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Abstract—With the growing popularity of cloud gaming and
cloud virtual reality (VR), interactive 3D applications have
become a major class of workloads for the cloud. However,
despite their growing importance, there is limited public research
on how to design cloud systems to efficiently support these
applications due to the lack of an open and reliable research
infrastructure, including benchmarks and performance analysis
tools. The challenges of generating human-like inputs under
various system/application nondeterminism and dissecting the
performance of complex graphics systems make it very difficult
to design such an infrastructure. In this paper, we present the
design of a novel research infrastructure, Pictor, for cloud 3D
applications and systems. Pictor employs AI to mimic human
interactions with complex 3D applications. It can also track
the processing of user inputs to provide in-depth performance
measurements for the complex software and hardware stack
used for cloud 3D-graphics rendering. With Pictor, we designed
a benchmark suite with six interactive 3D applications. Perfor-
mance analyses were conducted with these benchmarks, which
show that cloud system designs, including both system software
and hardware designs, are crucial to the performance of cloud
3D applications. The analyses also show that energy consumption
can be reduced by at least 37% when two 3D applications share
a could server. To demonstrate the effectiveness of Pictor, we
also implemented two optimizations to address two performance
bottlenecks discovered in a state-of-the-art cloud 3D-graphics
rendering system. These two optimizations improved the frame
rate by 57.7% on average.

Index Terms—Cloud Computing, Cloud Gaming, Cloud Gam-
ing Benchmarks, Cloud Gaming Performance Analysis, Cloud
Graphics Systems

I. INTRODUCTION

The rise of cloud gaming and cloud virtual reality (VR) has

made interactive 3D applications a major class of workloads

for cloud computing and data centers [6], [23], [37], [52], [56].

A main benefit of rendering user-interactive 3D applications in

the cloud is that it may reduce the installation and operational

costs for the large-scale deployments of these 3D applications.

Running these 3D applications in the cloud also allows mobile

clients with less powerful GPUs to enjoy better visual effects.

Moreover, cloud 3D-graphics rendering may also simplify the

development and delivery of these 3D applications. For the rest

of this paper, we refer to these user-interactive 3D applications

simply as 3D applications.

Most prior research on virtual desktop infrastructure (VDI)

or cloud gaming focused on network latency [2], [20], [41].

However, the network latency is considerably reduced today and

becomes viable for cloud 3D applications [77]. This improved

network, in turn, makes the design of cloud 3D-graphics
rendering systems crucial to the efficiency and performance of

cloud 3D applications. However, there is limited public research

on this system design, largely due to the lack of an open

and reliable research infrastructure, including benchmarks and

performance analysis tools. This lack of research infrastructure

even affects non-cloud VR system research, which employed

non-uniform evaluation methodologies [9], [42], [84]. Prior

attempts to provide such research infrastructures [12], [54],

[85] have limited success due to the following challenges.

First, for reliable evaluation, the research infrastructure must

be able to mimic human interactions with 3D applications

under randomly generated/placed objects and varying network

latency. That is, the inputs used for the benchmarks should

closely resemble real human inputs, so that the performance

results obtained with these human-like inputs are similar to

those obtained with real human inputs. Prior research generated

human-like inputs from recorded human actions [75], [85].

However, this recording does not work for 3D VR applications

and games, which have irregular and randomly placed/generated

objects in their frames. Additionally, variations in network

latency may affect when a particular object will be shown

on the screen, further limiting the usefulness of the recorded

actions [85].

Second, to reliably measure performance, the research

infrastructure must be able to accurately measure the round-

trip time/latency to respond to a user input [54], which in

turn, relies on the accurate association of a user input and
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its response frame. However, this association is very difficult

due to the need to track the handling of a user input and the

rending of its response frame across the network, across the

CPU and GPU, and across multiple software processes (i.e.,

tracking from the client to the server, and back to the client).

Third, to effectively identify performance bottlenecks, the

research framework must be able to measure the performance

of every stage involved in the handling of a user input and the

rendering of its response frame. The framework should be able

to properly measure the performance of all the components

involved, including those from the complex graphics software

stack and heterogeneous hardware devices. Additionally, the

research framework must have low overhead to ensure these

measurements are reliable.

Fourth, the research infrastructure should be extensible

to easily include new 3D applications. 3D applications are

typically refreshed every one or two years and most of them

are proprietary. Therefore, the research infrastructure should be

constantly refreshed with new 3D benchmarks without requiring

to modify their source code.

In this paper, we present a novel benchmarking framework,

called Pictor, which overcomes the above challenges to

allow reliable and effective performance evaluation of 3D

applications and cloud graphics rendering systems. Pictor has

two components: 1) an intelligent client framework that can

generate human-like inputs to interact with 3D applications;

and 2) a performance analysis framework that provides reliable

input tracking and performance measurements. Inspired by

autonomous driving, the intelligent client framework employs

computer vision (CV) and recurrent neural network (RNN) to

simulate human actions [39], [72], [74]. The performance

analysis framework tracks inputs with tags and combines

various performance monitoring techniques to measure the

processing latency and resource usage of each hardware and

software component. Additionally, Pictor is carefully designed

to have low overhead and requires no modification to 3D

applications.

With Pictor, we designed a benchmark suite with four com-

puter games and two VR applications. Through experimental

evaluation with these benchmarks, we show that Pictor can

indeed accurately mimic human action with an average error of

1.6%. We also conducted an extensive performance analysis on

a state-of-the-art cloud 3D-graphics rendering system [67], [82]

to characterize the 3D benchmarks and the rendering system,

analyze the impact of co-locating multiple 3D applications, and

study the overhead of rendering 3D applications in containers.

This performance analysis demonstrated that executing 3D

application in the cloud could provide good Quality-of-Service

(QoS). The analysis also showed that cloud/server performance

can be a major limitation on QoS. Hence, the design of the

cloud system, including both software and hardware, is crucial

to the performance of cloud 3D applications. Moreover, execut-

ing two 3D applications in the same cloud server might reduce

energy consumption by at least 37% while still achieving good

QoS. The performance analysis also showed that container-

based virtualization incurred less than 2% overhead. At last,

to demonstrate that the in-depth performance analysis allowed

by Pictor can indeed lead to performance improvements, we

implemented two optimizations which improved average frame-

rate by 57.7%.

The contributions of this paper include:

1. A novel intelligent client framework that can faithfully

mimic human interactions with complex 3D applications with

randomly generated/placed objects and under varying network

latency.

2. A novel performance analysis framework that can ac-

curately track the processing of user inputs, and measure

the performance of each step involved in the processing of

user inputs in various software and (heterogeneous) hardware

components. This framework is also carefully designed to have

low overhead and requires no application source code.

3. A comprehensive performance analysis of a state-of-the-

art cloud graphics rendering system, the 3D benchmarks and

containerization. This analysis also shows the benefit of cloud

3D applications and reveals new optimization opportunities.

4. Two new optimizations for current cloud graphics render-

ing system with significant performance improvements, which

also demonstrate the effectiveness of Pictor.

The rest of this paper is organized as follows: Section II

discusses a typical cloud graphics rendering system; Section III

presents the design of Pictor; Section IV evaluates the accuracy

and overhead of Pictor; Section V provides the performance

analysis on a current cloud graphics rendering system; Sec-

tion VI presents two new optimizations; Section VII discusses

related work and Section VIII concludes the paper.

II. CLOUD 3D RENDERING SYSTEM

Figure 1 illustrates the typical system architecture for cloud

graphics rendering. This architecture employs a server-client

model where the servers on the cloud execute 3D applications

and serve most of their rendering requests. The client is mainly

responsible for displaying UI frames and capturing user inputs.

The client may also perform less-intensive graphics rendering,

depending on the system design. In this work, we focus on

Linux-based systems and open-source software which are easy

to modify and free to distribute.

The system in Figure 1 operates in the following steps.

When the client’s interactive device captures a user input (e.g.,

a keystroke, mouse movement, or head motion), it sends the

input through the network to a proxy on the cloud server

(step �), which forwards the input to the application (step

�). The proxy is usually a server application that handles

media communication protocols, such as a Virtual Network

Computing (VNC) server with Remote Frame Buffer (RFB)

protocol or a video streaming server with extended Real-Time

Streaming Protocol (RTSP) [31], [67], [70]. After receiving the

input, the application starts frame rendering (step �). A 3D

application may use a rendering engine that provides functions

for drawing complex objects (e.g., the “Application 1”), or

it may directly call a 2D/3D library to draw objects from

scratch (e.g., “App 2”). The rendering engine, in turn, invokes

the 2D/3D library. On Linux, the 2D/3D library is typically
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Fig. 1. System architecture for cloud graphics rendering.

Fig. 2. Overview of the Pictor benchmarking framework (surrounded by the dashed box).

Mesa 3D Graphics Library, which implements the APIs of

OpenGL and Vulkan [32], [62], [71]. Examples of the rendering

engine include Unity, OSVR, and OpenVR [13], [73], [78].

To ensure 2D/3D calls are indeed invoked on the server, a

graphics interposer library is employed [17]. The 2D/3D library

(and the GPU driver) then translates the drawing APIs into

GPU commands to perform the rendering on the GPU (step �).

After the frame is rendered on the GPU, the graphics interposer

copies the frame from the GPU (step �-�) and push the newly

rendered frame to the server proxy (step �). The proxy then

compresses and sends the frame over the network to the client

for display (step 	).

Moreover, as shown in Figure 1, multiple 3D applications

can execute simultaneously on the same machine and share

hardware components, such as CPU, memory, GPU, and PCIe

buses. Each application is executed in a virtual machine (VM)

or a container with virtualized GPUs (vGPU) [25], [40], [57].

This system architecture has two implications for the

benchmarking of cloud graphics rendering systems. First, as

the behaviors of 3D applications are heavily influenced by

user inputs, reliably benchmarking 3D applications requires

generating human-like inputs. Second, cloud graphics rendering

system includes complex and heterogeneous software/hardware

components, which must be properly handled/measured when

analyzing performance. In the rest of this paper, we will

describe the design of Pictor, which overcomes the challenges

mention in Section I and the above two issues.

III. THE DESIGN OF PICTOR

Figure 2 shows the components of Pictor benchmarking

framework. A main component of Pictor is the intelligent

client framework that is used to generate clients with human-

like actions to interact with 3D applications. The other main

component of Pictor is the performance analysis framework,

which spans over the client and the server to provide reliable

performance measurements. The rest of this section describes

these two components in detail.

A. Intelligent Client Framework Design

Overview The intelligent client framework allows building

an intelligent client for a 3D application by learning how to

properly interact with this application from recorded human

actions. More specifically, for a 3D application, an RNN model

is trained based on recorded human actions under a scene of

this application [72]. To improve the RNN model’s accuracy,

the objects in the frames are first recognized using computer

vision (CV) with Convolutional Neural Network (CNN) [39].

Figure 3 gives an overview of a client obtained with the

intelligent client framework, which operates in the following

steps. After a compressed frame is sent over the network to

the intelligent client (step �), it is first decompressed (step �).

The decompressed frame is then processed by a CNN model

to recognize its objects (step �). The types and coordinates

of the recognized objects are then sent to an RNN model to

generate user inputs that mimic real human actions (step �).

These inputs are eventually sent back to the client proxy,

which encodes these actions into network packages and sends

them to the benchmark (step �). With CNN and RNN models,

the clients can properly interact with 3D applications with

random frames and under random networking/system latency.

By generating actions purely based on frames, the clients can

be built for 3D applications without knowing their internal

designs or modifying these applications. Note that, for some

simple 3D applications, instead of RNN, simple rule-based

input generation may suffice. Nonetheless, RNN provides a

generic solution that works well with any 3D application.

Model Training Each 3D application/benchmark has its own

CNN/RNN models, which are trained from a recorded session

of human actions under an application scene. The intelligent

client framework provides tools to perform this recording.

Each recorded session includes a sequence of frames and the

corresponding human actions to each frame. To train a CNN

model, the objects in the frames need to be manually labeled.

The labeled frames are then fed into a machine-learning (ML)
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Fig. 3. Overview of the intelligent client. The image is obtained from a racing game, SuperTuxKart [28].

package to train the CNN model. The manual frame labeling is

generally fast and takes about 4 hours for one 3D application

in our experience, as only the objects that can determine the

user inputs need to be labeled.

An RNN model can also be trained using the recorded

session. The recorded frames are first processed by its CNN

model to recognize the objects. After the recognition, the

recorded data are converted into a training data set where

the features are the objects in a frame and the labels are the

corresponding human actions. An RNN model can then be

trained to learn how to respond to the objects in a frame like a

real human. Note that, our goal is not to train an AI to compete

with human. Instead, we aim at training an RNN model to

mimic human actions under varying system latency and frame

randomness, so that the performance results obtained with the

RNN-generated actions are similar to those obtained with real

human users. Because a trained RNN model is executed on

the same scene where it is trained, the model is likely to work

well as long as it has low training loss.

Implementation We implemented the training and inference

of the CNN and RNN models with Tensorflow [1]. The actual

CNN model used is MobileNets [30]. The actual RNN model

used is Long Short-Term Memory (LSTM) [29].

B. Performance Analysis Framework Design

Overview The performance analysis framework provides

performance measurements of 3D applications and cloud

graphics rendering systems. Performance measurements include

frame rate (FPS, frames-per-second), the latencies of each stage

involved in the handling of a user input and the delivery of

its response frame, as well as system-level and architecture-

level resource usages. As stated in Section I, designing

this framework has two difficulties. The first difficulty is to

accurately track and associate the processing of an user input

and the rendering of its response frame. The second difficulty is

to measure the performance of the complex and heterogeneous

software/hardware components. This section describes how

Pictor overcomes these difficulties.

Tracking User Input Processing. To track the input process-

ing, we tag the input from the client and use the tag to identify

every stage of the input processing. More specifically, at the

beginning of each processing stage, the tag of the corresponding

user input is extracted from the input data. At the end of the

stage, the tag is added to the output data, allowing the next

stage to extract it. For graphics rendering, the start and end

of each stage can be determined based on the invocation of

TABLE I
SOME OF THE APIS INTERCEPTED AT THE API HOOKS.

Hooks Intercepted APIs
Hook4 XNextEvent, glutKeyboardFunc
Hook5 glxSwapBuffer, glutSwapBuffers
Hook6 glReadBuffer, glReadPixel
Hook7 XShmPutImage, glMapBuffer

specific OpenGL and X-Window APIs, and the tags can be

passed along as input/output data to these APIs. The invocations

to these APIs can be intercepted with API hooks, allowing

extracting/adding the tags in these hooks.

Figure 4 illustrates the API-hook-based input-tracking tech-

nique. For now, we assume a sequential graphics rendering

process. To track an input, hook1 at the client proxy gives every

input a unique tag and sends the tag with the input to the server

proxy. Upon receiving the input, hook2 at the server proxy

extracts the tag from the network package. The tag is then

forwarded to the application with its input by hook3. When

the application receives the input, the tag is extracted at hook4

and saved. Hook5 marks the start of the GPU rendering, there

is no need to send the tag to GPU. At hook6, the saved tag is

embedded into the pixels of the rendered frame (the old pixels

are stored in shared memory). Embedding the tag in pixels

ensures that the tag survives the inter-process communications

between the application and server proxy. After the server

proxy receives the tagged frame at hook8, it extracts the tag,

restores the modified pixels, and sends the frame with the tag to

the client. Once hook10 at the client proxy receives the tagged

frame, it matches the tag with a previously sent user input,

which finishes the tracking. Table I gives some examples of the

APIs that can be intercepted from hook4 to hook7. The other

hooks in the server and client proxies can be easily identified

using their source code.

However, instead of the above sequential rendering pro-

cess, modern graphics applications typically employ software

pipelines to parallelize the rendering for better performance.

Figure 5 shows the typical stages of this pipeline for remote

3D-graphics rendering when rendering two frames, framei and

framei+1. As Figure 5 shows, in each pass of the pipeline, a

new frame is rendered, and the previous frame is copied and

sent to the clients. For example, in the first row of Figure 5,

framei is rendered based on inputi, while framei−1 is copied

from the GPU and sent to the client.

Note that, Figure 5 shows the pipeline for the cloud rendering

system analyzed in Section V. In this system, the stages of
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Fig. 4. Using API hooks to track the processing of a user input and the rendering of its response frame.

Fig. 5. A typical software pipeline for open-source remote 3D-graphics rendering on Linux.

application-logic (AL) and frame-copy (FC) are carried out by

the same thread due to the difficulty to know when a frame

is completely rendered in the GPU. Therefore, AL and FC

stages cannot overlap, and the next AL stage must start after

the previous FC stage is finished. Nonetheless, any other two

stages in this pipeline can overlap, as they are not carried out

by the same thread/processor.

The main benefit of this software pipelining is that it allows

the CPU and GPU to execute simultaneously. For example,

as shown in Figure 5, when framei is being rendered on the

GPU (stage RDi), the CPU is working on the application

logic for framei+1 (stage ALi+1) and sending framei−1 (stage

ASi−1) using two threads/cores. The tag-based input tracking

still works for this parallel rendering, as long as the tracking

implementation is aware that the processing/rendering of an

input spans over two passes of the pipeline.

Performance Measurements for Diverse Components.

The API hooks also allow measuring the execution times

(latencies) of each stage involved in the rendering. A hook

records a timestamp when it intercepts an API call. The

differences between the timestamps of two hooks then give

the time spent in each stage. For example, the time difference

between the hook10 and hook1 with matching tag gives the

round-trip time (RTT) to handle a user input.

However, the time measured with the hook’s CPU timestamps

cannot give GPU processing time. To obtain GPU time, we use

the time-querying functionality of OpenGL [24]. Start and stop

querying statements are inserted into the hooks to measure the

GPU time spent in each stage. For example, the time query

starts at a hook5 and ends at the subsequently-invoked hook6

gives the GPU time to render a frame.

Pictor also measures FPS and resource usages. The FPS is

obtained by counting the frames at the server and client proxies.

System-level resource usages, such as CPU/GPU and memory

utilizations, are obtained from the OS and GPU drivers [8],

[58]. Architecture-level resource utilization is measured using

TABLE II
APPLICATIONS INCLUDED IN OUR BENCHMARK SUITE.

Application Area Benchmark
Game: Racing SuperTuxKart (STK) [28]
Game: Real-time Strategy 0 A.D. (0AD) [22]
Game: First-person Shoot Red Eclipse (RE) [65]
Game: Online Battle Arena DoTA2 (D2) [83]
VR: Education/Game InMind (IM) [55]
VR: Heatlh IMHOTEP (ITP) [63]

hardware performance monitoring units (PMU). CPU PMU

readings for each stage are obtained by using PAPI inside

the API hooks [79]. The PMUs on AMD GPUs are queried

using AMD’s GPU Performance API [7]. For NVidia GPU,

an external tool, NSight Graphics, is used to read PMUs, as

NVidia does not support programmable PMUs reading for

graphics rendering on Linux.

Performance Measurement Extensibility and Overhead.

One benefit of using API hooks is that it does not require

modifying 3D applications. Our performance analysis frame-

work can be applied to any proprietary 3D applications, as

long as these applications invoke standard 3D APIs, such as

those given in Table I. As later shown in the experimental

evaluation (Section IV), these API hooks also incur little

overhead. However, the time queries used to measure the GPU

performance may stall the CPU and thus incur a high overhead.

To mitigate the impact of these stalls, we used two query

buffers and switched them between frames.

C. The Benchmark Suite

With Pictor, we designed a benchmark suite, which contains

four computer games and two VR applications. All benchmarks

are from real applications and cover popular game genres and

usage cases. Table II lists these benchmarks. Among the six

benchmarks, Dota2 and InMind are closed source. Note that,

as Pictor is designed to be extensible, new 3D applications can

be easily added in the future.
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IV. EVALUATION

This section provides the experimental evaluation of the

reliability/accuracy and overhead of Pictor.

Experiment Setup The benchmarks were executed on a

server with an 8-core Intel i7-7820x CPU, 16GB memory, and

an NVIDIA GTX1080Ti GPU with 11GB GPU memory. The

clients consisted of four machines each with a 4-core Intel

i5-7400 CPU and 8GB memory. The server and clients were

connected using 1Gbps networks. 1Gbps network was chosen

because it behaved similarly to 5G cellular networks in terms of

the frame-transmitting latency as shown later in Section V-A2.

Precision Time Protocol [21] was used to synchronize the time

between the server and clients.

The server and clients run Ubuntu 16.04 as the OS and

TurboVNC 2.1.90 [82] as the rendering system. We chose

VNC as it has complete support for 3D rendering. The other

open-source solution, GamingAnywhere [31], failed to run

all of our benchmarks. To the best of our knowledge, all

VNC implementations (and even the non-VNC proprietary NX

technology [64]) required TurboVNC’s graphics interposer,

VirtualGL [17], to support 3D rendering. Therefore, we

evaluated TurboVNC, as it represents the state-of-the-art open-

source remote 3D rendering. We modified TurboVNC to

support VR device inputs. All benchmarks were executed at a

resolution of 1920×1080 with maximized visual effects.

Intelligent Client Accuracy Evaluation. To evaluate if the

intelligent clients (ICs) indeed allow reliable and accurate

performance results, we compared the benchmarks’ behaviors

under the ICs and human interactions. More specifically, each

benchmark was executed using its IC and was also played/used

by a real human user for three 15-minute sessions each (results

were stable after 10 min). We then compared the performance

results obtained from the two types of executions, including

the latency, FPS, and CPU/GPU utilization. Figure 6 shows

the round-trip time (RTT) that it took to process input for each

benchmark when executed with the IC and the human user. For

each execution, Figure 6 shows the mean, 1%-tile, 25%-tile,

75%-tile, and 99%-tile of the measured RTTs. As Figure 6

shows, the RTTs obtained with IC were very similar to those

from the human. Table III also gives the percentage errors of

the means of the RTTs obtained with our IC. The maximum

percentage error for the mean-RTT for IC is only 2.5%, and

average error for IC is only 1.6%, the RTTs from the IC and

human runs were also similar. The data for other performance

metrics were also similar for both runs. However, limited by

space, other performance metric results are omitted.

Intelligent Client Speed Evaluation. Figure 7 gives the

average times that it took to conduct CV (CNN) and generate

input (RNN) for each benchmark. As the figure shows, the

clients have fast inference times, with an overall average of

72.7ms for CV and 1.9ms for input generations. This fast

inference allows the ICs to generate 804 actions per minute

(APM) on average, which is faster than professional game

players (about 250 to 300 APM) [50], [81], showing that the

ICs can generate inputs fast enough to mimic human reaction

Fig. 6. The performance (RTT) distributions obtained with human users (H),
Pictor’s intelligent clients (IC), DeskBench [85] (DB), Chen, et al. [15] (CH),
and Slow-Motion [54] (SM).

TABLE III
PERCENTAGE ERRORS FOR THE MEANS OF THE RTTS OBTAINED WITH

PICTOR’S IC, DESKBENCH [85] (DB), CHEN, ET AL. [15] (CH), AND

SLOW-MOTION [54] (SM), WHEN COMPARED TO THE MEAN RTTS

OBTAINED WITH HUMAN USERS.

STK 0AD RE D2 IM ITP Avg
Pictor 0.8% 0.1% 2.5% 3.2% 1.3% 2.0% 1.6%
DB 5.4% 42.9% 14.6% 3.3% 1.3% 2.3% 11.6%
CH 39.5% 38.9% 32.6% 29.9% 11.4% 27.8% 30.0%
SM 39.8% 30.1% 28.2% 32.7% 13.7% 22.7% 27.9%

speed. Note that, to ensure our ICs can faithfully mimic human

actions, we slowed the rate of action generation to be around

250 APM.

Pictor Overhead Evaluation. To evaluate the overhead of

Pictor, we executed each benchmark with and without the

performance analysis framework. For the run without the

performance analysis framework, native TurboVNC is used

with our ICs. As the native TurboVNC does not provide RTT

readings, we compared the FPS of both runs. Our results show

the performance analysis framework has low overhead. The

FPS reduction was only 2.7% on average (5% at maximum)

for all benchmarks. This low overhead is partially due to our

use of double-buffers when querying GPU execution times.

Without these double-buffers, the overhead was up to 10%.

Comparison with Prior Work. To show the importance

of properly handling irregular/random objects and tracking

inputs, we also compared Pictor with three prior performance

measuring techniques for VDI and cloud gaming.

We first compared Pictor with DeskBench [66]. DeskBench

was based on VNCPlay [85] and replayed recorded human

actions to generate inputs. However, DeskBench did not only

record an action, it also recorded the screen frame when this

action was issued. During replay, the action was only issued

when the displayed frame was similar to the recorded frame.

With this frame comparison, DeskBench (and VNCPaly) only

issued an action when the expected object was displayed,

and thus, was capable to handle network latency variation.

Fig. 7. Computer vision and input generation time.
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Note that, the “similarity” between frames was a tune-able

parameter for DeskBench. We tested with several parameter

values following the methodology presented by DeskBench

and reported the DeskBench’s results using the best parameter

we found. Additionally, as DeskBench did not provide input

tracking, it was only used to generate inputs, and Pictor’s

performance framework was used to collect performance data.

Figure 6 and Table III also give the RTT distributions and errors

obtained with DeskBench. The average error of the mean-RTT

obtained with DeskBench was 11.64%, which was considerably

higher than the 1.6% error of Pictor. DeskBench was designed

for 2D applications with well-shaped and placed objects (e.g.,

icons and texts), where simply comparing pixels can determine

if an object is shown or not. However, for 3D games, even the

same object can have different pixels and locations depending

on the viewing angle and the flow of events. Hence, simply

comparing the pixels is practically impossible to determine the

existence of an object, causing DeskBench to frequently delay

an action.

We also compared Pictor with a cloud gaming performance

analysis methodology presented by Chen et al. [15]. In this

methodology, the authors generated inputs with human players.

This methodology did not provide input tracking, and hence,

could not measure RTT at the client. Therefore, it had to

compute the RTT by summing the time of the stages of CS,

SP, AL, CP, and SS of the software pipeline. Figure 6 and

Table III also give the RTT distributions and errors obtained

with this methodology. The average error of the mean-RTT

obtained with this methodology was 30.0%, which was also

much higher than the 1.6% error of Pictor. There are two issues

with this methodology because of the lack of input tracking.

First, the AL latency in this methodology was obtained offline

without the VNC server proxy. This offline measurement gave

lower AL latency than that obtained during online execution,

because it eliminated the resource contention between the game

and the VNC server proxy. Second, with input tracking, the

methodology could not measure the delays of the inter-process

communication stages, including PS, FC, and AS. Because of

these two issues, Chen et al.’s methodology usually reported

smaller RTTs than those directly measured at the client.

The last comparison was conducted with a VDI performance

measuring technique call Slow-Motion [12], [54]. Slow-Motion

was designed to determine the RTT of one frame. Slow-Motion

injected delays into the cloud rendering system to only allow

one input/frame being processed at a time – only after an

input was processed, its frame was rendered and sent to the

client, could the processing of the next input/frame start. By

allowing only one frame at a time, it was trivial to associate

an input with its response frame. Note that, as Slow-Motion

did not include an input generation technique, Pictor’s IC was

used to generate the inputs. Figure 6 also shows the RTT

distributions obtained with Slow-Motion. The average error

of the mean-RTT obtained with this methodology was 27.9%,

which was also higher than the 1.6% error of Pictor. The main

issue of Slow-Motion was that the injected delay changed

the resource usage and the behavior of the benchmark and

Fig. 8. CPU and GPU utilization for each benchmark.

Fig. 9. Network and PCIe (send-to and received-at the GPU) bandwidth
usages for each benchmark.

the VNC server proxy (which was also noted by the original

authors [54]). Because only one frame was rendered at a time,

the resource contention caused by parallel processing/rendering

of the inputs and frames was eliminated, and the resource

contention between the benchmark and the server proxy was

also reduced. Consequently, Slow-Motion typically reported

smaller RTTs than those observed with a system executing at

full capacity.

V. PERFORMANCE ANALYSIS OF CLOUD RENDERING

SYSTEM AND 3D APPLICATIONS

A. Perf. Analysis with A Single Benchmark

This section provides the performance analysis results with

a single benchmark, which was executed using the same

methodology given in Section IV.

1) System-level Resource Utilization: Figure 8 gives the

CPU and GPU utilization of each benchmark. The CPU

utilization of these benchmarks had a high variation, ranging

from 68% (RedEclipse) to 266% (Dota2). The GPU utilization

also had a high variation, ranging from 22% to 53%. The

VNC server also had considerable CPU utilization, which

varied from 169% to 243%, depending on the FPS and frame

compression difficulty. The CPU memory usages also vary

considerably, ranging from 600MB (Dota2) to nearly 4GB

(InMind). The GPU memory usages of these benchmarks were

less than 800MB, which is similar to the 1GB-2GB GPU

memory requirements of recent popular games.

Figure 9 shows the network and PCIe bandwidth usages for

each benchmark. For network usage, only the bandwidth usage

of sending the frames to the client is shown, as sending the

inputs from the clients used only 1.5Mpbs. The network usages

of these benchmarks were below 600Mpbs, which is lower than

the maximum bandwidth of the coming 5G cellular network

and 10Gpbs broadband. Similarly, all benchmarks used less

than 5GB/s on the PCIe bus, which is well below the 31.5GB/s

maximum bandwidth of PCIe3. Except for SuperTuxKart, all

benchmarks sent limited amount of data from the CPU to GPU,
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Fig. 10. Average server and client FPS when executing one to four instances
of the same benchmark on the server.

Fig. 11. RTT breakdown when executing one to four instances of the same
benchmark on the server.

suggesting most of their rendering data were stored on the

GPU. The exception of SuperTuxKart was likely due to its

frequent and drastic changes in the rendered frames. For all

benchmarks, there is high PCIe bandwidth usage from GPU

to CPU, which represented the data used for copying rendered

frames from GPU to CPU.

2) Application Performance: Figure 10 gives the server and

client FPS for each benchmark when one to four instances of

the same benchmark was executed on the server. Here, we focus

on the FPS for one instance (i.e., the bars with x-axis label “1”).

Server FPS measured the number of frames that were generated

at the server in one second. Client FPS measured the number of

frames the client received in one second. The lowest client FPS

was 27 (for 0AD), which is still higher than the minimum 25

FPS quality-of-service (QoS) requirement for 3D applications,

showing the feasibility of cloud graphics rendering [68]. Note

that, Figure 10 shows the average server/client FPS for each

benchmark. Nonetheless, the lowest observed FPS was still

higher than 25.

Figure 11 gives the average RTTs of handling an input for

each benchmark. Again, we focus on the RTTs for one instance

(i.e., the bars with x-axis label “1”). These RTTs are broken

down into the time the sever spent on handling the input and

the network times for sending the inputs and frames. For all

benchmarks, the network latency for sending inputs (stage CS)

was very small (¡ 10ms). The network latency for sending

frames (stage SS) ranged from 14ms to 35ms, which was

similar to those reported by prior work with 4G/5G cellular

network, suggesting our 1Gpbs network is close to the real use

case [77]. The largest component of RTT was always the time

that the server took to process inputs, which include all stages

from SP to CP. This server processing time ranged from 61ms

to 106ms. Such high server time indicates that cloud system

design is crucial to ensure good performance.

In Figure 12, the server time is further broken down into the

time of VNC sending inputs to the benchmark (stage PS), the

Fig. 12. Server time breakdown when executing one to four instances of the
same benchmark on the server.

Fig. 13. Application time breakdown when executing one to four instances
of a benchmark on a server.

application execution time (stage AL, FC, and RD), benchmark

sending frame to VNC (stage AS) and the time of VNC

compressing frames (stage CP). Note that, the time for stage

SP is omitted because it was too small (< 1ms) to be visible in

the figure. As Figure 12 shows, for all benchmarks, the main

component of the server processing time is the application

execution time, where the execution times for other stages (i.e,

PS, AS, and CP) were less than 18ms.

The application execution time was further broken down in

Figure 13. As GPU rendering (RD) executes in parallel with

the application logic (AL) and frame copy (FC) stages, the

GPU rendering times are shown as separate bars in Figure 13.

Surprisingly, many benchmarks spent most of their time on

copying frames. This long frame-copy time was due to the

long PCIe transporting time and inefficiency implementation,

which were addressed with new optimizations in Section VI.

Moreover, because of the long frame-copy, GPU rendering was

never the performance bottleneck in our experiments.

3) Architecture-level Resource Usages: Figure 14 shows

the CPU cycles for each benchmark using the Top-Down

analysis [35]. The CPU cycles are broken down into front-end

stalls, back-end stalls, bad speculation stalls, and the cycles for

instruction retirements. As Figure 14 shows, all benchmarks had

long back-end stalls and low instructions-per-cycle, indicating

Fig. 14. CPU cycles breakdown when executing one to four instances of a
benchmark on the same server.
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Fig. 15. L3 cache miss rates when executing one to four instances of a
benchmark on the same server.

Fig. 16. GPU L2 and texture cache miss rates when executing one to four
instances of a benchmark.

these benchmarks were likely memory-bound. As their L3

cache miss rates (L3-misses/L3-accesses) were also very high

(> 70%) (Figure 15), it can be deduced that these benchmarks

are also off-chip memory bound. This behavior is consistent

with typical graphics rendering implementation where uncached

memory is used for CPU-to-GPU communications [34].

As shown in Figure 16, all benchmarks except InMind had

moderate GPU cache miss rates. These moderate cache miss

rates suggested most benchmarks can use GPU caches relatively

effectively. Note that, 0AD used OpenGL v1.3, which is not

supported by NVidia PMU reading tools. Therefore, we could

not obtain GPU cache miss rates for 0AD.

4) Single Benchmark Analysis Summary: 1) Executing 3D

applications in the cloud can provide reasonable QoS with

current hardware and network. 2) Cloud/server performance can

be a major limitation on FPS and RTT. Therefore, optimizing

the cloud system design is crucial for cloud graphics rendering.

3) 3D applications have a wide range of resource demands

and behaviors, suggesting cloud system optimizations may

need to consider individual application’s characteristics. 4) 3D

applications intensively utilized the CPU, GPU, memory, and

PCIe buses. Consequently, cloud system optimizations need to

consider the impacts of all these resources. For instance, we

designed an optimization to handle the long frame-copy time

over the PCIe bus in Section VI.

B. Perf. Analysis with Multiple Benchmarks

To investigate the feasibility and analyze the performance

of multiple 3D applications sharing hardware in the cloud,

we also conducted experiments with multiple 3D benchmarks.

More specifically, we executed one to four instances of the

same benchmark on our server. Each benchmark instance

interacted with its own client machine. To ensure enough

network bandwidth, each benchmark instance used its own

1Gpbs network card on the server.

1) Server Power Consumption: We obtained the server

power consumption using a Klein Tools CL110 meter. Overall,

adding a new instance only increased the total server power

Fig. 17. Per-instance power usage when executing one to four benchmark
instances on one machine.

consumption by less than 20%. As shown in Figure 17, this

small increase in total power usage translated into per-instance

power usage reductions of 33%, 50%, and 61%, when running

two to four instances (comparing to one instance). These power

usage reductions demonstrate a main benefit of executing

3D applications in the cloud – the reduced energy cost and

operational cost.

2) Application Performance: Figure 10 also shows the FPS

for each benchmark when two to four instances of the same

benchmark were executed on the same server. Here, we focus

on the FPS for 2 to 4 instances (i.e., the bars with x-axis labels

“2”, “3” and “4”). As Figure 10 shows, for all benchmarks,

executing with two instances could still provide an acceptable

(i.e., ≥ 25) FPS. For three benchmarks, RE, IM, and ITP,

executing three instances could still achieve an FPS higher

than 25. These FPS results show that consolidating multiple

3D applications on one server can still provide acceptable QoS,

and thus reduce infrastructure cost.

Figure 11, 12, and 13 also give the breakdown of the RTT,

server processing time, and benchmark processing time, when

two to four instances of the same benchmark were executed

on the same server. Again, we focus on the results for 2 to 4

instances (i.e., the bars with x-axis labels “2”, “3” and “4”). As

Figure 11 shows, there was no significant increase in network

time due to the use of multiple graphics.

However, there were significant increases in server execution

times. As shown in Figure 12 and Figure 13, nearly every

execution stage on the server experienced increased execution

time with more instances. We have observed high increase (up

to 96%) in execution time for the stages with inter-process

communications (IPC), including the stages of PS and AS.

There were also significantly increase in the stages that do

computations on the CPU and GPU, including the stages of

AL, FC, RD, and CP. In particular, the average application

logic (stage AL) time increased by 235% when executing with

four instances, and the average GPU rendering (stage RD)

time increased by 133% when executing with four instances.

These increased execution time on CPU and GPU were main

caused by two issues – the oversubscribed CPU/GPU when

executing three or four instances, and the hardware resource

contention that happened in the CPU, GPU, and PCIe buses.

This contention is discussed in detail in the following section.

3) Architecture-level Resource Usages: Figure 14 and Fig-

ure 15 gives the CPU cycle breakdown and the L3 cache miss

rates of one benchmark instance, when it was executed with

other benchmark instances. As the figures show, both the back-

end stalls and the L3 miss rates increased considerably with
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Fig. 18. Client FPS for 15 pairs of benchmarks.

Fig. 19. Performance loss and cache miss increases of Dota2 when executing
with other benchmarks. Higher values indicate higher loss and contention.

more benchmark instances, indicating that there was heavy

contention in the memory system.

Memory contention was also observed in the GPU. As shown

in Figure 16, all benchmarks experienced increased GPU L2

miss rates, which contributed to the increase in their GPU

rendering time. This L2 miss increases may be explained

with the GPU internal graphics pipelines [48]. Because of

this pipeline, there may be frames from different benchmark

instances rendered simultaneously, thus causing the L2 cache

contention. The texture cache miss rates, however, did not

change significantly, as it is a private cache. Note that, for both

CPU and GPU, the contention may exist beyond cache and

extend to DRAM and PCIe buses. Resource contention also

existed between the benchmarks and VNC proxies. However,

a full contention analysis is beyond the scope of this paper

and will be conducted in the future.

4) Multi-benchmark Analysis Summary: 1) Executing multi-

ple 3D applications on the same server in the cloud can provide

acceptable QoS while significantly reduced energy consumption.

Therefore, cloud graphics rendering may considerably reduce

the infrastructure and operational costs for the large-scale

deployment of 3D applications. 2) Resource contention and

slowed IPC can severely degrade the performance of 3D

applications in the cloud, and thus should be properly managed.

Moreover, resource contention simultaneously exists in the

CPU and GPU (and potentially in the PCIe buses). Contention

also exists between the applications and the server proxies.

Therefore, resource contention and IPC management for cloud

graphics rendering should be designed with heterogeneity in

mind.

C. Perf. Analysis with Mixed Benchmarks

To study the impact of colocating different 3D applications,

we also conducted experiments where two different benchmarks

Fig. 20. Server FPS/RTT overheads of containers. Negative overheads are
performance improvements.

were executed simultaneously. As there were 6 benchmarks, a

total of 15 pairs of them were evaluated.

1) Application Performance, Power Consumption, and
Architectural-level Resource Usages: Figure 18 gives the client

FPS of the 15 pairs of benchmarks. Server FPS was just slightly

higher than client FPS and was omitted due to space limitation.

As Figure 18 shows, 11 pairs of benchmarks had client

FPS higher than 25, suggesting different 3D applications can

also share hardware while ensuring acceptable QoS. We also

observed that adding an additional benchmark only increase

the total server energy consumption by no more than 25%.

Therefore, comparing to running two applications on two

servers, executing two different 3D applications on the same

server can reduce energy consumption by at least 37%.

Similar to the observations in Section V-B, oversubscribed

CPU/GPU, prolonged IPC, and resource contention significantly

increased the server execution time. Nonetheless, we also

observe that the contentiousness of these benchmarks varies

considerably. Figure 19 gives the performance and CPU/GPU

cache misses of Dota2 when it was executed with different

benchmarks. Other benchmark pairs showed similar results

and were omitted due to space limitation. As Figure 19

shows, there was significant variation in Dota2’s performance

depending on its co-runners, with SuperTuxKart causing the

highest contention and 0AD causing the least contention.

This high variation in the contentiousness may be utilized in

optimizations (e.g., selecting the proper set of 3D applications

to share hardware). It is also interesting to observe that the

contentiousness for CPU cache and GPU cache seemed to

have high correlation. This correlation may be due to the

rendering data being shared between CPU and GPU, and may

be exploited when managing 3D applications contention (e.g.,

predicting a 3D application’s contentiousness).

2) Mixed Benchmark Analysis Summary: 1) Executing

multiple different 3D applications on the same server in

the cloud can provide acceptable QoS while significantly

reducing energy consumption. 2) The contentiousness of 3D

applications varies considerably, which may be utilized in

system optimizations. 3) There may also be a correlation

between the contentiousness for the CPU cache and GPU

cache, which may also be exploited in system optimizations.

D. Container Overhead

So far, all experiments were conducted on bare-metal systems.

However, as we target cloud computing, it is also important

to analyze the performance impact of virtualization and
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Fig. 21. Optimizing frame copy with two-step copy.

containerization. Hence, we repeated the above the performance

analysis experiments using Docker containers to study the

overhead of containerization. More specifically, we executed

each instance of the benchmark and its VNC server inside an

NVidia Docker container [57]. We chose container instead of

VM because docker container currently supports most GPUs,

while VM-based virtualization requires special GPUs. We will

evaluate VM-based systems in the future.

Figure 20 shows the percentages of reduced FPS and

increased RTT (i.e., FPS and RTT overheads), comparing to

the runs without virtualization. On average, Docker containers

incurred little overhead. The average overhead for RTT was

only 1.3%, and the average overhead for server FPS was only

1.5%. This low average overhead further shows the feasibility

of executing 3D applications in the cloud.

Nonetheless, the overhead can still be as high as 8.5% for

RTT (or 6% for FPS). We observed that these overheads were

usually due to increased execution time for the stages with

IPC (stages PS and AS). These high overheads show the need

to optimize containerized cloud 3D applications to ensure that

worst-case performance still meets QoS goals. Besides the

overheads for RTT and FPS, the GPU rendering time was also

increased by 2.9% on average and 8% on maximum, illustrating

the overhead of GPU virtualization with containers.

It is also worth noting that container also improved perfor-

mance in certain cases, as shown with the negative overheads

in Figure 20. A preliminary analysis showed that these

performance improvements were mainly due to containerization

reduced resource contention among the benchmarks and VNC

servers. Although further analysis is still required to identify

the exact cause of the reduced contention, these performance

improvements illustrate the potential benefits of container-based

run-time optimizations.

Container Overhead Summary 1) On average, Docker

containers incur limited overhead, further showing the feasibil-

ity of executing 3D applications in the cloud. 2) Nonetheless,

high performance overhead may still be observed in certain

cases, suggesting that container overhead reduction is still

required. 3) Container overheads are mainly associated with

IPC and GPU virtualization. 4) Containerization may also

improve performance, suggesting the potential of additional

run-time optimizations.

VI. OPTIMIZED FRAME COPY

As discussed in Section V-A2, the frame-copy (FC) stage

was a major performance bottleneck in TurboVNC. This section

presents the optimizations we invented and implemented to

reduce the frame-copying time.

Fig. 22. Improved FPS/RTT with our optimizations.

Further analysis of the TurboVNC’s graphics interposer

revealed two inefficiencies. First, the interposer called the func-

tion XGetWindowAttributes before copying a frame. XGetWin-
dowAttributes was extremely slow and consumed 6˜9ms. This

function was only used to get the benchmark’s resolution to

determine the size of the frame to copy. As the resolution of

a game or VR application is rarely changed during execution,

there is no need to call XGetWindowAttributes for every

frame copy. Therefore, in the first optimization, we applied

memoization to this function. That is, we intercepted the

invocation to XGetWindowAttributes and returned the cached

resolution instead of actually calling it. XGetWindowAttributes
is only actually invoked when the benchmark’s resolution

changes, which is determined by monitoring X events at Hook4.

The second inefficiency is that the benchmarks were halted

during the copy, waiting from the GPU to send the frame, as

shown with the blank in the FC stage in Figure 5. Inspired

by deep CPU pipelining, we broke the frame copy into two

smaller steps – the start-copy and finish-copy. As shown in

Figure 21, after issuing the frame copying command to GPU

for framei−1 (FCStarti−1), the graphics interposer does not

wait for framei−1’s copy to finish. Instead, it goes on to finish

the copying of framei−2 (FCEndi−2) and works on sending

framei−2 to the VNC server. The actual finish of copying

framei−1 happens after the application logic for framei+1 is

computed (FCEndi−1). By making the frame copy into two

asynchronous steps, the halt in the benchmark is removed.

Figure 22 gives the performance improvements from our two

optimizations when one benchmark instance was executed. Our

optimization improved server FPS by 57.7% on average and

115.2% at maximum. The client FPS was improved by 7.4% on

average and 19.5% at maximum. The RTT was reduced by 8.5%

on average and 15.1% at maximum. Note that, in Figure 22,

the client FPS of ITP had 3% reduction due to the increased

benchmark performance causing more contention with the

VNC proxy. We were able to remove this extra contention

and improve ITP’s client FPS with an additional optimization.

However, due to space limitation, this additional optimization

cannot be covered here.

VII. RELATED WORK

VDI and Cloud Gaming System Benchmarking There

have been several studies providing benchmarking tools or

methodologies to analyze the performance of VDI systems and

cloud gaming systems. Table IV compares the functionalities

and features of the major prior work with Pictor. All of the

studies summarized in Table IV, expect Chen et al. [15],
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TABLE IV
COMPARISON BETWEEN PICTOR AND PRIOR WORK ON VDI AND CLOUD GAMING PERFORMANCE ANALYSIS.

Features VNCPlay [85] Chen et al. [15] Slow-Motion [54] Login-VSI [75] DeskBench [66] VDBench [12] Dusi et al. [20] Pictor

Random UI Objects Tolerant

Varying Net Latency Tolerant

User-input Tracking

CPU Perf. Measurement

Network Perf. Measurement

GPU Perf. Measurement

PCIe frame-copy Perf. Measure.

Unaltered 3D App Behaviors

were designed to measure VDI systems with 2D applications.

Moreover, none of these studies considered the random and

irregular UI objects in cloud games and VR applications.

And none of these studies provided methods to measure the

performance of GPU rendering and frame-copy over the PCIe

connections. These studies also did not provided means to

track input processing without changing the 3D application’s

resource usage and behavior, as shown in Section IV. In

summary, without the abilities to handle irregular and random

objects, associate an input and its response, and measure the

GPU and frame-copy performance, existing benchmarking

tools/methodologies cannot provide reliable and effective

performance measurements for cloud 3D rendering systems.

GPU Benchmarks. There are also many GPU benchmarks,

such as GraalBench [10], SPECviewperf [18], GFXBench [33]

Rodinia [14], and MGMark [76]. Mitra and Chiueh also

analyzed three 3D benchmark suites [53]. These benchmarks

and analysis focused on evaluating GPU performance without

user actions. However, as 3D applications’ behaviors are heavily

affected by user actions, user inputs must be considered in

cloud 3D benchmarks to ensure realistic results. Moreover,

interactive 3D applications have intensive usage for both CPU

and GPU. Only focusing on GPU cannot provide the insights

needed to manage interactive 3D applications and their use of

heterogeneous hardware.

Graphics Rendering Software. Many software supports re-

mote desktops, such as VNC, NX and THINC [11], [64],

[67], [69]. These remote desktops usually do not support 3D

applications by default. Additionally, cloud graphics rendering

also requires additional support on GPU virtualization and

management for co-running 3D applications. Consequently,

additional research is required to efficiently support 3D appli-

cations in cloud. CloudVR and Furion were two programming

frameworks to support cloud VR [38], [42]. Abe et al. employed

data prefetching to speed up the cloud processing time for

interactive applications [3]. Ha et al. investigated the impact

of consolidating multimedia and machine-learning applications

in the cloud [26]. AppStreamer dynamically predicted and

downloaded useful portions of a game to mobile devices [80].

EVR was a cloud VR system with specialized hardware to

support 360◦ videos [43]. Meng et al. proposed to share the

common backgrounds of multi-user VR applications to improve

the performance for cloud VR [51]. Hegazy et al. proposed to

allocate bit rates for encoded cloud gaming frames based on

the importance of virtual objects [27]. There were also studies

on the cloud server allocation and GPU virtualization for cloud

gaming [19], [44], [45], [47], [86]. Our research is inspired

by these studies and aims at facilitating these graphics system

design studies. Google, Microsoft, NVidia, and PARSEC are

also building their proprietary cloud gaming systems, whose

designs may be different than the system analyzed in this

paper [23], [52], [56], [61]. Pictor aims at facilitating the

public research on cloud graphics rendering, so that open-

source solutions can be as good as proprietary solutions. We

will constantly update Pictor to follow the advances in these

open-source solutions.

Other Related Work GUI testing frameworks [4], [5],

[16], [46], [49] may also be used for benchmarking remotely-

rendered applications. However, these GUI testing frameworks

were not designed for 3D applications with irregularly-shaped

and random UI objects. Google DeepMind and OpenAI Five

have also built AI bots to play games [36], [59]. These bots

were built to compete with human. Therefore, their execution

may require thousands of processors [60]. Additionally, the AI

models used by these bots required complex training processes

for new games, and existing model are not publicly available.

Therefore, these AI bots are not suitable for 3D application

benchmarking. Moreover, prior research on non-cloud VR

architecture and systems [9], [42], [43], [84] may also benefit

from Pictor’s intelligent clients and benchmarks.

VIII. CONCLUSION

This paper presents Pictor, a benchmarking framework for

cloud 3D applications and systems. Pictor includes an intelli-

gent client to mimic human interactions with 3D applications

with 1.6% error, and a performance analysis framework that

provides detailed performance measurements for cloud graphics

rendering systems. With Pictor, we designed a benchmark

suite with six 3D benchmarks. Using these benchmarks, we

characterized a current cloud graphics rendering system and

cloud 3D applications, which also showed benefits of cloud

graphics rendering. We also designed new optimizations with

Pictor to address two newly-found bottlenecks which improved

the frame rate by 57.7% on average.
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