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Abstract—Today’s production scale-out applications include many sub-application components, such as storage backends, logging
infrastructure and AI models. These components have drastically different characteristics, are required to work in collaboration, and
interface with each other as microservices. This leads to increasingly high complexity in developing, optimizing, configuring, and deploying
scale-out applications, raising the barrier to entry for most individuals and small teams. We developed a novel co-designed runtime system,
Jaseci, and programming language, Jac, which aims to reduce this complexity. The key design principle throughout Jaseci’s design is to
raise the level of abstraction by moving as much of the scale-out data management, microservice componentization, and live update
complexity into the runtime stack to be automated and optimized automatically. We use real-world AI applications to demonstrate Jaseci’s
benefit for application performance and developer productivity.

Index Terms—Serverless Computing, Artificial intelligence, Warehouse-Scale Computing, Runtimes, Programming Languages.
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1 INTRODUCTION

THERE has been a fundamental shift in how we build
software over the last two decades. Complexity continues

to rise and productivity declines for developers as it becomes
increasingly difficult to build and maintain production-grade
applications. This increased complexity is rooted in three
challenge areas:
Challenge 1 - Application data has increased in scale, source,
and diversity, making data management difficult for scale-
out applications, especially where performance is concerned.
Specifically, decisions on how to structure schemas, what
data to be persistent, what data to be stored in distributed
memcache, and how the various API’s and protocols to be de-
signed bring significant complexity and poor maintainability
as requirements change.
Challenge 2 - Significant complexity emerges in deciding
which parts of the application should be separated out as
standalone microservices vs be linked within the same address
space. Today, these decisions are static and cannot be changed
based on the runtime conditions of the application and the
underlying cluster environment. Indeed, realizing optimal or
near-optimal performance is not commonly achieved [1], and
the relative performance of different design points changes
over time.
Challenge 3 - Introducing (or removing) functionality often
requires pushing a new version of an entire application or
container to replace the old. The idea of replacing a single
method or a single class of a running live service/application
would be unthinkable for current scale-out applications. The
complexity of updating scale-out software impedes the rate at
which developers innovate.

Because of these complexities, the barrier to entry has
grown for individuals and small teams to build scale-out
applications as sophisticated skill sets with inter-role depen-
dencies are required (Figure 1A).

In this work, we propose a runtime stack (Jaseci) and a
programming model (with Jac) that significantly reduce the
complexity of building and deploying applications. Jaseci and
Jac introduce three abstractions at the programming language
level that hides and automates the optimization of complex
design decisions across our challenge areas.

1) A graph-based data representation semantic is realized
in the Jac language’s core design that allows the developer
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Fig. 1: Typical development team for a production-grade
application without Jaseci (left) and with Jaseci (right).
to articulate compute and data coupling with nodes, edges,
and graphs. We call this a data-spatial programming model.
Jaseci then subsumes the responsibility of mapping data to the
underlying distributed data memory and storage hierarchy.
Using the data locality information inherently embedded in
the structure of the graph and how scopes of code are accessed
throughout execution, Jaseci automatically optimizes the dis-
tribution of data across the memory and data hierarchies.

2) A control-flow abstraction, actions, simplifies the trans-
fer of control between components and hides whether the
component code lives in the virtual address space of the run-
ning application or outside within a microservice (or FaaS).
Developers declare and make action calls in their program
to interact with functionality without having to explicitly
decide or even know how they are bound. These bindings are
controlled by Jaseci and can also change dynamically based
on runtime monitoring.

3) The compute/data encapsulation abstraction, walk-
ers, are introduced to facilitate and reduce the complexity
of introducing new functionality to an existing application.
Walkers enable dynamic injection and removal of functional-
ity at fine granularity during application runtime as they silo
functionality and data. These walkers execute independently
on the graph through walks and communicate only by leaving
data in the graph for other walkers to access. This approach
further enables the data-spatial programming style of fusing
compute with data and allows features and functionality to
be independently and dynamically added (and removed) to a
running scale-out application.
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Fig. 2: Architecture of three key abstractions of Jaseci and Jac.

With these three key abstractions, Jaseci and Jac aim to
1) reduce the domain-specific special skill sets required and
enable a small team or a single developer to build high-
performant production-grade applications (Figure 1B), and
2) increase the rate a which developers can experiment and
innovate new ideas at scale.

Jaseci and Jac are open-source [2], [3], [4], [5], fully func-
tional, and have already been used by dozens of programmers
for the creation of production software. Jaseci deployment
already supports tens of thousands of production queries per
day across six commercial products [6], [7], [8], [9], [10], [11].
In this work, we describe the key insights of these novel
abstractions and show qualitatively and quantitatively how
they help developers.

2 JASECI DESIGN AND IMPLEMENTATION

In this section, we describe the design of Jaseci (shown in
Figure 2) with respect to the three challenges presented in
Sec. 1.

2.1 Language-level Graph-based Data Representation
Jaseci uses a rich graph-based semantic as the key primitive
at the language level for which both data and compute is
articulated, as shown in Figure 2A. In the Jac language,
graphs, nodes, and edges are first-class citizens. Developers
interact with nodes and edges in the language (data.jac in
Fig. 2), and they do not have to make decisions on data schema
design, what should be persistent, and what should be cached.
Jaseci runtime automates these decisions based on the graph
semantics and the application behavior. (For brevity, more
can be found about these abstractions in Jac’s public docu-
mentation [12].) Under the language-level abstraction, Jaseci
runtime manages nodes and edges across a three-level data
hierarchy, including memory, a distributed memory caching
layer, and a database for persistent storage. We are able to
leverage the data locality information inherently represented
in the graph structure and the emergent patterns of how
walkers access node and edge objects. As a baseline, the LRU
(Least Recently Used) memory caching policy for the Redis
layer proves is used in production today to leverage this
information, however this graph path information enables a
new landscape of prefetching and is future work.

A technique we have designed and implemented in pro-
duction is a smart graph object data packing approach we
call Fast Edges. This approach is an adaptive node/edge
fusion technique, further improves performance across the six
production application workloads. We present initial perfor-
mance measurements of Fast Edges in Section 4.1.

2.2 Dynamic Componentization via Actions
Figure 2B illustrates the actions abstraction and how it sim-
plifies the process of application componentization for devel-
opers. When programming in Jac, developers declare action

calls with the can keyword in their code. How this action
is bound to the application and where the action execution
is going to occur is handled by Jaseci. As shown in Fig-
ure 2B, this example Jac program declares three action calls in
walker.jac, nlp model, cv model and data engine. Then at
runtime, Jaseci configures nlp model and cv model as local
libraries and data engine as a remote microservice in the
cluster, which are then bound to the corresponding action
calls. The decision of whether an action should be bound as
a locally linked library in the application’s address space or
bound as an RPC call to a remote microservice or FaaS service
is abstracted away from the developer. Actions can also be
used to interface existing software built in other languages
and frameworks.

The key innovation of the actions abstraction is that it en-
ables late-binding such that an automated orchestrator (JSORC
in Fig. 2B) can serve as a subsystem to steer the decisioning
of how an application should be componentized after the
application is launched and potentially change those decisions
dynamically. For example, in Fig. 2B, the action cv model is
switched from local library to remote microservice after the
initial componentization decision. JSORC regularly analyzes
the current runtime system state and the underlying hardware
and devises and applies the best componentization decision.
We describe in detail the design and algorithm of JSORC in
Section 3.

2.3 Functionality Encapsulation with Walkers
In the current application development practice, introducing
new features to a mature scale-out application requires the de-
velopers to apply the code changes to the code base, and push
a new version of the entire application or container to replace
the old version. Walkers provide the ability to encapsulate,
inject and remove functionality at a fine granularity analogous
to live adding a single method or function in a running
application. However, a walker’s scope is highly constrained
to only accessing the state within itself and on the node/edge
that it sits on during a walk. This approach provides a siloed
guarantee that walkers can only communicate by writing
and reading state spatially to the graph. We call this style
of programming data-spatial programming, and introduces
a new intuitive way of thinking about solving problems. For
example, in Figure 2C, a new walker analyze is introduced to
a running application, along with a new node type.

Additionally, this data-spatial approach makes available
constraints and guarantees that reduce the risk of bugs and
regression when introducing new functionality to software.
For example, in the context of building RESTful API end-
points, a statically discernible scope of data that is accessible
(visible) can be guaranteed throughout program execution.
Developers can limit nodes/edges access to only certain walk-
ers directly and intuitively in the language. In the example
in Figure 2C, the analyze walker is not allowed to traverse
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to certain existing nodes, whose scope limits access to only
certain walkers (e.g. the existing process walker). We present
a concrete example using walkers in a real-world production
case study in Section 4.4.

3 DESIGN AND IMPLEMENTATION OF THE ACTION
COMPONENTIZATION SUBSYSTEM

Cluster
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Fig. 3: Design of the Componentization Subsystem, JSORC

In this section, we describe the design of the Jaseci Or-
chestrator (JSORC), the subsystem that decides the action
componentization at runtime (Fig. 2B). The key intuition
of JSORC is that the optimal componentization decision can be
inferred from application-level runtime insights and cluster-level
resources monitoring metrics. JSORC retrieves these insights and
metrics from other Jaseci subsystems and devises and applies
the best componentization decision in real time. Figure 3
shows the overview of JSORC, which consists of two phases:
application analysis (left) and dynamic orchestration (right).

Application Analysis - In order to accurately infer the
ideal componentization configuration for the best QoS, it is
imperative to first understand the components at play and
their characteristics. Before deploying an application, JSORC
profiles the actions required by the application. Specifically,
we measure the latency of the action calls when configured
as a remote microservice and a locally bound library, respec-
tively, and define the ratio of remote vs. local latency as the
Componentization Coefficient (CC). In addition, we profile the
memory requirement of each action library.

Dynamic Orchestration - Many dynamic factors can influ-
ence the optimal componentization configuration, including
changes in application request patterns, available hardware
resources, and cost requirements. We design JSORC to dynam-
ically adapt to these dynamic factors and periodically adjust
its decision during runtime. JSORC harnesses the continuous
profiling information provided by the Jaseci runtime appli-
cation profiler and cluster-wide metrics services (Prometheus
in Jaseci’s case). The application profiler provides application-
level insights including action utilizations. Prometheus mon-
itors the cluster and provides performance and utilization
metrics of the deployed pods and nodes in the cluster. The
Config. Solver uses these insights, metrics, and action profiles
(e.g. CC) to infer a, potentially new, best componentization
configuration. For new configurations, the Pod Scheduler
creates new Kubernetes pods and/or removes existing ones,
and the Reconfigurator updates the action call bindings.

4 EXPERIMENTS AND ANALYSIS

We perform a number of experiments and analyses with Jaseci
and present our findings in this section.

4.1 Optimizing Data Performance with Fast Edge
With the introduction of walkers, edges, and nodes as first-
order primitives in Jac, the way these data elements are stored
introduces a new landscape of optimizations. We introduce
one such optimization, Fast Edges, to optimize the read/write

performance of nodes and edges, especially for graphs with
a large number of nodes. The key idea is that when a node
is accessed, its connecting edges are often accessed next or
soon, and as such, fusing edges together with nodes can
reduce database access and improve data performance. Jaseci
automatically marks an edge as a Fast Edge if its context data
is smaller than a parametrized threshold. Normal edges are
stored as separate objects in the database, while fast edges are
fused and saved with their source and destination nodes. A
Fast Edge is re-created in memory when its associated node is
loaded.
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Fig. 4: Fast Edge
We use Myca [6], an in-production AI-powered per-

sonal productivity platform with 100s of users and 1000s of
queries/day, to evaluate the efficacy of Fast Edge. Figure 4
shows, for two request types (create and walk), the latency
speedup and reduction in Redis access achieved by Fast Edge.
Fast Edge improves request latency by up to 13% and reduces
# of objects accessed by up to 50.1%. Motivated by these
promising results, we plan to design and implement the next
evolution of Fast Edge, where the runtime selectively fuses
nodes with adjacent nodes in addition to edges and combines
access for subgraphs.

4.2 Characterizing the Componentization Problem
The decision of componentization has significant implications
on application performance. We first characterize the differ-
ence in latency of the same action when configured as a remote
vs. local component. Figure 5a compares the remote action
latency of five state-of-the-art transformer-based AI models,
including BERT [13], [14], [15] and USE [16]. We observe
that 1) remote-linked microservice actions incur longer exe-
cution latency than their local counterparts due to the addi-
tional network communication overhead and 2) this latency
degradation varies greatly depending on the component, due
to difference in data to compute ratios.

We then characterize the distribution of performance pro-
files of the end-to-end application across the spectrum of
different configurations of which actions are locally binded
and which are remote microservices. We use an application
with five AI model actions, which leads to 32 different com-
ponent configurations. Figures 5b-d show the distribution of
QPS, average latency, and 99th percentile latency as box plots
grouped by the number of local components, where 0 locals
means all five components are remote and 1 locals groups
the performance of configs with one local component and
four remote, etc. The results show a high impact of compo-
nent configuration decisions on the overall performance of
the application. We observe a large performance variation
depending on which particular component is configured as
local vs remote, as demonstrated by the large gap between
the box boundaries/whiskers.

4.3 JSORC Dynamic Orchestration
There exists a large design space for beneficial heuristics for
JSORC’s dynamic policy. In this experiment, we focus on a
generalized policy that centered around optimizing for the
best common case performance. In this policy, at runtime,
JSORC regularly enters an evaluation phase where it tries
out each possible configuration for a short time period and
selects the one with the best performance as the applied
configuration for the application until the next evaluation
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Fig. 5: From left to right: (a): Average request latency of each model action when configured as remote micorservice, normalized
to that of locally bound library. (b,c,d): Performance of microservice configurations with a varying ratio of local vs. remote
modules.

phase is scheduled. The benefit of this evaluation-based policy
is that it is agnostic to the heterogeneity of the cloud hardware
resources and application characteristics.
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Fig. 6: Perf. with JSORC and remote microservice.
We conduct real-system experiments using two text ana-

lytic AI applications, Discussion Analysis (DA) analyzes open-
ended group discussion transcript on social topics and Sen-
tence Pairing (SP) pairs up related text from two disjoint
lists. They each use two actions for two different AI models.
Figure 6 shows the throughput, average, and tail latency of
the application under JSORC’s dynamic policy and all remote
microservices. Results are normalized to all microservices
configurations.

The current version of JSORC achieves up to 2.64× la-
tency and 2.59× throughput improvement compared to the
static config of all remote microservices. We show the Up-
per Bound performance, where all actions are configured as
locally bound libraries in the Jaseci runtime process, and no
communication over the network is required. This configura-
tion leads to a single monolithic process with high memory
consumption, requiring more costly hardware. Therefore, it is
not always desired or feasible, especially at scale and high
request load, and an adaptive and dynamic technique is
needed. In addition, we observe a more significant speedup
in throughput and average latency than tail latency. This is
because of the additional time that is spent when JSROC is
switching components between local and remote. We plan
to introduce adaptive orchestration policies to reduce the
frequency of component switching required to rein in the
tail. Other promising heuristics we plan to explore include
using application-level behavior tracking and cluster-level
performance counters to predict the best componentization
configuration without having to evaluate.

4.4 Case Study: Daily Summary Feature in Myca
We use a qualitative approach with an in-production appli-
cation as a case study to demonstrate how a developer uses
Walkers to nimbly introduce new functionality into running

applications. Myca [6], a personal productivity platform with
hundreds of users, uses NLP AI models to provide users with
insights into how they spend their time. A Myca developer
introduced a new feature to summarize users’ daily activity
over a certain time period. The developer wrote a single
walker daily summary that traverses the user’s graph from
one day node to the next, collecting data from that day (e.g.,
completed tasks) and making action calls to a summarization
component using the T5 transformer model [17]. The entire
implementation of this feature requires ∼25 lines of Jac code
and is encapsulated in a single Walker, while typically such
a feature would require hundreds of lines of code in a tra-
ditional programming model. After implementing the first
prototype of the feature, the developer deployed it to the
running production Jaseci instance by dynamically injecting
the daily summary walker, without touching the existing
codebase or features. After beta testing with real users for two
weeks, the developer decided to incorporate users’ feedback
into a v2 and removed the feature from production by just
removing the daily summary walker.

5 CONCLUSION

There is increasing complexity in developing and optimiz-
ing today’s production scale-out applications.We introduce a
novel co-designed runtime system Jaseci and programming
language Jac to reduce this complexity and improve developer
productivity. In this work, we focus on three key language-
level abstractions that enable runtime automation for data
management, microservice optimization, and functionality en-
capsulation. Jaseci and Jac are open-source and have been
used to create six production software.
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