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Abstract—In dynamic spectrum allocation involving passive 
wireless systems, such as for weather radiometry or radio 
astronomy, estimating potential interference is crucial in setting 
transmission spectral and spatial limitations for potentially 
interfering transmitters. The challenge in accurately assessing 
interference is heightened by variability in environmental factors 
and limitations of static modeling. This often leads to protection 
levels that are either excessively stringent or overly permissive. 
Dynamic spectrum access (DSA) systems commonly rely on the 
ability to precisely model transmissions and estimate interference 
prior to frequency assignment, where total interfering power is 
acquired by means of summing individual contributions to a 
potential victim receiver. As an alternative to the worst-case static 
calculations, this paper proposes the implementation of a Mamdani-
type fuzzy inference system as the assessment mechanism for 
interference levels. In this approach, transmitter operations and 
network characteristics are characterized by their degree of 
membership with various linguistic variables. Membership grades 
are then provided to a ruleset determined by the expected 
relationship between input and output parameters. The value 
implied by the rules gives an estimation of interfering power level 
that may be tuned by adjusting the membership characterization of 
parameters. After tuning, simulation results yield a Root Mean 
Square Error (RMSE) improvement of approximately 39%, 
demonstrating the system’s ability to adapt to varying levels of 
agreement with static calculations.  

Keywords—interference, spectrum management, fuzzy inference 
systems, dynamic spectrum access 

I. INTRODUCTION 
 The advent of fifth-generation (5G) mobile broadband has 
introduced a number of improvements over previous generations 
including higher data rates, reduced latency, and improved 
coverage in rural areas. The tradeoffs necessary to achieve these 
improvements have proved cumbersome for other wireless 
services, especially critical passive services such as weather 

radiometry and radio astronomy. High bandwidth needs have 
resulted in the allocation of large blocks of spectrum to 5G in 
recent years, in addition to many allocations interleaved among 
previously established services. While the 5G standard and 
spectrum policy implement emission limits, concerns regarding 
their efficacy in scenarios involving passive systems remains due 
to disagreement between compatibility studies conducted to 
inform policy makers [1]. For example, the auction of 24 GHz 
spectrum to 5G wireless services has created such a scenario and 
presents a notable risk to passive radiometers operating in the 23.6 
– 24.0 GHz Earth Exploration-Satellite Service (EESS) band [2].  

It can be difficult for DSA systems to acquire the information 
needed to predict compatibility with sufficiently low error and 
choose an appropriate propagation model given inherent 
uncertainties [3]. This makes calculations to classify interference 
difficult to execute with high precision and reasonableness for 
complex propagation environments. At millimeter wavelengths, 
minor errors in location and antenna positioning data coupled with 
phenomena such as multipath effects can make deterministic 
interference calculations intractable. The issue of complexity is 
further exacerbated when considering the aggregation of 
interferences from simultaneous transmissions.  

In response to the difficulties of precisely modeling networks 
and their propagation environments, many works have developed 
statistical models aiming to reduce the computational complexity 
of interference predictions by assigning probability distributions 
to parameters with random variations [4]-[7]. Peng et al. describe 
another simplified method of aggregating interference to deep-
space Earth stations from high-density fixed service (HDFS) 
emitters in which the area surrounding deep-space Earth stations 
is geometrically partitioned and used to model the correlation of 
interferences [8]. Authors in [9]-[11] consider models that 
estimate total interference in scenarios where emitters are 
distributed uniformly over a region surrounding a primary 
receiver. 



Other methods for interference prediction that have been 
explored recently have leveraged machine learning (ML) 
algorithms to handle analytically intractable calculations. Padilla 
presents a nonlinear autoregressive neural network (NARNN) to 
predict interference and aid in efficient resource allocation [12]. 
Saija evaluates the ability of various ML algorithms to estimate 
channel state information (CSI) in 5G systems by predicting 
signal-to-noise ratio (SNR) and shows that the ML approaches 
outperform traditional methods in terms of error [13]. Zhao 
demonstrates a method wherein location, path loss information, 
and transmit power are supplied from a network of transmitters to 
a backpropagation neural network trained to predict aggregate 
interference at a receiver [14].  

These prior works have produced important results by 
successfully reducing the complexity of interference analysis, but 
many existing techniques remain unsuitable for real-time 
spectrum management applications. For example, the Citizens 
Broadband Radio Service (CBRS) Spectrum Access System 
(SAS) aggregate interference assessments encompass millions of 
path loss calculations, often delaying spectrum assignment for 24 
or more hours [15]. ML-based approaches provide adequate speed 
but lack an explanation facility able to offer insights regarding the 
decisions of the assessment mechanism, a feature that may be 
desirable when mischaracterizations occur. In the event 
inconsistent results are produced by ML-based approaches actions 
are generally limited to error analysis, data inspection, and further 
training of the network to address the unknown contingencies 
introducing error.  

 Fuzzy inference systems (FIS) lend themselves well to 
interference prediction due to their tolerance for uncertainties in 
provided data, tunable nature, and inherent explanation facility. 
Incorporated with a DSA controller such as a spectral broker [16], 
an FIS accepts precise and ambiguous information alike and can 
perform the evaluation within the time and computational 
constraints of the brokering system.  A spectral broker can be used 
to coordinate between active and passive spectrum users, and can 
provide limitations for transmission by active users to avoid 
interference with passive services [17]. This paper introduces the 
design of a Mamdani-type FIS tuned to a coexistence scenario 
between 5G devices and passive radiometers whose frequency 
assignments are managed by a spectral brokering system. 

II. BACKGROUND 

A. Fuzzy Inference Primer 
 In conventional crisp logic, an element’s membership in a set 
is binary. As an alternative, L. A. Zadeh proposed Fuzzy Sets in 
1964 [18]. Fuzzy Sets describe the degree to which an element 
belongs to a set. As with crisp logic, union and intersection 
operations are defined that facilitate the comparison of sets. By 
applying fuzzy logic to control systems, fuzzy inference systems 
can accurately model system behavior and have been validated by 
their reduction to practice. In a study on the impact of Fuzzy Logic 
conducted in 2013, there were 26 journals, over 100,000 
publications, and over 2500 patents in the United States and Japan 
[19]. 

 FISs provide a mathematical framework for human decision 
making consisting of three primary stages: fuzzification, rule 
evaluation, and defuzzification. For purposes of clarity, a tutorial 

example of fuzzy inference is provided. The example considers 
two leading indicators of graduate student performance: grade-
point average (GPA) and Graduate Record Examinations© (GRE) 
scores. In this example, each antecedent has three membership 
functions: 𝜇𝜇𝑃𝑃, 𝜇𝜇𝐹𝐹, and 𝜇𝜇𝐻𝐻, where P is poor, F is fair, and H is high. 
Plots of these membership functions are shown in Figs. 1 and 2. 

 
Fig. 1. GPA antecedent membership functions 

 
Fig. 2. GRE antecedent membership functions 

 During the fuzzification process, each membership function 
illustrated in the figures above is evaluated for the corresponding 
input, resulting in the degree to which an input belongs to that 
fuzzy set. Consider a student with a GPA of 3.5 and a GRE score 
of 775. This GPA has no membership with the set of poor scores 
and belongs equally to the fair and high sets; 𝜇𝜇𝑃𝑃 = 0, 𝜇𝜇𝐹𝐹 =
0.5, 𝜇𝜇𝐻𝐻 = 0.5. The GRE score also has no membership with the 
set of poor scores and belongs predominately to the high set 
compared to the fair set;  𝜇𝜇𝑃𝑃 = 0, 𝜇𝜇𝐹𝐹 = 0.25, 𝜇𝜇𝐻𝐻 = 0.75. These 
resulting membership grades are used in the rule evaluation stage. 

 Rule evaluation maps the membership grades of each input to 
a scaling factor for each consequent membership function. In 
general, two primary approaches are used to construct a rule table. 
First, a subject matter expert can use their expertise to codify rules 
about the behavior of the system. Second, an optimization method 
can be applied to find a set of rules that minimize a cost function 
describing the difference between the system output and target 
value. When the rule table can be constructed based on expertise, 
this provides intuition regarding how the system arrived at an 
output. This is a significant benefit of Fuzzy Inference Systems 
compared to other artificial intelligence methods. 

 To model the relationship between students’ scores and 
anticipated performance, a domain expert such as an experienced 
professor constructs the rule set in Table I. The rows and columns 
correspond to the fuzzy sets for poor, fair, and high scores while 
the cells at their intersections correspond to the implied fuzzy sets 
for poor, average, good, and excellent student performances. Poor 
GRE and poor GPA implies poor graduate student, fair GRE and 
fair GPA implies average graduate student, and so on for all cases. 
The membership grades for GPA and GRE scores of 3.5 and 775 
are given next to their respective sets. Cells are assigned their 
values by taking the minimum value of their respective row and 
column.  



TABLE I.  GRADUATE STUDENT TYPE IMPLIED BY GPA AND GRE 

  
 In this example, the final output will be a graduate student 
ranking between 0 and 10, where greater values correspond to a 
better graduate student. To map between the rule table and output, 
four consequent membership functions are used: 𝜇𝜇𝑃𝑃, 𝜇𝜇𝐴𝐴, 𝜇𝜇𝐺𝐺 , and 
𝜇𝜇𝐸𝐸, where P is poor, A is average, G is good, and E is excellent. 
Plots of these functions can be seen in Fig. 3. 

 
Fig. 3.  Consequent membership functions 

Cell values from the rule table are used to scale the consequent 
fuzzy sets’ membership functions. In the case that there are 
multiple cells for the same fuzzy set, the maximum value of the 
group is taken to be the final weight. Thus, from Table I, 𝜇𝜇𝑃𝑃 = 0, 
𝜇𝜇𝐴𝐴 = 0.25 , 𝜇𝜇𝐺𝐺 = 0.5 , and 𝜇𝜇𝐸𝐸 = 0.5 . The scaled consequent 
membership functions are shown in Fig. 4. 

 
Fig. 4.  Consequent membership functions scaled by rule table weights  

In the defuzzification stage, the scaled membership functions 
are summed as shown in Fig. 5. A number of defuzzification 
methods exist and have application-specific trade-offs. The center 
of mass method is commonly used. The center of mass of the 
weighted membership functions, in general, is given by: 

𝑑𝑑 =
∫ ∑ 𝑎𝑎𝑛𝑛𝑥𝑥𝜇𝜇𝑛𝑛(𝑥𝑥)𝑑𝑑𝑑𝑑𝑛𝑛
∞
−∞

∫ ∑ 𝑎𝑎𝑛𝑛𝜇𝜇𝑛𝑛(𝑥𝑥)𝑑𝑑𝑑𝑑𝑛𝑛
∞
−∞

 (1) 

where the summation is over all of the consequent membership 
functions, {𝜇𝜇𝑛𝑛(𝑥𝑥)}, and their corresponding weights, {𝑎𝑎𝑛𝑛}. If the 
area under the 𝑛𝑛𝑡𝑡ℎ membership function is given by: 

𝐴𝐴𝑛𝑛 = � 𝜇𝜇𝑛𝑛(𝑥𝑥)𝑑𝑑𝑑𝑑
∞

−∞
(2) 

and center of mass: 

𝑐𝑐𝑛𝑛 =
∫ 𝑥𝑥𝜇𝜇𝑛𝑛(𝑥𝑥)𝑑𝑑𝑑𝑑∞
−∞

𝐴𝐴𝑛𝑛
 (3) 

Then the defuzzification can be written as: 

𝑑𝑑 =
∑ 𝑎𝑎𝑛𝑛𝑐𝑐𝑛𝑛𝐴𝐴𝑛𝑛𝑛𝑛

∑ 𝑎𝑎𝑛𝑛𝐴𝐴𝑛𝑛𝑛𝑛
 (4) 

Applying this defuzzification method to the example returns the 
final crisp output 𝑑𝑑 = 7.3.  

 
Fig. 5. The center of mass of the sum of the weighted membership functions  

B. Spectral Brokering 
 Similar in principle to the automated frequency coordination 
(AFC) system at 6 GHz and SAS in the 3.5 GHz band, the 
cooperative brokering system coordinates spectrum use between 
active and passive users by considering spectral, spatial, and 
temporal resource use in its network and implementing constraints 
on potentially interfering devices [17]. To determine potential 
interferers, the spectral resources desired by a user are submitted 
as a request to the broker. With this information the broker begins 
assessing the most recently submitted request against existing 
allowances of other devices, covering all combinations of device 
pairs.  

 In each assessment, five stages of culling take place in which 
the broker evaluates overlap between parameters. The first three 
stages look for time overlap of the requests, whether the devices 
are within line of sight of each other, and whether the main beam 
of the transmitter’s antenna pattern intersects the location of the 
other device. In stage four, free space path loss (FSPL) 
calculations determine whether power of a transmission will 
exceed the interference tolerance of the receiving device. The 
final stage performs frequency interference calculations by first 
looking for direct overlap between requested bands, then for out-
of-band interference potential.  

 Each stage of analysis can short-circuit subsequent stages, 
meaning that, if at any point in the culling process no overlap is 
determined, then each device in the pair of devices under 
evaluation will be considered to be free of potential interference 
from the other, and the broker will proceed to the next pair 
immediately, bypassing the remaining stages. If none of the five 
stages of the culling process rule out the potential for interference, 
the broker will generate a spatial-spectral mask for the interferer 
that limits transmission power as a function of frequency and 
direction. If no interference is expected from any individual 
device, the broker then, making worst-case assumptions, sums the 
powers of transmissions at each receiver's location to estimate the 
total levels of interference that may be seen. If the aggregated 



signal level exceeds the device's interference tolerance, a spatial-
spectral mask is provided to the most recent user to submit a 
request for spectrum.  

 An alternative to the current worst-case method utilized by the 
broker, which considers no fading and assumes fully constructive 
interference, should be evaluated. The nature of the inference 
process and its tuning to a specific coexistence environment 
address uncertainties in propagation and equip the broker with the 
flexibility needed to extend to other spectrum sharing scenarios. 

III. NETWORK MODEL 

A. Network Topology 
 To simulate the environment for evaluating interference, we 
consider a homogeneous network comprised of a single 
radiometer among a set of 5G transmitters.  The transmitters are 
spaced approximately the same distances from one another, while 
the radiometer location varies across the approximately 1 km2 
region encompassing the devices. Fig. 6 shows an example of the 
network containing three 5G transmitters with a single radiometer 
placed at the center of the coexistence space. 

 
Fig. 6. Device placement in network area of approximately 1 km2 

B. Modeling Devices 
 Spectrum consumption models (SCMs) are used to represent 
devices in our simulations. SCMs are a data structure made up of 
11 data elements, each articulating some aspect of spectrum use 
[20]. Transmitter models capture the RF emissions of a 
transmitting device by identifying location of the device, 
operating times, a spectral mask (how much power is transmitted 
at frequencies of interest), and directivity. Receiver models define 
interference thresholds for a receiving device by capturing its 
location, operating times, an underlay mask (power tolerance 
values at frequencies of interest), directivity of reception, and 
susceptance to intermodulation effects.  

 The power level for each transmitter is captured as effective 
isotropic radiated power (EIRP) in the direction of the radiometer 
and within its 200 MHz channel. The radiometer tolerance is 
captured as a power spectral density (PSD) with a center operating 
frequency of 23.84 GHz. The PSD of out-of-band emissions into 
the passive EESS band was modeled to range from -70 
to -40 dBW/200 MHz, well below the recommended limit 
published in [21], but high enough to interfere in aggregate 
depending on the relative locations of devices. 

C. Data Generation 
 The simulated network is used to generate a synthetic dataset 
made up of transmitted PSDs and distances between devices as 

inputs and the interfering PSDs after path loss as outputs. To 
acquire different propagation distances, the location of the 
radiometer is swept across the network’s geographical area. At 
each location, the interfering power is calculated across the range 
of out-of-band emission powers given FSPL between devices. 
FSPL is justified here by the relatively short distances over which 
the 5G/radiometer coexistence is analyzed. The final dataset 
captured for use by the FIS consists of a range of PSDs in the 
observation channel of the radiometer, distances between 
transmitters and radiometer, and the individual interfering powers 
at each location.  

 In total, the full dataset consists of approximately 71000 
points. Because FIS tuning is similar in nature to training an ML-
model it is necessary to apportion the data into training and 
validation subsets to ensure good generalization. These subsets 
comprise 80% and 20% of the total dataset respectively. 

IV. MAMDANI FUZZY INFERENCE SYSTEM DESIGN 
 With knowledge of device location, orientation, and antenna 
characteristics, the spectral broker is able to provide, as inputs to 
the FIS, the distance between devices under assessment and the 
transmitter PSD in the direction of interest. The variables chosen 
to describe the inputs and outputs of this design are simply “low”, 
“medium”, and “high”. The rule base is formed by our chosen 
linguistic variables and the known relationship between distance 
and pathloss. Results of the rule evaluation are then used as 
weights for the consequent membership functions. The final 
defuzzied value is acquired from the centroid of the weighted and 
summed consequent membership functions as previously 
described in the fuzzy inference primer.  

A. Antecedent Membership Functions 
Our design considers only transmitted PSD and distance 

between devices. Functions of low, medium, and high transmit 
PSDs and distances are initially crafted based on the range of 
values available in the synthetic dataset. For the PSDs of 
emissions, input values are bounded between -70 and -40 
dBW/200 MHz. Shown in Fig. 7, low membership increases as 
the input value approaches the lower bound, high membership 
peaks at the opposite end of the plot, and medium membership is 
maximized in the middle of the input range while overlapping 
surrounding functions. Functions for distance, shown in Fig. 8, 
are crafted in a similar manner with values ranging from 
approximately 50 to 1650 meters. 

 
Fig. 7. Transmitter PSD (dBW/200 MHz) membership functions 



 
Fig. 8. Distance (m) membership functions 

B. Rule Evaluation 
The implications that drive fuzzy inference are captured by a 
set of rules describing the relationship between antecedents 
and consequents. Rules are crafted based on expert intuition 
and domain knowledge. Though trivial in this case, the 
implications of more complicated systems require additional 
knowledge and may be captured by a larger rule base. The set 
of rules used in this design is shown in Table II.  

TABLE II.  FUZZY INFERENCE SYSTEM RULE TABLE 

 Rule 

1 If (PSD is Low) and (Distance is Low) then (Interfering PSD is 
Medium) 

2 If (PSD is Medium) and (Distance is Low) then (Interfering PSD 
is High) 

3 If (PSD is High) and (Distance is Low) then (Interfering PSD is 
High) 

4 If (PSD is Low) and (Distance is Medium) then (Interfering PSD 
is Low) 

5 If (PSD is Medium) and (Distance is Medium) then (Interfering 
PSD is Medium) 

6 If (PSD is High) and (Distance is Medium) then (Interfering PSD 
is High) 

7 If (PSD is Low) and (Distance is High) then (Interfering PSD is 
Low) 

8 If (PSD is Medium) and (Distance is High) then (Interfering PSD 
is Low) 

9 If (PSD is High) and (Distance is High) then (Interfering PSD is 
Medium) 

C. Consequent Membership Functions 
 FSPL indicates approximately 94 to 124 dB of loss over 50 – 
1650 meters, the smallest and largest distances separating devices 
in the simulated network respectively. From these values and the 
range of input PSDs, a reasonable range of output values was 
determined to be -195 to -150 dBW/200 MHz, 
where -166 dBW/200 MHz or greater is assumed to inflict 
harmful interference [22]. Similar to the antecedents, the 
consequent membership functions shown in Fig. 9 are triangular 
with functions for low and high peaking at opposite ends of the 
plot and the function of medium PSDs encompassing values in 
between with some overlap.   

 
Fig. 9. Interfering PSD (dBW/200 MHz) membership functions 

V. SIMULATION RESULTS 
 The FIS can function immediately upon implementation but 
benefits from a training period in which the membership functions 
and rule base are optimized to infer results more accurately. 
Membership function tuning was performed in MATLAB using 
the Global Optimization Toolbox, Fuzzy Logic Toolbox, and the 
Parallel Computing Toolbox. After tuning, the inference process 
may be reduced to a simple look-up table operation. A 
visualization of the control surface generated from this table is 
shown in Fig. 10. The trends illuminated by this graphic agree 
with those described by FSPL.  As the distance between devices 
decreases or the transmission PSD increases, the potential 
interference increases.  

 
Fig. 10. FIS control surface 

 To assess performance, the FIS was evaluated on the 
validation dataset. Prior to any optimization, an RMSE of 2.623 
dB was attained. After tuning, this value was reduced to 1.598 dB, 
corresponding to a Mean Absolute Percent Error (MAPE) of 
0.686%. Note that because the FIS holds no notion of the scale on 
which the data resides, the MAPE and RMSE were calculated 
based on the numerical value of the outputs. Fig. 11 illustrates the 
results succinctly. The solid 𝑦𝑦 = 𝑥𝑥  line describes a perfect 
interference level prediction. Our model’s predictions and the 
target values fall on the x and y axes respectively, the blue circles 
indicating the intercept point. The distance between each circle 
and the solid line represents the error as a dB difference. Though 
there appears to be a significant amount of variance, 95% of points 
fall within the dashed lines representing 2σ, where σ = 1.077 dB. 



These results demonstrate that this preliminary implementation 
can reach an adequate level of agreement with a well understood 
propagation model. Should it be decided that the interference 
estimations given by that model are too permissive for a given 
application, additional data and tuning of the FIS can provide 
more acceptable results.  

 
Fig. 11. Predicted Interference Levels After Tuning  

VI. CONCLUSION 
 An FIS design has been presented which can predict 
interference while reducing complexity of calculations. In this 
approach, the ambiguity inherent in modeling propagation 
environments and spectrum usage is handled by the fuzzy 
mathematical framework and can be used to enable departure 
from worst-case assumptions in interference assessments by 
tuning individual contributions to more or less stringent 
approximations depending upon application. Simulation results 
show that, after tuning, the system reaches reasonable agreement 
with FSPL estimations. This implies that the FIS, given additional 
input parameters, membership functions, and rules, may be tuned 
to match more complicated propagation models and interference 
scenarios that previously relied heavily on statistical models or 
other black-box style approaches.  
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