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Bis(N-xylyl-imino)phenyl “NCN” iridium pincer complexes. 
Thermodynamics of ligand binding and C–C bond cleavage☆ 
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A B S T R A C T   

Iridium dibromide complexes of the phenyldiimine ligand 2,6-bis(1-((2,6-dimethylphenyl)imino)ethyl)phenyl, 
trans-(XyPhDI)IrBr2L, have been synthesized, and relative Ir-L BDFEs have been experimentally determined for 
a wide range of corresponding adducts of ligands L. An estimate of the absolute enthalpy of Ir-L binding has been 
obtained from dynamic NMR measurements. The results of DFT calculations are in very good agreement with the 
relative and absolute experimental values. Computational studies were extended to the formation of adducts of 
(XyPhDI)IrH2 and (XyPhDI)IrI, as well as other (pincer)IrI fragments, (Phebox)IrI and (PCP)IrI, to enable a com
parison of electronic and steric effects with these archetypal pincer ligands. Attempts to reduce (XyPhDI) 
IrBr2(MeCN) to a hydride or an IrI complex yielded a dinuclear CN-bridged complex with a methyl ligand on the 
cyanide-C-bound Ir center (characterized by scXRD), indicating that C-CN bond cleavage took place at that Ir 
center. DFT calculations indicate that the C-CN bond cleavage occurs at one Ir center with strong assistance by 
coordination of the CN nitrogen to the other Ir center.   

1. Introduction 

Iridium complexes bearing 2,6-bisphosphinomethyl aryl (PCP motif) 
and many related pincer ligands, including those with PNP, PPP, and bis 
(NHC)aryl (CCC) motifs, have been explored and developed extensively 
in the past 25 years. In particular such complexes have seen great suc
cess in C–H bond activation including catalytic alkane dehydrogenation 
and tandem reactions based upon dehydrogenation[1–11], as well as 
reactions involving cleavage and formation of C–O[12,13], N–H 
[14–16], and other strong bonds[17]. Iridium complexes of pincer li
gands with terminal N-coordinating groups (e.g. NCN-type, such as 2,6- 
bis-oxazolinephenyl, i.e. Phebox) have also seen development in catal
ysis and strong-bond activation. This chemistry, however, has typically 
not been analogous to that of the aforementioned ligands with phos
phino- or carbene-coordinating “arms” (terminal groups) which largely 
operates via Ir(I) complexes. Instead, the chemistry of such NCN-iridium 
complexes has largely focused on Ir(III) carboxylate complexes that are 
believed to operate via concerted metalation-deprotonation (CMD) or 
other mechanisms involving high-oxidation complexes [18–25]. 

N-coordinating groups potentially offer significant advantages over 
P-coordinating and other “soft” groups, including ease of ligand 

synthesis, cost, and resistance to oxidation. From a fundamental 
perspective, it is of interest to understand the effect of such variations on 
catalytic or stoichiometric reactivity. However, whereas PXP-type pin
cer ligands (typically X  = C or N) largely incorporate sterically 
demanding phosphino groups (e.g. PtBu2 or PiPr2), the NXN pincer li
gands explored in this context have largely made use of groups such as 
oxazolines, which are much less bulky, and in which the limited steric 
bulk is positioned very differently than in the PCP complexes. These 
factors obfuscate any meaningful comparisons. 

In this context we wished to explore the chemistry of an NCN com
plex with a relatively bulky N–coordinating group, and particularly one 
in which the steric bulk is not positioned only near the coordination site 
trans to the coordinating aryl carbon as in the case of Phebox. Toward 
this end we have synthesized adducts, 1-L, of the iridium dibromide 
complex of the phenyldiimine ligand, 2,6–bis(1–((2,6-dimethylphenyl) 
imino)ethyl)phenyl (XyPhDI). The complexes isolated represent some
what unusual examples of late-metal pincer complexes bearing two 
electron-withdrawing low-field ancillary ligands (bromides). We have 
investigated the thermodynamics of the binding of the various ligands, 
L. DFT calculations are found to be in very good agreement with the 
experimental results. Encouraged by this agreement, we compare these 
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results with binding thermodynamics calculated for the corresponding 
hydrides, and for the Ir(I) complexes of XyPhDI and other pincer ligands. 
In an effort to synthesize the dihydride, which is of particular interest as 
a precursor of the corresponding Ir(I) fragment, we treated the dibro
mide precursor 1-MeCN with KOtBu under H2 atmosphere. This resulted 
in the formation of a bimetallic species, the structure of which was 
determined crystallographically. Remarkably the molecular structure 
revealed that one equivalent CH3CN had been hydrogenated to give 
ethylamine, and a second equivalent had undergone C–C bond cleavage 
to give an iridium center with a methyl and C-bound cyanide bridged to 
the second metal center. 

2. Results and discussion 

2.1. Synthesis of (XyPhDI)Ir complexes 

Experimental results. 1,1′-(2-bromo-1,3-phenylene)bis(N-(2,6- 
dimethylphenyl)ethan-1-imine)[26] (XyPhDI-Br) was metalated by the 
reaction with [Ir(COD)Cl]2 (COD = 1,5-cyclooctadiene) (Scheme 1) 
following the procedure reported by Oakley et al. for synthesis of aldi
mine analogues [27]. Crystals of 1–MeCN were grown by diffusion of 
pentane into a THF solution at room temperature, and the molecular 
structure was determined by scXRD (Fig. 1). 

Acetonitrile was displaced from 1-MeCN by reaction with 1.2 equiv 
of pyridine, PMe3, N–ethylamine, or P(OMe)3, or CO (1 atm), to give 1- 
py, 1-PMe3, 1-NH2Et, 1-P(OMe)3 and 1-CO respectively. Their molec
ular structures are shown in Fig. 2a-e. 

Bubbling ethylene through a toluene solution of 1-MeCN to dryness 
yielded a solid that was redissolved in benzene under argon atmosphere. 
Crystals were obtained by slow evaporation and the molecular structure 
of the product, 1-C2H4, was determined by scXRD (Fig. 2f). 

Addition of ethylene atmosphere to a toluene solution of 1-MeCN 
(without bubbling to dryness) led to a mixture of 1-MeCN and 1-C2H4. 
The equilibrium of Scheme 2 was established with Keq = 0.181 (ΔG◦ =

1.0 kcal/mol). 
Bubbling solutions of 1-C2H4 or 1-MeCN to dryness with N2 gas 

resulted in no substitution, nor did the analogous approach lead to 
substitution with H2 gas. It appears that these species bind much more 
weakly than C2H4, or acetonitrile, if at all. Likewise addition of 
1–hexene to a solution of 1-C2H4 did not result in any observable 
substitution. 

Addition of CO (1.9 atm) to a benzene‑d6 solution of 1-PMe3 did not 
result in any substitution or other reaction. Conversely, however, 
addition of 1.2 equiv PMe3 to a solution of 1-CO resulted in complete 
conversion to 1-PMe3. Given that CO typically binds very strongly to 

iridium complexes, including Ir(III) complexes, we found this result to 
be somewhat intriguing [28,29]. 

2.2. Thermodynamics of ligand binding 

2.2.1. Relative energies of ligand binding to (XyPhDI)Ir: Experimental and 
computational results 

Equilibrium binding constants were determined for various pairs of 
ligands. In all cases the equilibrium was reached from both directions, 
by starting with a given complex 1-L, adding the complementary ligand 
L’, waiting until equilibrium was apparently reached, and then adding 
an additional quantity of ligand L. Keq ([ML’eq][Leq]/[MLeq][L’eq] for 
each ligand pair L/L’) was determined for the following ligand pairs at 
25 ◦C: MeCN/C2H4, Keq = 0.181 (Scheme 2); MeCN/tBuNH2, Keq = 32.0; 
tBuNH2/iPrNH2, Keq = 48.2; iPrNH2/py, Keq = 3.71; py/EtNH2, Keq =

2.63; py/CO, Keq = 13.8; EtNH2/CO, Keq = 4.95; EtNH2/PPh2Me, Keq =

2.15. For PPh2Me/P(OMe)3, Keq = 29.2 was determined at 80 ◦C. The 
corresponding relative free energies of binding are given in Table 1. 

Electronic structure (DFT) calculations were then conducted, 
initially for those complexes that were studied experimentally. Geome
tries were optimized in the gas phase using the M06 functional[30] and 
split valence basis set 6-31G(d,p) for C, H, N, O and P[31–35]. For Ir, the 
Stuttgart-Dresden effective core potential was used for the 60 core 
electrons; the associated basis set was used for the 17 valence electrons 
(SDD) [36]. All calculations were done at standard conditions of tem
perature (298.15 K) and pressure (1 atm); full details are given in the SI. 
Ir-L binding energies were calculated and are given in Table 2 (absolute 

Scheme 1. Synthesis of 1-MeCN.  

Fig. 1. Crystallographically determined molecular structure of 1-MeCN.  
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BDFEs)(see SI for electronic energy, enthalpy and entropy of binding). 
The calculated relative free energies of binding are in excellent agree
ment with experimentally obtained values (Table 1). For those ligands 
for which relative binding free energies were obtained experimentally, 
the root-mean-square deviation of all calculated relative values 
compared with all relative values extrapolated from the experimental 
measurements is 0.8 kcal/mol[37]; we consider this to be very satis
factory agreement. 

With potential ligands H2, N2 and 1-hexene we were unable to 
observe any displacement of C2H4; this is in agreement with their 
calculated low energies of binding. For H2 and N2 in particular, the 

failure to observe substitution or loss of 1–C2H4, even after bubbling 
solutions of 1–C2H4 to dryness with the respective gas (and thereby 
providing a very strong entropic driving force for substitution) indicates 
that these molecules bind particularly weakly to 1 (if at all). The very 
unfavorable calculated free binding energies are consistent with this 
result. At the other extreme, none of the ligands used in this study were 
able to displace PMe3 to any observable extent, in accord with its 
calculated very high relative free binding energy (13.7 kcal/mol greater 
than ethylene, Table 1). 

Having established the ability of the computational method to reli
ably calculate relative energies of binding to 1, we used such calculation 
to study binding of the same ligands to related Ir fragments, specifically 
the corresponding dihydride (2), and the 14-electron Ir(I) fragment, 
(XyPhDI)Ir (3; no ancillary ligands) (Fig. 3). We calculate that for amines 
and phosphines, the variability of the energy of binding to these three 
fragments was fairly small, with bond dissociation free energies (BDFEs) 
for each ligand found to be within a range spanning 6 kcal/mol. In 
contrast, the BDFE of CO increased strongly over the series 1 < 2 < 3 
with the free energy of CO binding to Ir(I) fragment 3 (37.4 kcal/mol) 
being 19.3 kcal/mol greater (ΔG1 – ΔG3) than binding to Ir(III) fragment 
1 (18.1 kcal/mol). Presumably this large variability reflects the degree 
of increasing π-donating ability among the various fragments, and 
commensurately increased metal–ligand π-backbonding. 

Perhaps more surprising, in our view, was the magnitude of the 
variation calculated for binding of N2. N2 generally binds much more 
weakly than CO and the complexes calculated in this study suggest no 
exception to that rule (e.g. the calculated free energy of N2 binding to 1 

Fig. 2. Crystallographically determined molecular structures of (a) 1-py (b) 1-PMe3 (c) 1-NH2Et (d) 1–CO (e) 1–P(OMe)3 (f) 1–C2H4.  

Scheme 2. Equilibrium between 1-MeCN and 1-C2H4.  

Table 1 
Free energies of binding to 1 relative to 1-C2H4.  

Ligand Experimental Calculated Δ(Calc – Exptl) 

H2 >0  12.28 – 
N2 >0  7.57 – 
1-hexene >0  3.00 – 
C2H4 [0.0]  [0.0] [0.0] 
MeCN − 1.01  − 0.82 0.19 
t-BuNH2 − 3.05  − 4.01 − 0.96 
i-PrNH2 − 5.34  − 7.19 − 1.85 
pyridine − 6.11  − 6.75 − 0.64 
EtNH2 − 6.68  − 7.58 − 0.90 
PPh2Me − 7.13  − 8.69 − 1.56 
CO − 7.64  − 8.52 − 0.88 
P(OMe)3 − 9.49  − 12.11 − 2.62 
PMe3 ≪ − 9.5  − 13.72 –  
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is only 2.0 kcal/mol). But although N2 is also generally considered to be 
a much weaker π-acceptor than CO[39] the variation of N2 binding 
energies among the complexes is nearly as great as that found for CO; N2 
is calculated to bind 14.1 kcal/more strongly to fragment 3 than to 
fragment 1 (ΔG1 – ΔG3). NBO analysis of the CO and N2 adducts of 1, 2 
and 3 indicates, as expected, that CO is a better π-acceptor than N2 (see 
SI). However, as the electron-donating ability of the fragment increases 
(1 < 2 < 3), the electronic occupancy of the ligand π * orbitals is 
calculated to increase approximately as much (actually slightly more) for 
N2 than for CO [40]. This seems very consistent with the calculated 
increase in the Ir-N2 BDE being comparable to the increase calculated for 
the Ir-CO BDE for this series of complexes. 

Ethylene and 1-hexene show sensitivity to the nature of the fragment 
that is approximately equal to that of N2 (ΔG1 – ΔG3 = 13.0 kcal/mol 
and 13.5 kcal/mol respectively) while trimethyl phosphite is compa
rably sensitive (ΔG1 – ΔG3 = 11.4 kcal/mol). Acetonitrile (ΔG1 – ΔG3 =

7.6 kcal/mol) shows variability somewhere in between that of the amine 
ligands and those ligands that are apparently very sensitive to 
π-donating ability (e.g. CO, N2, olefins). 

H2 is calculated to add to the three (XyPhDI)Ir fragments investigated 
to give a dihydrogen complex with a relatively short H–H distance 
varying only from 0.81 Å (1-H2) to 0.85 Å (3-H2). Thermodynamically, 
the binding energy shows moderate sensitivity to the nature of the 
iridium fragment (ΔG1 – ΔG3 = 9.5 kcal/mol). 

Generally speaking, our calculations predict that π-acceptor ligands 
such as CO, but also N2 and alkenes, bind much more strongly to the 
(XyPhDI)Ir species with greater π-electron-donating ability ((XyPhDI) 
IrH2 and (XyPhDI)Ir), with a sensitivity to π-electron-donating ability 
that is much greater than calculated for ligands such as amines; this is 
consistent with the most fundamental organometallic precepts and 
classical organometallic bonding descriptions. In such descriptions, CO 
is presented as a strong π-acceptor while amines are pure sigma donors 
or are even considered to be π-donors as well as σ-donors. From that 
perspective, however, it is noteworthy that the binding energy of N- 
ethylamine for example is even slightly greater toward the more 
electron-rich iridium fragments; the model of simple donation seems 
inconsistent with these data. Moreover, the variation found for phos
phines is very nearly equal to that for amines; this seems inconsistent 
with the former being considered even modest π–acceptors [41,42]. A 
full analysis of the origin of these effects is beyond the scope of this 
paper, but we plan to address these questions in future work. 

2.2.2. Ligand binding to other (pincer)Ir(I) fragments 
We have also calculated, for comparison with (XyPhDI)Ir, the en

ergies of binding of monodentate ligands to the (pincer)Ir(I) fragments 
(Phebox)Ir, (iPrPCP)Ir, and (tBuPCP)Ir (Table 2 and Fig. 3). Of these, the 
Phebox pincer ligand is of course the most closely related of these to 
XyPhDI, having the same diaminoaryl NCN motif. van Koten and co- 

workers have shown that nickel complexes of these two pincer ligands 
have fairly similar redox properties as might be expected [26]. 

The sterically undemanding ligands H2, N2, and CO bind more 
strongly to the (Phebox)Ir fragment than to (XyPhDI)Ir, while acetoni
trile binds slightly less strongly. This could suggest that (Phebox)Ir is a 
more π-electron-donating fragment but a slightly poorer σ-acceptor. 
Larger differences between Ir-L BDFEs of (Phebox)IrL versus (XyPhDI)IrL 
are seen in the case of larger ligands, with the binding to (Phebox)Ir 
being weaker in all cases. The respective complexes are four-coordinate 
d8, therefore approximately square planar, and therefore this indicates 
specifically that the binding site trans to the Ir–bound aryl carbon is 
more crowded in (Phebox)Ir than in (XyPhDI)Ir. Inspection of the 
calculated structures of the XyPhDI complexes supports this conclusion. 
The N-xylyl groups are oriented so that this trans coordination site of the 
XyPhDI complexes is significantly more open than that of (Phebox)Ir. For 
example, in the respective PMe3 complexes there are numerous close 
contacts (dH-H < 2.4 Å) between the Phebox methyl groups and the PMe3 
ligand (Fig. 4a), but no close contacts between coordinated PMe3 and 
the XyPhDI ligand (Fig. 4b). 

Notably, although the trans site of the (XyPhDI)Ir fragment is much 
more open than that of (Phebox)Ir, the sites cis to the Ir-bound carbon 
are fairly crowded in the case of (XyPhDI)Ir while extremely open in the 
case of (Phebox)Ir. This is illustrated in Fig. 5 with space filling models 
of the respective (pincer)Ir(PMe3) complexes and the Buried Volume 
maps of the (pincer)Ir fragments of Fig. 6 [43,44]. Qualitatively at least, 
the distribution of steric bulk in the (XyPhDI)Ir fragment resembles that 
of the (PCP)Ir fragments more closely than that of (Phebox)Ir, in that the 
(PCP)Ir fragments are also more crowded at the coordination sites cis to 
the Ir-bound carbon than at the trans sites. The symmetry of the (tBuPCP) 
Ir fragment (Fig. 6c) makes the qualitative resemblance to (XyPhDI)Ir 
(Fig. 6a) more apparent than for the (iPrPCP)Ir (Fig. 6d) fragment 
because the two i-propyl groups on each P atom are generally oriented in 
opposite directions (one tertiary C–H bond toward the Ir center and the 
other pointed away). Quantitatively however the Buried Volume cal
culations indicate that the (XyPhDI)Ir fragment (%VBUR = 68.2 %) is 
much more similar to (iPrPCP)Ir (67.3 %) than to (tBuPCP)Ir (78.4 %). 

To assess the magnitude of the effect of steric crowding at the co
ordination sites cis to the Ir-bound carbon in the (XyPhDI)Ir unit, we 
calculated the thermodynamics of the (hypothetical) reaction of 
(ArPhDI)Ir(CO) with Br2 to give trans-(ArPhDI)IrBr2(CO), where Ar =

xylyl (the present system) and Ar = phenyl (i.e. a model PhDI ligand 
lacking the xylyl methyl groups) (Fig. 7a). The addition of Br2 is found to 
be 16 kcal/mol less favorable for the more crowded XyPhDI complex. 
This effect is presumably entirely due to steric crowding, since any 
electronic effect is expected to be very small and to favor oxidative 
addition to the XyPhDI complex. We also calculate that trans-addition of 
Br2 to (phebox)Ir(CO) has a free energy approximately equal to that for 
(ArPhDI)Ir(CO), 71.2 kcal/mol, consistent with these complexes both 

Table 2 
Calculated free energies (ΔG◦, kcal/mol) of binding of various ligands to trans-(XyPhDI)IrBr2 (1), trans-(XyPhDI)IrH2 (2)a, (XyPhDI)Ir (3), (Phebox)Ir (4), (iPrPCP)Ir (5) 
and (tBuPCP)Ir (6).  

L (XyPhDI)IrBr2 (XyPhDI)IrH2
a (XyPhDI)Ir (Phebox)Ir (iPrPCP)Ir (tBuPCP)Ir 

H2  2.7  − 5.5  − 6.7  − 9.2  − 13.8  − 9.5 
N2  − 2.0  − 10.3  − 16.1  − 17.2  − 20.1  − 19.2 
1-hexene  − 6.6  − 12.9  − 20.1  − 15.1  − 21.4  − 8.0 
C2H4  − 9.6  − 14.0  –22.6  − 16.4  –23.7  − 16.7 
MeCN  − 10.4  − 14.0  − 18.0  − 16.4  − 18.4  − 17.1 
tBuNH2  − 13.6  − 19.1  − 18.6  − 9.1  − 12.8  − 5.5 
pyridine  − 16.3  − 18.1  − 18.8  − 16.4  − 17.2  − 14.7 
iPrNH2  − 16.8  − 21.2  − 21.3  − 11.3  − 16.3  − 10.7 
EtNH2  − 17.1  − 20.3  − 20.4  − 13.2  − 15.8  − 13.9 
CO  − 18.1  –32.5  − 37.4  − 43.0  − 49.3  − 48.1 
PPh2Me  − 18.3  − 25.6  –23.9  − 20.2  –32.6  − 14.6 
P(OMe)3  − 21.7  –32.2  –33.1  − 31.5  − 45.9  − 35.0 
PMe3  –23.3  − 28.2  − 27.4  − 17.8  − 29.4  − 17.0 

(a) See reference [38]. 
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Fig. 3. Calculated free energies of binding of various ligands to fragments 1 – 6.  
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having negligible steric crowding at the cis coordination sites as would 
be expected (see Fig. 5). 

The crowding at the cis positions of trans-(XyPhDI)IrBr2(CO) is 
clearly manifest in its geometric structure (Fig. 7b). The coordination 
sphere is distorted and the xylyl ring is canted so that one bromide 
ligand sits between the xylyl methyl groups and the CO ligand, while the 
other bromide is positioned between the methyl groups and the PhDI 
backbone. The corresponding Cipso-Ir-Br angles are 94.4◦ and 82.3◦

respectively, as compared with the much more symmetrical coordina
tion sphere of the truncated trans-(PhPhDI)IrBr2(CO), which has Cipso-Ir- 
Br angles of 88.8◦ and 88.3◦. 

All ligands that we have studied are calculated to bind much more 
strongly to (iPrPCP)Ir than to (Phebox)Ir (Fig. 3). Compared with 
(XyPhDI)Ir, however, the amines bind less strongly to (iPrPCP)Ir while 
the phosphines bind more strongly to (iPrPCP)Ir. The small π-accepting 
ligands bind more strongly to (iPrPCP)Ir than to (XyPhDI)Ir, with CO in 
particular binding 12 kcal/more strongly, while P(OMe)3 also binds 
much more strongly to (iPrPCP)Ir (by 12.8 kcal/mol). P(OMe)3 is known 
to be a good π-acceptor, but presumably much less π-accepting than CO. 
The greater energy of binding of P(OMe)3 to (iPrPCP)Ir versus (XyPhDI)Ir 

may therefore be a combination of greater π-donating ability of the 
(iPrPCP)Ir fragment combined with a greater tendency to bind to the P- 
donating ligands generally, perhaps related to the “softness” of these 
ligands in contrast with the “hard” N-donors. 

2.2.3. Kinetics of exchange with ethylene: Thermodynamic implications 
At room temperature, the 1HNMR spectrum of 1-C2H4 in the pres

ence of free C2H4 indicates rapid exchange of free and bound ethylene. 
Decoalescence of the respective 1H NMR signals was observed at slightly 
reduced temperature, and the individual signals, attributable to free and 
bound C2H4 respectively, were sharp at 255 K. Dynamic NMR allowed 
determination of the rate constants for exchange, over the temperature 
range 255 K – 298 K (Table 3), by simulation using the dNMR feature in 
the program Topspin [45]. An Eyring plot (Fig. 8) of the rates thus ob
tained yielded activation parameters ΔH‡ = 25.0 kcal/mol and 
ΔS‡ = 36.0 ± 1.0 cal/mol•deg. The positive activation entropy indicates 
that the reaction proceeds via dissociation of ethylene, as would be 
expected of an 18-electron ethylene complex. The activation enthalpy is 
very close to the calculated thermodynamic value of the enthalpy of 
dissociation, ΔH◦ = 23.7 kcal/mol. Taken at face value, this would 

Fig. 4. DFT-calculated structures of (a) (Phebox)Ir(PMe3) and (b) (XyPhDI)Ir(PMe3) with closest contacts between PMe3 and pincer ligand indicated (Å) (illustrating 
much more severe crowding in the Phebox complex). 

Fig. 5. DFT-calculated structures (space-filling models at 100% van der Waals radii) of (Phebox)Ir(PMe3) (a and b) and (XyPhDI)Ir(PMe3) (c and d). Viewed down Ir- 
C axis (a and c) and axis perpendicular to the plane of the pincer backbone (b and d) to illustrate the greater crowding of (Phebox)Ir at the site trans to the Ir-bond C 
atom, in contrast with the greater steric hindrance of (XyPhDI)Ir(PMe3) at the sites cis to the Ir-bond C atom. PMe3 methyl groups in green and non-coordinating 
atoms of the pincer backbones in light grey. 
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imply, as might also be expected, that addition of ethylene to the 16- 
electron dissociation product, 1, has a near-zero enthalpic barrier of 
approximately ΔH‡ = 1.3 kcal/mol. These results offer experimental 
support for the DFT-calculated thermodynamic values for ethylene 
(albeit approximate). Accordingly, they also support the validity of the 
absolute values of the DFT-calculated binding free energies of those li
gands for which the relative (to ethylene) binding free energies are in 
agreement with experimental values. 

2.3. Cleavage of the C–C bond of acetonitrile 

In an attempt to reduce 1-MeCN to the corresponding dihydride or Ir 
(I) complex, the complex was treated with KOtBu (3 equiv) in benzene 
under H2 atmosphere and was left to stir at room temperature overnight 
under the hydrogen atmosphere. Benzene was evaporated and the so
lution was extracted with pentane to remove excess base. Crystals were 
grown under inert atmosphere at room temperature by diffusion of 
pentane into a concentrated benzene solution. Unexpectedly, scXRD 
revealed the product to be a binuclear bridging cyanide complex with 
the molecular structure as shown in Fig. 9. Although hydrides were not 
located unambiguously by crystallography, the 1H NMR spectrum of the 
crystals, after dissolving in benzene‑d6, indicated the presence of two 
equivalent hydride ligands (-26.5 ppm) in accord with formulation as 
[(XyPhDI)Ir(Me)(H2NEt)](μ –CN)[(XyPhDI)IrH2] (7). 

The net reaction to give 7 thus involves hydrogenation of one 
molecule of CH3CN[46,47] (per molecule of binuclear product) and 
cleavage of the C–C bond of a second molecule of CH3CN [48]. C–C 
bond cleavage generally, and cleavage of alkyl cyanides in particular, is 

Fig. 6. Topographical ligand steric maps and percent Buried Volume (%VBUR) [43,44] of (a) (XyPhDI)Ir (68.2%) (b) (Phebox)Ir (64.0%) (c) (tBuPCP)Ir (78.4%) (d) 
(iPrPCP)Ir (67.3%). 

Fig. 7. (a) Oxidative addition of Br2 to (ArPhDI)Ir(CO) to yield trans-(ArPhDI)IrBr2(CO) and calculated free energies, indicating the magnitude of the thermodynamic 
effect of crowding at the positions cis to the Ir-bound carbon of the ArDI backbones. (b) Spacefilling model (at 100 % van der Waals radii)) of trans-(XyPhDI)IrBr2(CO) 
(benzylic groups in green) highlighting the steric crowding and resulting distortion from idealized symmetry (C2v). 

Table 3 
Rates and free energy for exchange between free and 1-bound C2H4 obtained by 
dynamic NMR and simulations.  

T (K) k (s− 1) ΔG‡ (kcal/mol) 

298 190  14.3 
285 29.6  14.7 
275 5.66  15.1 
265 0.877  15.5 
255 0.138  15.9  
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a reaction of much interest [49–56]. The examples that are perhaps most 
closely related to the present work have been reported by Garcia and 
Jones [57–62]. 

We investigated the reaction of the (XyPhDI)Ir fragment with CH3CN 
computationally and located a transition state for direct oxidative 
addition of the acetonitrile C–C bond. However the barrier of this re
action was calculated to be too high, at 33.1 kcal/mol, to account for the 
formation of 7 at room temperature. Lewis acids, however, have been 
reported to accelerate C-CN bond cleavage[58,63] or the reverse, C-CN 
reductive elimination[64,65]. (Notably, Garcia and Jones have reported 
an example where Lewis acid binding actually inhibited C–C cleavage 
[57]). Therefore, given that the nitrile group of 7 is bridging, we 
considered that the second (XyPhDI)Ir unit played a role in promoting 
the C–C cleavage reaction. In accord with this hypothesis, the free 
energy barrier to C–C cleavage was calculated to be only 10.4 kcal/mol 
when the acetonitrile N atom was coordinated to a (MePhDI)IrH2 frag
ment (the N-coordinated (PhDI)Ir moiety was truncated in the transition 
state, with xylyl groups replaced by methyl groups for computational 
simplicity; 3*–H2; Fig. 10). Although the free energy of this binding is 
positive, ΔG◦ = 7.7 kcal/mol, due to a large unfavorable entropy term 
(TΔS = -16.7 kcal/mol at 298 K), the overall calculated barrier of C–C 
cleavage, ΔG‡ = 18.1 kcal/mol, is still dramatically lowered by assis
tance from the second (PhDI)Ir center. The initial C–C cleavage product 
and the final, ethylamine-coordinated, product were calculated to be 

significantly exergonic relative to 3-MeCN, 3-H2, and EtNH2. 
The calculations indicate, remarkably, that in the transition states for 

C-CN cleavage, both metal assisted and non-assisted, the Ir–CN bond is 
significantly shorter in the transition states (1.94 Å and 1.96 Å for Ir- 
bridged and non-bridged respectively) than in the products in which 
the Ir-CN bond is fully formed (2.10 Å and 2.07 Å) (Fig. 11). Note, 
however, that as would generally be expected for an oxidative addition 
reaction, the Ir-CH3 distance is significantly shorter in the products than 
in the transition states. Acetonitrile C–C oxidative addition by (dippe) 
Ni(0)[59] and Cp*(PMe3)Rh(I)[60] (not assisted by a second metal) has 
been investigated computationally in detail by Jones. While our results 
are generally in agreement with those, in the Rh(I) case the M− CN bond 
in the TS (2.00 Å) was slightly longer[60] than in the C–C cleavage 
product (1.97 Å). In the case of Ni(0), however, as in the present systems 
the M− C bond was shorter in the TS (1.82 Å) than in the product (1.88 
Å) although the difference was not as pronounced. 

Alkyl cyanide elimination/C–C bond formation has been compared 
with alkyl migration to CO (i.e. CO insertion into M− alkyl bonds 
[65–67]. This perspective might help to rationalize this unusual example 
of a TS for C–C cleavage with a M− C distance shorter than that of the 
product with the fully formed M− C bond. For example, we have 
computationally studied alkyl migration to CO of Mn(CO)5(CH2Ar), and 
found that the M− CO bond in the migration transition state is shorter 
(1.82 Å) than in the carbonyl reactant (1.86 Å) or in the acyl product of 
migration (1.88 Å) [68]. Note also that in the transition states calculated 
in this work, as well as in the systems studied by Jones [59,60], there is a 
significant agostic interaction with the acetonitrile methyl C–H bond. 
In our studies of alkyl migration to CO (or alkyl migration from acyl 
ligand to metal) it was shown that formation of an analogous agostic 
interaction played a significant role in the energy of the transition state 
[68]; these shared feature would seem to further support the proposed 
relationship between alkyl migration and alkyl-CN cleavage/ 
elimination. 

3. Conclusions 

Iridium dibromide complexes of the phenyldiimine ligand 2,6-bis(1- 
((2,6-dimethylphenyl)imino)ethyl)phenyl have been synthesized, and 
the relative Ir-L BDFEs have been experimentally determined for a wide 
range of corresponding adducts of ligands L. An estimate of the absolute 
enthalpy of Ir-L binding has been obtained from dynamic NMR mea
surements. The results of DFT calculations are in very good agreement 
with the relative and absolute experimental values. 

A computational study has been conducted, first comparing (XyPhDI) 
Br2Ir-L BDFEs with Ir-L BDFEs of adducts trans-(XyPhDI)H2IrL and 

Fig. 8. Eyring plot for exchange between free and 1-bound C2H4.  

Fig. 9. Molecular structure of 7. H atoms except hydrides and those of the methyl and ethylamine ligands omitted for clarity. Carbon atoms of methyl and ethylamine 
ligands and bridging cyanide shown in green for emphasis. 
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(XyPhDI)IrL. The Ir-L BDFEs are all greater for the dihydride than for the 
dibromide, with the difference being much more pronounced for 
π-accepting ligands. BDFEs of π–accepting ligands are even markedly 
greater still for the Ir(I) complexes (XyPhDI)IrL versus trans–(XyPhDI) 
H2IrL, while there is little difference for ligands that are less π-accepting. 

We also compared (XyPhDI)Ir-L BDFEs with BDFEs of (pincer)Ir-L 
complexes for pincers Phebox, iPrPCP, and tBuPCP. The (Phebox)Ir 
fragment, compared with (XyPhDI)Ir, forms slightly stronger bonds with 
the smallest π –accepting ligands, but (Phebox)Ir-L bonds are signifi
cantly weaker with bulky ligands, particularly those that are not 
significantly π-accepting. Although Buried Volume calculations indicate 

that the (Phebox)Ir fragment has overall greater “unburied” volume 
than (XyPhDI)Ir, the coordination site occupied by L in the four- 
coordinate d8 (pincer)IrL complexes (i.e. the site trans to Ir-bound aryl 
C) is significantly more crowded in (Phebox)Ir. The motif of (XyPhDI)Ir, 
with greater steric crowding at the cis sites and a more open site trans to 
the aryl C is also found for both (iPrPCP)Ir and (tBuPCP)Ir pincer ligands. 
The (RPCP)Ir fragments appear to be more π-donating than the Phebox 
or PhDI fragments, as illustrated by stronger binding to CO or N2, but 
with respect to sterically demanding ligands, the BDFEs of (XyPhDI)IrL 
are somewhere between those of the very crowded (tBuPCP)Ir and the 
much less crowded (iPrPCP)Ir. 

Fig. 10. Calculated energy profile (free energies in kcal/mol) for oxidative addition of the C–C bond of acetonitrile by 1, assisted by (truncated) 1*–H2 and un
assisted. Untruncated initial and final products also shown. (Selected distances in Å). 

Fig. 11. Calculated transition state (a) and product (b) of oxidative addition of the C–C bond of acetonitrile by 3, assisted by 3*–H2. Transition state (c) and product 
(d) of “unassisted” C-CN addition by 3. N-mesityl groups of 3, and most H atoms, omitted for clarity. 
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An attempt to convert (XyPhDI)IrBr2(MeCN) to a hydride or possibly 
an Ir(I) complex yielded an unexpected dinuclear cyano-bridged com
plex with N-ethylamine (presumably the product of hydrogenation of 
one mol acetonitrile) coordinated to one metal center, and a methyl 
ligand on the cyanide carbon-bound iridium center, indicating the 
occurrence of C-CN bond cleavage at the latter Ir center. DFT calcula
tions indicate that the C-CN bond cleavage occurs at one Ir center with 
strong assistance by coordination of the CN nitrogen to the other center. 
At the metal center effecting the C-CN addition the transition state is 
calculated to strongly resemble a transition state for alkyl migration to 
CO or the microscopic reverse, C–C bond cleavage of an acyl ligand. 
Similarities include a M− CX (X=N or O) bond distance in the TS that is 
shorter than that in the M− CX C–C cleavage product, and a strong 
agostic interaction with a C–H bond of the alkyl group being cleaved 
from CX. 

The inference of C–C cleavage by the (XyPhDI)Ir(I) fragment may 
suggest promising activity, related but distinct from the chemistry of 
(RPCP)Ir(I) fragments, if such a species can be generated in the absence 
of acetonitrile. 
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