l size and 
TEWL in Savannah sparrows (Fig. 3 C) to proj e ct how 
m uch daily wa ter savings bird s m ay gain from the ob- 

serve d mag ni tude o f b i l l size chan g e ov er the past cen- 
tury. 

Te chnolog ica l adva nces a re also making it increas- 
ingl y feasib le to extract DNA from hi storic mu seum 
specimens (re vie wed in Benha m a nd Bowie 2023 ). 
W hen co mp are d to moder n s amples, t hese dat a can be 
used to infer geno mic respo nses t o c limat e a nd la nd- 
scape chan g e ov er the past century ( Bi et al . 2019 ; 
Turbek et al . 2023 ). Efforts to connect genotypic varia- 
tio n wi th sp at ia l variat ion in p hysio log ica l t raits a long 
climat ic g radients can h e lp i l luminate t he f unct iona l 
significance of certain loci. Follow-up studies using 
time-ser ies dat a can t h en as k wh eth er t emporal c han g es 
in a l lele fre quency have occurre d at t hese s ame loci in 
associ ation w ith c limat e c han g e in the recent past. In 
th e absen ce of gen es w ith a l ar g e effect on th e ph en o- 
t ype, time-series d ata c an als o be le v erag ed to as ses s the 
impo rtance o f sele ct io n o n many loci o f sma l l effe ct in 
ada pta tion to environmental chan g e ( Reid et al . 2023 ). 
Ma king conne ct ion s betw e en sp at ia l and tempora l a l- 
le le frequen cy chan g es at loci un der l ying p hysio log ica l 
an d m orph olog ica l t raits wou ld pro vide po wer f ul sup- 
po rt fo r the impo rtance o f certain genes in respo nding 
t o c limat e c han g e. 
Conclusions 
The cent ra l go a l of this re vie w is to ur g e av i an physi- 
ologists to con sider pattern s of spatial variation in traits 
th at m ay be directl y invo l ved in organi sm al responses to 
c limat e c han g e. B y qu antify ing the extent of ge og raphic 
variation in funct iona l ly relevant t raits across a species 
ran g e, w e can w o rk towards p re dict ive m ode l s th at in- 
t egrat e across levels o f b iolog ica l organizat ion to under- 
st and t he c apacit y of po p u lat ions to adapt to on g oin g 
war ming trends. D esp i te th e inh erent cha l len g es in con- 
ductin g rig orous p hysio log ica l research invo l ving mul- 
tiple po p ulatio ns o f t he s ame spe cies, te chnolog ica l ad- 
van ces re lat ed t o se quencing, t racking devices, imag ing, 
an d m ore wi l l p rovide a host o f new o p po rtuni ties to 
investigate the mech ani sm s underpinnin g av i an ad ap- 
tations to environmental challen g es. Addi tio n ally, thi s 
r esear ch agend a w i l l be advance d t hrough t he est ab- 
lis hm ent of col laborat ion s amon g av i an biologists w ith 
divers e expertis e in genomics, p hysio logy, m ode ling, 
eco logy, and evo l u tio n. As anthropogenic chan g es im- 
p act ing c limat e , l andsc ape, an d oth er facets proce e d at 
a rapid pace, we want to echo with renewed urgency the 
sam e con clu sion m ade by P rosser (1955) nea rly 70 yea rs 
ago: There is “An immediate ne e d for the d escripti on of 
ph en otypic an d gen otypi c v ari ati on of physi ol ogi c al ch ar- 
acters with in k nown sp eci es. This can only be a c c om- 
pl is hed b y t he coo perat ive effo rt of p hys io logis ts, eco lo- 
gists, gen e ticists an d sys t ematis ts .”
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