2024 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS) | 979-8-3503-7638-8/24/$31.00 ©2024 IEEE | DOI: 10.1109/ISPASS61541.2024.00034

2024 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

Scaling Down to Scale Up: A Cost-Benefit Analysis of Replacing
OpenAl’s LLM with Open Source SLMs in Production

Ashish Mahendra
Jaseci Labs

Chandra Irugalbandara
Jaseci Labs
chandra.irugalbandara@jaseci.org

ashish.mahendra@jaseci.org

Roland Daynauth
University of Michigan
daynauth@umich.edu

Tharuka Kasthuri Arachchige
Jaseci Labs
tharuka@jaseci.org

Jayanaka Dantanarayana Krisztian Flautner Lingjia Tang Yiping Kang Jason Mars
Jaseci Labs University of Michigan University of Michigan University of Michigan University of Michigan

jayanaka.dantanarayana@jaseci.org manowar@umich.edu Jaseci Labs Jaseci Labs Jaseci Labs
lingjia@umich.edu ypkang @umich.edu profmars @umich.edu

Abstract—Many companies use large language models (LLMs)
offered as a service, like OpenAIl’s GPT-4, to create Al-enabled
product experiences. Along with the benefits of ease-of-use and
shortened time-to-solution, this reliance on proprietary services
has downsides in model control, performance reliability, uptime
predictability, and cost. At the same time, a flurry of open-
source small language models (SLMs) has been made avail-
able for commercial use. However, their readiness to replace
existing capabilities remains unclear, and a systematic approach
to holistically evaluate these SLMs is not readily available.
This paper presents a systematic evaluation methodology and a
characterization of modern open-source SLMs and their trade-
offs when replacing proprietary LLMs for a real-world product
feature. We have designed SLaM, an open-source automated
analysis tool that enables the quantitative and qualitative testing
of product features utilizing arbitrary SLMs. Using SLaM, we
examine the quality and performance characteristics of modern
SLMs relative to an existing customer-facing implementation
using the OpenAl GPT-4 APIL. Across 9 SLMs and their 29
variants, we observe that SLMs provide competitive results,
significant performance consistency improvements, and a cost
reduction of 5x~29x when compared to GPT-4.

Index Terms—Language Models, Open Source, Characteriza-
tion

I. INTRODUCTION

Generative Al (GenAl), particularly generative large lan-
guage models (LLMs), has recently grown in popularity within
academic and industry communities. This surge is largely
attributed to OpenAl’s launch of ChatGPT [1], and the family
of GPT models and their groundbreaking performance and
capabilities across a wide range of natural language gener-
ation tasks. These tasks range from intelligent chatbots and
specialized document creation, to coding assistants and many
others. Indeed, this emerging class of Al has disrupted the
commercial Al landscape as they have become a top strategic
priority for many startups and established corporations [2].

Generative LLMs take natural language input (i.e., prompts)
and generate responses that follow the instructions and in-
formation provided in the input prompt. These models are
transformer neural networks with billions of parameters and
are prohibitively expensive to train and serve. Consequently,
many companies use cloud APIs based models to develop their
next-generation GenAl products and features.

OpenAl’'s GPT models, especially GPT-4, have emerged
as a favored choice for their cutting-edge capabilities and
developer-friendly interface [3], facilitating rapid prototyping
and short time-to-market. However, reliance on proprietary
cloud APIs to access LLMs’ capabilities presents numerous
challenges. Issues such as inconsistent request latency and
outages during peak usage times have been noted with Ope-
nAl APIs [4]. Furthermore, the per-token pricing model can
accumulate significant costs over time and at scale, which is
particularly challenging for startups. Additionally, the propri-
etary nature of cloud APIs limits developers from customizing
models with their data to better suit specific use cases through
fine-tuning.

Meanwhile, the AI community has seen the emergence of
numerous open-source language models of smaller sizes that
are available for commercial use [5]-[13]. Several quantization
techniques have recently been published and applied to make
these models even smaller [14] [15]. We categorize these
models as Small Language Models (SLMs). These SLMs
have shown promising generative performance, comparable to
larger LLMs in certain benchmarks [6] [16] [17]. However,
the readiness of these SLMs to replace proprietary LLMs
(e.g. OpenAl GPT-4) in production settings remains unclear,
particularly regarding response quality, performance, and cost-
effectiveness. Additionally, a methodology and tooling for
evaluating SLMs for a particular product feature is not readily
available.

This work presents SLaM, a systematic methodology and
tooling for evaluating open-source SLMs compared to pro-
prietary LLM APIs. SLaM (1) automates the acquisition and
hosting of SLMs into a local or cloud environment, (2)
provides human-in-the-loop tooling for evaluation of model
response quality, and (3) includes performance and cost anal-
ysis. Using SLaM, we characterize modern SLMs and their
quantized variants through a case study of replacing a produc-
tion application’s existing OpenAl GPT-4-based feature. We
examine four questions relevant to the viability of replacing
GPT-4 with self-hosted SLMs:

1) Is the quality of response from modern SLMs good
enough for users?

2766-0486/24/$31.00 ©2024 IEEE 280
DOI 10.1109/ISPASS61541.2024.00034
Authorized licensed use limited to: University of Michigan Library. Downloaded on January 24,2025 at 19:14:21 UTC from IEEE Xplore. Restrictions apply.

Orca-mini
Oct23
Mistral
Oct23

GPT-4

OpenChat StableLM-zephyr
Mar'23 oV’ Dec23

NeuralChat
Oct23

Llama2
Jul'23

Orca2

Transformers Architecture Nov'23
2017

Fig. 1. Brief history of evolution of language models and recent surge in
open-source SLMs.

2) How well can Al-assisted tooling automate the process
of evaluating SLMs?

3) What are the latency implications of self-hosted SLMs
in a utility-based cloud environment such as AWS?

4) What are the cost trade-offs of self-hosted SLMs com-
pared to using third-party cloud APIs?

Utilizing the SLaM evaluation methodology and its ac-
companying toolset, we analyze a suite of 9 distinct SLMs
and their quantized versions, totaling 29 different models. We
evaluate the trade-offs of applying these models to a real user-
facing feature in myca.ai [18], an Al-powered productivity tool
currently in-production. The feature is a daily pep talk feature,
where it leverages the user’s tasks list to deliver personalized
and intelligent encouragement and advice on a daily basis. The
current version of this feature is built using OpenAlI GPT-4 and
in production. In this case study, we show that open-source
SLMs can effectively replace OpenAl’s models in a production
environment. Specifically, we find that SLMs can generate
responses with similar levels of quality, provide a comparable
yet more reliable latency performance, and reduce costs by up
to 29x. This paper makes the following contributions:

o We introduce a systematic methodology for evaluating
open-source SLMs for Al feature implementation and
comparing them to proprietary LLMs.

o We design and develop the SLaM tool, which supports
both human-in-the-loop and Al-assisted automated eval-
uation processes. SLaM is open-source and available
at https://github.com/Jaseci-Labs/slam.

o We present a characterization of modern quantized SLMs
through a case study of replacing GPT-4 in a real-world
application. We find SLMs are indeed viable alternatives
to proprietary LLMs and have advantages such as more
reliable latency and lower costs.

II. BACKGROUND: THE RECENT EVOLUTION OF LLMS

A. Large Language Models

LLMs are language models that are pre-trained on a large
corpus of data to process, comprehend and generate natural
language. Because of their outstanding performance in many
application domains, LLMs have gained tremendous popular-
ity in both academia and industry [19]. LLMs can be applied
to various tasks, such as text generation and reasoning, as
well as to feature implementation in real-world applications,
such as virtual assistants, chatbots, and language translation
systems [20].

281

In contrast to the conventional approach for NLP tasks,
which often involves fine-tuning models through supervised
learning on task-specific datasets, LLMs can effectively per-
form a wide range of tasks based on instructions in the input
(prompts) without additional training. By providing LLMs
with instructions and/or examples of the desired outcome, they
can perform tasks for which they have not been explicitly
trained for previously.

Vaswani et al. [21] first introduced in 2017 the trans-
former architecture and self-attention mechanism. This key
architecture innovation led to a series of transformer-based
language models that achieve state-of-the-art performance
across many natural language tasks. GPT-2 [22], introduced
in 2019, is a large transformer-based model with 1.5 billion
parameters. Megatron-LM (2019) [23] surpasses GPT-2 with
8.3 billion parameters. This extensive size enables Megatron-
LM to capture and generate more intricate linguistic patterns.
Subsequently, OpenAl introduced GPT-3 in July 2020, GPT-
3.5 in March 2022 and GPT-4, their latest LLM, in March
2023. The family of GPT models were considered the most
advanced language models upon release. They power many of
OpenAl’s popular APIs and applications, including the widely
used ChatGPT, which has attracted a significant amount of
main-stream attention to LLM and Al research in general [24].

B. Impact of LLMs

LLMs are revolutionizing the tech industry by altering how
we work and interact with information. LLMs’ human-like
capabilities of understanding and generating natural language
text have been leveraged to assist and power many application
use cases, including virtual assistants, language translation,
content writing, and scientific research. Significant increases
in efficiency and the establishment of new job categories are
made possible with the adoption of LLMs. Over 2 million
developers have adopted LLMs for their applications. [25].

C. Proprietary LLMs and OpenAl APlIs

OpenAl APIs have quickly emerged as the preferred cloud
option for LLM inference. While OpenAI’s APIs provide
convenient access to powerful language models such as GPT-
4, reliance on cloud APIs and proprietary models presents
several challenges for developers, including lack of model
control, unreliable uptime, and potentially significant cost.
Furthermore, cloud APIs also limit the developer’s ability to
fine-tune the models with custom data to tailor to specific tasks

D. Open-source Small Language Models

There has been a surge of open-source language models
released by the research community and industry companies.
Figure 1 highlights the timeline of several key open-source
LLMs released since the launch of ChatGPT and release of
GPT-4. These models are generally smaller in size, making
them more feasible to self-hosting. In addition, several quan-
tization techniques have been proposed to make these models
even smaller without significant sacrifice to accuracy [26],
[27]. The quantization process entails mapping the model’s

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 24,2025 at 19:14:21 UTC from IEEE Xplore. Restrictions apply.

A

O
A ===
O

Fig. 2. OpenAl APIs status, captured
on 12/14/23

Fig. 3. SLaM Tool UI Interface

weights from data types with higher precision (16bit) to ones
with lesser precision (4bit, 3bit, 2bit), therefore effectively
compressed the model and reduces their memory requirements.

E. Developing with LLMs

The open-source community has created new infrastructure
and tools to make developing with LLM an easy process,
further accelerating the adoption of LLMs into modern ap-
plications and products. LangChain [28] is a framework that
assists developers with creating multi-step reasoning pipelines
using language models. Llamalndex [29] is a framework that
focuses on the integration between LLMs with bespoke data
sources. It facilitates the ingestion, indexing and preparation
of different data sources and structures.

III. PROBLEM: REALIZING THE "DAILY PEP TALK”
FEATURE

This paper investigates the feasibility of replacing an LLM
(via OpenAl API) with SLMs in a production use case. In
particular, we are interested in the response quality of SLMs
compared to LLMs. In addition, we aim to understand whether
SLMs can address and mitigate key limitations of proprietary
LLM APIs, specifically cost and latency.

We conduct a case study of a real Al feature in a production
application. We first describe the details of the application and
the feature. We then present the current key limitations of
using OpenAl APIs in production and the research questions
we aim to answer when comparing SLMs with LLMs.

A. Product Feature Case Study

The application in this case study is myca.ai [18], a personal
task-management and productivity application that has been
in production for over a year. In myca.ai, users create and
manage their plan and tasks across all aspects of their life,
such as work, personal health and finances, to stay organized,
focused and productive. In addition, users can set their longer-
term goals and daily habits. myca.ai records for the user what
are accomplished daily, their progress towards goals and habits
patterns, etc.

myca.ai has a number of Al features that assist its users in
improving their productivity. One key Al feature is the “Daily
Pep Talk”. At the beginning of every day, myca provides
an encouraging message to the user based on what they
accomplished the day before, what they plan to do today, and
progress towards their goals.

282

To generate this message, user’s activity from the previous
day, along with their plan for the coming day are combined
with additional context and instructions into a text input to a
LLM. This input is commonly referred to as a “prompt”. The
LLM “follows” the instruction in the prompt and generates
a response that is then shown to the user. The process of
constructing and tweaking the input prompt to the LLM
is commonly called ”Prompt Engineering” and is the main
method of leveraging a pre-trained LLM to a task-specific use
case [30], [31]. We show the prompt template for the Daily
Pep Talk feature below. The placeholders (marked by brackets)
are replaced with user specific information before sending to
LLM for inference.

You are given below a description of the tasks and goals in my todo list.
Always answer the query using the provided context information, and not prior
knowledge.

Some rules to follow:

1. Avoid statements like 'Based on the context, ..." or 'The context informa-
tion ..." or anything along those lines.

Context information is below.

Today is 2023-11-13.

The last day | logged in was 2023-11-10 and | completed the following tasks
on that day:

[LIST OF TASKS COMPLETED]

Here are today's focused tasks. These are tasks that | think are important:

[LIST OF TASKS PLANNED]

Here are the rituals that are scheduled for today. These are recurring tasks
that help me build and maintain good habits or work/life responsibilities that
happen regularly:

[LIST OF RECURRING TASKS SCHEDULED)]

| have also set the following goals for myself for this week. These are
overarching objectives | want to accomplish in this week:

[LIST OF USER SET GOALS]

Given the context information, answer the query.

Query: Imagine you are my personal assistant, generate a short briefing for
me at the start of my day. In the briefing, summarize what | completed in the
previous day and then give me a preview of the key activities for today. In this
briefing, consider my goals for this week and tell me if my focused tasks and
rituals are aligned with those goals. Carefully evaluate the associations between
the tasks and goals and describe the tasks based on how related you think they
are. Note that it is possible that a task is not directly associated with any goals.
Reference the specific tasks mentioned in the context and generate this briefing
in a single, naturally flowing narrative. Avoid simply listing out tasks one by one.
Use a motivating and encouraging tone. Keep your response within 4 sentences.

Answer:

B. Challenges with OpenAl APIs

In the currently deployed version of the Daily Pep Talk
feature, we use the GPT-4 model from OpenAI’s cloud APIs.
While the OpenAl APIs provide state-of-the-art performance
and an easy-to-use interface that facilitates quick prototyping,
our experience suggests three key limitations when using them
in production settings.

Performance and Reliability Developers and users of Ope-
nAl have reported a large variability in query latency [32],
ranging from sub 1s to 4 - 5 minutes. In addition to latency
variability, OpenAl has reported frequent API outages since
its launch. Figure 2 shows a snapshot of the OpenAl cloud
platform status as of December 13th, 2023. In the month
of November 2023 alone, it experienced four major outages
and three partial outages, some of which lasted more than 3
hours. Given that OpenAl APIs may experience unpredictable
latency and stability, these factors pose considerable risks for
deployment in a production environment.

Token Usage Limits The token limits in the OpenAl API
can be detrimental to production deployments. Currently, there
is a limit of 1000 tokens per minute for OpenAl APIs and

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 24,2025 at 19:14:21 UTC from IEEE Xplore. Restrictions apply.

Quality Evaluation l
uman Evaluation
Quality

Dashboard]

Model Comp.

1

Cost

l
o il

Fig. 4. Architecture Overview of the SLaM Tool

2000 tokens per minute in Azure GPT-4 APIs. During our
deployment, even with a mandatory wait time of 10 seconds
in between requests, we still encountered issues of exceeding
token limit and requests were dropped by OpenAPI without
processing. As a result, the actual resulting latency of those
requests increased from 300 milliseconds to more than 5
seconds after subsequent retrying. This is not well suited for
production usage.

Cost As of December 2023, OpenAl’s API for GPT-4, their
most advanced and capable LLM, is at $0.03 per 1K input
tokens and $0.06 per 1K output tokens. Assuming each request
on average consists of 1000 input tokens and 1000 output
tokens, one request costs $0.09. Based on our experiences,
depending on the nature of the application and feature, certain
requests can have 2500 to 3000 input tokens which further
raise the per-request cost to $0.15. An average traffic of
1000 requests per day would lead to the cost of $2700 per
month, or $32,400 per year. This can easily scale up to
$1,000,000/month when the request load goes above 360,000
requests/day. In other words, if each user only sends five
queries/day, spending $12,000,000/year for openAl API can
only support around 71,000 active users. This is a significant
expense for companies, especially for start-ups.

C. Replacing OpenAl with SLMs

To address these production-related limitations, it is imper-
ative for us to investigate the feasibility of replacing LLMs
via cloud APIs with Small Language Models (SLMs) that
can be self-hosted to reduce cost and increase performance
predictability. In the rest of the paper, we set out to answer
the following questions:

e What is the right process for evaluating SLMs to replace
LLMs via APIs for a production use case? How much
can this process be automated?

o Are SLMs capable of generating responses that are of
similar quality as OpenAI’s GPT-4?

o How do SLMs in production perform in terms of latency
performance and consistency compared to OpenAl APIs?

o What are the cost trade-offs of self-hosted SLMs vs.
OpenAl GPT-4?

IV. SLAM METHODOLOGY AND ToOL

We present the SLaM toolset, a novel platform to evaluate
the performance of SLM vs. LLM across a wide range of

283

metrics (response quality, latency distribution, availability, etc)
in production use cases. One of the key contributions of SLaM
is to automate and facilitate the evaluation process, including
the setup, response generations, measuring, benchmarking, and
comparison between SLMs and LLMs, significantly reducing
the manual effort required.

A. SLaM Architecture and Components

SLaM is designed to facilitate a comprehensive analysis of
SLMs. Figure 4 illustrates the architecture of SLaM and its
key components and Figure 3 shows a screenshot of the user
interface of SLaM.

« SLM Hosting and Configuration - SLaM automatically
downloads the models of interest from the Hugging Face
model repository [33] and hosts the models in the AWS
cloud. It sets up the model inference for experiments and
evaluations.

Human Evaluation - SLaM facilitates human evaluation
of model response quality. For a given input prompt,
SLaM collects the response from each candidate model
and presents it to the human evaluator through a UI to
rate the response quality. The human evaluators are only
informed names of the models to ensure a blind tests and
unbiased ratings. SLaM can be used for both crowdsource
evaluation and custom testing setting up (e.g., experts
only).

Automated Quality Evaluation - To reduce the effort
needed for human evaluation, SLaM provides a set of
automated approaches to evaluate response quality. This
includes semantic similarity scoring and GPT-4-based
scoring. Similarity scoring is designed to provide a quan-
titative assessment of how closely the responses from an
SLM match a reference baseline response while GPT-
based scoring conducts rating on the responses similarly
to that of a human evaluator. We use a range of similarity
metrics, capturing both semantic and syntactic elements
of the text.

Performance and Cost Evaluation - In addition to
model response quality, SLaM provides performance and
cost evaluation of the SLMs. We measure average per-
request and per-token latency, as well as query latency
distribution over 24 hours. We provide cost estimation of
self-hosting SLMs and OpenAl APIs.

Configuration and Dashboard Ul - SLaM features an
UI interface for experiment configuration (e.g., problem
definition and prompt configuration), as well as a dash-
board with various graphs, visualization and analysis of
the evaluation outcome.

B. SLaM Response Quality Evaluation Methodology

We describe the SLM response quality evaluation process
in SLaM.

1) Human Evaluation: During the evaluation process, each
human evaluator is presented with a description of the prob-
lem, the original input prompt and the candidate responses
generated by the SLMs. The human evaluator is asked to

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 24,2025 at 19:14:21 UTC from IEEE Xplore. Restrictions apply.

[LLM Based Automated Evaluation

[Human Evaluation }

(Original Prompt)

ic-based

SBERT

Generated Responses

OpenAT
Embeddings

Aggregating and

Sanitize Results

Anonymize and
Randomize Models

A

Human Evaluation Scores ===—4

Crowdsource

s
Responses

USE QA

sLEy [BVl SBERT [
Similiarity [

Target Embedd)

SEM-BLEU

Fig. 5. Human Evaluation

rate each response based on their judgment of its quality and
relevance to the original problem and intention described in
the input prompt. To prevent bias, a blind test is administrated,
where the model that generated the response is not disclosed
to the evaluator. This ensures that ratings are based solely
on the response quality, not on preconceived notions about a
model’s capabilities or popularity. Responses are presented in
randomized order which further helps in reducing evaluation
bias. Each human evaluator is required to finish the complete
set of scorings assigned to them for their response to qualify.
This is designed particularly for crowdsource to avoid inat-
tentive and incomplete inputs from the crowd workers. These
incomplete responses are removed from the final results as
part of the aggregation and sanitation stage of the evaluation
pipeline. The final results are visualized in a number of formats
in a dashboard. Figure 5 depicts this process.

2) GPT-based Evaluation: Human evaluation of response
quality, while effective, can be time-consuming. SLaM in-
cludes several automated evaluation techniques that are de-
signed to help reduce the amount of human evaluation re-
quired. We first described three ways that SLaM uses GPT-4 as
a tester to evaluate model response quality: Scorer, Comparer
and Multi-choice Selector.

o GPT-Scorer: GPT-4 is given the prompt and responses
from the SLMs and is prompted to rate responses based
on its quality and relevance, similar to the instruction
given to the human evaluators. The prompt template for

the Scorer is as follows:

PROMPT: [prompt]

RESPONSE:[response]

Rate the response on a scale of 0 to 10 (0 being the worst and 10 being
the best). Rate the response based on how well it answers the prompt.
Reason step by step and then give a score. Only give a number between 0
and 10.

GPT-Comparer: This methodology instructs GPT-4 to
analyze and score responses from SLMs in the context
of comparing with a reference baseline response. The ref-
erence response is generated by OpenAl API. We prompt
the model to also include in the output reasoning behind
its decision. We parse the ratings and reasoning from
the output and present in the SLaM dashboard alongside
visualizations of the ratings. The prompt template for the

Comparer is as follows:

REFERENCE RESPONSE: [reference response]

TARGET RESPONSE: [target response]

Rate on a scale of 0 to 10 on how close the target response is to the
reference response (0 being completely different and 10 being very close
in terms of meaning and objective).

Fig. 6. GPT-Based Evaluation

284

Fig. 7. Semantic Similarity Evaluation

Output format
Reason: Reasoning...
Score: Rating

GPT-4 Multi-Choice Selector: GPT-4 is presented with
multiple responses from multiple SLMs for a given input
prompt. It is then instructed to select the best response
in terms of quality, accuracy and relevance. The prompt

template for the Multi-choice Selector is as follows:

PROMPT:

prompt

RESPONSES:

responses

What is the best response? Give the choice between 1
[num__responses] and provide a short reasoning.

OQutput format

Reason: Reasoning...

Choice: Choice

and

3) Semantic Similarity Evaluation: In addition to LLM-
based auto-evaluation techniques, we leverage semantic sim-
ilarity scores to provide a quantitative assessment of how
closely the responses of SLMs relate to a reference response.
We use a suite of similarity scores including traditional token-
based similarity metric and embedding-based similarity mea-
surement.

TF-IDF [34]: A standard similarity metric used in infor-
mation retrieval. It assesses the importance of a word to
a response in a collection of responses.

SBERT [35]: We use SBERT to compute the embeddings
of each response and calculate cosine similarity of re-
sponses.

USE-QA [36]: Similar to SBERT, we calculate the cosine
similarity of USE-QA embeddings of the responses.
OpenAl Embedding: Similar to SBERT and USE-QA,
embeddings from GPT-4 are used here.

SEM-BLEU: Combines the semantic analysis of SBERT
with the syntactic nature of BLEU score [37]. The score
is the arithmetic mean of the SBERT and BLEU scores.

The goal of SLaM’s automated quality evaluation methodol-
ogy is to provide quick relevant metrics to assess the response
quality of SLMs without human ratings. Each of the automated
methodologies captures certain aspects of the response quality.
We compare and discuss the efficacy of these metrics in
Section VI.

V. EXPERIMENTAL SETUP
A. OpenAl API setup

For OpenAl APIs, we set the temperature parameter as
0.7 and use the default for the rest of the configurations.

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 24,2025 at 19:14:21 UTC from IEEE Xplore. Restrictions apply.

Model Memory
Model bits Params Size Usage
) B) (GB) (MB)
llama2:7b-chat [5] 4 7 3.8 6933
llama2:7b-chat-q2_K 2 7 2.8 5567
1lama2:7b-chat-q3_K_L 3 7 3.6 6271
mistral:7b-instruct [6] 4 7 4.1 4795
mistral:7b-instruct-q2_K 2 7 3.1 3897
mistral:7b-instruct-q3_K_L 3 7 3.8 4601
neural-chat:7b [7] 4 7 4.1 5183
neural-chat:7b-v3.2-q2_K 2 7 3.1 4285
neural-chat:7b-v3.2-q3_K_L 3 7 3.8 4601
openchat:7b-v3.5 [16] 4 7 4.1 5183
openchat:7b-v3.5-q2_K 2 7 3.1 4285
openchat:7b-v3.5-q3_K_L 3 7 3.8 4989
orca-mini:3b [17] 4 3 2 3089
orca2:7b [9] 4 7 3.8 6527
orca2:7b-q2_K 2 7 2.8 5567
orca2:7b-q3_K_L 3 7 3.6 6271
stablelm-zephyr:3b [10] 4 3 1.6 3443
stablelm-zephyr:3b-q2_K 2 3 1.2 3251
stablelm-zephyr:3b-q2_K_L 3 3 1.5 3507
starling-Im:7b [11] 4 7 4.1 5183
starling-lm:7b-alpha-q2_K 2 7 3.1 4285
starling-Im:7b-alpha-q3_K_L 3 3 3.8 4989
vicuna:7b [12] 4 7 3.8 5371
vicuna:7b-q2_K 2 7 2.8 4411
vicuna:7b-q2_K_L 4 3 3.6 5115
zephyr:7b-beta [13] 4 7 4.1 5183
zephyr:7b-beta-q2_K 2 7 3.1 4285
zephyr:7b-beta-q3_K_L 3 7 3.8 4989

TABLE I
SLMS STUDIED IN THIS WORK.

The temperature parameter influences the randomness of the
generated responses. We use Langchain [28] to integrate with
the OpenAl APL

B. SLMs setup

Self-hosted AWS instance In our experiments, we used the
g4.dn.2xlarge AWS EC2 instance type. This instance type has
an Intel Xeon processor with 8 virtual CPUs, with 2.5GHz
frequency, 32GB of memory, and a single Nvidia T4 GPU
with 16GB of dedicated memory.

Frameworks & libraries SLaM leverages Ollama [38] to
help facilitate model acquisition, configuration, and inference.
Ollama operates as a microservice responsible for managing
model-related tasks, providing a set of API endpoints for
integration with the rest of the SLaM application. SLaM
constructs the input prompt and sends it to Ollama for SLM
inference.

C. SLMs studied in this work

SLaM is designed to work with any SLMs. For this case
study, we wanted to study SLMs that are representative of
state-of-the-art in performance. We selected the top mod-
els from the Huggingface LLM Leaderboard [39], including
Starling-lm:7b, Mistral-instruct:7b, OpenChat:7b, Zephyr:7b,
Stablelm-zephyr:3b, Orca-mini:3b, Vicuna:7b, Orca2:7b, neu-
ralChat:7b, and Llama2-chat:7b. In addition to the original
model, we include the 3-bit and 2-bit quantized versions of
these models. In total, 29 distinct models are studied, as listed
in Table I.

285

10{ —— mean
o0 °
8
o
2
o
3
[}
g
= 6
=)
=2
]
g
]
=]
)
E 4
e
2
YEMAENM AN AN a2 AN daMdaMdaMAgMA
éﬁM\\;’M\ 8% wm-M\wmz\M\ v u\M\w5M\\
BSaMEaMIaMOaME g Taraar By
5o 1B o iR o NEQ e B o g o [~ NI~ |
2508 o T b T E g Tm T B 0 E T s Tm
RETESP SRR b EERvEg v oty ERon £%
RS = RS L LG osons g0 LR 48 8 e A0 &
‘?‘ule_gﬁEUE?m-m?,,;B SENEmS58FES e 8
g 8 S 285295525 SR =) 55 &
SRSFEEZERIEREC E£EQFEEE8aE ZEERR
SExeEragbsagsa 5§33 82wt S E5g% 2
RS RN - E58ETEe F3ENER
] ; 5 o > S
EQESR CE-CE:] 2ES <& 5 £ 5
3 st L2 22 7= g o &2
= £ 5o CRC] ISRC 2 8 =l S-S
s 28 5 2 g 33 £ @
— B =] o o QQJ = o 8
= =1 2
g @ o = 2 <2 &=
- 15 a3 2%
g 5] it w3
3 @ 2

Model

Fig. 8. Response quality of GPT-4 and SLMs, as rated by human reviewers.
Score distribution (boxes) and mean score (line) of each model are shown.

VI. EVALUATION

We leverage the SLaM methodology and toolset to inves-
tigate replacing OpenAl LLM with self-hosted SLMs for the
production use case described in Section III. In this section,
we present the result of this case study and key observations
and insights.

A. Can SLMs generate responses as high-quality as OpenAl
LLMs?

We first investigate the quality of the responses generated
by the SLMs and compare them against OpenAl GPT-4.
Figure 8 shows the scores of each model’s responses rated
by the team of human reviewers, following the evaluation
process described in Section IV-B. The reviewers include
product users and university students. The boxes show the
distribution of scores of each model, and the line represents
the mean scores of each model across all human reviewers.
We observe that, while GPT-4 (Ist box on the left) has
the highest mean score (5.9), several SLMs achieved scores
close to GPT-4, namely Vicuna:7b-q3 (5.6), Starling-lm:7b-
g4 (5.1) and neural-chat:7b-q2 (5.3). This demonstrates that
certain SLMs can indeed generate responses with quality
competitive to OpenAl LLMs. In addition, we find that many
quantized models perform similarly or even better than their
base models. This is particularly encouraging for applying
SLMs in production because of the smaller size of quantized
SLMs.

To demonstrate the response quality of SLMs, we showcase
below sample responses of the daily pep talk feature from
GPT-4 and two of the highest-rated SLMs, Starling-LM:7B
and Vicua:7b-q3.

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 24,2025 at 19:14:21 UTC from IEEE Xplore. Restrictions apply.

GPT-4 — Good morning! You had a productive day last time, accomplishing
both your daily rituals. Today, we're starting strong with planning the day, a task
that aligns perfectly with your goal to get back into your daily routine. Focused
tasks such as stress testing the openAl assistants API, preparing a demo for the
RAG prototype, and improving the pep talk use cases, will help you dive deep into
local LLMs and get the pep talk Al feature ready for productization. Don't forget
your self-care tasks as well such as scheduling your orthopedic appointment, which
addresses your goal to take care of your lower back issues. Let's make today a
great one!

starling-Im:7b — Great job on completing the dailies on November 10th! Today,
you have a full schedule ahead of you with key activities such as stress testing
the OpenAl assistant API, preparing a demo for the RAG prototype, quantization
and LORA of a model, and trying out GPT-4 Turbo. To align with your goals
for this week, ensure that improving the pep talk use cases remains a priority and
consider scheduling your orthopedic appointment sooner rather than later. Your
daily rituals like planning, lifting, and medium scanning are crucial to maintaining
good habits and staying focused. While some tasks may not be directly related
to your goals, they contribute to overall progress and personal growth. Let's
make today a productive one and keep moving forward with determination and
enthusiasm!

vicuna:7b-g3 — Good morning! Based on your previous log-in and completed
tasks, you were able to complete the daily meetings, which is fantastic. Today's
focused tasks include planning for the day, stress testing the openAl assistants
API, preparing a demo for the RAG prototype, trying quantization and LORA a
model, trying out GPT-4-turbo and DALL-E 3, scheduling car service, improving
the pep talk use cases, sending the consultation report, working on the Al project,
and scheduling an orthopedic appointment. Your rituals for today include Daily,
Zero Inbox, Review Elastic Logs, and lifting weights. These recurring tasks help
you build good habits and maintain your workflow responsibilities. In addition, you
set a few goals for yourself this week, which are to get the pep talk Al feature
ready for productization, get back into your daily routine and workflow, take care
of lower back issues, and dive deeper into local LLMs. Based on your focused
tasks and rituals, it seems that you have a great start to your day ahead. You
are taking care of some important projects and maintaining good habits. Good
luck with achieving your goals this week!

In addition to the top-performing models, many of the

studied SLMs achieve comparable performance and have
scores close to the top models. This suggests SLMs indeed can
generate responses with quality close to OpenAl LLMs. On the
other hand, we do observe that a small subset of SLMs exhibit
clearly inferior response quality compared to the rest of the
group. Specifically, the orca2:7b models (base and quantized)
and stablelm-zephyr:3b-q3 scored significantly worse than the
rest of the models.
Key Observation: Many SLMs, including their quantized
versions, are able to generate responses of similar quality as
OpenAl GPT-4, while a small set of SLMs are the clear low-
performing options compared to the rest of the group.

B. Can the evaluation process be automated?

Human evaluation can be labor-intensive and time-

consuming and are not always viable. We explore the feasi-
bility of leveraging GPT model as an evaluator and similarity
metrics to automate the response quality scoring. We study the
usefulness of the GPT-based evaluators (IV-B2) and semantic
similarity approach (IV-B3).
GPT-Scorer Figure 9 shows the scores of response from each
model as rated by a GPT-4 model with the instruction prompt
shown in Section IV-B2. The boxes show the distribution of
scores, and the two lines show the mean score of human evalu-
ation and GPT-Scorer. We observe that GPT-Scorer evaluation
follows a similar trend as the human evaluation, indicating
a similar relative model preference profile. Furthermore, it
is able to identify the same subset of inferior models as
the human evaluation. This suggests that prompting GPT-4
to score model response quality in the same style as human
evaluation can provide model quality insights similar to human
evaluation.

286

GPT-4 Based Automated Evaluation Score

—— GPT4 Based Automated Evaluation
—— Human Evaluation

o

T 5 - B - 2 - n - a9 - - 2 — 2 - © —
;,g“\ R u:M\ ‘M_M‘ LRIV wg;‘\ d
BE M EBaMIa oI iadiadsaryax oy
o > o~ I el E=}

Y o 1S g = N - N I~ o o (= (=N R =
ST g T 8 T nEg fn2Tns TnsTns o
~ETES TSP R EER YA oS vES TR £ ¢
A0 ELECET IR 28GR TLBESES R E2E
S 385202208 o 2 E SR g2 @
ESSdEEgnienis £gESLELT ZEERR
SEnAaETfe 2L a5l 2 S8 HEZTBR T £58cR
/=g g8 © 0 @ o 55 N & =2 5 N BN
AR I - BT - < S8 Lo £ 2 B
EFESR S ® S ® SEN TE > a5
SETES =5 5% s g 24 g5
k)] S -1 2 g =2 2 [}
= % 2§ °2% 25 H§E N

£ 23 ¢ “E 33

=] « -

@

Model

Fig. 9. Distribution of scores given to 10 samples of responses from each
model by the GPT-Scorer, compared with human evaluation scores.

0.6

Il RBO
0.5 3 Jaccard
0.4
0.3
0.2
0.1
0.0+
< < oS > > 5 Y & 3
O L of & & @ < 3
B\ £ S
& 5@% S"Q ‘0@0 ‘&v (7(/0 &Q,b & d\o
N S & o &L &
¥ S & < & >
& & ° N
& & & &
[©)

Fig. 10. Jaccard index and Ranked-biased Overlap (RBO) of bottom 10 SLMs
ranked by each automated evaluation method compared to human evaluation.
Two variation of GPT-Comparers are tested here. GPT-Comparer explicitly
prompts for reasoning while GPT-Comparer-NR does not.

Key Observation: Scoring responses via prompting GPT-4 as
an evaluator arrives at similar model quality preferences as
human evaluation.

GPT-based and Similarity-based Auto Evaluation We now
compare across the automated evaluators, including the GPT-
based evaluators and similarity scoring method. As discussed
in Section VI-A, many SLMs provide competitive response
quality to OpenAl while a small subset of SLMs appear
clearly inferior. Being able to quickly identify the low-
performing models and remove them from consideration can
greatly accelerate the SLM model evaluation and selection
process by focusing expensive human effort on identifying
the best models. We focus on characterizing how well each
auto-evaluation method can identify low-performing SLMs.
Figure 10 shows the Jaccard index and Ranked-biased Overlap
(RBO) with uniform weighting for each automated evaluation
method (5 similarity scoring and 4 GPT-based) for the bottom
10 SLMs in their ranking compared to the human evaluation.

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 24,2025 at 19:14:21 UTC from IEEE Xplore. Restrictions apply.

Latency Per Query(s) vs Model

Gpt-4

Llama2:7b-chat
Llama2:7b-chat-q2_k
Llama2:7b-chat-q3_k_|
Mistral:7b-instruct
Mistral:7b-instruct-q2_k
Mistral:7b-instruct-q3_k_|
Neural-chat:7b
Neural-chat:7b-v3.2-q2_k
Neural-chat:7b-v3.2-q3_k_|
Openchat:7b-v3.5
Openchat:7b-v3.5-q2_k
Openchat:7b-v3.5-q3_k_|
Orca-mini:3b

Orca2:7b

Orca2:7b-q2_k
Orca2:7b-q3.k_|
Stablelm-zephyr:3b
Stablelm-zephyr:3b-q2_k
Stablelm-zephyr:3b-q3_k_|
Starling-Im:7b
Starling-Im:7b-alpha-q2_k
Starling-Im:7b-alpha-q3_k_I
Vicuna:7b
Vicuna:7b-q2_k
Vicuna:7b-q3_k_|
Zephyr:7b-beta
Zephyr:7b-beta-q2_k
Zephyr:7b-beta-q3_k_|

iiiiaié@!jgf'*iiiifgﬁiﬁﬁ‘?;ﬁe

0 10 20 30 40 50

Latency Per Query(s)

Fig. 11. Latency per request of SLMs and OpenAl
GPT-4 API. Distribution of 10 requests is shown

Latency Per Token(s) vs Model
Gpt-4 —

Llama2:7b-chat g
Llama2:7b-chat-q2_k
Llama2:7b-chat-q3_k_|
Mistral:7b-instruct
Mistral:7b-instruct-g2_k
Mistral:7b-instruct-q3_k_|
Neural-chat:7b L]
Neural-chat:7b-v3.2-q2_k
Neural-chat:7b-v3.2-q3_k_|
Openchat:7b-v3.5
Openchat:7b-v3.5-2_k
Openchat:7b-v3.5-q3_k_|
Orca-mini:3b
Orca2:7b
Orca2:7b-q2_k
Orca2:7b-q3_k_|
Stablelm-zephyr:3b
Stablelm-zephyr:3b-q2_k
Stablelm-zephyr:3b-q3_k_|
Starling-Im:7b
Starling-Im:7b-alpha-q2_k
Starling-Im:7b-alpha-q3_k_|
Vicuna:7b
Vicuna:7b-q2_k
Vicuna:7b-q3_k_|
Zephyr:7b-beta
Zephyr:7b-beta-q2_k
Zephyr:7b-beta-q3_k_|

==

-

-i jT-I- =

B
i i@é

i
-
il
.

0.03 0.04 0.05
Latency per token (s)

002

Fig. 12. Latency per token of SLMs and OpenAl
GPT-4 API. Distribution of 10 requests is shown

Tokens Per Query vs Model

Gpt-4
Llama2:7b-chat
Llama2:7b-chat-q2_k
Llama2:7b-chat-q3_k_|
Mistral:7b-instruct
Mistral:7b-instruct-q2_k
Mistral:7b-instruct-q3_k_|
Neural-chat:7b
Neural-chat:7b-v3.2-q2_k
Neural-chat:7b-v3.2-q3_k_|
Openchat:7b-v3.5
Openchat:7b-v3.5-q2_k
Openchat:7b-v3.5-q3_k_|
Orca-mini:3b
Orca2:7b
Orca2:7b-q2_k
Orca2:7b-q3.k_|
Stablelm-zephyr:3b
Stablelm-zephyr:3b-q2_k
Stablelm-zephyr:3b-q3_k_|
Starling-Im:7b
Starling-Im:7b-alpha-q2_k
Starling-Im:7b-alpha-q3_k_|
Vicuna:7b
Vicuna:7b-q2_k
Vicuna:7b-q3_k_|
Zephyr:7b-beta
Zephyr:7b-beta-q2_k
Zephyr:7b-beta-q3_k_|

af@*‘*@@T*Fi'ii**’***““iai

200 400 600 800 1000 1200 1400

Tokens Per Query

Fig. 13. Number of tokens generated by SLMs and
OpenAl GPT-4 APIL Distribution of 10 requests

here. here.

A higher Jaccard index and RBO for an automated evaluation
method indicates that it ranks the model more similar to
that of human rankings. First, we observe that most methods
have a relatively low RBO, indicating some disagreement in
the order of the models ranked in the bottom 10 between
human evaluation and the automated methods. On the other
hand, we observe that sem-bleu has the highest Jaccard index,
meaning that its judgment of low-performing models is the
most aligned with human ranking. Sem-bleu, as described in
Section IV-B3, combines sentence-level (SBERT) and token-
level (BLEU) similarity, shares the same 7 out of 10 model
choices with human evaluation in its bottom 10 rankings, albeit
with different ordering as indicated by a low RBO score.
Key Observation: Automated evaluation methods can be ef-
fective in identifying low-performing models, accelerating the
process of SLMs evaluation by focusing human evaluation on
top models. Specifically, sem-bleu identifies low-performing
models most similar to human evaluation.

C. Are self-hosted SLMs faster than OpenAl APIs?

Per-request Latency — Figure 11 shows the per-request
latency of the SLMs and OpenAl GPT-4. Distributions of 10
requests with the same input are shown here. While GPT-
4 (1st row) has the lowest per-request latency, most SLMs
provide competitive latency performance. Specifically, the
mean request latency of mistral:7b-instruct, orca-mini:3b and
stablelm-zephyr:3b are within <1 second of GPT-4’s latency.

Per-token Latency - Language models generate its output
one token at a time, and therefore, the end-to-end request
latency depends on the number of tokens the model generates.
To further understand the performance characteristics of these
SLMs, we characterize the number of tokens in the response

287

with the same prompt shown here.

generated by each model (Figure 13) and the per-token latency
of each model (Figure 12). Figure 13 shows that the Orca 2
models and StableLM-zephyr:3b-q2 have large variations in
their response length. This explains the wide distribution of
per-request latency for these models observed in Figure 11.
GPT-4’s response length has a much lower variance than
the SLMs, indicating its responses more consistently follow
the prompt’s instructions. Furthermore, Figure 12 shows that
many SLMs, such as StableLM-zephyr-3b, mistral-7b, and
starlingl. M, are faster at generating tokens than OpenAl GPT-
4.

Key Observation: Self-hosted SLMs can achieve similar or
better latency performance as OpenAl GPT-4 in per token
generation. GPT-4 is more consistent in following response
length control instructions in the prompt, providing more
consistent performance on the request level, while some SLMs
have a wider distribution of per-request latency.

D. Are self-hosted SLMs more reliable than OpenAl APIs?

We characterize the variability in the performance of Ope-
nAl APIs and self-hosting SLMs at different times of the
day. Figure 14 shows how the request latency of OpenAl
API varies over the course of 24 hours. Ten requests are
measured at each hour, and their distributions are shown
as boxes. The same input and request parameters are used
across all requests. We observe significant variations in request
latency for OpenAl at different times of the day, where per-
request latency ranges from 3.4 seconds to 8.6 seconds. This
large variability presents a significant challenge in production
settings, where predictability is crucial.

Figure 15 shows the latency variability over 24 hours
of four selected SLMs hosted in AWS and compares them

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 24,2025 at 19:14:21 UTC from IEEE Xplore. Restrictions apply.

Latency(s)
(=]

b #&ﬁﬁﬁ#o 1Y

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23

Hour (UTC)

Fig. 14. Latency distribution of OpenAI’s API over the course of a 24-hour
period.

Latency per token (s) vs Time (UTC)

starling-Im:7b °
starling-Im:7b-alpha-q3_K_L
starling-Im:7b-alpha-q2_K
orca-mini:3b

gpt-4

n‘J ‘a‘i ‘ Lui) @. d‘ Y ..ﬁ J x ‘

fiiii*!iiiiﬂiif

0.06

Latency per token (s)

o 11 12 13 14 15 16 17 18 19 20 21 22 23
Hour (UTC)

Fig. 15. Latency distribution of OpenAI's GPT-4 API, Starling-Im:7b, and
Orca-mini:3b over the course of a 24-Hour Period.

against OpenAl GPT-4. StarlingLMs are selected because
their response quality are among the best of the SLMs and
Orca-mini-3b is selected because of its small size and yet
strong response quality performance. When measuring the
SLMs latency, we warm up the machine with 10 requests
first to ensure the model weights are memory-resident and we
measure the latency of the subsequent 10 requests. We observe
that self-hosted SLMs have a significantly more consistent
request latency over the course of the 24 hours and a narrower
request-to-request distribution within the same hour.

Key Observation: Self-hosting SLMs can significantly reduce
performance variability in production compared to OpenAl
APIs.

E. Are self-hosted SLMs more cost-effective than OpenAl
APIs?

We compute the throughput of each SLM when running
on an AWS instance at 80% utilization. We then use the
throughput to estimate the cost of self-hosting the SLMs.

288

Cost per Token ($) vs Model

0.012

0.010

0.008

0.006

Cost per Token (S)

0.004

0.002

Fig. 16. Estimated cost per 1K token generated for each SLM. GPT-4 incurs
a cost of $0.03 per input token and $0.06 per completion token, whereas the
self-hosted SLM models only incur costs associated with AWS. We assume
80% utilization of the AWS node.

Cost Reduction vs Model

30

25

20

15

Cost Reduction

10

o

vicuna:7b
vicuna:7b-g3_K_L

neural-chat:7b-v3.2-q2_K

zephyr:7b-beta-q2_K

stablelm-zephyr:3b-g2_K

orca2:7b-q2_K
openchat:7b-v3.5
openchat:7b-v3.5-q2_K
vicuna:7b-q2_K

openchat:7b-v3.5-3_K_L

llama2:7b-chat-q2_K

starling-Im:7b-alpha-q2_K
orca2:7b

starling-Im:7b
orca2:7b-q3 K L

starling-Im:7b-alpha-q3_K_L
neural-chat:7b

neural-chat:7b-v3.2-q3_K_L
llama2:7b-chat

llama2:7b-chat-q3_K_L
zephyr:7b-beta

zephyr:7b-beta-q3_K_L
falcon:7b-instruct

stablelm-zephyr:3b

stablelm-zephyr:3b-g3_K_L

Fig. 17. Cost reduction of each SLM (g4dn.xlarge AWS node
utilization) against OpenAI’'s GPT-4 API.

at 80%

The per-1K token cost of self-hosting SLMs are shown in
Figure 16. The corresponding OpenAl cost is $0.09 (1K input
and 1K output tokens). Figure 17 shows the cost reduction
resulting from running the SLMs instead of querying OpenAl
APIL. We picked 80% utilization to be conservative in our
comparison. The use of auto-scaling monitors utilization over
time and automatically adds compute resources as needed, but
its use also implies that an individual node will never be fully
utilized. If the number of inferences is low, OpenAl APIs
could have a cost advantage. On the other hand, the AWS
instance could schedule containers unrelated to inference and
amortize its cost in that case. Overall, we see a cost reduction
of 5x to 29x, depending on the model used.

VII. RELATED WORKS

Zheng et al. [40] explore the usage and limitations of
using LLMs as judges to evaluate models. They introduce
a new benchmark focused on Question-Answering and a

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 24,2025 at 19:14:21 UTC from IEEE Xplore. Restrictions apply.

crowd rating platform for chatbots built using LLMs. In this
work, we focus specifically on small language models and the
SLaM methodology applies generally to language model tasks
beyond QA and chatbots. We also go beyond response quality
and present a holistic study of the readiness of SLMs to replace
proprietary LLMs including latency and cost consideration.

We discuss prior works that address the challenges as-
sociated with large language models (LLMs) and ones that
introduce innovative hardware and system solutions to accel-
erate them. Several work has investigated the performance
of machine learning models focusing on the training aspects
on various hardware designs [41]-[43]. XRBench [44] is a
benchmarking suite for evaluating machine learning workloads
related to extended reality. It assesses model dependency
and concurrency for testing the real-time use of multi-model
multi-task workloads. The concept of multi-DNN workloads
is further developed by [45] which introduces sub-accelerators
to efficiently manage multiple subtasks concurrently. Xu et al.
[46] discuss the challenges of tuning large language models
(LLMs) like GPT-3 and GPT-4 due to their immense sizes
and the inaccessibility of their weights. Their proposed Super
In-Context Learning (SuperICL) enables black-box LLMs to
collaborate with locally finetuned smaller models. Liang, et. al
[47]. demonstrate that LLMs can assist in developing quantum
computing architectures on par with sophisticated quantum
architecture search.

There are system design innovations that support and ac-
celerate LLMs [48] [49] [50]. For example, both FLAT [51]
and SPRINT [52] address the computational challenges of
attention mechanisms in machine learning. FLAT introduces
tailored dataflow optimization for attention mechanisms with-
out altering their functionality. SPRINT is an accelerator
that leverages the inherent parallelism of ReRAM crossbar
arrays to compute attention scores approximately, and SUGAR
is a Self-Adaptive Reconfigurable Array (SARA) with an
integrated recommendation neural network (ADAPTNET) that
enables runtime reconfiguration for optimized performance in
accelerator architectures [53]. Wang et al [54] propose a novel
technique to reduce data communication overheads in large
deep learning models by overlapping communication with
computation. This technique decomposes an identified orig-
inal communication collective and the dependent computation
operation into a sequence of fine-grained operations. Rouhani
et al. [55] introduce Block Data Representations (BDR), a
framework for exploring and evaluating a wide spectrum of
narrow-precision formats for deep learning. [56] presents a
framework to evaluate hardware designs for accelerating LLM
workloads.

There are also architectural innovations to accelerate ML
and LLM models. VEGETA [57] is an ISA extension for accel-
erating the computation of sparse matrix multiplication on the
CPU for improving DNN workloads. Norm et al [58] discuss
the design and implementation of Google’s domain-specific
architecture (DSA) for machine learning models, including
LLMs. They introduce SparseCores, dataflow processors that
accelerate models that rely on embeddings. The performance,

289

scalability, efficiency, and availability of TPU v4 make it an
ideal vehicle for LLMs. Also, Seongmin et al [59] presents a
multi-FPGA acceleration appliance that executes GPT-2 model
inference end-to-end with low latency and high throughput.
Cong et al. [60] proposes OliVe, an algorithm/architecture co-
designed solution that adopts an outlier-victim pair (OVP)
quantization that can be efficiently integrated into existing
hardware accelerators using systolic arrays and tensor cores
to achieve speedup and energy reduction with superior model
accuracy.

VIII. CONCLUSION

We show that while LLMs, like GPT-4, have excellent
breadth of capabilities, their power can be approximated
with smaller, faster, and cheaper models for domain-specific
tasks. We evaluate the trade-offs on the part of a commercial
application that generates a daily “pep talk” to its user based
on their past behavior and future tasks. While GPT-4 achieves
the highest accuracy across a broad range of models, as judged
by a human panel, most small language models (SLMs) come
close to its response quality while incurring 1/5 to 1/29 of the
cost. The SLMs also benefit from more predictable latency
performance. Our evaluation is facilitated by an automated
methodology and open-source toolset called SLaM, which fa-
cilitates the acquisition and hosting of the SLMs, and conducts
model response quality evaluation and provides performance
and cost analysis of the SLMs.

REFERENCES

(1]
[2]

“OpenAl blog: ChatGPT,” https://openai.com/blog/chatgpt, 2023.

M. Dowling and B. Lucey, “Chatgpt for (finance) research: The bana-
narama conjecture,” Finance Research Letters, vol. 53, p. 103662, 2023.
OpenAlL (Year Accessed) Introducing ChatGPT and
Whisper APIs. [Online]. Available: https://openai.com/blog/
introducing-chatgpt-and-whisper-apis

The Register. (2023) Outage hits OpenAl’s ChatGPT as servers stopped
by ’Claude’ glitch. [Online]. Available: https://www.theregister.com/
2023/11/08/outage_chatgpt_openai_claude/

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale er al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot,
D. de las Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier,
L. R. Lavaud, M.-A. Lachaux, P. Stock, T. L. Scao, T. Lavril, T. Wang,
T. Lacroix, and W. E. Sayed, “Mistral 7b,” 2023.

3

[l

[7] “neuralchat model listing,” https://huggingface.co/Intel/
neural-chat-7b-v1-1, 2023.
[8] G. Wang, S. Cheng, Q. Yu, and C. Liu, “OpenLLMs: Less

is More for Open-source Models,” 7 2023. [Online]. Available:
https://github.com/imoneoi/openchat

A. Mitra, L. D. Corro, S. Mahajan, A. Codas, C. Simoes, S. Agar-
wal, X. Chen, A. Razdaibiedina, E. Jones, K. Aggarwal, H. Palangi,
G. Zheng, C. Rosset, H. Khanpour, and A. Awadallah, “Orca 2: Teaching
small language models how to reason,” 2023.

“Stabilitai: Stablelm,” https://github.com/Stability- Al/StableLM, 2023.
B. Zhu, E. Frick, T. Wu, H. Zhu, and J. Jiao, “Starling-7b: Improving
1Im helpfulness and harmlessness with rlaif,” November 2023.

W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang,
L. Zheng, S. Zhuang, Y. Zhuang, J. E. Gonzalez, 1. Stoica,
and E. P. Xing, “Vicuna: An open-source chatbot impressing gpt-
4 with 90%* chatgpt quality,” March 2023. [Online]. Available:
https://Imsys.org/blog/2023-03-30-vicuna/

[10]
[11]

[12]

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 24,2025 at 19:14:21 UTC from IEEE Xplore. Restrictions apply.

[13]

[18]
[19]

[20]

[32]

L. Tunstall, E. Beeching, N. Lambert, N. Rajani, K. Rasul, Y. Belkada,
S. Huang, L. von Werra, C. Fourrier, N. Habib, N. Sarrazin, O. San-
seviero, A. M. Rush, and T. Wolf, “Zephyr: Direct distillation of Im
alignment,” 2023.

H. Shen, H. Chang, B. Dong, Y. Luo, and H. Meng, “Efficient 1lm
inference on cpus,” arXiv preprint arXiv:2311.00502, 2023.

H. Chang, H. Shen, Y. Cai, X. Ye, Z. Xu, W. Cheng, K. Lv, W. Zhang,
Y. Lu, and H. Guo, “Effective quantization for diffusion models on
cpus,” arXiv preprint arXiv:2311.16133, 2023.

G. Wang, S. Cheng, X. Zhan, X. Li, S. Song, and Y. Liu, “Openchat:
Advancing open-source language models with mixed-quality data,”
arXiv preprint arXiv:2309.11235, 2023.

S. Mukherjee, A. Mitra, G. Jawahar, S. Agarwal, H. Palangi, and
A. Awadallah, “Orca: Progressive learning from complex explanation
traces of gpt-4,” arXiv preprint arXiv:2306.02707, 2023.

“Myca.ai — unleash your potential with ai-powered productivity.”
[Online]. Available: https://www.myca.ai/

Y. Chang and at el., “A survey on evaluation of large language models,”
2023.

M. Ollivier and at el., “A deeper dive into chatgpt: history, use and
future perspectives for orthopaedic research,” Knee Surgery, Sports
Traumatology, Arthroscopy: Olfficial Journal of the ESSKA, vol. 31,
no. 4, pp. 1190-1192, 2023.

A. Vaswani and at el., “Attention is all you need,” 2023.

A. Radford and at el., “Language models are unsupervised multitask
learners,” 2019. [Online]. Available: https://api.semanticscholar.org/
CorpusID: 160025533

M. Shoeybi and at el., “Megatron-Im: Training multi-billion parameter
language models using model parallelism,” 2020.

OpenAl, “Gpt-4 technical report,” ArXiv, vol. abs/2303.08774, 2023.
[Online]. Available: https://arxiv.org/abs/2303.08774

“Join us for openai’s first developer conference,” 2023. [Online].
Available: https://openai.com/blog/announcing-openai-devday

Z. L. et al.,, “Llm-qat: Data-free quantization aware training for large
language models,” 2023.

J. Liu, R. Gong, X. Wei, Z. Dong, J. Cai, and B. Zhuang, “Qllm:
Accurate and efficient low-bitwidth quantization for large language
models,” 2023.

L. AL “Langchain: Building applications with llms through composabil-
ity,” https://github.com/langchain-ai/langchain, 2023, accessed: Dec. 15,
2023.

Llamaindex, “Llamaindex, data framework for llm applications,” https:
/lwww.llamaindex.ai/, 2024, accessed: April 13th, 2024.

“Emnlp: Prompt engineering is the new feature engineer-
ing,” 2022. [Online]. Available: https://www.amazon.science/blog/
emnlp-prompt-engineering-is-the-new-feature-engineering

P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-train,
prompt, and predict: A systematic survey of prompting methods in
natural language processing,” ACM Comput. Surv., vol. 55, no. 9, jan
2023. [Online]. Available: https://doi.org/10.1145/3560815

“Openai: why are the api calls so slow? when will it be
fixed,” 2023. [Online]. Available: https://community.openai.com/t/
openai- why-are-the-api-calls-so-slow-when- will-it-be- fixed/148339/
68?page=4

HuggingFace, “Hugging Face Models,” https://huggingface.co/models,
2023, accessed: Dec. 15, 2023.

C. D. Manning, An introduction to information retrieval.
university press, 2009.

N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings
using siamese bert-networks,” CoRR, vol. abs/1908.10084, 2019.
[Online]. Available: http://arxiv.org/abs/1908.10084

D. Cer, Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco, R. S. John,
N. Constant, M. Guajardo-Cespedes, S. Yuan, C. Tar ef al., “Universal
sentence encoder,” arXiv preprint arXiv:1803.11175, 2018.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, 2002,
pp. 311-318.

ollama, ‘“ollama,” https://github.com/ollama/ollama, 2024, accessed:
April 13th, 2024.

HuggingFaceH4, “Open LLM Leaderboard,” https://huggingface.co/
spaces/HuggingFaceH4/open_llm_leaderboard, 2023, accessed: Dec. 15,
2023.

Cambridge

290

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin,
Z.Li, D. Li, E. P. Xing, H. Zhang, J. E. Gonzalez, and I. Stoica, “Judging
IIm-as-a-judge with mt-bench and chatbot arena,” 2023.

W. Won, T. Heo, S. Rashidi, S. Sridharan, S. Srinivasan, and T. Krishna,
“Astra-sim2.0: Modeling hierarchical networks and disaggregated
systems for large-model training at scale,” in IEEE International
Symposium on Performance Analysis of Systems and Software, ISPASS
2023, Raleigh, NC, USA, April 23-25, 2023. 1EEE, 2023, pp. 283-294.
[Online]. Available: https://doi.org/10.1109/ISPASS57527.2023.00035
D. Moolchandani, J. Kundu, F. Ruelens, P. Vrancx, T. Evenblij, and
M. Perumkunnil, “Amped: An analytical model for performance in
distributed training of transformers,” in IEEE International Symposium
on Performance Analysis of Systems and Software, ISPASS 2023,
Raleigh, NC, USA, April 23-25, 2023. 1EEE, 2023, pp. 306-315.
[Online]. Available: https://doi.org/10.1109/ISPASS57527.2023.00037
J. Gémez-Luna, Y. Guo, S. Brocard, J. Legriel, R. Cimadomo, G. F.
Oliveira, G. Singh, and O. Mutlu, “Evaluating machine learningwork-
loads on memory-centric computing systems,” in 2023 IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software
(ISPASS), 2023, pp. 35-49.

H. Kwon, K. Nair, J. Seo, J. Yik, D. Mohapatra, D. Zhan, J. Song,
P. Capak, P. Zhang, P. Vajda et al., “Xrbench: An extended reality (xr)
machine learning benchmark suite for the metaverse,” Proceedings of
Machine Learning and Systems, vol. 5, 2023.

H. Kwon, L. Lai, M. Pellauer, T. Krishna, Y.-H. Chen, and V. Chan-
dra, “Heterogeneous dataflow accelerators for multi-dnn workloads,” in
2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2021, pp. 71-83.

C. Xu and at el., “Small models are valuable plug-ins for large language
models,” ArXiv, vol. abs/2305.08848, 2023.

Z. Liang, J. Cheng, R. Yang, H. Ren, Z. Song, D. Wu, X. Qian, T. Li,
and Y. Shi, “Unleashing the potential of llms for quantum computing: A
study in quantum architecture design,” arXiv preprint arXiv:2307.08191,
2023.

Z. Wu, L. Y. Dai, A. Novick, M. Glick, Z. Zhu, S. Rumley, G. Michel-
ogiannakis, J. Shalf, and K. Bergman, “Peta-scale embedded photonics
architecture for distributed deep learning applications,” Journal of Light-
wave Technology, 2023.

F. Blanaru, A. Stratikopoulos, J. Fumero, and C. Kotselidis, “Enabling
pipeline parallelism in heterogeneous managed runtime environments via
batch processing,” in Proceedings of the 18th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, 2022, pp.
58-71.

J. Song, J. Yim, J. Jung, H. Jang, H.-J. Kim, Y. Kim, and J. Lee,
“Optimus-cc: Efficient large nlp model training with 3d parallelism
aware communication compression,” in Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, 2023, pp. 560-573.
S.-C. Kao, S. Subramanian, G. Agrawal, A. Yazdanbakhsh, and T. Kr-
ishna, “Flat: An optimized dataflow for mitigating attention bottlenecks,”
in Proceedings of the 28th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
Volume 2, 2023, pp. 295-310.

A. Yazdanbakhsh and et al., “Sparse attention acceleration with
synergistic in-memory pruning and on-chip recomputation,” in
2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). Los Alamitos, CA, USA: IEEE Computer Society, oct
2022, pp. 744-762. [Online]. Available: https://doi.ieeecomputersociety.
org/10.1109/MICR0O56248.2022.00059

A. Samajdar, M. Pellauer, and T. Krishna, “Self-adaptive reconfigurable
arrays (sara): Using ml to assist scaling gemm acceleration,” arXiv
preprint arXiv:2101.04799, 2021.

S. Wang and at el., “Overlap communication with dependent computa-
tion via decomposition in large deep learning models,” in Proceedings
of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 1, ser.
ASPLOS 2023. Association for Computing Machinery, 2022, p.
93-106.

D. Rouhani and et al., “With shared microexponents, a little shifting
goes a long way,” in Proceedings of the 50th Annual International
Symposium on Computer Architecture, ser. ISCA °23. New York, NY,
USA: Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3579371.3589351

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 24,2025 at 19:14:21 UTC from IEEE Xplore. Restrictions apply.

[56] H. Zhang, A. Ning, R. Prabhakar, and D. Wentzlaff, “A hardware
evaluation framework for large language model inference,” 2023.

[57] G. Jeong, S. Damani, A. R. Bambhaniya, E. Qin, C. J. Hughes,
S. Subramoney, H. Kim, and T. Krishna, “Vegeta: Vertically-integrated
extensions for sparse/dense gemm tile acceleration on cpus,” in 2023
IEEE International Symposium on High-Performance Computer Archi-
tecture (HPCA). 1EEE, 2023, pp. 259-272.

[58] N. Jouppi and et al., “Tpu v4: An optically reconfigurable supercom-
puter for machine learning with hardware support for embeddings,” in
Proceedings of the 50th Annual International Symposium on Computer
Architecture, ser. ISCA ’23. Association for Computing Machinery,
2023.

[59] S. Hong and at el., “Dfx: A low-latency multi-fpga appliance for
accelerating transformer-based text generation,” in 2022 IEEE Hot Chips
34 Symposium (HCS), 2022, pp. 1-17.

[60] C. Guo and et al., “Olive: Accelerating large language models via
hardware-friendly outlier-victim pair quantization,” in Proceedings of
the 50th Annual International Symposium on Computer Architecture,
ser. ISCA ’23. ACM, Jun. 2023. [Online]. Available: http:
//dx.doi.org/10.1145/3579371.3589038

291

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 24,2025 at 19:14:21 UTC from IEEE Xplore. Restrictions apply.

