
Scaling Down to Scale Up: A Cost-Benefit Analysis of Replacing
OpenAI’s LLM with Open Source SLMs in Production

Chandra Irugalbandara
Jaseci Labs

chandra.irugalbandara@jaseci.org

Ashish Mahendra
Jaseci Labs

ashish.mahendra@jaseci.org

Roland Daynauth
University of Michigan

daynauth@umich.edu

Tharuka Kasthuri Arachchige
Jaseci Labs

tharuka@jaseci.org

Jayanaka Dantanarayana
Jaseci Labs

jayanaka.dantanarayana@jaseci.org

Krisztian Flautner
University of Michigan

manowar@umich.edu

Lingjia Tang
University of Michigan

Jaseci Labs
lingjia@umich.edu

Yiping Kang
University of Michigan

Jaseci Labs
ypkang@umich.edu

Jason Mars
University of Michigan

Jaseci Labs
profmars@umich.edu

Abstract—Many companies use large language models (LLMs)
offered as a service, like OpenAI’s GPT-4, to create AI-enabled
product experiences. Along with the benefits of ease-of-use and
shortened time-to-solution, this reliance on proprietary services
has downsides in model control, performance reliability, uptime
predictability, and cost. At the same time, a flurry of open-
source small language models (SLMs) has been made avail-
able for commercial use. However, their readiness to replace
existing capabilities remains unclear, and a systematic approach
to holistically evaluate these SLMs is not readily available.
This paper presents a systematic evaluation methodology and a
characterization of modern open-source SLMs and their trade-
offs when replacing proprietary LLMs for a real-world product
feature. We have designed SLaM, an open-source automated
analysis tool that enables the quantitative and qualitative testing
of product features utilizing arbitrary SLMs. Using SLaM, we
examine the quality and performance characteristics of modern
SLMs relative to an existing customer-facing implementation
using the OpenAI GPT-4 API. Across 9 SLMs and their 29
variants, we observe that SLMs provide competitive results,
significant performance consistency improvements, and a cost
reduction of 5×∼29× when compared to GPT-4.

Index Terms—Language Models, Open Source, Characteriza-
tion

I. INTRODUCTION

Generative AI (GenAI), particularly generative large lan-

guage models (LLMs), has recently grown in popularity within

academic and industry communities. This surge is largely

attributed to OpenAI’s launch of ChatGPT [1], and the family

of GPT models and their groundbreaking performance and

capabilities across a wide range of natural language gener-

ation tasks. These tasks range from intelligent chatbots and

specialized document creation, to coding assistants and many

others. Indeed, this emerging class of AI has disrupted the

commercial AI landscape as they have become a top strategic

priority for many startups and established corporations [2].

Generative LLMs take natural language input (i.e., prompts)

and generate responses that follow the instructions and in-

formation provided in the input prompt. These models are

transformer neural networks with billions of parameters and

are prohibitively expensive to train and serve. Consequently,

many companies use cloud APIs based models to develop their

next-generation GenAI products and features.

OpenAI’s GPT models, especially GPT-4, have emerged

as a favored choice for their cutting-edge capabilities and

developer-friendly interface [3], facilitating rapid prototyping

and short time-to-market. However, reliance on proprietary

cloud APIs to access LLMs’ capabilities presents numerous

challenges. Issues such as inconsistent request latency and

outages during peak usage times have been noted with Ope-

nAI APIs [4]. Furthermore, the per-token pricing model can

accumulate significant costs over time and at scale, which is

particularly challenging for startups. Additionally, the propri-

etary nature of cloud APIs limits developers from customizing

models with their data to better suit specific use cases through

fine-tuning.

Meanwhile, the AI community has seen the emergence of

numerous open-source language models of smaller sizes that

are available for commercial use [5]–[13]. Several quantization

techniques have recently been published and applied to make

these models even smaller [14] [15]. We categorize these

models as Small Language Models (SLMs). These SLMs

have shown promising generative performance, comparable to

larger LLMs in certain benchmarks [6] [16] [17]. However,

the readiness of these SLMs to replace proprietary LLMs

(e.g. OpenAI GPT-4) in production settings remains unclear,

particularly regarding response quality, performance, and cost-

effectiveness. Additionally, a methodology and tooling for

evaluating SLMs for a particular product feature is not readily

available.

This work presents SLaM, a systematic methodology and

tooling for evaluating open-source SLMs compared to pro-

prietary LLM APIs. SLaM (1) automates the acquisition and

hosting of SLMs into a local or cloud environment, (2)

provides human-in-the-loop tooling for evaluation of model

response quality, and (3) includes performance and cost anal-

ysis. Using SLaM, we characterize modern SLMs and their

quantized variants through a case study of replacing a produc-

tion application’s existing OpenAI GPT-4-based feature. We

examine four questions relevant to the viability of replacing

GPT-4 with self-hosted SLMs:

1) Is the quality of response from modern SLMs good

enough for users?

280

2024 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

2766-0486/24/$31.00 ©2024 IEEE
DOI 10.1109/ISPASS61541.2024.00034

20
24

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
Pe

rf
or

m
an

ce
 A

na
ly

sis
 o

f S
ys

te
m

s a
nd

 S
of

tw
ar

e
(IS

PA
SS

) |
 9

79
-8

-3
50

3-
76

38
-8

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IS
PA

SS
61

54
1.

20
24

.0
00

34

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 24,2025 at 19:14:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Brief history of evolution of language models and recent surge in
open-source SLMs.

2) How well can AI-assisted tooling automate the process

of evaluating SLMs?

3) What are the latency implications of self-hosted SLMs

in a utility-based cloud environment such as AWS?

4) What are the cost trade-offs of self-hosted SLMs com-

pared to using third-party cloud APIs?

Utilizing the SLaM evaluation methodology and its ac-

companying toolset, we analyze a suite of 9 distinct SLMs

and their quantized versions, totaling 29 different models. We

evaluate the trade-offs of applying these models to a real user-

facing feature in myca.ai [18], an AI-powered productivity tool

currently in-production. The feature is a daily pep talk feature,

where it leverages the user’s tasks list to deliver personalized

and intelligent encouragement and advice on a daily basis. The

current version of this feature is built using OpenAI GPT-4 and

in production. In this case study, we show that open-source

SLMs can effectively replace OpenAI’s models in a production

environment. Specifically, we find that SLMs can generate

responses with similar levels of quality, provide a comparable

yet more reliable latency performance, and reduce costs by up

to 29×. This paper makes the following contributions:

• We introduce a systematic methodology for evaluating

open-source SLMs for AI feature implementation and

comparing them to proprietary LLMs.

• We design and develop the SLaM tool, which supports

both human-in-the-loop and AI-assisted automated eval-

uation processes. SLaM is open-source and available

at https://github.com/Jaseci-Labs/slam.

• We present a characterization of modern quantized SLMs

through a case study of replacing GPT-4 in a real-world

application. We find SLMs are indeed viable alternatives

to proprietary LLMs and have advantages such as more

reliable latency and lower costs.

II. BACKGROUND: THE RECENT EVOLUTION OF LLMS

A. Large Language Models

LLMs are language models that are pre-trained on a large

corpus of data to process, comprehend and generate natural

language. Because of their outstanding performance in many

application domains, LLMs have gained tremendous popular-

ity in both academia and industry [19]. LLMs can be applied

to various tasks, such as text generation and reasoning, as

well as to feature implementation in real-world applications,

such as virtual assistants, chatbots, and language translation

systems [20].

In contrast to the conventional approach for NLP tasks,

which often involves fine-tuning models through supervised

learning on task-specific datasets, LLMs can effectively per-

form a wide range of tasks based on instructions in the input

(prompts) without additional training. By providing LLMs

with instructions and/or examples of the desired outcome, they

can perform tasks for which they have not been explicitly

trained for previously.

Vaswani et al. [21] first introduced in 2017 the trans-

former architecture and self-attention mechanism. This key

architecture innovation led to a series of transformer-based

language models that achieve state-of-the-art performance

across many natural language tasks. GPT-2 [22], introduced

in 2019, is a large transformer-based model with 1.5 billion

parameters. Megatron-LM (2019) [23] surpasses GPT-2 with

8.3 billion parameters. This extensive size enables Megatron-

LM to capture and generate more intricate linguistic patterns.

Subsequently, OpenAI introduced GPT-3 in July 2020, GPT-

3.5 in March 2022 and GPT-4, their latest LLM, in March

2023. The family of GPT models were considered the most

advanced language models upon release. They power many of

OpenAI’s popular APIs and applications, including the widely

used ChatGPT, which has attracted a significant amount of

main-stream attention to LLM and AI research in general [24].

B. Impact of LLMs

LLMs are revolutionizing the tech industry by altering how

we work and interact with information. LLMs’ human-like

capabilities of understanding and generating natural language

text have been leveraged to assist and power many application

use cases, including virtual assistants, language translation,

content writing, and scientific research. Significant increases

in efficiency and the establishment of new job categories are

made possible with the adoption of LLMs. Over 2 million

developers have adopted LLMs for their applications. [25].

C. Proprietary LLMs and OpenAI APIs

OpenAI APIs have quickly emerged as the preferred cloud

option for LLM inference. While OpenAI’s APIs provide

convenient access to powerful language models such as GPT-

4, reliance on cloud APIs and proprietary models presents

several challenges for developers, including lack of model

control, unreliable uptime, and potentially significant cost.

Furthermore, cloud APIs also limit the developer’s ability to

fine-tune the models with custom data to tailor to specific tasks

D. Open-source Small Language Models

There has been a surge of open-source language models

released by the research community and industry companies.

Figure 1 highlights the timeline of several key open-source

LLMs released since the launch of ChatGPT and release of

GPT-4. These models are generally smaller in size, making

them more feasible to self-hosting. In addition, several quan-

tization techniques have been proposed to make these models

even smaller without significant sacrifice to accuracy [26],

[27]. The quantization process entails mapping the model’s

281

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 24,2025 at 19:14:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. OpenAI APIs status, captured
on 12/14/23

Fig. 3. SLaM Tool UI Interface

weights from data types with higher precision (16bit) to ones

with lesser precision (4bit, 3bit, 2bit), therefore effectively

compressed the model and reduces their memory requirements.

E. Developing with LLMs

The open-source community has created new infrastructure

and tools to make developing with LLM an easy process,

further accelerating the adoption of LLMs into modern ap-

plications and products. LangChain [28] is a framework that

assists developers with creating multi-step reasoning pipelines

using language models. LlamaIndex [29] is a framework that

focuses on the integration between LLMs with bespoke data

sources. It facilitates the ingestion, indexing and preparation

of different data sources and structures.

III. PROBLEM: REALIZING THE ”DAILY PEP TALK”

FEATURE

This paper investigates the feasibility of replacing an LLM

(via OpenAI API) with SLMs in a production use case. In

particular, we are interested in the response quality of SLMs

compared to LLMs. In addition, we aim to understand whether

SLMs can address and mitigate key limitations of proprietary

LLM APIs, specifically cost and latency.

We conduct a case study of a real AI feature in a production

application. We first describe the details of the application and

the feature. We then present the current key limitations of

using OpenAI APIs in production and the research questions

we aim to answer when comparing SLMs with LLMs.

A. Product Feature Case Study

The application in this case study is myca.ai [18], a personal

task-management and productivity application that has been

in production for over a year. In myca.ai, users create and

manage their plan and tasks across all aspects of their life,

such as work, personal health and finances, to stay organized,

focused and productive. In addition, users can set their longer-

term goals and daily habits. myca.ai records for the user what

are accomplished daily, their progress towards goals and habits

patterns, etc.

myca.ai has a number of AI features that assist its users in

improving their productivity. One key AI feature is the “Daily

Pep Talk”. At the beginning of every day, myca provides

an encouraging message to the user based on what they

accomplished the day before, what they plan to do today, and

progress towards their goals.

To generate this message, user’s activity from the previous

day, along with their plan for the coming day are combined

with additional context and instructions into a text input to a

LLM. This input is commonly referred to as a ”prompt”. The

LLM ”follows” the instruction in the prompt and generates

a response that is then shown to the user. The process of

constructing and tweaking the input prompt to the LLM

is commonly called ”Prompt Engineering” and is the main

method of leveraging a pre-trained LLM to a task-specific use

case [30], [31]. We show the prompt template for the Daily

Pep Talk feature below. The placeholders (marked by brackets)

are replaced with user specific information before sending to

LLM for inference.

You are given below a description of the tasks and goals in my todo list.
Always answer the query using the provided context information, and not prior
knowledge.
Some rules to follow:
1. Avoid statements like ’Based on the context, ...’ or ’The context informa-

tion ...’ or anything along those lines.
Context information is below.
———————
Today is 2023-11-13.
The last day I logged in was 2023-11-10 and I completed the following tasks

on that day:
[LIST OF TASKS COMPLETED]
Here are today’s focused tasks. These are tasks that I think are important:
[LIST OF TASKS PLANNED]
Here are the rituals that are scheduled for today. These are recurring tasks

that help me build and maintain good habits or work/life responsibilities that
happen regularly:
[LIST OF RECURRING TASKS SCHEDULED]
I have also set the following goals for myself for this week. These are

overarching objectives I want to accomplish in this week:
[LIST OF USER SET GOALS]
———————
Given the context information, answer the query.
Query: Imagine you are my personal assistant, generate a short briefing for

me at the start of my day. In the briefing, summarize what I completed in the
previous day and then give me a preview of the key activities for today. In this
briefing, consider my goals for this week and tell me if my focused tasks and
rituals are aligned with those goals. Carefully evaluate the associations between
the tasks and goals and describe the tasks based on how related you think they
are. Note that it is possible that a task is not directly associated with any goals.
Reference the specific tasks mentioned in the context and generate this briefing
in a single, naturally flowing narrative. Avoid simply listing out tasks one by one.
Use a motivating and encouraging tone. Keep your response within 4 sentences.
Answer:

B. Challenges with OpenAI APIs

In the currently deployed version of the Daily Pep Talk

feature, we use the GPT-4 model from OpenAI’s cloud APIs.

While the OpenAI APIs provide state-of-the-art performance

and an easy-to-use interface that facilitates quick prototyping,

our experience suggests three key limitations when using them

in production settings.

Performance and Reliability Developers and users of Ope-

nAI have reported a large variability in query latency [32],

ranging from sub 1s to 4 - 5 minutes. In addition to latency

variability, OpenAI has reported frequent API outages since

its launch. Figure 2 shows a snapshot of the OpenAI cloud

platform status as of December 13th, 2023. In the month

of November 2023 alone, it experienced four major outages

and three partial outages, some of which lasted more than 3

hours. Given that OpenAI APIs may experience unpredictable

latency and stability, these factors pose considerable risks for

deployment in a production environment.

Token Usage Limits The token limits in the OpenAI API

can be detrimental to production deployments. Currently, there

is a limit of 1000 tokens per minute for OpenAI APIs and

282

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 24,2025 at 19:14:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Architecture Overview of the SLaM Tool

2000 tokens per minute in Azure GPT-4 APIs. During our

deployment, even with a mandatory wait time of 10 seconds

in between requests, we still encountered issues of exceeding

token limit and requests were dropped by OpenAPI without

processing. As a result, the actual resulting latency of those

requests increased from 300 milliseconds to more than 5

seconds after subsequent retrying. This is not well suited for

production usage.

Cost As of December 2023, OpenAI’s API for GPT-4, their

most advanced and capable LLM, is at $0.03 per 1K input

tokens and $0.06 per 1K output tokens. Assuming each request

on average consists of 1000 input tokens and 1000 output

tokens, one request costs $0.09. Based on our experiences,

depending on the nature of the application and feature, certain

requests can have 2500 to 3000 input tokens which further

raise the per-request cost to $0.15. An average traffic of

1000 requests per day would lead to the cost of $2700 per

month, or $32,400 per year. This can easily scale up to

$1,000,000/month when the request load goes above 360,000

requests/day. In other words, if each user only sends five

queries/day, spending $12,000,000/year for openAI API can

only support around 71,000 active users. This is a significant

expense for companies, especially for start-ups.

C. Replacing OpenAI with SLMs

To address these production-related limitations, it is imper-

ative for us to investigate the feasibility of replacing LLMs

via cloud APIs with Small Language Models (SLMs) that

can be self-hosted to reduce cost and increase performance

predictability. In the rest of the paper, we set out to answer

the following questions:

• What is the right process for evaluating SLMs to replace

LLMs via APIs for a production use case? How much

can this process be automated?

• Are SLMs capable of generating responses that are of

similar quality as OpenAI’s GPT-4?

• How do SLMs in production perform in terms of latency

performance and consistency compared to OpenAI APIs?

• What are the cost trade-offs of self-hosted SLMs vs.

OpenAI GPT-4?

IV. SLAM METHODOLOGY AND TOOL

We present the SLaM toolset, a novel platform to evaluate

the performance of SLM vs. LLM across a wide range of

metrics (response quality, latency distribution, availability, etc)

in production use cases. One of the key contributions of SLaM

is to automate and facilitate the evaluation process, including

the setup, response generations, measuring, benchmarking, and

comparison between SLMs and LLMs, significantly reducing

the manual effort required.

A. SLaM Architecture and Components

SLaM is designed to facilitate a comprehensive analysis of

SLMs. Figure 4 illustrates the architecture of SLaM and its

key components and Figure 3 shows a screenshot of the user

interface of SLaM.

• SLM Hosting and Configuration - SLaM automatically

downloads the models of interest from the Hugging Face

model repository [33] and hosts the models in the AWS

cloud. It sets up the model inference for experiments and

evaluations.

• Human Evaluation - SLaM facilitates human evaluation

of model response quality. For a given input prompt,

SLaM collects the response from each candidate model

and presents it to the human evaluator through a UI to

rate the response quality. The human evaluators are only

informed names of the models to ensure a blind tests and

unbiased ratings. SLaM can be used for both crowdsource

evaluation and custom testing setting up (e.g., experts

only).

• Automated Quality Evaluation - To reduce the effort

needed for human evaluation, SLaM provides a set of

automated approaches to evaluate response quality. This

includes semantic similarity scoring and GPT-4-based

scoring. Similarity scoring is designed to provide a quan-

titative assessment of how closely the responses from an

SLM match a reference baseline response while GPT-

based scoring conducts rating on the responses similarly

to that of a human evaluator. We use a range of similarity

metrics, capturing both semantic and syntactic elements

of the text.

• Performance and Cost Evaluation - In addition to

model response quality, SLaM provides performance and

cost evaluation of the SLMs. We measure average per-

request and per-token latency, as well as query latency

distribution over 24 hours. We provide cost estimation of

self-hosting SLMs and OpenAI APIs.

• Configuration and Dashboard UI - SLaM features an

UI interface for experiment configuration (e.g., problem

definition and prompt configuration), as well as a dash-

board with various graphs, visualization and analysis of

the evaluation outcome.

B. SLaM Response Quality Evaluation Methodology

We describe the SLM response quality evaluation process

in SLaM.

1) Human Evaluation: During the evaluation process, each

human evaluator is presented with a description of the prob-

lem, the original input prompt and the candidate responses

generated by the SLMs. The human evaluator is asked to

283

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 24,2025 at 19:14:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Human Evaluation Fig. 6. GPT-Based Evaluation Fig. 7. Semantic Similarity Evaluation

rate each response based on their judgment of its quality and

relevance to the original problem and intention described in

the input prompt. To prevent bias, a blind test is administrated,

where the model that generated the response is not disclosed

to the evaluator. This ensures that ratings are based solely

on the response quality, not on preconceived notions about a

model’s capabilities or popularity. Responses are presented in

randomized order which further helps in reducing evaluation

bias. Each human evaluator is required to finish the complete

set of scorings assigned to them for their response to qualify.

This is designed particularly for crowdsource to avoid inat-

tentive and incomplete inputs from the crowd workers. These

incomplete responses are removed from the final results as

part of the aggregation and sanitation stage of the evaluation

pipeline. The final results are visualized in a number of formats

in a dashboard. Figure 5 depicts this process.

2) GPT-based Evaluation: Human evaluation of response

quality, while effective, can be time-consuming. SLaM in-

cludes several automated evaluation techniques that are de-

signed to help reduce the amount of human evaluation re-

quired. We first described three ways that SLaM uses GPT-4 as

a tester to evaluate model response quality: Scorer, Comparer

and Multi-choice Selector.

• GPT-Scorer: GPT-4 is given the prompt and responses

from the SLMs and is prompted to rate responses based

on its quality and relevance, similar to the instruction

given to the human evaluators. The prompt template for

the Scorer is as follows:
PROMPT: [prompt]
RESPONSE:[response]
Rate the response on a scale of 0 to 10 (0 being the worst and 10 being
the best). Rate the response based on how well it answers the prompt.
Reason step by step and then give a score. Only give a number between 0
and 10.

• GPT-Comparer: This methodology instructs GPT-4 to

analyze and score responses from SLMs in the context

of comparing with a reference baseline response. The ref-

erence response is generated by OpenAI API. We prompt

the model to also include in the output reasoning behind

its decision. We parse the ratings and reasoning from

the output and present in the SLaM dashboard alongside

visualizations of the ratings. The prompt template for the

Comparer is as follows:
REFERENCE RESPONSE: [reference response]
TARGET RESPONSE: [target response]
Rate on a scale of 0 to 10 on how close the target response is to the
reference response (0 being completely different and 10 being very close
in terms of meaning and objective).

Output format
Reason: Reasoning...
Score: Rating

• GPT-4 Multi-Choice Selector: GPT-4 is presented with

multiple responses from multiple SLMs for a given input

prompt. It is then instructed to select the best response

in terms of quality, accuracy and relevance. The prompt

template for the Multi-choice Selector is as follows:
PROMPT:
prompt
RESPONSES:
responses
What is the best response? Give the choice between 1 and
[num responses] and provide a short reasoning.
Output format
Reason: Reasoning...
Choice: Choice

3) Semantic Similarity Evaluation: In addition to LLM-

based auto-evaluation techniques, we leverage semantic sim-

ilarity scores to provide a quantitative assessment of how

closely the responses of SLMs relate to a reference response.

We use a suite of similarity scores including traditional token-

based similarity metric and embedding-based similarity mea-

surement.

• TF-IDF [34]: A standard similarity metric used in infor-

mation retrieval. It assesses the importance of a word to

a response in a collection of responses.

• SBERT [35]: We use SBERT to compute the embeddings

of each response and calculate cosine similarity of re-

sponses.

• USE-QA [36]: Similar to SBERT, we calculate the cosine

similarity of USE-QA embeddings of the responses.

• OpenAI Embedding: Similar to SBERT and USE-QA,

embeddings from GPT-4 are used here.

• SEM-BLEU: Combines the semantic analysis of SBERT

with the syntactic nature of BLEU score [37]. The score

is the arithmetic mean of the SBERT and BLEU scores.

The goal of SLaM’s automated quality evaluation methodol-

ogy is to provide quick relevant metrics to assess the response

quality of SLMs without human ratings. Each of the automated

methodologies captures certain aspects of the response quality.

We compare and discuss the efficacy of these metrics in

Section VI.

V. EXPERIMENTAL SETUP

A. OpenAI API setup

For OpenAI APIs, we set the temperature parameter as

0.7 and use the default for the rest of the configurations.

284

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 24,2025 at 19:14:21 UTC from IEEE Xplore. Restrictions apply.

Model
#

bits

#
Params

(B)

Model
Size
(GB)

Memory
Usage
(MB)

llama2:7b-chat [5] 4 7 3.8 6933
llama2:7b-chat-q2 K 2 7 2.8 5567
llama2:7b-chat-q3 K L 3 7 3.6 6271

mistral:7b-instruct [6] 4 7 4.1 4795
mistral:7b-instruct-q2 K 2 7 3.1 3897
mistral:7b-instruct-q3 K L 3 7 3.8 4601

neural-chat:7b [7] 4 7 4.1 5183
neural-chat:7b-v3.2-q2 K 2 7 3.1 4285
neural-chat:7b-v3.2-q3 K L 3 7 3.8 4601

openchat:7b-v3.5 [16] 4 7 4.1 5183
openchat:7b-v3.5-q2 K 2 7 3.1 4285
openchat:7b-v3.5-q3 K L 3 7 3.8 4989

orca-mini:3b [17] 4 3 2 3089
orca2:7b [9] 4 7 3.8 6527
orca2:7b-q2 K 2 7 2.8 5567
orca2:7b-q3 K L 3 7 3.6 6271

stablelm-zephyr:3b [10] 4 3 1.6 3443
stablelm-zephyr:3b-q2 K 2 3 1.2 3251
stablelm-zephyr:3b-q2 K L 3 3 1.5 3507

starling-lm:7b [11] 4 7 4.1 5183
starling-lm:7b-alpha-q2 K 2 7 3.1 4285
starling-lm:7b-alpha-q3 K L 3 3 3.8 4989

vicuna:7b [12] 4 7 3.8 5371
vicuna:7b-q2 K 2 7 2.8 4411
vicuna:7b-q2 K L 4 3 3.6 5115

zephyr:7b-beta [13] 4 7 4.1 5183
zephyr:7b-beta-q2 K 2 7 3.1 4285
zephyr:7b-beta-q3 K L 3 7 3.8 4989

TABLE I
SLMS STUDIED IN THIS WORK.

The temperature parameter influences the randomness of the

generated responses. We use Langchain [28] to integrate with

the OpenAI API.

B. SLMs setup

Self-hosted AWS instance In our experiments, we used the

g4.dn.2xlarge AWS EC2 instance type. This instance type has

an Intel Xeon processor with 8 virtual CPUs, with 2.5GHz

frequency, 32GB of memory, and a single Nvidia T4 GPU

with 16GB of dedicated memory.

Frameworks & libraries SLaM leverages Ollama [38] to

help facilitate model acquisition, configuration, and inference.

Ollama operates as a microservice responsible for managing

model-related tasks, providing a set of API endpoints for

integration with the rest of the SLaM application. SLaM

constructs the input prompt and sends it to Ollama for SLM

inference.

C. SLMs studied in this work

SLaM is designed to work with any SLMs. For this case

study, we wanted to study SLMs that are representative of

state-of-the-art in performance. We selected the top mod-

els from the Huggingface LLM Leaderboard [39], including

Starling-lm:7b, Mistral-instruct:7b, OpenChat:7b, Zephyr:7b,

Stablelm-zephyr:3b, Orca-mini:3b, Vicuna:7b, Orca2:7b, neu-

ralChat:7b, and Llama2-chat:7b. In addition to the original

model, we include the 3-bit and 2-bit quantized versions of

these models. In total, 29 distinct models are studied, as listed

in Table I.

Fig. 8. Response quality of GPT-4 and SLMs, as rated by human reviewers.
Score distribution (boxes) and mean score (line) of each model are shown.

VI. EVALUATION

We leverage the SLaM methodology and toolset to inves-

tigate replacing OpenAI LLM with self-hosted SLMs for the

production use case described in Section III. In this section,

we present the result of this case study and key observations

and insights.

A. Can SLMs generate responses as high-quality as OpenAI
LLMs?

We first investigate the quality of the responses generated

by the SLMs and compare them against OpenAI GPT-4.

Figure 8 shows the scores of each model’s responses rated

by the team of human reviewers, following the evaluation

process described in Section IV-B. The reviewers include

product users and university students. The boxes show the

distribution of scores of each model, and the line represents

the mean scores of each model across all human reviewers.

We observe that, while GPT-4 (1st box on the left) has

the highest mean score (5.9), several SLMs achieved scores

close to GPT-4, namely Vicuna:7b-q3 (5.6), Starling-lm:7b-

q4 (5.1) and neural-chat:7b-q2 (5.3). This demonstrates that

certain SLMs can indeed generate responses with quality

competitive to OpenAI LLMs. In addition, we find that many

quantized models perform similarly or even better than their

base models. This is particularly encouraging for applying

SLMs in production because of the smaller size of quantized

SLMs.

To demonstrate the response quality of SLMs, we showcase

below sample responses of the daily pep talk feature from

GPT-4 and two of the highest-rated SLMs, Starling-LM:7B

and Vicua:7b-q3.

285

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 24,2025 at 19:14:21 UTC from IEEE Xplore. Restrictions apply.

GPT-4 – Good morning! You had a productive day last time, accomplishing
both your daily rituals. Today, we’re starting strong with planning the day, a task
that aligns perfectly with your goal to get back into your daily routine. Focused
tasks such as stress testing the openAI assistants API, preparing a demo for the
RAG prototype, and improving the pep talk use cases, will help you dive deep into
local LLMs and get the pep talk AI feature ready for productization. Don’t forget
your self-care tasks as well such as scheduling your orthopedic appointment, which
addresses your goal to take care of your lower back issues. Let’s make today a
great one!

starling-lm:7b – Great job on completing the dailies on November 10th! Today,
you have a full schedule ahead of you with key activities such as stress testing
the OpenAI assistant API, preparing a demo for the RAG prototype, quantization
and LORA of a model, and trying out GPT-4 Turbo. To align with your goals
for this week, ensure that improving the pep talk use cases remains a priority and
consider scheduling your orthopedic appointment sooner rather than later. Your
daily rituals like planning, lifting, and medium scanning are crucial to maintaining
good habits and staying focused. While some tasks may not be directly related
to your goals, they contribute to overall progress and personal growth. Let’s
make today a productive one and keep moving forward with determination and
enthusiasm!

vicuna:7b-q3 – Good morning! Based on your previous log-in and completed
tasks, you were able to complete the daily meetings, which is fantastic. Today’s
focused tasks include planning for the day, stress testing the openAI assistants
API, preparing a demo for the RAG prototype, trying quantization and LORA a
model, trying out GPT-4-turbo and DALL-E 3, scheduling car service, improving
the pep talk use cases, sending the consultation report, working on the AI project,
and scheduling an orthopedic appointment. Your rituals for today include Daily,
Zero Inbox, Review Elastic Logs, and lifting weights. These recurring tasks help
you build good habits and maintain your workflow responsibilities. In addition, you
set a few goals for yourself this week, which are to get the pep talk AI feature
ready for productization, get back into your daily routine and workflow, take care
of lower back issues, and dive deeper into local LLMs. Based on your focused
tasks and rituals, it seems that you have a great start to your day ahead. You
are taking care of some important projects and maintaining good habits. Good
luck with achieving your goals this week!

In addition to the top-performing models, many of the

studied SLMs achieve comparable performance and have

scores close to the top models. This suggests SLMs indeed can

generate responses with quality close to OpenAI LLMs. On the

other hand, we do observe that a small subset of SLMs exhibit

clearly inferior response quality compared to the rest of the

group. Specifically, the orca2:7b models (base and quantized)

and stablelm-zephyr:3b-q3 scored significantly worse than the

rest of the models.

Key Observation: Many SLMs, including their quantized

versions, are able to generate responses of similar quality as

OpenAI GPT-4, while a small set of SLMs are the clear low-

performing options compared to the rest of the group.

B. Can the evaluation process be automated?

Human evaluation can be labor-intensive and time-

consuming and are not always viable. We explore the feasi-

bility of leveraging GPT model as an evaluator and similarity

metrics to automate the response quality scoring. We study the

usefulness of the GPT-based evaluators (IV-B2) and semantic

similarity approach (IV-B3).

GPT-Scorer Figure 9 shows the scores of response from each

model as rated by a GPT-4 model with the instruction prompt

shown in Section IV-B2. The boxes show the distribution of

scores, and the two lines show the mean score of human evalu-

ation and GPT-Scorer. We observe that GPT-Scorer evaluation

follows a similar trend as the human evaluation, indicating

a similar relative model preference profile. Furthermore, it

is able to identify the same subset of inferior models as

the human evaluation. This suggests that prompting GPT-4

to score model response quality in the same style as human

evaluation can provide model quality insights similar to human

evaluation.

Fig. 9. Distribution of scores given to 10 samples of responses from each
model by the GPT-Scorer, compared with human evaluation scores.

Fig. 10. Jaccard index and Ranked-biased Overlap (RBO) of bottom 10 SLMs
ranked by each automated evaluation method compared to human evaluation.
Two variation of GPT-Comparers are tested here. GPT-Comparer explicitly
prompts for reasoning while GPT-Comparer-NR does not.

Key Observation: Scoring responses via prompting GPT-4 as

an evaluator arrives at similar model quality preferences as

human evaluation.

GPT-based and Similarity-based Auto Evaluation We now

compare across the automated evaluators, including the GPT-

based evaluators and similarity scoring method. As discussed

in Section VI-A, many SLMs provide competitive response

quality to OpenAI while a small subset of SLMs appear

clearly inferior. Being able to quickly identify the low-

performing models and remove them from consideration can

greatly accelerate the SLM model evaluation and selection

process by focusing expensive human effort on identifying

the best models. We focus on characterizing how well each

auto-evaluation method can identify low-performing SLMs.

Figure 10 shows the Jaccard index and Ranked-biased Overlap

(RBO) with uniform weighting for each automated evaluation

method (5 similarity scoring and 4 GPT-based) for the bottom

10 SLMs in their ranking compared to the human evaluation.

286

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 24,2025 at 19:14:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 11. Latency per request of SLMs and OpenAI
GPT-4 API. Distribution of 10 requests is shown
here.

Fig. 12. Latency per token of SLMs and OpenAI
GPT-4 API. Distribution of 10 requests is shown
here.

Fig. 13. Number of tokens generated by SLMs and
OpenAI GPT-4 API. Distribution of 10 requests
with the same prompt shown here.

A higher Jaccard index and RBO for an automated evaluation

method indicates that it ranks the model more similar to

that of human rankings. First, we observe that most methods

have a relatively low RBO, indicating some disagreement in

the order of the models ranked in the bottom 10 between

human evaluation and the automated methods. On the other

hand, we observe that sem-bleu has the highest Jaccard index,

meaning that its judgment of low-performing models is the

most aligned with human ranking. Sem-bleu, as described in

Section IV-B3, combines sentence-level (SBERT) and token-

level (BLEU) similarity, shares the same 7 out of 10 model

choices with human evaluation in its bottom 10 rankings, albeit

with different ordering as indicated by a low RBO score.

Key Observation: Automated evaluation methods can be ef-

fective in identifying low-performing models, accelerating the

process of SLMs evaluation by focusing human evaluation on

top models. Specifically, sem-bleu identifies low-performing

models most similar to human evaluation.

C. Are self-hosted SLMs faster than OpenAI APIs?

Per-request Latency – Figure 11 shows the per-request

latency of the SLMs and OpenAI GPT-4. Distributions of 10

requests with the same input are shown here. While GPT-

4 (1st row) has the lowest per-request latency, most SLMs

provide competitive latency performance. Specifically, the

mean request latency of mistral:7b-instruct, orca-mini:3b and

stablelm-zephyr:3b are within <1 second of GPT-4’s latency.

Per-token Latency - Language models generate its output

one token at a time, and therefore, the end-to-end request

latency depends on the number of tokens the model generates.

To further understand the performance characteristics of these

SLMs, we characterize the number of tokens in the response

generated by each model (Figure 13) and the per-token latency

of each model (Figure 12). Figure 13 shows that the Orca 2

models and StableLM-zephyr:3b-q2 have large variations in

their response length. This explains the wide distribution of

per-request latency for these models observed in Figure 11.

GPT-4’s response length has a much lower variance than

the SLMs, indicating its responses more consistently follow

the prompt’s instructions. Furthermore, Figure 12 shows that

many SLMs, such as StableLM-zephyr-3b, mistral-7b, and

starlingLM, are faster at generating tokens than OpenAI GPT-

4.

Key Observation: Self-hosted SLMs can achieve similar or

better latency performance as OpenAI GPT-4 in per token

generation. GPT-4 is more consistent in following response

length control instructions in the prompt, providing more

consistent performance on the request level, while some SLMs

have a wider distribution of per-request latency.

D. Are self-hosted SLMs more reliable than OpenAI APIs?

We characterize the variability in the performance of Ope-

nAI APIs and self-hosting SLMs at different times of the

day. Figure 14 shows how the request latency of OpenAI

API varies over the course of 24 hours. Ten requests are

measured at each hour, and their distributions are shown

as boxes. The same input and request parameters are used

across all requests. We observe significant variations in request

latency for OpenAI at different times of the day, where per-

request latency ranges from 3.4 seconds to 8.6 seconds. This

large variability presents a significant challenge in production

settings, where predictability is crucial.

Figure 15 shows the latency variability over 24 hours

of four selected SLMs hosted in AWS and compares them

287

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 24,2025 at 19:14:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 14. Latency distribution of OpenAI’s API over the course of a 24-hour
period.

Fig. 15. Latency distribution of OpenAI’s GPT-4 API, Starling-lm:7b, and
Orca-mini:3b over the course of a 24-Hour Period.

against OpenAI GPT-4. StarlingLMs are selected because

their response quality are among the best of the SLMs and

Orca-mini-3b is selected because of its small size and yet

strong response quality performance. When measuring the

SLMs latency, we warm up the machine with 10 requests

first to ensure the model weights are memory-resident and we

measure the latency of the subsequent 10 requests. We observe

that self-hosted SLMs have a significantly more consistent

request latency over the course of the 24 hours and a narrower

request-to-request distribution within the same hour.

Key Observation: Self-hosting SLMs can significantly reduce

performance variability in production compared to OpenAI

APIs.

E. Are self-hosted SLMs more cost-effective than OpenAI
APIs?

We compute the throughput of each SLM when running

on an AWS instance at 80% utilization. We then use the

throughput to estimate the cost of self-hosting the SLMs.

Fig. 16. Estimated cost per 1K token generated for each SLM. GPT-4 incurs
a cost of $0.03 per input token and $0.06 per completion token, whereas the
self-hosted SLM models only incur costs associated with AWS. We assume
80% utilization of the AWS node.

Fig. 17. Cost reduction of each SLM (g4dn.xlarge AWS node at 80%
utilization) against OpenAI’s GPT-4 API.

The per-1K token cost of self-hosting SLMs are shown in

Figure 16. The corresponding OpenAI cost is $0.09 (1K input

and 1K output tokens). Figure 17 shows the cost reduction

resulting from running the SLMs instead of querying OpenAI

API. We picked 80% utilization to be conservative in our

comparison. The use of auto-scaling monitors utilization over

time and automatically adds compute resources as needed, but

its use also implies that an individual node will never be fully

utilized. If the number of inferences is low, OpenAI APIs

could have a cost advantage. On the other hand, the AWS

instance could schedule containers unrelated to inference and

amortize its cost in that case. Overall, we see a cost reduction

of 5× to 29×, depending on the model used.

VII. RELATED WORKS

Zheng et al. [40] explore the usage and limitations of

using LLMs as judges to evaluate models. They introduce

a new benchmark focused on Question-Answering and a

288

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 24,2025 at 19:14:21 UTC from IEEE Xplore. Restrictions apply.

crowd rating platform for chatbots built using LLMs. In this

work, we focus specifically on small language models and the

SLaM methodology applies generally to language model tasks

beyond QA and chatbots. We also go beyond response quality

and present a holistic study of the readiness of SLMs to replace

proprietary LLMs including latency and cost consideration.

We discuss prior works that address the challenges as-

sociated with large language models (LLMs) and ones that

introduce innovative hardware and system solutions to accel-

erate them. Several work has investigated the performance

of machine learning models focusing on the training aspects

on various hardware designs [41]–[43]. XRBench [44] is a

benchmarking suite for evaluating machine learning workloads

related to extended reality. It assesses model dependency

and concurrency for testing the real-time use of multi-model

multi-task workloads. The concept of multi-DNN workloads

is further developed by [45] which introduces sub-accelerators

to efficiently manage multiple subtasks concurrently. Xu et al.

[46] discuss the challenges of tuning large language models

(LLMs) like GPT-3 and GPT-4 due to their immense sizes

and the inaccessibility of their weights. Their proposed Super

In-Context Learning (SuperICL) enables black-box LLMs to

collaborate with locally finetuned smaller models. Liang, et. al

[47]. demonstrate that LLMs can assist in developing quantum

computing architectures on par with sophisticated quantum

architecture search.

There are system design innovations that support and ac-

celerate LLMs [48] [49] [50]. For example, both FLAT [51]

and SPRINT [52] address the computational challenges of

attention mechanisms in machine learning. FLAT introduces

tailored dataflow optimization for attention mechanisms with-

out altering their functionality. SPRINT is an accelerator

that leverages the inherent parallelism of ReRAM crossbar

arrays to compute attention scores approximately, and SUGAR

is a Self-Adaptive Reconfigurable Array (SARA) with an

integrated recommendation neural network (ADAPTNET) that

enables runtime reconfiguration for optimized performance in

accelerator architectures [53]. Wang et al [54] propose a novel

technique to reduce data communication overheads in large

deep learning models by overlapping communication with

computation. This technique decomposes an identified orig-

inal communication collective and the dependent computation

operation into a sequence of fine-grained operations. Rouhani

et al. [55] introduce Block Data Representations (BDR), a

framework for exploring and evaluating a wide spectrum of

narrow-precision formats for deep learning. [56] presents a

framework to evaluate hardware designs for accelerating LLM

workloads.

There are also architectural innovations to accelerate ML

and LLM models. VEGETA [57] is an ISA extension for accel-

erating the computation of sparse matrix multiplication on the

CPU for improving DNN workloads. Norm et al [58] discuss

the design and implementation of Google’s domain-specific

architecture (DSA) for machine learning models, including

LLMs. They introduce SparseCores, dataflow processors that

accelerate models that rely on embeddings. The performance,

scalability, efficiency, and availability of TPU v4 make it an

ideal vehicle for LLMs. Also, Seongmin et al [59] presents a

multi-FPGA acceleration appliance that executes GPT-2 model

inference end-to-end with low latency and high throughput.

Cong et al. [60] proposes OliVe, an algorithm/architecture co-

designed solution that adopts an outlier-victim pair (OVP)

quantization that can be efficiently integrated into existing

hardware accelerators using systolic arrays and tensor cores

to achieve speedup and energy reduction with superior model

accuracy.

VIII. CONCLUSION

We show that while LLMs, like GPT-4, have excellent

breadth of capabilities, their power can be approximated

with smaller, faster, and cheaper models for domain-specific

tasks. We evaluate the trade-offs on the part of a commercial

application that generates a daily ”pep talk” to its user based

on their past behavior and future tasks. While GPT-4 achieves

the highest accuracy across a broad range of models, as judged

by a human panel, most small language models (SLMs) come

close to its response quality while incurring 1/5 to 1/29 of the

cost. The SLMs also benefit from more predictable latency

performance. Our evaluation is facilitated by an automated

methodology and open-source toolset called SLaM, which fa-

cilitates the acquisition and hosting of the SLMs, and conducts

model response quality evaluation and provides performance

and cost analysis of the SLMs.

REFERENCES

[1] “OpenAI blog: ChatGPT,” https://openai.com/blog/chatgpt, 2023.
[2] M. Dowling and B. Lucey, “Chatgpt for (finance) research: The bana-

narama conjecture,” Finance Research Letters, vol. 53, p. 103662, 2023.
[3] OpenAI. (Year Accessed) Introducing ChatGPT and

Whisper APIs. [Online]. Available: https://openai.com/blog/
introducing-chatgpt-and-whisper-apis

[4] The Register. (2023) Outage hits OpenAI’s ChatGPT as servers stopped
by ’Claude’ glitch. [Online]. Available: https://www.theregister.com/
2023/11/08/outage chatgpt openai claude/

[5] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

[6] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot,
D. de las Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier,
L. R. Lavaud, M.-A. Lachaux, P. Stock, T. L. Scao, T. Lavril, T. Wang,
T. Lacroix, and W. E. Sayed, “Mistral 7b,” 2023.

[7] “neuralchat model listing,” https://huggingface.co/Intel/
neural-chat-7b-v1-1, 2023.

[8] G. Wang, S. Cheng, Q. Yu, and C. Liu, “OpenLLMs: Less
is More for Open-source Models,” 7 2023. [Online]. Available:
https://github.com/imoneoi/openchat

[9] A. Mitra, L. D. Corro, S. Mahajan, A. Codas, C. Simoes, S. Agar-
wal, X. Chen, A. Razdaibiedina, E. Jones, K. Aggarwal, H. Palangi,
G. Zheng, C. Rosset, H. Khanpour, and A. Awadallah, “Orca 2: Teaching
small language models how to reason,” 2023.

[10] “Stabilitai: Stablelm,” https://github.com/Stability-AI/StableLM, 2023.
[11] B. Zhu, E. Frick, T. Wu, H. Zhu, and J. Jiao, “Starling-7b: Improving

llm helpfulness and harmlessness with rlaif,” November 2023.
[12] W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang,

L. Zheng, S. Zhuang, Y. Zhuang, J. E. Gonzalez, I. Stoica,
and E. P. Xing, “Vicuna: An open-source chatbot impressing gpt-
4 with 90%* chatgpt quality,” March 2023. [Online]. Available:
https://lmsys.org/blog/2023-03-30-vicuna/

289

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 24,2025 at 19:14:21 UTC from IEEE Xplore. Restrictions apply.

[13] L. Tunstall, E. Beeching, N. Lambert, N. Rajani, K. Rasul, Y. Belkada,
S. Huang, L. von Werra, C. Fourrier, N. Habib, N. Sarrazin, O. San-
seviero, A. M. Rush, and T. Wolf, “Zephyr: Direct distillation of lm
alignment,” 2023.

[14] H. Shen, H. Chang, B. Dong, Y. Luo, and H. Meng, “Efficient llm
inference on cpus,” arXiv preprint arXiv:2311.00502, 2023.

[15] H. Chang, H. Shen, Y. Cai, X. Ye, Z. Xu, W. Cheng, K. Lv, W. Zhang,
Y. Lu, and H. Guo, “Effective quantization for diffusion models on
cpus,” arXiv preprint arXiv:2311.16133, 2023.

[16] G. Wang, S. Cheng, X. Zhan, X. Li, S. Song, and Y. Liu, “Openchat:
Advancing open-source language models with mixed-quality data,”
arXiv preprint arXiv:2309.11235, 2023.

[17] S. Mukherjee, A. Mitra, G. Jawahar, S. Agarwal, H. Palangi, and
A. Awadallah, “Orca: Progressive learning from complex explanation
traces of gpt-4,” arXiv preprint arXiv:2306.02707, 2023.

[18] “Myca.ai – unleash your potential with ai-powered productivity.”
[Online]. Available: https://www.myca.ai/

[19] Y. Chang and at el., “A survey on evaluation of large language models,”
2023.

[20] M. Ollivier and at el., “A deeper dive into chatgpt: history, use and
future perspectives for orthopaedic research,” Knee Surgery, Sports
Traumatology, Arthroscopy: Official Journal of the ESSKA, vol. 31,
no. 4, pp. 1190–1192, 2023.

[21] A. Vaswani and at el., “Attention is all you need,” 2023.

[22] A. Radford and at el., “Language models are unsupervised multitask
learners,” 2019. [Online]. Available: https://api.semanticscholar.org/
CorpusID:160025533

[23] M. Shoeybi and at el., “Megatron-lm: Training multi-billion parameter
language models using model parallelism,” 2020.

[24] OpenAI, “Gpt-4 technical report,” ArXiv, vol. abs/2303.08774, 2023.
[Online]. Available: https://arxiv.org/abs/2303.08774

[25] “Join us for openai’s first developer conference,” 2023. [Online].
Available: https://openai.com/blog/announcing-openai-devday

[26] Z. L. et al., “Llm-qat: Data-free quantization aware training for large
language models,” 2023.

[27] J. Liu, R. Gong, X. Wei, Z. Dong, J. Cai, and B. Zhuang, “Qllm:
Accurate and efficient low-bitwidth quantization for large language
models,” 2023.

[28] L. AI, “Langchain: Building applications with llms through composabil-
ity,” https://github.com/langchain-ai/langchain, 2023, accessed: Dec. 15,
2023.

[29] Llamaindex, “Llamaindex, data framework for llm applications,” https:
//www.llamaindex.ai/, 2024, accessed: April 13th, 2024.

[30] “Emnlp: Prompt engineering is the new feature engineer-
ing,” 2022. [Online]. Available: https://www.amazon.science/blog/
emnlp-prompt-engineering-is-the-new-feature-engineering

[31] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-train,
prompt, and predict: A systematic survey of prompting methods in
natural language processing,” ACM Comput. Surv., vol. 55, no. 9, jan
2023. [Online]. Available: https://doi.org/10.1145/3560815

[32] “Openai: why are the api calls so slow? when will it be
fixed,” 2023. [Online]. Available: https://community.openai.com/t/
openai-why-are-the-api-calls-so-slow-when-will-it-be-fixed/148339/
68?page=4

[33] HuggingFace, “Hugging Face Models,” https://huggingface.co/models,
2023, accessed: Dec. 15, 2023.

[34] C. D. Manning, An introduction to information retrieval. Cambridge
university press, 2009.

[35] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings
using siamese bert-networks,” CoRR, vol. abs/1908.10084, 2019.
[Online]. Available: http://arxiv.org/abs/1908.10084

[36] D. Cer, Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco, R. S. John,
N. Constant, M. Guajardo-Cespedes, S. Yuan, C. Tar et al., “Universal
sentence encoder,” arXiv preprint arXiv:1803.11175, 2018.

[37] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, 2002,
pp. 311–318.

[38] ollama, “ollama,” https://github.com/ollama/ollama, 2024, accessed:
April 13th, 2024.

[39] HuggingFaceH4, “Open LLM Leaderboard,” https://huggingface.co/
spaces/HuggingFaceH4/open llm leaderboard, 2023, accessed: Dec. 15,
2023.

[40] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin,
Z. Li, D. Li, E. P. Xing, H. Zhang, J. E. Gonzalez, and I. Stoica, “Judging
llm-as-a-judge with mt-bench and chatbot arena,” 2023.

[41] W. Won, T. Heo, S. Rashidi, S. Sridharan, S. Srinivasan, and T. Krishna,
“Astra-sim2.0: Modeling hierarchical networks and disaggregated
systems for large-model training at scale,” in IEEE International
Symposium on Performance Analysis of Systems and Software, ISPASS
2023, Raleigh, NC, USA, April 23-25, 2023. IEEE, 2023, pp. 283–294.
[Online]. Available: https://doi.org/10.1109/ISPASS57527.2023.00035

[42] D. Moolchandani, J. Kundu, F. Ruelens, P. Vrancx, T. Evenblij, and
M. Perumkunnil, “Amped: An analytical model for performance in
distributed training of transformers,” in IEEE International Symposium
on Performance Analysis of Systems and Software, ISPASS 2023,
Raleigh, NC, USA, April 23-25, 2023. IEEE, 2023, pp. 306–315.
[Online]. Available: https://doi.org/10.1109/ISPASS57527.2023.00037

[43] J. Gómez-Luna, Y. Guo, S. Brocard, J. Legriel, R. Cimadomo, G. F.
Oliveira, G. Singh, and O. Mutlu, “Evaluating machine learningwork-
loads on memory-centric computing systems,” in 2023 IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software
(ISPASS), 2023, pp. 35–49.

[44] H. Kwon, K. Nair, J. Seo, J. Yik, D. Mohapatra, D. Zhan, J. Song,
P. Capak, P. Zhang, P. Vajda et al., “Xrbench: An extended reality (xr)
machine learning benchmark suite for the metaverse,” Proceedings of
Machine Learning and Systems, vol. 5, 2023.

[45] H. Kwon, L. Lai, M. Pellauer, T. Krishna, Y.-H. Chen, and V. Chan-
dra, “Heterogeneous dataflow accelerators for multi-dnn workloads,” in
2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2021, pp. 71–83.

[46] C. Xu and at el., “Small models are valuable plug-ins for large language
models,” ArXiv, vol. abs/2305.08848, 2023.

[47] Z. Liang, J. Cheng, R. Yang, H. Ren, Z. Song, D. Wu, X. Qian, T. Li,
and Y. Shi, “Unleashing the potential of llms for quantum computing: A
study in quantum architecture design,” arXiv preprint arXiv:2307.08191,
2023.

[48] Z. Wu, L. Y. Dai, A. Novick, M. Glick, Z. Zhu, S. Rumley, G. Michel-
ogiannakis, J. Shalf, and K. Bergman, “Peta-scale embedded photonics
architecture for distributed deep learning applications,” Journal of Light-
wave Technology, 2023.

[49] F. Blanaru, A. Stratikopoulos, J. Fumero, and C. Kotselidis, “Enabling
pipeline parallelism in heterogeneous managed runtime environments via
batch processing,” in Proceedings of the 18th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, 2022, pp.
58–71.

[50] J. Song, J. Yim, J. Jung, H. Jang, H.-J. Kim, Y. Kim, and J. Lee,
“Optimus-cc: Efficient large nlp model training with 3d parallelism
aware communication compression,” in Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, 2023, pp. 560–573.

[51] S.-C. Kao, S. Subramanian, G. Agrawal, A. Yazdanbakhsh, and T. Kr-
ishna, “Flat: An optimized dataflow for mitigating attention bottlenecks,”
in Proceedings of the 28th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
Volume 2, 2023, pp. 295–310.

[52] A. Yazdanbakhsh and et al., “Sparse attention acceleration with
synergistic in-memory pruning and on-chip recomputation,” in
2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). Los Alamitos, CA, USA: IEEE Computer Society, oct
2022, pp. 744–762. [Online]. Available: https://doi.ieeecomputersociety.
org/10.1109/MICRO56248.2022.00059

[53] A. Samajdar, M. Pellauer, and T. Krishna, “Self-adaptive reconfigurable
arrays (sara): Using ml to assist scaling gemm acceleration,” arXiv
preprint arXiv:2101.04799, 2021.

[54] S. Wang and at el., “Overlap communication with dependent computa-
tion via decomposition in large deep learning models,” in Proceedings
of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 1, ser.
ASPLOS 2023. Association for Computing Machinery, 2022, p.
93–106.

[55] D. Rouhani and et al., “With shared microexponents, a little shifting
goes a long way,” in Proceedings of the 50th Annual International
Symposium on Computer Architecture, ser. ISCA ’23. New York, NY,
USA: Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3579371.3589351

290

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 24,2025 at 19:14:21 UTC from IEEE Xplore. Restrictions apply.

[56] H. Zhang, A. Ning, R. Prabhakar, and D. Wentzlaff, “A hardware
evaluation framework for large language model inference,” 2023.

[57] G. Jeong, S. Damani, A. R. Bambhaniya, E. Qin, C. J. Hughes,
S. Subramoney, H. Kim, and T. Krishna, “Vegeta: Vertically-integrated
extensions for sparse/dense gemm tile acceleration on cpus,” in 2023
IEEE International Symposium on High-Performance Computer Archi-
tecture (HPCA). IEEE, 2023, pp. 259–272.

[58] N. Jouppi and et al., “Tpu v4: An optically reconfigurable supercom-
puter for machine learning with hardware support for embeddings,” in
Proceedings of the 50th Annual International Symposium on Computer
Architecture, ser. ISCA ’23. Association for Computing Machinery,
2023.

[59] S. Hong and at el., “Dfx: A low-latency multi-fpga appliance for
accelerating transformer-based text generation,” in 2022 IEEE Hot Chips
34 Symposium (HCS), 2022, pp. 1–17.

[60] C. Guo and et al., “Olive: Accelerating large language models via
hardware-friendly outlier-victim pair quantization,” in Proceedings of
the 50th Annual International Symposium on Computer Architecture,
ser. ISCA ’23. ACM, Jun. 2023. [Online]. Available: http:
//dx.doi.org/10.1145/3579371.3589038

291

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 24,2025 at 19:14:21 UTC from IEEE Xplore. Restrictions apply.

