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Abstract—With the growing popularity of cloud gaming and
cloud virtual reality (VR), interactive 3D applications have
become a major class of workloads for the cloud. However,
despite their growing importance, there is limited public research
on how to design cloud systems to efficiently support these
applications due to the lack of an open and reliable research
infrastructure, including benchmarks and performance analysis
tools. The challenges of generating human-like inputs under
various system/application nondeterminism and dissecting the
performance of complex graphics systems make it very difficult
to design such an infrastructure. In this paper, we present the
design of a novel research infrastructure, Picfor, for cloud 3D
applications and systems. Pictor employs AI to mimic human
interactions with complex 3D applications. It can also track
the processing of user inputs to provide in-depth performance
measurements for the complex software and hardware stack
used for cloud 3D-graphics rendering. With Pictor, we designed
a benchmark suite with six interactive 3D applications. Perfor-
mance analyses were conducted with these benchmarks, which
show that cloud system designs, including both system software
and hardware designs, are crucial to the performance of cloud
3D applications. The analyses also show that energy consumption
can be reduced by at least 37% when two 3D applications share
a could server. To demonstrate the effectiveness of Pictor, we
also implemented two optimizations to address two performance
bottlenecks discovered in a state-of-the-art cloud 3D-graphics
rendering system. These two optimizations improved the frame
rate by 57.7% on average.

Index Terms—Cloud Computing, Cloud Gaming, Cloud Gam-
ing Benchmarks, Cloud Gaming Performance Analysis, Cloud
Graphics Systems

I. INTRODUCTION

The rise of cloud gaming and cloud virtual reality (VR) has
made interactive 3D applications a major class of workloads
for cloud computing and data centers [6], [23], [37], [52], [56].
A main benefit of rendering user-interactive 3D applications in
the cloud is that it may reduce the installation and operational
costs for the large-scale deployments of these 3D applications.
Running these 3D applications in the cloud also allows mobile
clients with less powerful GPUs to enjoy better visual effects.
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Moreover, cloud 3D-graphics rendering may also simplify the
development and delivery of these 3D applications. For the rest
of this paper, we refer to these user-interactive 3D applications
simply as 3D applications.

Most prior research on virtual desktop infrastructure (VDI)
or cloud gaming focused on network latency [2], [20], [41].
However, the network latency is considerably reduced today and
becomes viable for cloud 3D applications [77]. This improved
network, in turn, makes the design of cloud 3D-graphics
rendering systems crucial to the efficiency and performance of
cloud 3D applications. However, there is limited public research
on this system design, largely due to the lack of an open
and reliable research infrastructure, including benchmarks and
performance analysis tools. This lack of research infrastructure
even affects non-cloud VR system research, which employed
non-uniform evaluation methodologies [9], [42], [84]. Prior
attempts to provide such research infrastructures [12], [54],
[85] have limited success due to the following challenges.

First, for reliable evaluation, the research infrastructure must
be able to mimic human interactions with 3D applications
under randomly generated/placed objects and varying network
latency. That is, the inputs used for the benchmarks should
closely resemble real human inputs, so that the performance
results obtained with these human-like inputs are similar to
those obtained with real human inputs. Prior research generated
human-like inputs from recorded human actions [75], [85].
However, this recording does not work for 3D VR applications
and games, which have irregular and randomly placed/generated
objects in their frames. Additionally, variations in network
latency may affect when a particular object will be shown
on the screen, further limiting the usefulness of the recorded
actions [85].

Second, to reliably measure performance, the research
infrastructure must be able to accurately measure the round-
trip time/latency to respond to a user input [54], which in
turn, relies on the accurate association of a user input and
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its response frame. However, this association is very difficult
due to the need to track the handling of a user input and the
rending of its response frame across the network, across the
CPU and GPU, and across multiple software processes (i.e.,
tracking from the client to the server, and back to the client).

Third, to effectively identify performance bottlenecks, the
research framework must be able to measure the performance
of every stage involved in the handling of a user input and the
rendering of its response frame. The framework should be able
to properly measure the performance of all the components
involved, including those from the complex graphics software
stack and heterogeneous hardware devices. Additionally, the
research framework must have low overhead to ensure these
measurements are reliable.

Fourth, the research infrastructure should be extensible
to easily include new 3D applications. 3D applications are
typically refreshed every one or two years and most of them
are proprietary. Therefore, the research infrastructure should be
constantly refreshed with new 3D benchmarks without requiring
to modify their source code.

In this paper, we present a novel benchmarking framework,
called Pictor, which overcomes the above challenges to
allow reliable and effective performance evaluation of 3D
applications and cloud graphics rendering systems. Pictor has
two components: 1) an intelligent client framework that can
generate human-like inputs to interact with 3D applications;
and 2) a performance analysis framework that provides reliable
input tracking and performance measurements. Inspired by
autonomous driving, the intelligent client framework employs
computer vision (CV) and recurrent neural network (RNN) to
simulate human actions [39], [72], [74]. The performance
analysis framework tracks inputs with tags and combines
various performance monitoring techniques to measure the
processing latency and resource usage of each hardware and
software component. Additionally, Pictor is carefully designed
to have low overhead and requires no modification to 3D
applications.

With Pictor, we designed a benchmark suite with four com-
puter games and two VR applications. Through experimental
evaluation with these benchmarks, we show that Pictor can
indeed accurately mimic human action with an average error of
1.6%. We also conducted an extensive performance analysis on
a state-of-the-art cloud 3D-graphics rendering system [67], [82]
to characterize the 3D benchmarks and the rendering system,
analyze the impact of co-locating multiple 3D applications, and
study the overhead of rendering 3D applications in containers.
This performance analysis demonstrated that executing 3D
application in the cloud could provide good Quality-of-Service
(QoS). The analysis also showed that cloud/server performance
can be a major limitation on QoS. Hence, the design of the
cloud system, including both software and hardware, is crucial
to the performance of cloud 3D applications. Moreover, execut-
ing two 3D applications in the same cloud server might reduce
energy consumption by at least 37% while still achieving good
QoS. The performance analysis also showed that container-
based virtualization incurred less than 2% overhead. At last,
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to demonstrate that the in-depth performance analysis allowed
by Pictor can indeed lead to performance improvements, we
implemented two optimizations which improved average frame-
rate by 57.7%.

The contributions of this paper include:

1. A novel intelligent client framework that can faithfully
mimic human interactions with complex 3D applications with
randomly generated/placed objects and under varying network
latency.

2. A novel performance analysis framework that can ac-
curately track the processing of user inputs, and measure
the performance of each step involved in the processing of
user inputs in various software and (heterogeneous) hardware
components. This framework is also carefully designed to have
low overhead and requires no application source code.

3. A comprehensive performance analysis of a state-of-the-
art cloud graphics rendering system, the 3D benchmarks and
containerization. This analysis also shows the benefit of cloud
3D applications and reveals new optimization opportunities.

4. Two new optimizations for current cloud graphics render-
ing system with significant performance improvements, which
also demonstrate the effectiveness of Pictor.

The rest of this paper is organized as follows: Section II
discusses a typical cloud graphics rendering system; Section III
presents the design of Pictor; Section IV evaluates the accuracy
and overhead of Pictor; Section V provides the performance
analysis on a current cloud graphics rendering system; Sec-
tion VI presents two new optimizations; Section VII discusses
related work and Section VIII concludes the paper.

II. CLOUD 3D RENDERING SYSTEM

Figure 1 illustrates the typical system architecture for cloud
graphics rendering. This architecture employs a server-client
model where the servers on the cloud execute 3D applications
and serve most of their rendering requests. The client is mainly
responsible for displaying UI frames and capturing user inputs.
The client may also perform less-intensive graphics rendering,
depending on the system design. In this work, we focus on
Linux-based systems and open-source software which are easy
to modify and free to distribute.

The system in Figure 1 operates in the following steps.
When the client’s interactive device captures a user input (e.g.,
a keystroke, mouse movement, or head motion), it sends the
input through the network to a proxy on the cloud server
(step @), which forwards the input to the application (step
®). The proxy is usually a server application that handles
media communication protocols, such as a Virtual Network
Computing (VNC) server with Remote Frame Buffer (RFB)
protocol or a video streaming server with extended Real-Time
Streaming Protocol (RTSP) [31], [67], [70]. After receiving the
input, the application starts frame rendering (step ©). A 3D
application may use a rendering engine that provides functions
for drawing complex objects (e.g., the “Application 1), or
it may directly call a 2D/3D library to draw objects from
scratch (e.g., “App 2”). The rendering engine, in turn, invokes
the 2D/3D library. On Linux, the 2D/3D library is typically
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Mesa 3D Graphics Library, which implements the APIs of
OpenGL and Vulkan [32], [62], [71]. Examples of the rendering
engine include Unity, OSVR, and OpenVR [13], [73], [78].
To ensure 2D/3D calls are indeed invoked on the server, a
graphics interposer library is employed [17]. The 2D/3D library
(and the GPU driver) then translates the drawing APIs into
GPU commands to perform the rendering on the GPU (step @).
After the frame is rendered on the GPU, the graphics interposer
copies the frame from the GPU (step ®-0®) and push the newly
rendered frame to the server proxy (step @). The proxy then
compresses and sends the frame over the network to the client
for display (step ©).

Moreover, as shown in Figure 1, multiple 3D applications
can execute simultaneously on the same machine and share
hardware components, such as CPU, memory, GPU, and PCle
buses. Each application is executed in a virtual machine (VM)
or a container with virtualized GPUs (vGPU) [25], [40], [57].

This system architecture has two implications for the
benchmarking of cloud graphics rendering systems. First, as
the behaviors of 3D applications are heavily influenced by
user inputs, reliably benchmarking 3D applications requires
generating human-like inputs. Second, cloud graphics rendering
system includes complex and heterogeneous software/hardware
components, which must be properly handled/measured when
analyzing performance. In the rest of this paper, we will
describe the design of Pictor, which overcomes the challenges
mention in Section I and the above two issues.

III. THE DESIGN OF PICTOR

Figure 2 shows the components of Pictor benchmarking
framework. A main component of Pictor is the intelligent
client framework that is used to generate clients with human-
like actions to interact with 3D applications. The other main
component of Pictor is the performance analysis framework,
which spans over the client and the server to provide reliable
performance measurements. The rest of this section describes
these two components in detail.
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A. Intelligent Client Framework Design

Overview The intelligent client framework allows building
an intelligent client for a 3D application by learning how to
properly interact with this application from recorded human
actions. More specifically, for a 3D application, an RNN model
is trained based on recorded human actions under a scene of
this application [72]. To improve the RNN model’s accuracy,
the objects in the frames are first recognized using computer
vision (CV) with Convolutional Neural Network (CNN) [39].

Figure 3 gives an overview of a client obtained with the
intelligent client framework, which operates in the following
steps. After a compressed frame is sent over the network to
the intelligent client (step @), it is first decompressed (step ).
The decompressed frame is then processed by a CNN model
to recognize its objects (step ©). The types and coordinates
of the recognized objects are then sent to an RNN model to
generate user inputs that mimic real human actions (step @).

These inputs are eventually sent back to the client proxy,
which encodes these actions into network packages and sends
them to the benchmark (step @). With CNN and RNN models,
the clients can properly interact with 3D applications with
random frames and under random networking/system latency.
By generating actions purely based on frames, the clients can
be built for 3D applications without knowing their internal
designs or modifying these applications. Note that, for some
simple 3D applications, instead of RNN, simple rule-based
input generation may suffice. Nonetheless, RNN provides a
generic solution that works well with any 3D application.

Model Training Each 3D application/benchmark has its own
CNN/RNN models, which are trained from a recorded session
of human actions under an application scene. The intelligent
client framework provides tools to perform this recording.
Each recorded session includes a sequence of frames and the
corresponding human actions to each frame. To train a CNN
model, the objects in the frames need to be manually labeled.
The labeled frames are then fed into a machine-learning (ML)
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Fig. 3. Overview of the intelligent client. The image is obtained from a racing game, SuperTuxKart [28].

package to train the CNN model. The manual frame labeling is
generally fast and takes about 4 hours for one 3D application
in our experience, as only the objects that can determine the
user inputs need to be labeled.

An RNN model can also be trained using the recorded
session. The recorded frames are first processed by its CNN
model to recognize the objects. After the recognition, the
recorded data are converted into a training data set where
the features are the objects in a frame and the labels are the
corresponding human actions. An RNN model can then be
trained to learn how to respond to the objects in a frame like a
real human. Note that, our goal is not to train an Al to compete
with human. Instead, we aim at training an RNN model to
mimic human actions under varying system latency and frame
randomness, so that the performance results obtained with the
RNN-generated actions are similar to those obtained with real
human users. Because a trained RNN model is executed on
the same scene where it is trained, the model is likely to work
well as long as it has low training loss.

Implementation We implemented the training and inference
of the CNN and RNN models with Tensorflow [1]. The actual
CNN model used is MobileNets [30]. The actual RNN model
used is Long Short-Term Memory (LSTM) [29].

B. Performance Analysis Framework Design

Overview The performance analysis framework provides
performance measurements of 3D applications and cloud
graphics rendering systems. Performance measurements include
frame rate (FPS, frames-per-second), the latencies of each stage
involved in the handling of a user input and the delivery of
its response frame, as well as system-level and architecture-
level resource usages. As stated in Section I, designing
this framework has two difficulties. The first difficulty is to
accurately track and associate the processing of an user input
and the rendering of its response frame. The second difficulty is
to measure the performance of the complex and heterogeneous
software/hardware components. This section describes how
Pictor overcomes these difficulties.

Tracking User Input Processing. To track the input process-
ing, we tag the input from the client and use the tag to identify
every stage of the input processing. More specifically, at the
beginning of each processing stage, the tag of the corresponding
user input is extracted from the input data. At the end of the
stage, the tag is added to the output data, allowing the next
stage to extract it. For graphics rendering, the start and end
of each stage can be determined based on the invocation of
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TABLE I
SOME OF THE APIS INTERCEPTED AT THE API HOOKS.

Hooks | Intercepted APIs

Hooks | XNextEvent, glutKeyboardFunc
Hooks | glxSwapBuffer, glutSwapBuffers
Hookg | glReadBuffer, glReadPixel
Hook; | XShmPutlmage, gIMapBuffer

specific OpenGL and X-Window APIs, and the tags can be
passed along as input/output data to these APIs. The invocations
to these APIs can be intercepted with API hooks, allowing
extracting/adding the tags in these hooks.

Figure 4 illustrates the API-hook-based input-tracking tech-
nique. For now, we assume a sequential graphics rendering
process. To track an input, hook; at the client proxy gives every
input a unique tag and sends the tag with the input to the server
proxy. Upon receiving the input, hook; at the server proxy
extracts the tag from the network package. The tag is then
forwarded to the application with its input by hook;. When
the application receives the input, the tag is extracted at hooky
and saved. Hooks marks the start of the GPU rendering, there
is no need to send the tag to GPU. At hookg, the saved tag is
embedded into the pixels of the rendered frame (the old pixels
are stored in shared memory). Embedding the tag in pixels
ensures that the tag survives the inter-process communications
between the application and server proxy. After the server
proxy receives the tagged frame at hooks, it extracts the tag,
restores the modified pixels, and sends the frame with the tag to
the client. Once hookjq at the client proxy receives the tagged
frame, it matches the tag with a previously sent user input,
which finishes the tracking. Table I gives some examples of the
APIs that can be intercepted from hooks to hook;. The other
hooks in the server and client proxies can be easily identified
using their source code.

However, instead of the above sequential rendering pro-
cess, modern graphics applications typically employ software
pipelines to parallelize the rendering for better performance.
Figure 5 shows the typical stages of this pipeline for remote
3D-graphics rendering when rendering two frames, frame; and
frame; 1. As Figure 5 shows, in each pass of the pipeline, a
new frame is rendered, and the previous frame is copied and
sent to the clients. For example, in the first row of Figure 5,
frame; is rendered based on input;, while frame;_; is copied
from the GPU and sent to the client.

Note that, Figure 5 shows the pipeline for the cloud rendering
system analyzed in Section V. In this system, the stages of
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application-logic (AL) and frame-copy (FC) are carried out by
the same thread due to the difficulty to know when a frame
is completely rendered in the GPU. Therefore, AL and FC
stages cannot overlap, and the next AL stage must start after
the previous FC stage is finished. Nonetheless, any other two
stages in this pipeline can overlap, as they are not carried out
by the same thread/processor.

The main benefit of this software pipelining is that it allows
the CPU and GPU to execute simultaneously. For example,
as shown in Figure 5, when frame; is being rendered on the
GPU (stage RD;), the CPU is working on the application
logic for frame;; (stage AL;;;) and sending frame;_; (stage
AS;_1) using two threads/cores. The tag-based input tracking
still works for this parallel rendering, as long as the tracking
implementation is aware that the processing/rendering of an
input spans over two passes of the pipeline.

Performance Measurements for Diverse Components.
The API hooks also allow measuring the execution times
(latencies) of each stage involved in the rendering. A hook
records a timestamp when it intercepts an API call. The
differences between the timestamps of two hooks then give
the time spent in each stage. For example, the time difference
between the hookjo and hook; with matching tag gives the
round-trip time (RTT) to handle a user input.

However, the time measured with the hook’s CPU timestamps
cannot give GPU processing time. To obtain GPU time, we use
the time-querying functionality of OpenGL [24]. Start and stop
querying statements are inserted into the hooks to measure the
GPU time spent in each stage. For example, the time query
starts at a hooks and ends at the subsequently-invoked hookg
gives the GPU time to render a frame.

Pictor also measures FPS and resource usages. The FPS is
obtained by counting the frames at the server and client proxies.
System-level resource usages, such as CPU/GPU and memory
utilizations, are obtained from the OS and GPU drivers [8],
[58]. Architecture-level resource utilization is measured using
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TABLE II
APPLICATIONS INCLUDED IN OUR BENCHMARK SUITE.

Benchmark
SuperTuxKart (STK) [28]
0 A.D. (OAD) [22]

Red Eclipse (RE) [65]
DoTA2 (D2) [83]
InMind (IM) [55]
IMHOTEP (ITP) [63]

Application Area

Game: Racing

Game: Real-time Strategy
Game: First-person Shoot
Game: Online Battle Arena
VR: Education/Game

VR: Heatlh

hardware performance monitoring units (PMU). CPU PMU
readings for each stage are obtained by using PAPI inside
the API hooks [79]. The PMUs on AMD GPUs are queried
using AMD’s GPU Performance API [7]. For NVidia GPU,
an external tool, NSight Graphics, is used to read PMUs, as
NVidia does not support programmable PMUs reading for
graphics rendering on Linux.

Performance Measurement Extensibility and Overhead.
One benefit of using API hooks is that it does not require
modifying 3D applications. Our performance analysis frame-
work can be applied to any proprietary 3D applications, as
long as these applications invoke standard 3D APIs, such as
those given in Table I. As later shown in the experimental
evaluation (Section IV), these API hooks also incur little
overhead. However, the time queries used to measure the GPU
performance may stall the CPU and thus incur a high overhead.
To mitigate the impact of these stalls, we used two query
buffers and switched them between frames.

C. The Benchmark Suite

With Pictor, we designed a benchmark suite, which contains
four computer games and two VR applications. All benchmarks
are from real applications and cover popular game genres and
usage cases. Table II lists these benchmarks. Among the six
benchmarks, Dota2 and InMind are closed source. Note that,
as Pictor is designed to be extensible, new 3D applications can
be easily added in the future.
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IV. EVALUATION

This section provides the experimental evaluation of the
reliability/accuracy and overhead of Pictor.

Experiment Setup The benchmarks were executed on a
server with an 8-core Intel i7-7820x CPU, 16GB memory, and
an NVIDIA GTX1080Ti GPU with 11GB GPU memory. The
clients consisted of four machines each with a 4-core Intel
i5-7400 CPU and 8GB memory. The server and clients were
connected using 1Gbps networks. 1Gbps network was chosen
because it behaved similarly to 5G cellular networks in terms of
the frame-transmitting latency as shown later in Section V-A2.
Precision Time Protocol [21] was used to synchronize the time
between the server and clients.

The server and clients run Ubuntu 16.04 as the OS and
TurboVNC 2.1.90 [82] as the rendering system. We chose
VNC as it has complete support for 3D rendering. The other
open-source solution, GamingAnywhere [31], failed to run
all of our benchmarks. To the best of our knowledge, all
VNC implementations (and even the non-VNC proprietary NX
technology [64]) required TurboVNC’s graphics interposer,
VirtualGL [17], to support 3D rendering. Therefore, we
evaluated TurboVNC, as it represents the state-of-the-art open-
source remote 3D rendering. We modified TurboVNC to
support VR device inputs. All benchmarks were executed at a
resolution of 1920x 1080 with maximized visual effects.

Intelligent Client Accuracy Evaluation. To evaluate if the
intelligent clients (ICs) indeed allow reliable and accurate
performance results, we compared the benchmarks’ behaviors
under the ICs and human interactions. More specifically, each
benchmark was executed using its IC and was also played/used
by a real human user for three 15-minute sessions each (results
were stable after 10 min). We then compared the performance
results obtained from the two types of executions, including
the latency, FPS, and CPU/GPU utilization. Figure 6 shows
the round-trip time (RTT) that it took to process input for each
benchmark when executed with the IC and the human user. For
each execution, Figure 6 shows the mean, 1%-tile, 25%-tile,
75%-tile, and 99%-tile of the measured RTTs. As Figure 6
shows, the RTTs obtained with IC were very similar to those
from the human. Table III also gives the percentage errors of
the means of the RTTs obtained with our IC. The maximum
percentage error for the mean-RTT for IC is only 2.5%, and
average error for IC is only 1.6%, the RTTs from the IC and
human runs were also similar. The data for other performance
metrics were also similar for both runs. However, limited by
space, other performance metric results are omitted.

Intelligent Client Speed Evaluation. Figure 7 gives the
average times that it took to conduct CV (CNN) and generate
input (RNN) for each benchmark. As the figure shows, the
clients have fast inference times, with an overall average of
72.7ms for CV and 1.9ms for input generations. This fast
inference allows the ICs to generate 804 actions per minute
(APM) on average, which is faster than professional game
players (about 250 to 300 APM) [50], [81], showing that the
ICs can generate inputs fast enough to mimic human reaction
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TABLE III
PERCENTAGE ERRORS FOR THE MEANS OF THE RTTS OBTAINED WITH
P1CcTOR’S IC, DESKBENCH [85] (DB), CHEN, ET AL. [15] (CH), AND
SLOW-MOTION [54] (SM), WHEN COMPARED TO THE MEAN RTTS
OBTAINED WITH HUMAN USERS.

STK 0AD RE D2 M ITP Avg
Pictor | 0.8% 0.1% 2.5% 3.2% 1.3% 2.0% 1.6%
DB 5.4% 429% | 14.6% 3.3% 1.3% 2.3% 11.6%
CH 39.5% | 389% | 32.6% | 29.9% | 11.4% | 27.8% | 30.0%
SM 39.8% | 30.1% | 282% | 32.7% | 13.1% | 22.7% | 27.9%

speed. Note that, to ensure our ICs can faithfully mimic human
actions, we slowed the rate of action generation to be around
250 APM.

Pictor Overhead Evaluation. To evaluate the overhead of
Pictor, we executed each benchmark with and without the
performance analysis framework. For the run without the
performance analysis framework, native TurboVNC is used
with our ICs. As the native TurboVNC does not provide RTT
readings, we compared the FPS of both runs. Our results show
the performance analysis framework has low overhead. The
FPS reduction was only 2.7% on average (5% at maximum)
for all benchmarks. This low overhead is partially due to our
use of double-buffers when querying GPU execution times.
Without these double-buffers, the overhead was up to 10%.

Comparison with Prior Work. To show the importance
of properly handling irregular/random objects and tracking
inputs, we also compared Pictor with three prior performance
measuring techniques for VDI and cloud gaming.

We first compared Pictor with DeskBench [66]. DeskBench
was based on VNCPlay [85] and replayed recorded human
actions to generate inputs. However, DeskBench did not only
record an action, it also recorded the screen frame when this
action was issued. During replay, the action was only issued
when the displayed frame was similar to the recorded frame.
With this frame comparison, DeskBench (and VNCPaly) only
issued an action when the expected object was displayed,
and thus, was capable to handle network latency variation.
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Fig. 7. Computer vision and input generation time.
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Note that, the “similarity” between frames was a tune-able
parameter for DeskBench. We tested with several parameter
values following the methodology presented by DeskBench
and reported the DeskBench’s results using the best parameter
we found. Additionally, as DeskBench did not provide input
tracking, it was only used to generate inputs, and Pictor’s
performance framework was used to collect performance data.
Figure 6 and Table III also give the RTT distributions and errors
obtained with DeskBench. The average error of the mean-RTT
obtained with DeskBench was 11.64%, which was considerably
higher than the 1.6% error of Pictor. DeskBench was designed
for 2D applications with well-shaped and placed objects (e.g.,
icons and texts), where simply comparing pixels can determine
if an object is shown or not. However, for 3D games, even the
same object can have different pixels and locations depending
on the viewing angle and the flow of events. Hence, simply
comparing the pixels is practically impossible to determine the
existence of an object, causing DeskBench to frequently delay
an action.

We also compared Pictor with a cloud gaming performance
analysis methodology presented by Chen et al. [15]. In this
methodology, the authors generated inputs with human players.
This methodology did not provide input tracking, and hence,
could not measure RTT at the client. Therefore, it had to
compute the RTT by summing the time of the stages of CS,
SP, AL, CP, and SS of the software pipeline. Figure 6 and
Table III also give the RTT distributions and errors obtained
with this methodology. The average error of the mean-RTT
obtained with this methodology was 30.0%, which was also
much higher than the 1.6% error of Pictor. There are two issues
with this methodology because of the lack of input tracking.
First, the AL latency in this methodology was obtained offline
without the VNC server proxy. This offline measurement gave
lower AL latency than that obtained during online execution,
because it eliminated the resource contention between the game
and the VNC server proxy. Second, with input tracking, the
methodology could not measure the delays of the inter-process
communication stages, including PS, FC, and AS. Because of
these two issues, Chen et al.’s methodology usually reported
smaller RTTs than those directly measured at the client.

The last comparison was conducted with a VDI performance
measuring technique call Slow-Motion [12], [54]. Slow-Motion
was designed to determine the RTT of one frame. Slow-Motion
injected delays into the cloud rendering system to only allow
one input/frame being processed at a time — only after an
input was processed, its frame was rendered and sent to the
client, could the processing of the next input/frame start. By
allowing only one frame at a time, it was trivial to associate
an input with its response frame. Note that, as Slow-Motion
did not include an input generation technique, Pictor’s IC was
used to generate the inputs. Figure 6 also shows the RTT
distributions obtained with Slow-Motion. The average error
of the mean-RTT obtained with this methodology was 27.9%,
which was also higher than the 1.6% error of Pictor. The main
issue of Slow-Motion was that the injected delay changed
the resource usage and the behavior of the benchmark and
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Fig. 9. Network and PCle (send-to and received-at the GPU) bandwidth
usages for each benchmark.

the VNC server proxy (which was also noted by the original
authors [54]). Because only one frame was rendered at a time,
the resource contention caused by parallel processing/rendering
of the inputs and frames was eliminated, and the resource
contention between the benchmark and the server proxy was
also reduced. Consequently, Slow-Motion typically reported
smaller RTTs than those observed with a system executing at
full capacity.

V. PERFORMANCE ANALYSIS OF CLOUD RENDERING
SYSTEM AND 3D APPLICATIONS

A. Perf. Analysis with A Single Benchmark

This section provides the performance analysis results with
a single benchmark, which was executed using the same
methodology given in Section IV.

1) System-level Resource Utilization: Figure 8 gives the
CPU and GPU utilization of each benchmark. The CPU
utilization of these benchmarks had a high variation, ranging
from 68% (RedEclipse) to 266% (Dota2). The GPU utilization
also had a high variation, ranging from 22% to 53%. The
VNC server also had considerable CPU utilization, which
varied from 169% to 243%, depending on the FPS and frame
compression difficulty. The CPU memory usages also vary
considerably, ranging from 600MB (Dota2) to nearly 4GB
(InMind). The GPU memory usages of these benchmarks were
less than 800MB, which is similar to the 1GB-2GB GPU
memory requirements of recent popular games.

Figure 9 shows the network and PCle bandwidth usages for
each benchmark. For network usage, only the bandwidth usage
of sending the frames to the client is shown, as sending the
inputs from the clients used only 1.5Mpbs. The network usages
of these benchmarks were below 600Mpbs, which is lower than
the maximum bandwidth of the coming 5G cellular network
and 10Gpbs broadband. Similarly, all benchmarks used less
than 5GB/s on the PCle bus, which is well below the 31.5GB/s
maximum bandwidth of PCle3. Except for SuperTuxKart, all
benchmarks sent limited amount of data from the CPU to GPU,
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Fig. 10. Average server and client FPS when executing one to four instances
of the same benchmark on the server.
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Fig. 11. RTT breakdown when executing one to four instances of the same
benchmark on the server.

suggesting most of their rendering data were stored on the
GPU. The exception of SuperTuxKart was likely due to its
frequent and drastic changes in the rendered frames. For all
benchmarks, there is high PCle bandwidth usage from GPU
to CPU, which represented the data used for copying rendered
frames from GPU to CPU.

2) Application Performance: Figure 10 gives the server and
client FPS for each benchmark when one to four instances of
the same benchmark was executed on the server. Here, we focus
on the FPS for one instance (i.c., the bars with x-axis label “1”).
Server FPS measured the number of frames that were generated
at the server in one second. Client FPS measured the number of
frames the client received in one second. The lowest client FPS
was 27 (for OAD), which is still higher than the minimum 25
FPS quality-of-service (QoS) requirement for 3D applications,
showing the feasibility of cloud graphics rendering [68]. Note
that, Figure 10 shows the average server/client FPS for each
benchmark. Nonetheless, the lowest observed FPS was still
higher than 25.

Figure 11 gives the average RTTs of handling an input for
each benchmark. Again, we focus on the RTTs for one instance
(i.e., the bars with x-axis label “1”"). These RTTs are broken
down into the time the sever spent on handling the input and
the network times for sending the inputs and frames. For all
benchmarks, the network latency for sending inputs (stage CS)
was very small (; 10ms). The network latency for sending
frames (stage SS) ranged from 14ms to 35ms, which was
similar to those reported by prior work with 4G/5G cellular
network, suggesting our 1Gpbs network is close to the real use
case [77]. The largest component of RTT was always the time
that the server took to process inputs, which include all stages
from SP to CP. This server processing time ranged from 61ms
to 106ms. Such high server time indicates that cloud system
design is crucial to ensure good performance.

In Figure 12, the server time is further broken down into the
time of VNC sending inputs to the benchmark (stage PS), the
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Fig. 12. Server time breakdown when executing one to four instances of the
same benchmark on the server.
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Fig. 13. Application time breakdown when executing one to four instances
of a benchmark on a server.

application execution time (stage AL, FC, and RD), benchmark
sending frame to VNC (stage AS) and the time of VNC
compressing frames (stage CP). Note that, the time for stage
SP is omitted because it was too small (< 1ms) to be visible in
the figure. As Figure 12 shows, for all benchmarks, the main
component of the server processing time is the application
execution time, where the execution times for other stages (i.e,
PS, AS, and CP) were less than 18ms.

The application execution time was further broken down in
Figure 13. As GPU rendering (RD) executes in parallel with
the application logic (AL) and frame copy (FC) stages, the
GPU rendering times are shown as separate bars in Figure 13.
Surprisingly, many benchmarks spent most of their time on
copying frames. This long frame-copy time was due to the
long PCle transporting time and inefficiency implementation,
which were addressed with new optimizations in Section VI.
Moreover, because of the long frame-copy, GPU rendering was
never the performance bottleneck in our experiments.

3) Architecture-level Resource Usages: Figure 14 shows
the CPU cycles for each benchmark using the Top-Down
analysis [35]. The CPU cycles are broken down into front-end
stalls, back-end stalls, bad speculation stalls, and the cycles for
instruction retirements. As Figure 14 shows, all benchmarks had
long back-end stalls and low instructions-per-cycle, indicating
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Fig. 14. CPU cycles breakdown when executing one to four instances of a
benchmark on the same server.
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Fig. 16. GPU L2 and texture cache miss rates when executing one to four
instances of a benchmark.

these benchmarks were likely memory-bound. As their L3
cache miss rates (L3-misses/L3-accesses) were also very high
(> 70%) (Figure 15), it can be deduced that these benchmarks
are also off-chip memory bound. This behavior is consistent
with typical graphics rendering implementation where uncached
memory is used for CPU-to-GPU communications [34].

As shown in Figure 16, all benchmarks except InMind had
moderate GPU cache miss rates. These moderate cache miss
rates suggested most benchmarks can use GPU caches relatively
effectively. Note that, 0AD used OpenGL v1.3, which is not
supported by NVidia PMU reading tools. Therefore, we could
not obtain GPU cache miss rates for 0AD.

4) Single Benchmark Analysis Summary: 1) Executing 3D
applications in the cloud can provide reasonable QoS with
current hardware and network. 2) Cloud/server performance can
be a major limitation on FPS and RTT. Therefore, optimizing
the cloud system design is crucial for cloud graphics rendering.
3) 3D applications have a wide range of resource demands
and behaviors, suggesting cloud system optimizations may
need to consider individual application’s characteristics. 4) 3D
applications intensively utilized the CPU, GPU, memory, and
PCle buses. Consequently, cloud system optimizations need to
consider the impacts of all these resources. For instance, we
designed an optimization to handle the long frame-copy time
over the PCle bus in Section VI.

B. Perf. Analysis with Multiple Benchmarks

To investigate the feasibility and analyze the performance
of multiple 3D applications sharing hardware in the cloud,
we also conducted experiments with multiple 3D benchmarks.
More specifically, we executed one to four instances of the
same benchmark on our server. Each benchmark instance
interacted with its own client machine. To ensure enough
network bandwidth, each benchmark instance used its own
1Gpbs network card on the server.

1) Server Power Consumption: We obtained the server
power consumption using a Klein Tools CL110 meter. Overall,
adding a new instance only increased the total server power
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Fig. 17. Per-instance power usage when executing one to four benchmark
instances on one machine.

consumption by less than 20%. As shown in Figure 17, this
small increase in total power usage translated into per-instance
power usage reductions of 33%, 50%, and 61%, when running
two to four instances (comparing to one instance). These power
usage reductions demonstrate a main benefit of executing
3D applications in the cloud — the reduced energy cost and
operational cost.

2) Application Performance: Figure 10 also shows the FPS
for each benchmark when two to four instances of the same
benchmark were executed on the same server. Here, we focus
on the FPS for 2 to 4 instances (i.e., the bars with x-axis labels
“27, “3” and “4”). As Figure 10 shows, for all benchmarks,
executing with two instances could still provide an acceptable
(i.e., > 25) FPS. For three benchmarks, RE, IM, and ITP,
executing three instances could still achieve an FPS higher
than 25. These FPS results show that consolidating multiple
3D applications on one server can still provide acceptable QoS,
and thus reduce infrastructure cost.

Figure 11, 12, and 13 also give the breakdown of the RTT,
server processing time, and benchmark processing time, when
two to four instances of the same benchmark were executed
on the same server. Again, we focus on the results for 2 to 4
instances (i.e., the bars with x-axis labels “2”, “3” and “4”). As
Figure 11 shows, there was no significant increase in network
time due to the use of multiple graphics.

However, there were significant increases in server execution
times. As shown in Figure 12 and Figure 13, nearly every
execution stage on the server experienced increased execution
time with more instances. We have observed high increase (up
to 96%) in execution time for the stages with inter-process
communications (IPC), including the stages of PS and AS.
There were also significantly increase in the stages that do
computations on the CPU and GPU, including the stages of
AL, FC, RD, and CP. In particular, the average application
logic (stage AL) time increased by 235% when executing with
four instances, and the average GPU rendering (stage RD)
time increased by 133% when executing with four instances.
These increased execution time on CPU and GPU were main
caused by two issues — the oversubscribed CPU/GPU when
executing three or four instances, and the hardware resource
contention that happened in the CPU, GPU, and PCle buses.
This contention is discussed in detail in the following section.

3) Architecture-level Resource Usages: Figure 14 and Fig-
ure 15 gives the CPU cycle breakdown and the L3 cache miss
rates of one benchmark instance, when it was executed with
other benchmark instances. As the figures show, both the back-
end stalls and the L3 miss rates increased considerably with
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Fig. 19. Performance loss and cache miss increases of Dota2 when executing
with other benchmarks. Higher values indicate higher loss and contention.

more benchmark instances, indicating that there was heavy
contention in the memory system.

Memory contention was also observed in the GPU. As shown
in Figure 16, all benchmarks experienced increased GPU L2
miss rates, which contributed to the increase in their GPU
rendering time. This L2 miss increases may be explained
with the GPU internal graphics pipelines [48]. Because of
this pipeline, there may be frames from different benchmark
instances rendered simultaneously, thus causing the L2 cache
contention. The texture cache miss rates, however, did not
change significantly, as it is a private cache. Note that, for both
CPU and GPU, the contention may exist beyond cache and
extend to DRAM and PCle buses. Resource contention also
existed between the benchmarks and VNC proxies. However,
a full contention analysis is beyond the scope of this paper
and will be conducted in the future.

4) Multi-benchmark Analysis Summary: 1) Executing multi-
ple 3D applications on the same server in the cloud can provide
acceptable QoS while significantly reduced energy consumption.
Therefore, cloud graphics rendering may considerably reduce
the infrastructure and operational costs for the large-scale
deployment of 3D applications. 2) Resource contention and
slowed IPC can severely degrade the performance of 3D
applications in the cloud, and thus should be properly managed.
Moreover, resource contention simultaneously exists in the
CPU and GPU (and potentially in the PCIe buses). Contention
also exists between the applications and the server proxies.
Therefore, resource contention and IPC management for cloud
graphics rendering should be designed with heterogeneity in
mind.

C. Perf. Analysis with Mixed Benchmarks

To study the impact of colocating different 3D applications,
we also conducted experiments where two different benchmarks

890

10 |:|Server FPS Overhead ] RTT Overhead
T

S | | | | :
- 5 I I I I
ﬁ 3 T R |
= | | \ I
5] 0 U [ - T [FEI\
S T' S1an T

7 1234 1234 1234 1234 1234 1234

STK 0AD RE D2 ITP

Fig. 20. Server FPS/RTT overheads of containers. Negative overheads are
performance improvements.

were executed simultaneously. As there were 6 benchmarks, a
total of 15 pairs of them were evaluated.

1) Application Performance, Power Consumption, and
Architectural-level Resource Usages: Figure 18 gives the client
FPS of the 15 pairs of benchmarks. Server FPS was just slightly
higher than client FPS and was omitted due to space limitation.
As Figure 18 shows, 11 pairs of benchmarks had client
FPS higher than 25, suggesting different 3D applications can
also share hardware while ensuring acceptable QoS. We also
observed that adding an additional benchmark only increase
the total server energy consumption by no more than 25%.
Therefore, comparing to running two applications on two
servers, executing two different 3D applications on the same
server can reduce energy consumption by at least 37%.

Similar to the observations in Section V-B, oversubscribed
CPU/GPU, prolonged IPC, and resource contention significantly
increased the server execution time. Nonetheless, we also
observe that the contentiousness of these benchmarks varies
considerably. Figure 19 gives the performance and CPU/GPU
cache misses of Dota2 when it was executed with different
benchmarks. Other benchmark pairs showed similar results
and were omitted due to space limitation. As Figure 19
shows, there was significant variation in Dota2’s performance
depending on its co-runners, with SuperTuxKart causing the
highest contention and OAD causing the least contention.
This high variation in the contentiousness may be utilized in
optimizations (e.g., selecting the proper set of 3D applications
to share hardware). It is also interesting to observe that the
contentiousness for CPU cache and GPU cache seemed to
have high correlation. This correlation may be due to the
rendering data being shared between CPU and GPU, and may
be exploited when managing 3D applications contention (e.g.,
predicting a 3D application’s contentiousness).

2) Mixed Benchmark Analysis Summary: 1) Executing
multiple different 3D applications on the same server in
the cloud can provide acceptable QoS while significantly
reducing energy consumption. 2) The contentiousness of 3D
applications varies considerably, which may be utilized in
system optimizations. 3) There may also be a correlation
between the contentiousness for the CPU cache and GPU
cache, which may also be exploited in system optimizations.

D. Container Overhead

So far, all experiments were conducted on bare-metal systems.
However, as we target cloud computing, it is also important
to analyze the performance impact of virtualization and
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Fig. 21. Optimizing frame copy with two-step copy.

containerization. Hence, we repeated the above the performance
analysis experiments using Docker containers to study the
overhead of containerization. More specifically, we executed
each instance of the benchmark and its VNC server inside an
NVidia Docker container [57]. We chose container instead of
VM because docker container currently supports most GPUs,
while VM-based virtualization requires special GPUs. We will
evaluate VM-based systems in the future.

Figure 20 shows the percentages of reduced FPS and
increased RTT (i.e., FPS and RTT overheads), comparing to
the runs without virtualization. On average, Docker containers
incurred little overhead. The average overhead for RTT was
only 1.3%, and the average overhead for server FPS was only
1.5%. This low average overhead further shows the feasibility
of executing 3D applications in the cloud.

Nonetheless, the overhead can still be as high as 8.5% for
RTT (or 6% for FPS). We observed that these overheads were
usually due to increased execution time for the stages with
IPC (stages PS and AS). These high overheads show the need
to optimize containerized cloud 3D applications to ensure that
worst-case performance still meets QoS goals. Besides the
overheads for RTT and FPS, the GPU rendering time was also
increased by 2.9% on average and 8% on maximum, illustrating
the overhead of GPU virtualization with containers.

It is also worth noting that container also improved perfor-
mance in certain cases, as shown with the negative overheads
in Figure 20. A preliminary analysis showed that these
performance improvements were mainly due to containerization
reduced resource contention among the benchmarks and VNC
servers. Although further analysis is still required to identify
the exact cause of the reduced contention, these performance
improvements illustrate the potential benefits of container-based
run-time optimizations.

Container Overhead Summary 1) On average, Docker
containers incur limited overhead, further showing the feasibil-
ity of executing 3D applications in the cloud. 2) Nonetheless,
high performance overhead may still be observed in certain
cases, suggesting that container overhead reduction is still
required. 3) Container overheads are mainly associated with
IPC and GPU virtualization. 4) Containerization may also
improve performance, suggesting the potential of additional
run-time optimizations.

VI. OpTiMIZED FRAME COPY

As discussed in Section V-A2, the frame-copy (FC) stage
was a major performance bottleneck in TurboVNC. This section
presents the optimizations we invented and implemented to
reduce the frame-copying time.
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Fig. 22. Improved FPS/RTT with our optimizations.

Further analysis of the TurboVNC’s graphics interposer
revealed two inefficiencies. First, the interposer called the func-
tion XGetWindowAttributes before copying a frame. XGetWin-
dowAttributes was extremely slow and consumed 6 9ms. This
function was only used to get the benchmark’s resolution to
determine the size of the frame to copy. As the resolution of
a game or VR application is rarely changed during execution,
there is no need to call XGetWindowAttributes for every
frame copy. Therefore, in the first optimization, we applied
memoization to this function. That is, we intercepted the
invocation to XGetWindowAttributes and returned the cached
resolution instead of actually calling it. XGetWindowAttributes
is only actually invoked when the benchmark’s resolution
changes, which is determined by monitoring X events at Hookj.

The second inefficiency is that the benchmarks were halted
during the copy, waiting from the GPU to send the frame, as
shown with the blank in the FC stage in Figure 5. Inspired
by deep CPU pipelining, we broke the frame copy into two
smaller steps — the start-copy and finish-copy. As shown in
Figure 21, after issuing the frame copying command to GPU
for frame;_; (FCStart;_;), the graphics interposer does not
wait for frame;_;’s copy to finish. Instead, it goes on to finish
the copying of frame; , (FCEnd;—;) and works on sending
frame;_» to the VNC server. The actual finish of copying
frame;_; happens after the application logic for frame;; is
computed (FCEnd;_1). By making the frame copy into two
asynchronous steps, the halt in the benchmark is removed.

Figure 22 gives the performance improvements from our two
optimizations when one benchmark instance was executed. Our
optimization improved server FPS by 57.7% on average and
115.2% at maximum. The client FPS was improved by 7.4% on
average and 19.5% at maximum. The RTT was reduced by 8.5%
on average and 15.1% at maximum. Note that, in Figure 22,
the client FPS of ITP had 3% reduction due to the increased
benchmark performance causing more contention with the
VNC proxy. We were able to remove this extra contention
and improve ITP’s client FPS with an additional optimization.
However, due to space limitation, this additional optimization
cannot be covered here.

VII. RELATED WORK

VDI and Cloud Gaming System Benchmarking There
have been several studies providing benchmarking tools or
methodologies to analyze the performance of VDI systems and
cloud gaming systems. Table IV compares the functionalities
and features of the major prior work with Pictor. All of the
studies summarized in Table IV, expect Chen et al. [15],
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TABLE IV
COMPARISON BETWEEN PICTOR AND PRIOR WORK ON VDI AND CLOUD GAMING PERFORMANCE ANALYSIS.

Features [ VNCPlay [85] [ Chen et al. [15]

Slow-Motion [54]

Login-VSI [75] | DeskBench [66] | VDBench [12] | Dusi et al. [20] | Pictor

Random UI Objects Tolerant

Varying Net Latency Tolerant
User-input Tracking

CPU Perf. Measurement
Network Perf. Measurement
GPU Perf. Measurement

PCle frame-copy Perf. Measure.

L

Unaltered 3D App Behaviors

were designed to measure VDI systems with 2D applications.
Moreover, none of these studies considered the random and
irregular Ul objects in cloud games and VR applications.
And none of these studies provided methods to measure the
performance of GPU rendering and frame-copy over the PCle
connections. These studies also did not provided means to
track input processing without changing the 3D application’s
resource usage and behavior, as shown in Section IV. In
summary, without the abilities to handle irregular and random
objects, associate an input and its response, and measure the
GPU and frame-copy performance, existing benchmarking
tools/methodologies cannot provide reliable and effective
performance measurements for cloud 3D rendering systems.

GPU Benchmarks. There are also many GPU benchmarks,
such as GraalBench [10], SPECviewperf [18], GFXBench [33]
Rodinia [14], and MGMark [76]. Mitra and Chiueh also
analyzed three 3D benchmark suites [53]. These benchmarks
and analysis focused on evaluating GPU performance without
user actions. However, as 3D applications’ behaviors are heavily
affected by user actions, user inputs must be considered in
cloud 3D benchmarks to ensure realistic results. Moreover,
interactive 3D applications have intensive usage for both CPU
and GPU. Only focusing on GPU cannot provide the insights
needed to manage interactive 3D applications and their use of
heterogeneous hardware.

Graphics Rendering Software. Many software supports re-
mote desktops, such as VNC, NX and THINC [11], [64],
[67], [69]. These remote desktops usually do not support 3D
applications by default. Additionally, cloud graphics rendering
also requires additional support on GPU virtualization and
management for co-running 3D applications. Consequently,
additional research is required to efficiently support 3D appli-
cations in cloud. CloudVR and Furion were two programming
frameworks to support cloud VR [38], [42]. Abe et al. employed
data prefetching to speed up the cloud processing time for
interactive applications [3]. Ha et al. investigated the impact
of consolidating multimedia and machine-learning applications
in the cloud [26]. AppStreamer dynamically predicted and
downloaded useful portions of a game to mobile devices [80].
EVR was a cloud VR system with specialized hardware to
support 360° videos [43]. Meng et al. proposed to share the
common backgrounds of multi-user VR applications to improve
the performance for cloud VR [51]. Hegazy et al. proposed to
allocate bit rates for encoded cloud gaming frames based on
the importance of virtual objects [27]. There were also studies
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on the cloud server allocation and GPU virtualization for cloud
gaming [19], [44], [45], [47], [86]. Our research is inspired
by these studies and aims at facilitating these graphics system
design studies. Google, Microsoft, NVidia, and PARSEC are
also building their proprietary cloud gaming systems, whose
designs may be different than the system analyzed in this
paper [23], [52], [56], [61]. Pictor aims at facilitating the
public research on cloud graphics rendering, so that open-
source solutions can be as good as proprietary solutions. We
will constantly update Pictor to follow the advances in these
open-source solutions.

Other Related Work GUI testing frameworks [4], [5],
[16], [46], [49] may also be used for benchmarking remotely-
rendered applications. However, these GUI testing frameworks
were not designed for 3D applications with irregularly-shaped
and random UI objects. Google DeepMind and OpenAl Five
have also built Al bots to play games [36], [59]. These bots
were built to compete with human. Therefore, their execution
may require thousands of processors [60]. Additionally, the Al
models used by these bots required complex training processes
for new games, and existing model are not publicly available.
Therefore, these Al bots are not suitable for 3D application
benchmarking. Moreover, prior research on non-cloud VR
architecture and systems [9], [42], [43], [84] may also benefit
from Pictor’s intelligent clients and benchmarks.

VIII. CONCLUSION

This paper presents Pictor, a benchmarking framework for
cloud 3D applications and systems. Pictor includes an intelli-
gent client to mimic human interactions with 3D applications
with 1.6% error, and a performance analysis framework that
provides detailed performance measurements for cloud graphics
rendering systems. With Pictor, we designed a benchmark
suite with six 3D benchmarks. Using these benchmarks, we
characterized a current cloud graphics rendering system and
cloud 3D applications, which also showed benefits of cloud
graphics rendering. We also designed new optimizations with
Pictor to address two newly-found bottlenecks which improved
the frame rate by 57.7% on average.
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