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Abstract—In dynamic spectrum allocation involving passive
wireless systems, such as for weather radiometry or radio
astronomy, estimating potential interference is crucial in setting
transmission spectral and spatial limitations for potentially
interfering transmitters. The challenge in accurately assessing
interference is heightened by variability in environmental factors
and limitations of static modeling. This often leads to protection
levels that are either excessively stringent or overly permissive.
Dynamic spectrum access (DSA) systems commonly rely on the
ability to precisely model transmissions and estimate interference
prior to frequency assignment, where total interfering power is
acquired by means of summing individual contributions to a
potential victim receiver. As an alternative to the worst-case static
calculations, this paper proposes the implementation of a Mamdani-
type fuzzy inference system as the assessment mechanism for
interference levels. In this approach, transmitter operations and
network characteristics are characterized by their degree of
membership with various linguistic variables. Membership grades
are then provided to a ruleset determined by the expected
relationship between input and output parameters. The value
implied by the rules gives an estimation of interfering power level
that may be tuned by adjusting the membership characterization of
parameters. After tuning, simulation results yield a Root Mean
Square Error (RMSE) improvement of approximately 39%,
demonstrating the system’s ability to adapt to varying levels of
agreement with static calculations.

Keywords—interference, spectrum management, fuzzy inference
systems, dynamic spectrum access

I. INTRODUCTION

The advent of fifth-generation (5G) mobile broadband has
introduced a number of improvements over previous generations
including higher data rates, reduced latency, and improved
coverage in rural areas. The tradeoffs necessary to achieve these
improvements have proved cumbersome for other wireless
services, especially critical passive services such as weather
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radiometry and radio astronomy. High bandwidth needs have
resulted in the allocation of large blocks of spectrum to 5G in
recent years, in addition to many allocations interleaved among
previously established services. While the 5G standard and
spectrum policy implement emission limits, concerns regarding
their efficacy in scenarios involving passive systems remains due
to disagreement between compatibility studies conducted to
inform policy makers [1]. For example, the auction of 24 GHz
spectrum to 5G wireless services has created such a scenario and
presents a notable risk to passive radiometers operating in the 23.6
— 24.0 GHz Earth Exploration-Satellite Service (EESS) band [2].

It can be difficult for DSA systems to acquire the information
needed to predict compatibility with sufficiently low error and
choose an appropriate propagation model given inherent
uncertainties [3]. This makes calculations to classify interference
difficult to execute with high precision and reasonableness for
complex propagation environments. At millimeter wavelengths,
minor errors in location and antenna positioning data coupled with
phenomena such as multipath effects can make deterministic
interference calculations intractable. The issue of complexity is
further exacerbated when considering the aggregation of
interferences from simultaneous transmissions.

In response to the difficulties of precisely modeling networks
and their propagation environments, many works have developed
statistical models aiming to reduce the computational complexity
of interference predictions by assigning probability distributions
to parameters with random variations [4]-[7]. Peng et al. describe
another simplified method of aggregating interference to deep-
space Earth stations from high-density fixed service (HDFS)
emitters in which the area surrounding deep-space Earth stations
is geometrically partitioned and used to model the correlation of
interferences [8]. Authors in [9]-[11] consider models that
estimate total interference in scenarios where emitters are
distributed uniformly over a region surrounding a primary
receiver.



Other methods for interference prediction that have been
explored recently have leveraged machine learning (ML)
algorithms to handle analytically intractable calculations. Padilla
presents a nonlinear autoregressive neural network (NARNN) to
predict interference and aid in efficient resource allocation [12].
Saija evaluates the ability of various ML algorithms to estimate
channel state information (CSI) in 5G systems by predicting
signal-to-noise ratio (SNR) and shows that the ML approaches
outperform traditional methods in terms of error [13]. Zhao
demonstrates a method wherein location, path loss information,
and transmit power are supplied from a network of transmitters to
a backpropagation neural network trained to predict aggregate
interference at a receiver [14].

These prior works have produced important results by
successfully reducing the complexity of interference analysis, but
many existing techniques remain unsuitable for real-time
spectrum management applications. For example, the Citizens
Broadband Radio Service (CBRS) Spectrum Access System
(SAS) aggregate interference assessments encompass millions of
path loss calculations, often delaying spectrum assignment for 24
or more hours [15]. ML-based approaches provide adequate speed
but lack an explanation facility able to offer insights regarding the
decisions of the assessment mechanism, a feature that may be
desirable when mischaracterizations occur. In the event
inconsistent results are produced by ML-based approaches actions
are generally limited to error analysis, data inspection, and further
training of the network to address the unknown contingencies
introducing error.

Fuzzy inference systems (FIS) lend themselves well to
interference prediction due to their tolerance for uncertainties in
provided data, tunable nature, and inherent explanation facility.
Incorporated with a DSA controller such as a spectral broker [16],
an FIS accepts precise and ambiguous information alike and can
perform the evaluation within the time and computational
constraints of the brokering system. A spectral broker can be used
to coordinate between active and passive spectrum users, and can
provide limitations for transmission by active users to avoid
interference with passive services [17]. This paper introduces the
design of a Mamdani-type FIS tuned to a coexistence scenario
between 5G devices and passive radiometers whose frequency
assignments are managed by a spectral brokering system.

II. BACKGROUND

A. Fuzzy Inference Primer

In conventional crisp logic, an element’s membership in a set
is binary. As an alternative, L. A. Zadeh proposed Fuzzy Sets in
1964 [18]. Fuzzy Sets describe the degree to which an element
belongs to a set. As with crisp logic, union and intersection
operations are defined that facilitate the comparison of sets. By
applying fuzzy logic to control systems, fuzzy inference systems
can accurately model system behavior and have been validated by
their reduction to practice. In a study on the impact of Fuzzy Logic
conducted in 2013, there were 26 journals, over 100,000
publications, and over 2500 patents in the United States and Japan
[19].

FISs provide a mathematical framework for human decision
making consisting of three primary stages: fuzzification, rule
evaluation, and defuzzification. For purposes of clarity, a tutorial

example of fuzzy inference is provided. The example considers
two leading indicators of graduate student performance: grade-
point average (GPA) and Graduate Record Examinations© (GRE)
scores. In this example, each antecedent has three membership
functions: pp, ug, and py, where P is poor, F is fair, and H is high.
Plots of these membership functions are shown in Figs. 1 and 2.
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Fig. 1. GPA antecedent membership functions
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Fig. 2. GRE antecedent membership functions

During the fuzzification process, each membership function
illustrated in the figures above is evaluated for the corresponding
input, resulting in the degree to which an input belongs to that
fuzzy set. Consider a student with a GPA of 3.5 and a GRE score
of 775. This GPA has no membership with the set of poor scores
and belongs equally to the fair and high sets; up = 0, ur =
0.5, uy = 0.5. The GRE score also has no membership with the
set of poor scores and belongs predominately to the high set
compared to the fair set; up = 0, ur = 0.25, uy = 0.75. These
resulting membership grades are used in the rule evaluation stage.

Rule evaluation maps the membership grades of each input to
a scaling factor for each consequent membership function. In
general, two primary approaches are used to construct a rule table.
First, a subject matter expert can use their expertise to codify rules
about the behavior of the system. Second, an optimization method
can be applied to find a set of rules that minimize a cost function
describing the difference between the system output and target
value. When the rule table can be constructed based on expertise,
this provides intuition regarding how the system arrived at an
output. This is a significant benefit of Fuzzy Inference Systems
compared to other artificial intelligence methods.

To model the relationship between students’ scores and
anticipated performance, a domain expert such as an experienced
professor constructs the rule set in Table I. The rows and columns
correspond to the fuzzy sets for poor, fair, and high scores while
the cells at their intersections correspond to the implied fuzzy sets
for poor, average, good, and excellent student performances. Poor
GRE and poor GPA implies poor graduate student, fair GRE and
fair GPA implies average graduate student, and so on for all cases.
The membership grades for GPA and GRE scores of 3.5 and 775
are given next to their respective sets. Cells are assigned their
values by taking the minimum value of their respective row and
column.



TABLE L GRADUATE STUDENT TYPE IMPLIED BY GPA AND GRE
Grad GPA
Student
Type P20 | F2>% | H2>%
G [P0 [P>0[P>0 |P>0
R IF>% | P20 | A% | GDY
E TH>% [ P>0 | Go% | ESY

In this example, the final output will be a graduate student
ranking between 0 and 10, where greater values correspond to a
better graduate student. To map between the rule table and output,
four consequent membership functions are used: up, ty, g, and
Ug, where P is poor, A is average, G is good, and E is excellent.
Plots of these functions can be seen in Fig. 3.
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Fig. 3. Consequent membership functions

Cell values from the rule table are used to scale the consequent
fuzzy sets’ membership functions. In the case that there are
multiple cells for the same fuzzy set, the maximum value of the
group is taken to be the final weight. Thus, from Table I, up = 0,
ug =025, u; =0.5, and pug = 0.5. The scaled consequent
membership functions are shown in Fig. 4.
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Fig. 4. Consequent membership functions scaled by rule table weights

In the defuzzification stage, the scaled membership functions
are summed as shown in Fig. 5. A number of defuzzification
methods exist and have application-specific trade-offs. The center
of mass method is commonly used. The center of mass of the
weighted membership functions, in general, is given by:
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where the summation is over all of the consequent membership
functions, {u, (x)}, and their corresponding weights, {a, }. If the
area under the n*"* membership function is given by:
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and center of mass:
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Then the defuzzification can be written as:
d — Zn anCnAn (4)
Zn anAn

Applying this defuzzification method to the example returns the
final crisp outputd = 7.3.
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Fig. 5. The center of mass of the sum of the weighted membership functions

B. Spectral Brokering

Similar in principle to the automated frequency coordination
(AFC) system at 6 GHz and SAS in the 3.5 GHz band, the
cooperative brokering system coordinates spectrum use between
active and passive users by considering spectral, spatial, and
temporal resource use in its network and implementing constraints
on potentially interfering devices [17]. To determine potential
interferers, the spectral resources desired by a user are submitted
as a request to the broker. With this information the broker begins
assessing the most recently submitted request against existing
allowances of other devices, covering all combinations of device
pairs.

In each assessment, five stages of culling take place in which
the broker evaluates overlap between parameters. The first three
stages look for time overlap of the requests, whether the devices
are within line of sight of each other, and whether the main beam
of the transmitter’s antenna pattern intersects the location of the
other device. In stage four, free space path loss (FSPL)
calculations determine whether power of a transmission will
exceed the interference tolerance of the receiving device. The
final stage performs frequency interference calculations by first
looking for direct overlap between requested bands, then for out-
of-band interference potential.

Each stage of analysis can short-circuit subsequent stages,
meaning that, if at any point in the culling process no overlap is
determined, then each device in the pair of devices under
evaluation will be considered to be free of potential interference
from the other, and the broker will proceed to the next pair
immediately, bypassing the remaining stages. If none of the five
stages of the culling process rule out the potential for interference,
the broker will generate a spatial-spectral mask for the interferer
that limits transmission power as a function of frequency and
direction. If no interference is expected from any individual
device, the broker then, making worst-case assumptions, sums the
powers of transmissions at each receiver's location to estimate the
total levels of interference that may be seen. If the aggregated



signal level exceeds the device's interference tolerance, a spatial-
spectral mask is provided to the most recent user to submit a
request for spectrum.

An alternative to the current worst-case method utilized by the
broker, which considers no fading and assumes fully constructive
interference, should be evaluated. The nature of the inference
process and its tuning to a specific coexistence environment
address uncertainties in propagation and equip the broker with the
flexibility needed to extend to other spectrum sharing scenarios.

III. NETWORK MODEL

A. Network Topology

To simulate the environment for evaluating interference, we
consider a homogeneous network comprised of a single
radiometer among a set of 5G transmitters. The transmitters are
spaced approximately the same distances from one another, while
the radiometer location varies across the approximately 1 km?
region encompassing the devices. Fig. 6 shows an example of the
network containing three 5G transmitters with a single radiometer
placed at the center of the coexistence space.
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Fig. 6. Device placement in network area of approximately 1 km?

B. Modeling Devices

Spectrum consumption models (SCMs) are used to represent
devices in our simulations. SCMs are a data structure made up of
11 data elements, each articulating some aspect of spectrum use
[20]. Transmitter models capture the RF emissions of a
transmitting device by identifying location of the device,
operating times, a spectral mask (how much power is transmitted
at frequencies of interest), and directivity. Receiver models define
interference thresholds for a receiving device by capturing its
location, operating times, an underlay mask (power tolerance
values at frequencies of interest), directivity of reception, and
susceptance to intermodulation effects.

The power level for each transmitter is captured as effective
isotropic radiated power (EIRP) in the direction of the radiometer
and within its 200 MHz channel. The radiometer tolerance is
captured as a power spectral density (PSD) with a center operating
frequency of 23.84 GHz. The PSD of out-of-band emissions into
the passive EESS band was modeled to range from -70
to -40 dBW/200 MHz, well below the recommended limit
published in [21], but high enough to interfere in aggregate
depending on the relative locations of devices.

C. Data Generation

The simulated network is used to generate a synthetic dataset
made up of transmitted PSDs and distances between devices as

inputs and the interfering PSDs after path loss as outputs. To
acquire different propagation distances, the location of the
radiometer is swept across the network’s geographical area. At
each location, the interfering power is calculated across the range
of out-of-band emission powers given FSPL between devices.
FSPL is justified here by the relatively short distances over which
the 5G/radiometer coexistence is analyzed. The final dataset
captured for use by the FIS consists of a range of PSDs in the
observation channel of the radiometer, distances between
transmitters and radiometer, and the individual interfering powers
at each location.

In total, the full dataset consists of approximately 71000
points. Because FIS tuning is similar in nature to training an ML-
model it is necessary to apportion the data into training and
validation subsets to ensure good generalization. These subsets
comprise 80% and 20% of the total dataset respectively.

IV. MAMDANI FUZZY INFERENCE SYSTEM DESIGN

With knowledge of device location, orientation, and antenna
characteristics, the spectral broker is able to provide, as inputs to
the FIS, the distance between devices under assessment and the
transmitter PSD in the direction of interest. The variables chosen
to describe the inputs and outputs of this design are simply “low”,
“medium”, and “high”. The rule base is formed by our chosen
linguistic variables and the known relationship between distance
and pathloss. Results of the rule evaluation are then used as
weights for the consequent membership functions. The final
defuzzied value is acquired from the centroid of the weighted and
summed consequent membership functions as previously
described in the fuzzy inference primer.

A. Antecedent Membership Functions

Our design considers only transmitted PSD and distance
between devices. Functions of low, medium, and high transmit
PSDs and distances are initially crafted based on the range of
values available in the synthetic dataset. For the PSDs of
emissions, input values are bounded between -70 and -40
dBW/200 MHz. Shown in Fig. 7, low membership increases as
the input value approaches the lower bound, high membership
peaks at the opposite end of the plot, and medium membership is
maximized in the middle of the input range while overlapping
surrounding functions. Functions for distance, shown in Fig. 8,
are crafted in a similar manner with values ranging from
approximately 50 to 1650 meters.
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Fig. 7. Transmitter PSD (dBW/200 MHz) membership functions
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Fig. 8. Distance (m) membership functions

B. Rule Evaluation

The implications that drive fuzzy inference are captured by a
set of rules describing the relationship between antecedents
and consequents. Rules are crafted based on expert intuition
and domain knowledge. Though trivial in this case, the
implications of more complicated systems require additional
knowledge and may be captured by a larger rule base. The set
of rules used in this design is shown in Table II.

TABLE II. Fuzzy INFERENCE SYSTEM RULE TABLE
Rule
1 If (PSD is Low) and (Distance is Low) then (Interfering PSD is
Medium)
2 If (PSD is Medium) and (Distance is Low) then (Interfering PSD
is High)
3 If (PSD is High) and (Distance is Low) then (Interfering PSD is
High)
4 If (PSD is Low) and (Distance is Medium) then (Interfering PSD
is Low)
5 If (PSD is Medium) and (Distance is Medium) then (Interfering

PSD is Medium)

6 If (PSD is High) and (Distance is Medium) then (Interfering PSD
is High)

7 If (PSD is Low) and (Distance is High) then (Interfering PSD is

Low)

8 If (PSD is Medium) and (Distance is High) then (Interfering PSD
is Low)

9 If (PSD is High) and (Distance is High) then (Interfering PSD is

Medium)

C. Consequent Membership Functions

FSPL indicates approximately 94 to 124 dB of loss over 50 —
1650 meters, the smallest and largest distances separating devices
in the simulated network respectively. From these values and the
range of input PSDs, a reasonable range of output values was
determined to be -195 to -150 dBW/200 MHz,
where -166 dBW/200 MHz or greater is assumed to inflict
harmful interference [22]. Similar to the antecedents, the
consequent membership functions shown in Fig. 9 are triangular
with functions for low and high peaking at opposite ends of the
plot and the function of medium PSDs encompassing values in
between with some overlap.
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Fig. 9. Interfering PSD (dBW/200 MHz) membership functions

V. SIMULATION RESULTS

The FIS can function immediately upon implementation but
benefits from a training period in which the membership functions
and rule base are optimized to infer results more accurately.
Membership function tuning was performed in MATLAB using
the Global Optimization Toolbox, Fuzzy Logic Toolbox, and the
Parallel Computing Toolbox. After tuning, the inference process
may be reduced to a simple look-up table operation. A
visualization of the control surface generated from this table is
shown in Fig. 10. The trends illuminated by this graphic agree
with those described by FSPL. As the distance between devices
decreases or the transmission PSD increases, the potential
interference increases.
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Fig. 10. FIS control surface

To assess performance, the FIS was evaluated on the
validation dataset. Prior to any optimization, an RMSE of 2.623
dB was attained. After tuning, this value was reduced to 1.598 dB,
corresponding to a Mean Absolute Percent Error (MAPE) of
0.686%. Note that because the FIS holds no notion of the scale on
which the data resides, the MAPE and RMSE were calculated
based on the numerical value of the outputs. Fig. 11 illustrates the
results succinctly. The solid y = x line describes a perfect
interference level prediction. Our model’s predictions and the
target values fall on the x and y axes respectively, the blue circles
indicating the intercept point. The distance between each circle
and the solid line represents the error as a dB difference. Though
there appears to be a significant amount of variance, 95% of points
fall within the dashed lines representing 26, where o = 1.077 dB.



These results demonstrate that this preliminary implementation
can reach an adequate level of agreement with a well understood
propagation model. Should it be decided that the interference
estimations given by that model are too permissive for a given
application, additional data and tuning of the FIS can provide
more acceptable results.
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Fig. 11. Predicted Interference Levels After Tuning

VI. CONCLUSION

An FIS design has been presented which can predict
interference while reducing complexity of calculations. In this
approach, the ambiguity inherent in modeling propagation
environments and spectrum usage is handled by the fuzzy
mathematical framework and can be used to enable departure
from worst-case assumptions in interference assessments by
tuning individual contributions to more or less stringent
approximations depending upon application. Simulation results
show that, after tuning, the system reaches reasonable agreement
with FSPL estimations. This implies that the FIS, given additional
input parameters, membership functions, and rules, may be tuned
to match more complicated propagation models and interference
scenarios that previously relied heavily on statistical models or
other black-box style approaches.
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