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Abstract—Reliably predicting aggregate interference is critical 
for deploying next-generation Dynamic Spectrum Access (DSA) 
systems. Next-generation DSA systems must operate in real-time. 
In current large-scale networks, aggregate interference prediction 
takes hours to complete. This work proposes regression analysis 
as a method for predicting interference. The model proposed in 
this work performs comparably to other machine learning 
approaches. Regression techniques can be fit quickly, unlike many 
machine learning methods which require long training. This rapid 
model training enables applications in dynamic spectrum 
environments. Our model achieved a mean absolute percentage 
error (MAPE) of 5.1% interference prediction with an 80/20 
training validation split based on simulated data with added 
thermal noise density to approximate the noise of the transmission 
channel. 
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I. INTRODUCTION 
Fifth-generation (5G) mobile broadband has enabled 

improvements in data rates and latencies over previous 
generations at the cost of an increasingly crowded spectrum. 
High bandwidth demands required to support these 
developments have presented challenges to wireless services in 
adjacent frequency bands. Where separation between bands 
previously provided adequate protection from out-of-band 
(OOB) emissions, recent 5G allocations have resulted in 
operating frequencies close to and interleaved among existing 
services sensitive to interference. Despite 5G standards and 
policy measures designed to mitigate harmful interference 
scenarios, concerns remain in certain circumstances, evident by 
disagreements between compatibility studies on necessary 
protection levels for passive radiometers operating in the 23.6 – 
24.0 GHz Earth Exploration-Satellite Service (EESS) [1]. This 
specific instance of concern arises from the auction of 24 GHz 
spectrum to 5G wireless services, believed to present a notable 
risk to the extremely sensitive equipment operating in the EESS 
band. Designed to sense slight atmospheric microwave 
emissions, these radiometers are unable to adjust frequency or 
tolerance. This enhanced risk of harmful interference from OOB  
5G emissions is thought to potentially lead to delayed and less 
accurate weather forecasts [2]. 

To address these challenges, new paradigms in spectrum 
policy have been developed, a notable example being Dynamic 

Spectrum Access (DSA). These DSA systems can coordinate 
frequency assignment independently of prior allocations, 
utilizing spectrum opportunistically to potentially reduce 
harmful interference, especially in services like the EESS. 
However, effective prediction and prevention necessitates the 
use of transmitter and receiver operating characteristics (e.g., 
location, power, radiation pattern, and gain). Acquiring this 
information with sufficiently low error and selecting an 
appropriate propagation model for specific environments is 
challenging. In complex propagation environments, especially 
environments where passive scientific services operate sensitive 
receivers, minor errors in propagation modeling, coupled with 
noise and multipath effects, can make deterministic interference 
calculations difficult. The complexity is further amplified when 
considering multiple sources and simultaneous transmissions. 

II.  ALTERNATIVE APPROCHES 
As an alternative to commonly used statistical and 

deterministic approaches, this work considers linear regression 
(LR) and generalized additive models (GAM), a superset of 
linear regression analysis, as methods for predicting aggregate 
interference. More traditional, widely used statistical 
approaches are based on recommendations by the International 
Telecommunication Union (ITU) [3]. Additional statistical 
approaches exist that deviate from the ITU’s recommendations. 
These models are less general and consider specific use cases, 
but some can achieve higher-accuracy predictions more quickly. 
Kusaladharma and Vijayandran simplify existing statistical 
methods to predict interference moments generating function by 
considering only finite area networks [4, 5]. Peng simplifies 
aggregate interference prediction for deep space earth stations 
from high-density fixed services (HDFS) emitters by using 
geometrically partitioned regions to model the correlation of 
interferences [6]. Bhattarai discloses that the log-normal 
distribution is an accurate estimate of aggregate interference for 
a fixed number of transmitters distributed in a network 
equidistant from one another [7,8].  

Another statistical approach is taken by Ghasemi and Sousa, 
who developed a statistical model describing aggregate 
interference by considering the contributions of transmission 
power, path loss, channel fading, and receiver sensitivity [9]. 

Machine learning (ML) techniques show promise in 
aggregate interference detection. Saija examines numerous ML 
approaches to determine channel state information in 5G 



systems by predicting the signal-to-noise ratio and his results 
outperform traditional approaches [10]. The successful 
application of ML here shows promise for the application of ML 
in similar problems.  

Padilla developed a non-linear autoregressive neural 
network (NARNN) that predicts interference and has been 
shown to enable more efficient resource allocation [11]. Zhao 
demonstrates a neural network to predict aggregate interference 
trained on location, transmit power, and path loss [12]. Hussey 
presents a method to detect aggregate interference using fuzzy 
inference systems providing intuition and fast operation in field 
deployment [13]. 

These developments are significant in the journey to 
providing viable methods to predict aggregate interference, but 
the authors are not aware of any of the above techniques having 
been deployed at scale in real time. Real-time operation is 
needed to enable the next generation of reconfigurable 
spectrum-sharing systems. Laborious coexistence calculations 
that limit dynamic allocation speed are clearly a hindrance for 
scenarios and services with real-time needs, such as 
5G/radiometer coexistence at 24 GHz. Another specific example 
of this need can be found in the Citizens Broadband Radio 
Service (CBRS) Spectrum Access System (SAS) aggregate 
interference prediction methodology, where calculations often 
delay assignments up to 24 hours [14]. 

III.  DATA GENERATION  
 A synthetic dataset comprised of transmit power spectral 
densities (PSDs), distances between devices, and subsequent 
PSDs after propagation losses were generated by simulating a 
simple wireless network on a spectral brokering platform based 
on the work in [15]. In these simulations, Spectrum 
Consumption Models (SCMs) were used to articulate various 
aspects of spectrum use. For our purposes, SCMs are data 
structures in which transmitter models capture the origin, 
frequency, strength, and direction of emissions, while receiver 
models define interference thresholds and frequencies of 
reception [16]. The dataset was captured by varying the location 
of a radiometer model across the network’s 1 km² area while a 
set of three 5G base stations remained fixed in place. The center 
operating frequency of the radiometer was chosen to be 
23.84 GHz with a 200 MHz channel width. For simplicity, 
frequencies of the out-of-band transmissions from the adjacent 
5G-NR n258 band were modeled using the same center and 
bandwidth.  

 To determine the extent of interference at each location, each 
emission is scaled by free space path loss in the appropriate 
direction. The final dataset consists of the out-of-band 
transmission PSDs (ranging from -70 to -40 dBW/200 MHz), 
distances between base stations and radiometer (ranging 
approximately from 50 to 1650 meters), and the interfering 
powers. Fig. 1 illustrates an instance in which emissions of 
similar powers experiencing path losses are incident upon the 
radiometer location. This scenario was simulated approximately 
20000 times with varying radiometer locations, each location 
providing three data points to be used in the analysis.  

 
Fig. 1. Device placement in a network area of approximately 1 km2 

IV. REGRESSION ANALYSIS 
Although ML approaches such as neural networks can prove 

to be extremely accurate without requiring many statistical 
assumptions, they are computationally expensive. Machine 
learning generally exploits correlations within data to develop 
accurate predictions, but can be hard to interpret. This is why 
many ML models are referred to as ‘black box models.’ 
Regression models, although rudimentary, could prove useful as 
they are interpretable and computationally inexpensive. If 
acceptable results are achieved, the simplicity and low 
computational cost of regression models could make them an 
ideal tool for real-time prediction of dynamic aggregate 
interference. The analysis presented here was performed on 
simulated device pairs. The benefits of these techniques support 
large-scale real-time aggregate interference prediction. 

Before using a regression model to predict output PSD, it 
must be acknowledged that a model is only as reliable as its 
training data and assumptions. Because the training data is 
generated from simulation, the data used to fit the model is 
deterministic, as opposed to stochastic. To better model real-
world propagation, noise, or jitter, has been added to the training 
data.  Jitter is a viable tool to improve a model’s generality when 
small uniform noise perturbates a system [17]. Thermal noise 
density has been chosen as an estimate of noise because our 
model considers PSD. Thermal noise power is given as: 

𝑃! = 𝑘𝑇𝐵																																								(1) 
Where k is the Boltzmann’s constant, T is the temperature, 

and B is the bandwidth. Thermal noise density is obtained by 
disregarding bandwidth:  

𝐷! = 𝑘𝑇																																									(2) 
The thermal noise density at room temperature is 

approximately -174 dBm/Hz [18]. In units of dBW/200 MHz 
gives a thermal noise density of -120.99 dBW/200 MHz. By 
assuming that this value is the variance, random Gaussian noise 
is added to the received PSD.  The added noise is distributed 
normally with a mean of μ = 0 dBW/200MHz and a standard 
deviation of approximately σ = 10.99 dBW/200MHz. A 
Gaussian probability model was selected because of the 
possibility of both constructive and destructive interference, 
with the jitter being centered at zero. It is expected that fitting a 
model on a dataset with simulated noise increases the robustness 



of the model and raises the likelihood of success in extrapolating 
the model to real-world applications in future studies. 

Fig. 2.  (Top) Synthetic data with input PSD ranging from –41 to –70, before any 
transformation, (Bottom) synthetic data with added jitter. Plots generated with 
[19].  
 In the model, two predictors are proposed for the PSD 
received by the radiometer: the transmitted PSD 
(dBW/200MHz) and the distance between the radiometer to the 
transmitter (meters). A regression model is sought that can 
predict the PSD received by the radiometer at a given distance 
and transmitted power spectral density. Linear regression 
models are beneficial for identifying the strength and magnitude 
of the associations between predictors and outcomes.  

 Traditionally, multiple linear regression models perform 
best when there is a strictly linear relationship, with no 
indication of higher-order terms necessary to model the 
phenomena. In our case, we observe a nonlinear relationship 
between distance and received PSD (Fig. 2(a)) that is not 
sufficiently captured by a higher-order polynomial. Note how 
Fig. 2(a) resembles a family of curves, resulting from the unique 
transmitted PSD levels.  Hence, it is attempted to transform the 
data to resemble a linear model through an arbitrary mapping of 
the distance feature to generate a linear relationship. This 
transformation is applied and visualized in Fig. 3. This linear 
relationship can then be applied to a regression model. This type 
of method is broadly known as a generalized additive model 
(GAM). A GAM essentially contains model features that are 

functions of input variables, while still enabling it to be fit with 
coefficients like a multiple regression model.  

 

Fig. 3. (Top) Synthetic data for the regression model with input PSD ranging 
from –41 to –70, without the added Gaussian noise. (Bottom) Synthetic data 
under transformation with added jitter. Plots generated using [19].  
The model’s proposed distance feature mapping is  

𝑓(𝑥) = 𝑥"#.##%, 𝑓:	〈ℝ → ℝ〉,																										(3)   
it was chosen after iteratively examining a series of effective 
transformations for creating a linear relationship. One of the 
strengths of a GAM is that it allows the flexibility to fit a non-
linear relationship (𝑓) to the distance variable. Fig. 2(a) shows 
that the relationship between distance and received PSD is 
nonlinear, and Fig. 3(a) shows that the relationship becomes 
linear through the proposed transformation. This transformation 
was chosen because after exploring many possible functions it 
best transforms the data to resemble a linear relationship. Fig. 
3(b) also shows the simulated noise imposed on the data.   

 To discern the relationship between true distance and 
received PSD, one can take the value in the domain of 𝑓 and 
apply the inverse mapping 𝑓"% . To discern the relationship 
between the transmitted PSD and the received PSD, no inverse 
mapping is required, because no transformation is included in 
the model for that predictor.  This predictor is a discrete variable 
with a linear relationship. Our proposed GAM is as follows: 

𝑅6&'( =	𝛽#8+𝛽%8𝑇&'( + 𝛽)8𝑓(𝐷)																						(4) 
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 Where TPSD is the transmitted PSD, D is the distance, and 
RPSD is the received PSD. Each coefficient (𝛽*; ) serves as an 
estimated weighted ‘slope’ for the respective term [20]. The 
coefficients for the models with and without added noise are 
given in Table I and Table II. Table III gives the error metrics 
for the models. The model was fit using an 80/20 training testing 
data validation split, where 80% of the entire data set was used 
for training, while the other 20% was reserved for model 
evaluation. This precaution was taken to prevent overfitting. 

Metrics chosen to gauge the model’s predictive power are 
MAPE (mean absolute percentage error), and RMSE (root mean 
square error), where RMSE is in units of the outcome of interest. 
These metrics gauge the relative absolute error and the 
magnitude of the error in the units of the outcome variable 
respectively.  𝑅)  was included to show the percentage of the 
variability in the testing data that was explained by the model. It 
was used to determine whether or not a model was overfit. 𝑅) is 
most useful when there is a linear relationship between the 
outcome and predictors, which was not originally the case, but 
after transforming the distance variable Fig. 3(a), there exists a 
linear relationship between the distance and the received power 
spectral density. 

TABLE I: GAM (NO NOISE) 
  Coefficient Estimate Std. Error P-Value 
  (Intercept) -8800 0.015 0 
  Input PSD 1.000 1.05𝑒"+ 0 
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒"#.##% 8740 0.015 0 

𝑅):  1.00 | MAPE: 0.0008% [21] 

TABLE II: GAM (NOISE) 
  Coefficient Estimate Std. Error P-Value 
  (Intercept) - 8883 80.19 0 
  Input PSD 0.995 0.005 0 
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒"#.##% 8824 80.73 0 

𝑅):  0.401 | MAPE: 5.11% [21] 

TABLE III:  COMPARING METRIC BETWEEN NOISE/NO NOISE 
MODEL  

  Metric  No Noise  Noise 
  MAPE 0.001% 5.11% 
  RMSE 0.002 11.0 
  𝑅) 1.00 0.401 

 Table II shows the model coefficients when noise is added 
to the GAM.  With added jitter, more realistic model metrics 
were obtained, indicating the model was not overfit to synthetic 
data. Table III provides a comparison of the no-noise model and 
the model including noise.  The no-noise model results in model 
coefficient estimates with a very small standard error, an 
extremely small mean absolute percentage error (MAPE), and 
also a perfect 𝑅) .	 Thus, these metrics indicate potential 
overfitting. The noise-added model demonstrates model 
coefficients with higher standard error, much greater (yet 
excellent) MAPE, and a 𝑅)  of around 0.4. The coefficient 
estimates across models are similar, because the probability 
model underlying the noise is Gaussian, which is symmetric. 

Regardless, the GAM trained on noisy data still performs 
comparably with ML models. 

 Although most classical statistical methods will be 
outperformed by ML models, GAM’s are easier to interpret and 
also are far less computationally expensive, while achieving 
high performance and accuracy. 10-fold cross-validation was 
also used to avoid overfitting. For this model, this required under 
two seconds to fit fifty models on subsets of the training data 
[21]. In the analysis, 10-fold cross-validation was performed 
five times. Each trial featured an 80-20 training-testing split, and 
a model was fit and tested on the respective testing subset. Upon 
correctly specifying the model, output PSD can be predicted, 
given values of input PSD and distance from a radiometer. 

 To visualize the model performance, Fig. 4 features a subset 
of the data where the input PSD is -55 dBW/200MHz, and 
shows a point estimate for the model, as well as a 95% prediction 
interval. A prediction interval is different from a confidence 
interval:  this is a 95% interval that is expected to contain the 
next future unobserved observation (i.e. the 𝑛 + 1,- 
observation).   

 
Fig. 4.  Holding fixed the input PSD at -55 dBW/200MHz relationship between 
the transformed distance and the outcome, received PSD (dots) with added noise. 
The orange line is the predicted values of the model fitted on the noisy training 
data, and the dashed lines denotes the 95% prediction interval. Plots generated 
using [19].  
 Because the model features two input variables and one 
output variable, its prediction can be visualized in three 
dimensions. Fig. 5(a) and Fig. 5(b) show the control surfaces and 
the model prediction behavior. Fig. 5(a) shows the control 
surface before transforming the distance feature to obtain a 
linear relationship. The control surface matches the intuition of 
the system because either a decrease in distance or an increase 
in transmitted PSD will increase the interfering PSD at the 
receiver.  Fig. 5(b) shows the control surface in the transformed 
space. As expected, this surface is linear. 



 
Fig. 5.  (Top) Control surface for the higher dimensional space of the model with 
the untransformed distance feature, (Bottom) control surface for the higher 
dimensional space of the model with the transformed distance feature 

 Using the developed model, the PSD received by the 
radiometer can be predicted, given the transmitted PSD and the 
distance of the radiometer from the transmitter. Fig. 4 shows the 
model predictions across the distance feature holding fixed the 
transmitted PSD. The model has been trained over a distance 
range of 50 to 1600 meters and over a transmission PSD range 
of -70 to -41 dBW/200MHz and their corresponding interfering 
PSD. Our model should not be used to predict anything outside 
of that range. For example, given a distance of 500 meters and a 
transmission PSD of -60 dBW/200 MHz the model predicts an 
interfering PSD equal to -173.40 dBW/200 MHz.  

 While the study was conducted with synthetic data to which 
jitter has been applied, this study seems to indicate that this 
method will also be successful with noisy measured data.  The 
next steps include testing this model on measurement data 
collected from actual transmitters, and validating and refining 
this model based on these results. 

V. COMPARISON WITH ALTERNATIVE METHODS 
    The proposed method fares well compared to machine 
learning approaches. Table IV provides a comparison of 
relevant models used. For this study, all of the compared 
methods have been trained using simulated datasets. 
 
 
 
 
 

TABLE IV: MODEL COMPARISON 
  Model MAPE 

GAM (no noise) 0.001% 
GAM (noise added) 5.1% 
LR (no noise) 0.7% 
LR (noise added) 5.2% 
Fuzzy Inference 
System (no noise) 

0.7%  
[13] 

Nonlinear 
Autoregressive Neural 
Network (noise added) 

7.8% 
[11]  

 
The GAM more accurately predicts interference with and 

without added noise, compared to other machine learning 
techniques trained on simulated data. In addition, this model 
can be fit, or trained, in milliseconds, whereas machine learning 
methods such as the Fuzzy Inference System can require hours 
to train [13]. As such, this linear regression method is well-
suited for dynamic network environments that require frequent 
retuning. The same simulated data was used to train the fuzzy 
inference system, LR model, and the GAM. However, the 
simulated data used to train the Nonlinear Autoregressive 
Neural Network differs [11].  The LR results shown here are 
preliminary results found in this study. Our methods for 
obtaining the coefficient (𝛽*; ) for LR are identical, but the 
transformation to linearize the relationship between our 
features was not applied.   

VI. CONCLUSIONS 
      The applicability of LR and GAM modeling techniques to 
the prediction of interference has been thoroughly investigated. 
The GAM model performs comparably to previous machine-
learning approaches. The proposed method enables rapid model 
training which can enable more real-time aggregate 
interference assessments in dynamic spectrum environments. 
This work achieved a MAPE of 5.11% interference prediction 
with simulated data with added thermal noise density to 
approximate the noise of the transmission channel. Future work 
should apply these modeling methods to measured data. 
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