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Abstract—Reliably predicting aggregate interference is critical
for deploying next-generation Dynamic Spectrum Access (DSA)
systems. Next-generation DSA systems must operate in real-time.
In current large-scale networks, aggregate interference prediction
takes hours to complete. This work proposes regression analysis
as a method for predicting interference. The model proposed in
this work performs comparably to other machine learning
approaches. Regression techniques can be fit quickly, unlike many
machine learning methods which require long training. This rapid
model training enables applications in dynamic spectrum
environments. Our model achieved a mean absolute percentage
error (MAPE) of 5.1% interference prediction with an 80/20
training validation split based on simulated data with added
thermal noise density to approximate the noise of the transmission
channel.
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I. INTRODUCTION

Fifth-generation (5G) mobile broadband has enabled
improvements in data rates and latencies over previous
generations at the cost of an increasingly crowded spectrum.
High bandwidth demands required to support these
developments have presented challenges to wireless services in
adjacent frequency bands. Where separation between bands
previously provided adequate protection from out-of-band
(OOB) emissions, recent 5G allocations have resulted in
operating frequencies close to and interleaved among existing
services sensitive to interference. Despite 5G standards and
policy measures designed to mitigate harmful interference
scenarios, concerns remain in certain circumstances, evident by
disagreements between compatibility studies on necessary
protection levels for passive radiometers operating in the 23.6 —
24.0 GHz Earth Exploration-Satellite Service (EESS) [1]. This
specific instance of concern arises from the auction of 24 GHz
spectrum to 5G wireless services, believed to present a notable
risk to the extremely sensitive equipment operating in the EESS
band. Designed to sense slight atmospheric microwave
emissions, these radiometers are unable to adjust frequency or
tolerance. This enhanced risk of harmful interference from OOB
5G emissions is thought to potentially lead to delayed and less
accurate weather forecasts [2].

To address these challenges, new paradigms in spectrum
policy have been developed, a notable example being Dynamic

Spectrum Access (DSA). These DSA systems can coordinate
frequency assignment independently of prior allocations,
utilizing spectrum opportunistically to potentially reduce
harmful interference, especially in services like the EESS.
However, effective prediction and prevention necessitates the
use of transmitter and receiver operating characteristics (e.g.,
location, power, radiation pattern, and gain). Acquiring this
information with sufficiently low error and selecting an
appropriate propagation model for specific environments is
challenging. In complex propagation environments, especially
environments where passive scientific services operate sensitive
receivers, minor errors in propagation modeling, coupled with
noise and multipath effects, can make deterministic interference
calculations difficult. The complexity is further amplified when
considering multiple sources and simultaneous transmissions.

II. ALTERNATIVE APPROCHES

As an alternative to commonly used statistical and
deterministic approaches, this work considers linear regression
(LR) and generalized additive models (GAM), a superset of
linear regression analysis, as methods for predicting aggregate
interference. More traditional, widely used statistical
approaches are based on recommendations by the International
Telecommunication Union (ITU) [3]. Additional statistical
approaches exist that deviate from the ITU’s recommendations.
These models are less general and consider specific use cases,
but some can achieve higher-accuracy predictions more quickly.
Kusaladharma and Vijayandran simplify existing statistical
methods to predict interference moments generating function by
considering only finite area networks [4, 5]. Peng simplifies
aggregate interference prediction for deep space earth stations
from high-density fixed services (HDFS) emitters by using
geometrically partitioned regions to model the correlation of
interferences [6]. Bhattarai discloses that the log-normal
distribution is an accurate estimate of aggregate interference for
a fixed number of transmitters distributed in a network
equidistant from one another [7,8].

Another statistical approach is taken by Ghasemi and Sousa,
who developed a statistical model describing aggregate
interference by considering the contributions of transmission
power, path loss, channel fading, and receiver sensitivity [9].

Machine learning (ML) techniques show promise in
aggregate interference detection. Saija examines numerous ML
approaches to determine channel state information in 5G
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systems by predicting the signal-to-noise ratio and his results
outperform traditional approaches [10]. The successful
application of ML here shows promise for the application of ML
in similar problems.

Padilla developed a non-linear autoregressive neural
network (NARNN) that predicts interference and has been
shown to enable more efficient resource allocation [11]. Zhao
demonstrates a neural network to predict aggregate interference
trained on location, transmit power, and path loss [12]. Hussey
presents a method to detect aggregate interference using fuzzy
inference systems providing intuition and fast operation in field
deployment [13].

These developments are significant in the journey to
providing viable methods to predict aggregate interference, but
the authors are not aware of any of the above techniques having
been deployed at scale in real time. Real-time operation is
needed to enable the next generation of reconfigurable
spectrum-sharing systems. Laborious coexistence calculations
that limit dynamic allocation speed are clearly a hindrance for
scenarios and services with real-time needs, such as
5G/radiometer coexistence at 24 GHz. Another specific example
of this need can be found in the Citizens Broadband Radio
Service (CBRS) Spectrum Access System (SAS) aggregate
interference prediction methodology, where calculations often
delay assignments up to 24 hours [14].

III.  DATA GENERATION

A synthetic dataset comprised of transmit power spectral
densities (PSDs), distances between devices, and subsequent
PSDs after propagation losses were generated by simulating a
simple wireless network on a spectral brokering platform based
on the work in [15]. In these simulations, Spectrum
Consumption Models (SCMs) were used to articulate various
aspects of spectrum use. For our purposes, SCMs are data
structures in which transmitter models capture the origin,
frequency, strength, and direction of emissions, while receiver
models define interference thresholds and frequencies of
reception [16]. The dataset was captured by varying the location
of a radiometer model across the network’s 1 km? area while a
set of three 5G base stations remained fixed in place. The center
operating frequency of the radiometer was chosen to be
23.84 GHz with a 200 MHz channel width. For simplicity,
frequencies of the out-of-band transmissions from the adjacent
5G-NR n258 band were modeled using the same center and
bandwidth.

To determine the extent of interference at each location, each
emission is scaled by free space path loss in the appropriate
direction. The final dataset consists of the out-of-band
transmission PSDs (ranging from -70 to -40 dBW/200 MHz),
distances between base stations and radiometer (ranging
approximately from 50 to 1650 meters), and the interfering
powers. Fig. 1 illustrates an instance in which emissions of
similar powers experiencing path losses are incident upon the
radiometer location. This scenario was simulated approximately
20000 times with varying radiometer locations, each location
providing three data points to be used in the analysis.
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Fig. 1. Device placement in a network area of approximately 1 km?

IV. REGRESSION ANALYSIS

Although ML approaches such as neural networks can prove
to be extremely accurate without requiring many statistical
assumptions, they are computationally expensive. Machine
learning generally exploits correlations within data to develop
accurate predictions, but can be hard to interpret. This is why
many ML models are referred to as ‘black box models.’
Regression models, although rudimentary, could prove useful as
they are interpretable and computationally inexpensive. If
acceptable results are achieved, the simplicity and low
computational cost of regression models could make them an
ideal tool for real-time prediction of dynamic aggregate
interference. The analysis presented here was performed on
simulated device pairs. The benefits of these techniques support
large-scale real-time aggregate interference prediction.

Before using a regression model to predict output PSD, it
must be acknowledged that a model is only as reliable as its
training data and assumptions. Because the training data is
generated from simulation, the data used to fit the model is
deterministic, as opposed to stochastic. To better model real-
world propagation, noise, or jitter, has been added to the training
data. Jitter is a viable tool to improve a model’s generality when
small uniform noise perturbates a system [17]. Thermal noise
density has been chosen as an estimate of noise because our
model considers PSD. Thermal noise power is given as:

Py = kTB (1)

Where k is the Boltzmann’s constant, T is the temperature,
and B is the bandwidth. Thermal noise density is obtained by
disregarding bandwidth:

Dy = kT 2)

The thermal noise density at room temperature is
approximately -174 dBm/Hz [18]. In units of dBW/200 MHz
gives a thermal noise density of -120.99 dBW/200 MHz. By
assuming that this value is the variance, random Gaussian noise
is added to the received PSD. The added noise is distributed
normally with a mean of p = 0 dBW/200MHz and a standard
deviation of approximately ¢ = 10.99 dBW/200MHz. A
Gaussian probability model was selected because of the
possibility of both constructive and destructive interference,
with the jitter being centered at zero. It is expected that fitting a
model on a dataset with simulated noise increases the robustness



Recieved PSD (dBW/200 MHz)

Recieved PSD (dBW/200 MHz)

of the model and raises the likelihood of success in extrapolating
the model to real-world applications in future studies.
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Raw simulated data plotted before any added noise without the distance variable transformed.
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Fig. 2. (Top) Synthetic data with input PSD ranging from —41 to —70, before any
transformation, (Bottom) synthetic data with added jitter. Plots generated with
[19].
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In the model, two predictors are proposed for the PSD
received by the radiometer: the transmitted PSD
(dBW/200MHz) and the distance between the radiometer to the
transmitter (meters). A regression model is sought that can
predict the PSD received by the radiometer at a given distance
and transmitted power spectral density. Linear regression
models are beneficial for identifying the strength and magnitude
of the associations between predictors and outcomes.

Traditionally, multiple linear regression models perform
best when there is a strictly linear relationship, with no
indication of higher-order terms necessary to model the
phenomena. In our case, we observe a nonlinear relationship
between distance and received PSD (Fig. 2(a)) that is not
sufficiently captured by a higher-order polynomial. Note how
Fig. 2(a) resembles a family of curves, resulting from the unique
transmitted PSD levels. Hence, it is attempted to transform the
data to resemble a linear model through an arbitrary mapping of
the distance feature to generate a linear relationship. This
transformation is applied and visualized in Fig. 3. This linear
relationship can then be applied to a regression model. This type
of method is broadly known as a generalized additive model
(GAM). A GAM essentially contains model features that are

functions of input variables, while still enabling it to be fit with
coefficients like a multiple regression model.
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Fig. 3. (Top) Synthetic data for the regression model with input PSD ranging
from —41 to —70, without the added Gaussian noise. (Bottom) Synthetic data
under transformation with added jitter. Plots generated using [19].

The model’s proposed distance feature mapping is
f(x) =x7%91 f: (R > R), 3)

it was chosen after iteratively examining a series of effective
transformations for creating a linear relationship. One of the
strengths of a GAM is that it allows the flexibility to fit a non-
linear relationship (f) to the distance variable. Fig. 2(a) shows
that the relationship between distance and received PSD is
nonlinear, and Fig. 3(a) shows that the relationship becomes
linear through the proposed transformation. This transformation
was chosen because after exploring many possible functions it
best transforms the data to resemble a linear relationship. Fig.
3(b) also shows the simulated noise imposed on the data.

To discern the relationship between true distance and
received PSD, one can take the value in the domain of f and
apply the inverse mapping f~!. To discern the relationship
between the transmitted PSD and the received PSD, no inverse
mapping is required, because no transformation is included in
the model for that predictor. This predictor is a discrete variable
with a linear relationship. Our proposed GAM is as follows:

Rpsp = Bo + BiTesp + Bof (D) €))



Where Trsp is the transmitted PSD, D is the distance, and
Resp is the received PSD. Each coefficient () serves as an
estimated weighted ‘slope’ for the respective term [20]. The
coefficients for the models with and without added noise are
given in Table I and Table II. Table III gives the error metrics
for the models. The model was fit using an 80/20 training testing
data validation split, where 80% of the entire data set was used
for training, while the other 20% was reserved for model
evaluation. This precaution was taken to prevent overfitting.

Metrics chosen to gauge the model’s predictive power are
MAPE (mean absolute percentage error), and RMSE (root mean
square error), where RMSE is in units of the outcome of interest.
These metrics gauge the relative absolute error and the
magnitude of the error in the units of the outcome variable
respectively. R? was included to show the percentage of the
variability in the testing data that was explained by the model. It
was used to determine whether or not a model was overfit. R? is
most useful when there is a linear relationship between the
outcome and predictors, which was not originally the case, but
after transforming the distance variable Fig. 3(a), there exists a
linear relationship between the distance and the received power
spectral density.

TABLE I: GAM (No NOISE)

Coefficient Estimate Std. Error P-Value
(Intercept) -8800 0.015 0
Input PSD 1.000 1.05¢¢ 0
Distance™0001 8740 0.015 0
R?: 1.00| MAPE: 0.0008% [21]
TABLE II: GAM (NOISE)
Coefficient Estimate Std. Error P-Value
(Intercept) - 8883 80.19 0
Input PSD 0.995 0.005 0
Distance™0001 8824 80.73 0

R?%: 0.401 | MAPE: 5.11%[21]

TABLE III: COMPARING METRIC BETWEEN NOISE/NO NOISE

MODEL
Metric No Noise Noise
MAPE 0.001% 5.11%
RMSE 0.002 11.0
R? 1.00 0.401

Table II shows the model coefficients when noise is added
to the GAM. With added jitter, more realistic model metrics
were obtained, indicating the model was not overfit to synthetic
data. Table III provides a comparison of the no-noise model and
the model including noise. The no-noise model results in model
coefficient estimates with a very small standard error, an
extremely small mean absolute percentage error (MAPE), and
also a perfect R? . Thus, these metrics indicate potential
overfitting. The noise-added model demonstrates model
coefficients with higher standard error, much greater (yet
excellent) MAPE, and a R? of around 0.4. The coefficient
estimates across models are similar, because the probability
model underlying the noise is Gaussian, which is symmetric.

Regardless, the GAM trained on noisy data still performs
comparably with ML models.

Although most classical statistical methods will be
outperformed by ML models, GAM’s are easier to interpret and
also are far less computationally expensive, while achieving
high performance and accuracy. 10-fold cross-validation was
also used to avoid overfitting. For this model, this required under
two seconds to fit fifty models on subsets of the training data
[21]. In the analysis, 10-fold cross-validation was performed
five times. Each trial featured an 80-20 training-testing split, and
a model was fit and tested on the respective testing subset. Upon
correctly specifying the model, output PSD can be predicted,
given values of input PSD and distance from a radiometer.

To visualize the model performance, Fig. 4 features a subset
of the data where the input PSD is -55 dBW/200MHz, and
shows a point estimate for the model, as well as a 95% prediction
interval. A prediction interval is different from a confidence
interval: this is a 95% interval that is expected to contain the

next future unobserved observation (ie. the n+ 1"
observation).
Regression Model Fit (Transmitted PSD = —55)
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Fig. 4. Holding fixed the input PSD at -55 dBW/200MHz relationship between
the transformed distance and the outcome, received PSD (dots) with added noise.
The orange line is the predicted values of the model fitted on the noisy training
data, and the dashed lines denotes the 95% prediction interval. Plots generated
using [19].

Because the model features two input variables and one
output variable, its prediction can be visualized in three
dimensions. Fig. 5(a) and Fig. 5(b) show the control surfaces and
the model prediction behavior. Fig. 5(a) shows the control
surface before transforming the distance feature to obtain a
linear relationship. The control surface matches the intuition of
the system because either a decrease in distance or an increase
in transmitted PSD will increase the interfering PSD at the
receiver. Fig. 5(b) shows the control surface in the transformed
space. As expected, this surface is linear.



-130

140

-150 -

-160 -

-170

-180 -

-190 -

Interfering PSD (dBW / 200 MHz)

“-40
-200 L
0

1000 " -0

1500

distance (m) 2000 -70

transmitted PSD (dBW / 200 MHz)

Interfering PSD (dBW / 200 MHz)

S0 T — o994
-60 —— - 0993
70 0.992

transmitted PSD (dBW / 200 MHz)
Fig. 5. (Top) Control surface for the higher dimensional space of the model with
the untransformed distance feature, (Bottom) control surface for the higher
dimensional space of the model with the transformed distance feature

Using the developed model, the PSD received by the
radiometer can be predicted, given the transmitted PSD and the
distance of the radiometer from the transmitter. Fig. 4 shows the
model predictions across the distance feature holding fixed the
transmitted PSD. The model has been trained over a distance
range of 50 to 1600 meters and over a transmission PSD range
of -70 to -41 dBW/200MHz and their corresponding interfering
PSD. Our model should not be used to predict anything outside
of that range. For example, given a distance of 500 meters and a
transmission PSD of -60 dBW/200 MHz the model predicts an
interfering PSD equal to -173.40 dBW/200 MHz.

While the study was conducted with synthetic data to which
jitter has been applied, this study seems to indicate that this
method will also be successful with noisy measured data. The
next steps include testing this model on measurement data
collected from actual transmitters, and validating and refining
this model based on these results.

V. COMPARISON WITH ALTERNATIVE METHODS

The proposed method fares well compared to machine
learning approaches. Table IV provides a comparison of
relevant models used. For this study, all of the compared
methods have been trained using simulated datasets.

TABLE IV: MODEL COMPARISON

Model MAPE
GAM (no noise) 0.001%
GAM (noise added) 5.1%
LR (no noise) 0.7%
LR (noise added) 52%
Fuzzy Inference 0.7%
System (no noise) [13]
Nonlinear 7.8%
Autoregressive Neural [11]
Network (noise added)

The GAM more accurately predicts interference with and
without added noise, compared to other machine learning
techniques trained on simulated data. In addition, this model
can be fit, or trained, in milliseconds, whereas machine learning
methods such as the Fuzzy Inference System can require hours
to train [13]. As such, this linear regression method is well-
suited for dynamic network environments that require frequent
retuning. The same simulated data was used to train the fuzzy
inference system, LR model, and the GAM. However, the
simulated data used to train the Nonlinear Autoregressive
Neural Network differs [11]. The LR results shown here are
preliminary results found in this study. Our methods for
obtaining the coefficient (,) for LR are identical, but the
transformation to linearize the relationship between our
features was not applied.

VI. CONCLUSIONS

The applicability of LR and GAM modeling techniques to
the prediction of interference has been thoroughly investigated.
The GAM model performs comparably to previous machine-
learning approaches. The proposed method enables rapid model
training which can enable more real-time aggregate
interference assessments in dynamic spectrum environments.
This work achieved a MAPE of 5.11% interference prediction
with simulated data with added thermal noise density to
approximate the noise of the transmission channel. Future work
should apply these modeling methods to measured data.
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