Bulletin
of the

Descriptions

Bjorner, M. B., Molloy, E. K., Dewey, C. N., & Solis-Lemus, C. (2024). Detectability of
varied hybridization scenarios using genome-scale hybrid detection methods. Bulletin
of the Society of Systematic Biologists. https://doi.org/10.18061/bssb.v3i1.9284

Detectability of Varied Hybridization Scenarios Using Genome-

Scale Hybrid Detection Methods

Marianne B Bjorner'®, Erin K Molloy’®, Colin N Dewey’®, Claudia Solis-Lemus®

T Department of Computer Sciences & Wisconsin Institute for Discovery, University of Wisconsin - Madison, 2 Department of Computer Science,
University of Maryland, College Park, 3 Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, 4 Department of Plant

Pathology & Wisconsin Institute for Discovery, University of Wisconsin - Madison

h

A/

i.org/1

1

1/ v3i1.9284

Bulletin of the Society of Systematic Biologists

Abstract

Hybridization events complicate the accurate reconstruction of phylogenies, as they lead
to patterns of genetic heritability that are unexpected under traditional, bifurcating mod-
els of species trees. This phenomenon has led to the development of methods to infer
these varied hybridization events, both methods that reconstruct networks directly, as
well as summary methods that predict individual hybridization events from a subset of
taxa. However, a lack of empirical comparisons between methods — especially those per-
taining to large networks with varied hybridization scenarios - hinders their practical
use. Here, we provide a comprehensive review of popular summary methods: TICR, MSC-
quartets, HyDe, Patterson’s D-Statistic (ABBA-BABA), D3, and Dp. TICR and MSCquartets
are based on quartet concordance factors gathered from gene tree topologies and HyDe,
Patterson’s D-Statistic, D3, and Dp use site pattern frequencies to identify hybridization
events between sets of three taxa. We then use simulated data to address questions of
method accuracy and ideal use scenarios by testing methods against complex networks
which depict gene flow events that differ in depth (timing), quantity (single vs. multiple,
overlapping hybridizations), and rate of gene flow (y). We find that deeper or multiple hy-
bridization events may introduce noise and weaken the signal of hybridization, leading
to higher relative false negative rates across all methods. Despite some forms of
hybridization eluding quartet-based detection methods, MSCquartets displays high
precision in most scenarios. While HyDe results in high false negative rates when tested
on hybridizations involving extinct or unsampled ghost lineages, HyDe is the only method
able to identify the direction of hybridization, distinguishing the source parental lineages
from recipient hybrid lineages. Lastly, we test the methods on a dataset of ultraconserved
elements from the bee subfamily Nomiinae, finding possible hybridization events between
clades which correspond to regions of poor support in the species tree estimated in a

previous study.

1 Introduction

Phylogenetics studies the evolutionary history between or-
ganisms. In many popular phylogenetic inference models,
these relationships are assumed to be best represented as
a binary tree, where each child node arises from only one
direct parent (Bouckaert, 2019; Nguyen et al., 2015; Sta-
matakis, 2014). However, a binary tree model ignores the
possibility of a reticulation or gene flow event. Gene flow
occurs when members of one population reproduce or oth-
erwise exchange genetic information with another popula-
tion, which leads to the formation of admixed populations
or new hybrid species lineages (Barton & Hewitt, 1985).
These reticulation events transform bifurcating phyloge-

netic trees into network structures, wherein the taxa af-
fected have more than one parental lineage (Moret et al.,
2004). Non-tree-like evolution is common across the tree of
life, found in groups such as insects (Suvorov et al., 2022),
plants (Hibbins & Hahn, 2021) and mammals (Racimo et
al., 2015).

The study of gene flow events in the tree of life have
been aided by recent advances in sequencing technology,
granting evolutionary researchers access to genome-scale
information. This abundance of information can be used to
infer reticulation events such as introgression, hybrid spe-
ciation, and horizontal gene transfer. Each mechanism for
gene flow leaves behind various traces in a population’s
genetic information, and may be identified through hy-
bridization detection methods that leverage gene trees or
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sequence information (Hibbins & Hahn, 2021). Though the
exact biological processes originating gene flow might dif-
fer, in this paper, we broadly refer to descendants of reticu-
lation events as hybrids, and the methods that detect them
as hybridization methods.

Many existing methods to infer phylogenies are based on
a binary tree, where they do not account for reticulations
between taxa. While this assumption limits the search
space to only trees, it might be an unreasonable assump-
tion, especially for populations where gene flow is common
or expected. Methods to infer phylogenetic networks, such
as those that use maximum likelihood, Bayesian inference,
and combinatorial techniques (Allman et al., 2019; Solis-
Lemus & Ané, 2016; Wen et al., 2018; Wen & Nakhleh,
2017; Zhang et al., 2017) are becoming increasingly popular
for their ability to overcome the strictly bifurcating as-
sumption. While valuable for studies of few taxa, these
methods become very computationally expensive with in-
creasingly large datasets. Furthermore, most network
methods require specification of the number of expected
hybrid events, as any increase in number of reticulations
artificially increases the likelihood of the network (Markin
et al., 2022).

Alternatively, to find evidence for individual hybridiza-
tion events, summary methods analyze subsets of triples or
quartets of taxa — which is an intrinsically more scalable
endeavor than the search in network space — without any
predetermination of the total of number of hybrids in the
phylogeny (Hibbins & Hahn, 2021). Despite these advan-
tages, summary methods still require comparisons to each
other in order to address questions of method accuracy.
The hybrid detection methods compared in this simulation
study (Table in Supplementary Material) are MSCquartets
(Mitchell et al., 2019), TICR (Stenz et al., 2015), HyDe (Ku-
batko & Chifman, 2019), Patterson’s D-Statistic (Patterson
et al., 2012), also known as the ABBA-BABA test, as well as
methods derived from the D-Statistic such as D, (Hamlin
et al., 2020) and D3 (Hahn & Hibbins, 2019). These meth-
ods (excluding TICR) identify specific hybrid relationships
within either subsets of four or three taxa. TICR, in con-
trast, tests for how well a binary population tree fits the
data (with failure to reject the population tree suggesting
no hybridization). However, a significant result from any of
these methods is not isolated to hybridization alone, and
could also be due to assumptions these methods make re-
lated to substitution models, ultrametric trees, differences
in population sizes, and so forth.

Here, we address questions of method accuracy and ideal
use scenarios by testing these five summary methods
against complex networks which depict gene flow events
that differ in depth (timing), quantity (number of hy-
bridization events: single vs. multiple), and proportion of
genes transferred through the hybridization event (inheri-
tance probability ). We note that we are not treating hy-
bridization events as continuous flow of genes over a period
of time; instead, we treat each hybridization event as being
instantaneous, representing it by a single arrow (see Figure
2). The hybridization scenarios also differ in terms of time
consistency, a characteristic of reconstructed networks

that, when violated, arises in the presence of incomplete
sampling or ghost lineages (Moret et al., 2004; Pang &
Zhang, 2022; Tricou et al., 2022). Finally, we use hybridiza-
tion detection methods to analyze published empirical data
from the bee subfamily Nomiinae, a dataset complete with
sequences, and estimated gene and species trees.

2 Materials and Methods

We begin this section by reviewing the five methods evalu-
ated in our study, breaking them into two classes: methods
that take gene trees as input and methods that take mole-
cular sequences as input. We then describe the generation
of synthetic data and the metrics for evaluating methods.
Lastly, we outline our re-analysis of a dataset of ultracon-
served elements (UCEs) for the subfamily Nomiinae.

2.1 Methods based on gene trees

MSCquartets (Allman et al., 2021, 2021) and TICR (Cai &
Ané, 2020; Stenz et al., 2015) both rely on frequencies of
quartet gene tree topologies to conduct tests into how well
a tree-like evolution fits the data and whether there is evi-
dence for hybridizations. These tests are based on the mul-
tispecies coalescent model (MSC) which defines expected
distributions of gene tree topologies under incomplete lin-
eage sorting (ILS) (Allman et al., 2011; Rannala & Yang,
2003). ILS, also called deep coalescence, occurs when indi-
vidual gene histories fail to coalesce at the same time as
their given species history (Maddison, 1997). An example
is shown in Figure 1. Note that this figure displays gene
trees that are rooted and ultrametric; however, only the un-
rooted gene tree topologies are used by MSCquartets and
TICR (i.e., the input to these methods is not required to be
ultrametric).

A resolved tree on four taxa (called a quartet) can take
on one of three unrooted topologies: one concordant and
two discordant with the species tree (Figure 1). Under the
MSC model, the probability of the concordant gene tree is
strictly greater than that of the two discordant gene trees,
which have equal probability (Allman & Rhodes, 2007)
(note that for five or more taxa, the most probable unrooted
gene tree may not be concordant with the unrooted species
tree (Degnan, 2013)). Given a model species tree and a
number of gene trees, we can compute the expected fre-
quencies of each quartet, referred to as concordance factors
(CFs), where the CFs of concordant topologies are called
major CFs, as they align with the major tree, or species tree,
and the CFs of discordant topologies are called minor CFs
(Allman et al., 2021). The observed quartet counts CFs (qc-
CFs) are gathered by counting how often each of three pos-
sible resolved quartet trees appears (Figure 1) across the
input set of gene trees (Allman et al., 2021), typically nor-
malizing by the number of gene trees displaying any one
of the three possible quartets. After normalization, we can
denote them estimated CFs, instead of qcCFs. We will con-
tinue to use the terminology “qcCF” to make it clear we re-
fer to empirical quantities, as opposed to expected prob-
abilities (simply denoted CFs). Major qcCFs are expected
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Figure 1. Concordant (left) and discordant (middle) gene
and species histories. Solid lines denote species history,
and dotted lines denote an individual gene history. The
middle tree shows an example of incomplete lineage
sorting (ILS) when the gene history fails to coalesce with
the ancestral speciation event. The tree on the left (after
unrooting) corresponds to the bipartition 12|34 and agrees
with the unrooted species tree; thus it is referred to as the
“major tree”. Under the MSC model, this tree, with an
internal branch length of 1:0 coalescent units, is expected
to have a frequency of 76% in a given sample of gene trees.
The tree in the center (after unrooting) corresponds to the
bipartition 14j23 and disagrees with the unrooted species
tree; thus, it is referred to as a “minor tree”. Under the
MSC model, the minor trees have an expected frequency of
12%. The far right depicts four possible quartet
relationships, used by MSCquartets (Allman et al., 2021)
and TICR (Stenz et al., 2015) depicted from top to bottom:
the major tree (12]34), the minor trees (14|23 and 13|24),
and the star tree (1234), which neither agrees nor
disagrees with the species tree.

to be greater than the two minor qcCFs, and the two mi-
nor qcCFs are expected to be equal under MSC. Deviation
from this expectation violates an ILS-only model of ge-
netic inheritance, and MSCquartets leverages this invari-
ant, looking at singularities in the space of possible topolo-
gies for each subset of four species. TICR, on the other
hand, uses normalized qcCFs to conduct a x? goodness-of-
fit test against a specific model species tree.

2.1.1 MSCquartets

MSCquartets (Allman et al., 2021) is an R package (Rhodes
et al., 2021) that takes as input previously inferred gene
trees, from which it computes the observed qcCFs. If the
input gene trees are not fully resolved, it is possible to
have a star tree when looking at four taxa (Figure 1). Un-
resolved (star) trees can optionally be removed or redis-
tributed among the resolved topologies. The resulting qc-
CFs are then compared to the expected invariant defined in
(Mitchell et al., 2019) derived from the MSC model to test
the hypothesis of whether a specific four-taxon subset fol-
lows a tree-like pattern (in agreement with the MSC model)
or not. Each hypothesis test produces a p-value. We note
that MSCquartets does not require a specific tree topol-
ogy to test the CF expectations against, instead utilizing
the information on all three qcCFs per four-taxon subset
to compute the test statistic. When expectations are vio-
lated, it leads to low support for a tree-like species his-
tory between the four taxa. In other words, significant re-

sults fail to support an ILS-only model of evolution, and
hybridization becomes a possible explanation for the im-
balanced relationship between quartets. However, certain
hybrid relationships elude detection using these quartet
based methods. These correspond to hybridizations be-
tween sister taxa, as such hybrid relationships will not lead
to an imbalance in the frequency of minor quartets.

In terms of computational efficiency, MSCquartets is
used in a pipeline that requires costly preprocessing steps
to produce the input, including aligning sequences and es-
timating gene trees. With these precalculated, the two pri-
mary factors that influence the speed of this approach are
the number n of taxa and the number g of gene trees. Just
consider that computing the observed qcCFs can be done
by identifying the quartet displayed by a gene tree for each
of the #;1), possible subsets of four species, repeating
across all gene trees. This procedure alone would give the
time complexity of MSCquartets a lower bound of O(n'g).
Thus, MSCquartets may be time consuming for large num-
bers of taxa.

2.1.2 TICR

In its original implementation, TICR — Tree Incongruence
Checking in R — (Stenz et al., 2015) was used as part of
a pipeline that begins with a set of alignments (one per
gene), estimates gene trees, calculates qcCFs from the (es-
timated) gene trees, and finally calculates a population tree
based on the qcCFs using the software Quartet-Max-Cut (Snir
& Rao, 2012; Stenz et al., 2015). However, the only inputs
required by TICR are the observed qcCFs computed from
gene trees and the expected CFs calculated from a hy-
pothesized population tree. Recently, this method was ex-
tended to test goodness-of-fit on a given population net-
work, rather than population tree (Cai & Ané, 2020). We
note that in our experiments we use the TICR version im-
plemented in the Julia package called QuartetNetworkGood-
nessFit.jl (Cai & Ané, 2020) though we restrict our tests to
the case of population trees, not networks.

Given a fully resolved population tree with branch
lengths in coalescent time, the expected probabilities of ob-
serving quartet relationships can be directly computed. For
example, in Figure 1 assuming the internal branch in red
has length ¢ = 1.0 coalescent units, the probability of the
major gene tree is given by 1 — %e*t = 0.76 (Allman et al.,
2011). TICR computes a x2 goodness-of-fit test statistics
that evaluates the fit of the observed qcCFs to the expected
CFs under the ILS-only model. TICR can also be used to
test for the likelihood of panmixia, or a star tree which oc-
curs when all taxa arise from the same common ancestor
and diverge at the same time, though any occurrences of
star trees in the input gene trees are ignored when calculat-
ing qcCFs. TICR uses the p-values of the individual tests to
form an overall test that inspects whether the distribution
of observed qcCFs falls within the expected CFs of the in-
put tree or network. This overall test indicates whether the
proposed population tree fits the observed qcCFs. Although
TICR does not directly test for the presence or absence of
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specific hybridizations, by failing to reject a specific tree
model, it provides lack of evidence for hybridization.

In terms of computational efficiency, the remarks made
above for MSCquartets apply to TICR, although it is worth
noting that the TICR pipeline additionally needs to esti-
mate a species tree and compute the expected CFs based on
it.

2.2 Methods based on (aligned) sequences

HyDe (Kubatko & Chifman, 2019), Patterson’s D-Statistic
(Patterson et al., 2012), D3 (Hahn & Hibbins, 2019), and
D, (Hamlin et al., 2020) are all methods that use site pat-
tern frequencies or pairwise differences to test the null hy-
pothesis of tree-like evolutionary patterns (ILS-only). This
eliminates the need for the estimation of gene trees, such
that sequences can be used directly as input. However, it is
important to use the input of many gene sequences, as op-
posed to few long sequences, as these tests are based on a
model of coalescent independent sites, or designed for use
at the allele-level (Kubatko & Chifman, 2019; Patterson et
al., 2012). These sequences must also come from equidis-
tant gene trees, where each taxon is equidistant from the
root. While HyDe, Patterson’s D-Statistic, and D, use
rooted triples plus an outgroup, D3 uses a rooted triple
without an outgroup. This is advantageous if a root is
known as a poorly chosen, or distant outgroup can result
in inclusion of ghost hybridizations and lead to false in-
terpretations (Hahn & Hibbins, 2019; Tricou et al., 2022).
Ghost hybridizations are defined as hybridization events
when one (or both) of the parent lineages that provide ge-
netic material to the hybrid node are either extinct or un-
sampled. Note that the Patterson’s D-statistic, D3, and D,
are intended as tests for introgression between two species,
but do not indicate directionality, while HyDe is intended
to test for a hybridization event between two taxa, that re-
sults in a third taxon. However, none of these tests are de-
signed to detect reticulations between sister taxa, as they
all rely on the disruption of symmetry between sister taxa
to indicate the presence of hybridization; hybridization be-
tween sister taxa produces no such signal (Allman et al.,
2011; Hahn & Hibbins, 2019; Hibbins & Hahn, 2021; Ku-
batko & Chifman, 2019). Additionally, they require that the
species relationship between the triple and its outgroup (if
any) is known.

2.2.1 HyDe

Distinct from other methods which evaluate for the overall
presence of hybridization, HyDe (Blischak et al., 2018)
identifies a singular parent-hybrid relationship between a
triple, given its outgroup. It can also be used to estimate
a mixing parameter +, depicting the proportion of genetic
material contributed by each parental lineage.

HyDe is based on phylogenetic invariants, or a function
of site pattern probabilities, which evaluate to zero when
consistent with given displayed tree models (Allman et al.,
2011; Kubatko & Chifman, 2019). The linear invariants (f;
and f,) depend on mixing parameters v and 1 — -, respec-
tively,

f1 = Disjj — Dijij

fo= Dijji — Dijij
where p;;;; is the probability for the site pattern 4ijj with
mixing parameter v. As a result, HyDe can also be used to
estimate the mixing parameter v between two taxa that are
putative parent lineages of a proposed hybrid as % = %
When there is no hybridization, « is 0, so the ratio is ex-
pected to be zero.
Site pattern probabilities observed in the sample are used
to form estimates of f; and f,, along with means and vari-
ance. These are then rearranged with the Geary-Hinkley

transformation to form the Hils statistic:

f(2 - )
H := 2
Yy - A
\/‘721‘2(7;)2 — 26,2 + 0%

When the number of sampled sites is large, this follows
the normal distribution N(0, 1) , under the null hypothesis
of ILS-only, or no hybrid speciation (Kubatko & Chifman,
2019). This allows direct interpretation of HyDe test results
without the need for resampling by bootstrapping. How-
ever, significance levels should be adjusted with a Bonfer-
roni correction due to multiple hypothesis testing, as HyDe
considers all possible combinations of sets of three taxa,
where one hybrid taxon is tested for every two distinct par-
ent taxa.

As a C-backed python package, HyDe is designed for use
with multiple individuals per taxon, from a phylogeny
where the outgroup is specified, and aligned sequence in-
formation is provided in PHYLIP format. Power increases
with increasing sequence length, with a recommendation
that sequence length is at minimum 50 kbp (Blischak et al.,
2018; Kong & Kubatko, 2021). In addition, HyDe outputs
counts of site pattern observations, namely AABB, ABBA,
AABC,... that can be used for calculations of other statistics
based on site pattern frequencies such as the Patterson’s D-
Statistics (ABBA-BABA) (Patterson et al., 2012), D,, (Ham-
lin et al., 2020), and can be rearranged for use in pairwise
distance metrics, such as D3 (Hahn & Hibbins, 2019).

In terms of computational efficiency, HyDe calculates
site pattern frequencies from subsets of sequences in an
alignment; thus, its speed is impacted by the number of
taxa and alignment length. HyDe is capable of processing
alignments of 20 taxa and 100,000 sites in under a minute
(Kubatko & Chifman, 2019). For each set of three taxa
(T4, T»,Ts3), HyDe labels two as parental populations, and
one as a hybrid population. HyDe evaluates each of the
three possible hybrid relationships between the taxa.

Sites from each taxon Ty, Ts, and T3 are then compared
to sites from an outgroup to calculate the Hils statistic from
f1 and f2. For a set of n+ 1 taxa, (where n is number
of taxa excluding the outgroup), each with an aligned se-
quence of length L, HyDe performs 3#13), tests, where
each test involves comparison of L sites, across each of the
three taxa for hybrid testing, plus the outgroup resulting in
a time complexity of O(n®L).
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Figure 2. Center: Population tree of the form
(((T1,T2),T3),0). Under each taxa, ABBA, BABA, and BBAA
are three possible site patterns, with positions in the site
pattern sequence corresponding to particular taxa. Under
ILS, the proportion of sites where T3 and T1 match should
be equal to the proportion of sites where T2 and T3 match,
given that T3 is equidistant on the species tree from T1
and T2. Left: An excess of ABBA, corresponds to a gene
flow event between T2 and T3. Right: An excess of BABA,
corresponds to a gene flow event between T1 and T3.

2.2.2 Patterson’s D-Statistic (ABBA-BABA)

Patterson’s D-Statistic (Patterson et al., 2012), much like
HyDe, involves the calculation of site pattern frequencies
from SNPs and scales in a similar manner with respect
to sequence length and number of taxa to compare. Pat-
terson’s D-statistic is defined as D = 4BBA-BABA where
A and B are distinct alleles. Each of the four positions
in these nucleotide sequences belong to one of four taxa:
three of these taxa are compared to each other for hybrid
identification, and the fourth is assumed to be an outgroup.
The D-statistic uses site patterns frequencies, where the
frequencies of site patterns between taxa 73,7 and be-
tween taxa T3, 7T} are assumed to be equal, given a known
species tree relationship, where Ty and T are sisters (such
as in (((T1,T2), T3), O), further illustrated in Figure 2). Un-
der the null hypothesis of no hybridization, the D-statistic
is expected to be zero, as the frequency of “ABBA” and
“BABA” patterns should be equal. Significant deviation
from 0 are attributed to gene flow events. We note that the
Patterson’s D-statistic does not indicate the directionality
of gene flow.

In terms of computational efficiency, testing on all per-
mutations of three taxa, with a specified outgroup, com-
puting time of Patterson’s D-Statistic on an alignment of
length L, containing n taxa scales with respect to
4L x #’3)!, giving a time complexity is O(n3L). However,
it is worth noting that Patterson’s D-statistic is symmetric,
such that the resulting D-statistic of the topology
((T1,T5),T3) is equal to the negative D-statistic given the
topology ((T%,T1),T3). Further reduction of the number of
tests occurs when provided the correct topology of the un-
derlying species tree, as is necessary, as the D-statistic re-
lies upon an assumed structure of the major tree. As a re-
sult, only one test is necessary per subset of three taxa.

2.2.3 Ds

Motivated by the original Patterson’s D-Statistic, D3 was
created as an alternative method that does not require an
outgroup, relying only on three taxa (Hahn & Hibbins,

2019). It uses pairwise distances instead of site patterns fre-
quencies, where the pairwise distances between taxa T3, Ts
and between taxa 73,7} are assumed to be equal, given a
known species tree relationship, where T; and T5 are sisters
(such as in (T, T), T5))-

D3 can be calculated as a ratio of pairwise distances

dryr—d
between three sequences D3 = 72*—1% where d; corre-
7,73 0T T3

sponds to the distance between taxa i and j. Here, signifi-
cant deviation of D3 from 0 may imply gene flow between
taxa T3 and T3, in the case of a negative result, and between
T: and T3, in the case of a positive result. The distance used
in this calculation can either be the uncorrected distance,
i.e. Hamming, or a measure of distance corrected for mul-
tiple hits. This operates much like the original D-statistic
to test for the presence, but not the directionality, of gene
flow events.

In terms of computational efficiency, unlike the Patter-
son’s D-Statistic and D,, D3 does not include comparison
to an outgroup. As a result, the method is slightly faster as
there is 25% less sequence information to analyze and com-
pare to, as there are now three sequences instead of four. As
with the Patterson’s D-Statistic, the species topology must
be known, and due to symmetry, only one test per combi-
nation of three taxa is necessary; these methods have the
same time complexity: O(n3L).

2.2.4 D,

D, adds the site pattern frequency BBAA to the denomi-
nator of the original Patterson’s D-Statistic in order to es-
timate the net proportion of the genome resulting from
introgression (Hamlin et al., 2020). This feature provides
comparability with HyDe’s computation of 4. The denomi-

nator in D, accounts for the total number of variable sites:
D. — __|ABBA-BABA|
P = BBAAYABBA+BABA"

In terms of computational efficiency, as with other forms
of the D-test, D, tests each combination of n taxa given
an alignment of length L and a specified topology. Its time
complexity is equivalent to that of Patterson’s D-Statistic:
O(n’L).

2.3 Simulations

All methods were tested on the same proposed networks
and compared in their ability to test for the presence of
hybridization events in relation to either the three or four
taxa used as input. Networks used for simulation are il-
lustrated in Figures in the Supplementary Material. These
vary in number of reticulations, number of taxa, depth of
reticulations and their mixing parameter v, which denotes
how much ancestral DNA is passed from the minor hybrid
edge to the hybrid node. Size ranges from 4-25 taxa, where
the number of reticulation events for networks with 10, 15,
and 25 taxa are 20% of the number of taxa. Each retic-
ulation event can have singular or multiple affected taxa
downstream of the hybridization event. We name the net-
works based on the number of taxa (n) and number of hy-
bridizations (h). For example, the network denoted n4hl
has four taxa (n =4) and one hybridization (h = 1). Six
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out of the twelve networks are replicated from earlier stud-
ies; specifically, four networks (n4h1, n4h1l;pogression, N3
and n5h2) were used in (Kong & Kubatko, 2021), and two
networks (n10h2 and n15h3) were used in (Solis-Lemus &
Ané, 2016). The mixing parameters -y were also kept consis-
tent between prior studies, where for n4h1;yogression, 183,
and n5h2 v = 0.5, and n4h1 was tested with multiple val-
ues (y € 0,0.1,0.2,0.3,0.4,0.5). In n10h2, v € 0.2,0.3, and
in n15h3, v € 0.2,0.2, 0.3, where the deepest hybridization
had the highest mixing parameter. We consider variants of
networks n10h2 (with two hybridization events) and n15h3
(with three hybridization events), where some hybrid edges
are removed, leaving a single reticulation with its original
mixing parameter . This results in derived networks
nthldeep (’y = 03), nthlshauow (’y = 02), nlShldeep (’y =
03)’ nlShlintermediate ('7 = 02)) and IIIIShIShallow (')’ = 02))
viewable in Figures in the Supplementary Material. These
single-hybridization networks allow us to measure the abil-
ity of methods to detect single hybridization events without
the possible influence of overlapping hybridizations, and
to compare the performance of the methods on shallow vs
deep hybridizations, as it has been reported that deep hy-
bridizations are more difficult to detect (Hibbins & Hahn,
2021). Note that here we use the term “overlapping hy-
bridizations” not to refer to hybridizations that share edges
(e.g. level-2 networks), but to hybridizations that affect the
same set of taxa downstream. Finally, to represent how well
methods perform at a larger scale, both in terms of compu-
tational efficiency and accuracy, we evaluate their perfor-
mance on a larger network labeled n25h5 (v € 0.024, 0.334,
0.396, 0.449, 0.395, in order top to bottom) .

We simulated gene trees under each network with the
software ms (Hudson, 2002), with a single individual per
taxon. Note that this approach reduces the power of HyDe,
when compared to simulations with multiple individuals
per population (Kong & Kubatko, 2021; Kubatko & Chif-
man, 2019). The software ms allows hybridization events to
be modeled with -es t i p and -ej t i j events which cor-
respond to population admixture and population splitting,
respectively (Hudson, 2002). With this approach, we cir-
cumvent the alternative of decomposing each network into
2" trees as in (Kong & Kubatko, 2021), where r is the num-
ber of reticulations, and sampling a proportion of each tree
to represent the mixing parameter . We note that the gene
tree distribution under a network is not equivalent as the
gene tree distribution under 2" displayed trees, unless there
is only one taxon sampled beneath the hybrid node, and
thus, directly modeling reticulation events from a network
ensures that simulated gene trees follow their underlying
network structure, which has a different probability density
than the combination of individual trees, especially under
complex reticulation events (Y. Yu et al., 2012). The decom-
position to individual trees may produce reticulate gene
tree patterns that are artificially clearer, and may not be as
accurately representative of the timing of natural gene flow
events.

For TICR and MSCquartets, we simulate gene trees for
g € {30,100, 300, 1000, 3000} to be used directly as input.
For methods which require sequences, ms generates g un-

linked gene trees where g € {30, 100, 1000, 3000, 10000} and
from each gene tree, seqgen (Rambaut & Grass, 1997) is
used to generate sequences with 100 base pairs generated
per gene tree, similar to the approach used in (Kong &
Kubatko, 2021) and then concatenated to form sequences
of total length L. The seqgen parameters used to generate
these base pairs are -mHKY -s0.036
-f0.300414,0.191363,0.196748,0.311475 -n1 -1100. Addi-
tionally, IQ-TREE was used to estimate gene trees from se-
quences with 100bp lengths using parameters -m HKY85
-s . The estimated gene trees are also used as input for
TICR and MSCquartets. Full simulation details including
ms commands and newick structures of these networks can
be found on the GitHub repository https://github.com/mb-
jorner/hybrid-detection-comparison. Thirty trials were
simulated for each combination of network and gene tree
number or sequence length. A pipeline of this simulation is
shown in Figure 3.

Note that the D-derived tests rely on pre-specification
of topology and thus, we can expect increased false pos-
itives when testing on inputs of (((¢1,t3),t2),0) when
(((t1,t2),t3), 0) is the true topology. For D3, we use the
uncorrected genetic distance, as all simulations have sta-
tionary mutation rates. In addition, HyDe relies on the ex-
istence of concurrent parental lineages to test for hybrid
speciation. Where only one parental lineage is sampled (see
network n10h2 for an example), we investigate the influ-
ence of introgression events from these “ghost” lineages on
HyDe’s output. To run MSCquartets, we chose to remove
unresolved star trees, and use the T3 model, which rep-
resents an unspecified tree topology. Last, TICR requires
an input estimated population tree to be used for the ex-
pected CFs. The estimated population tree that we use is
the major tree from the input network. This is equivalent
to the network with any minor hybrid edges removed. De-
viations from the expected CFs could indicate deviations
from the ILS-only model, but also, it could indicate that the
wrong population tree, either topologically or metrically,
was used for comparison. In our simulation studies, we use
the known major tree as the input population tree for TICR
so that any significant TICR results are interpreted with the
possibility of hybridization.

Each method is also evaluated in terms of computing
time, as measured in CPU time in seconds, given their gene
tree or sequence data inputs, for the purpose of predicting
how well each summary method accommodates the addi-
tion of sampled taxa. We note that we do not include the
time to estimate gene trees in the running time, but for the
number of taxa here tested, IQ-Tree is very fast. As genetic
sequence information has become more widely available, so
too have the datasets that biologists use to construct phy-
logenies and infer these reticulation events. In practice, of-
ten tens or hundreds of taxa are compared (Bossert et al.,
2020; Suvorov et al., 2022). Since the Patterson’s D-Statis-
tic, D3, and D, were computed from the output of HyDe,
which describes all possible site pattern frequencies, timing
was omitted for D-statistic related tests.
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Figure 3. Simulation Pipeline. The software ms is used to simulate g gene trees from a known network where g €
{30,100, 300, 1000, 3000}. These gene trees are used as input for the hybrid detection methods TICR and MSCquartets.
Additionally, sequences of length L are generated using seqgen from g gene trees where

g € {30,100, 300, 1000, 3000, 10000}. Each gene tree is used to generate sequences with 100 base pairs generated per gene
tree as in (Kong & Kubatko, 2021). These sequences are used as input for HyDe, D3, Patterson’s D-Statistic and D,,.
Additionally, these sequences were used as input for IQTREE, in order to transform them into estimated gene trees. The
estimated gene trees were again used as input for TICR and MSCquartets. This process was repeated for each network
structure in Figures in the Supplementary Material with 30 replicates each.

2.3.1 Evaluation of Accuracy on Simulated
Datasets

We now describe the computation of the false positive/neg-
ative rates and precision (see also Figure 4). Every triple (or
quartet for MSCquartets and TICR) could have a hybrid or
not. For example, in the n4hl network, the triple {1,2, 3}
contains a hybrid (taxon 2), but the triple {1, 3,4} does not
contain any hybrid. If the triple (quartet) contains a hybrid,
and the method detects it (pvalue< « for significance level
a), we consider this a true positive (TP). If the triple (quar-
tet) contains a hybrid, but the method does not detect it
(pvalue> o), we consider this a false negative (FN). If the
triple (quartet) does not contain a hybrid, and the method
finds no hybrid (pvalue> «), we consider this a true nega-
tive (TN). If the triple (quartet) does not contain a hybrid,
but the method detects a hybrid (pvalue< «), we consider
this a false positive (FP). The False Positive Rate (FPR) is
computed as FP/(FP + TN). The recall, or sensitivity, is
computed as TP/(TP + FN). The precision is computed
as TP/(TP + FP). For HyDe, an additional metric, Wrong
Hybrid Rate (WHR) describes the rate at which hybridiza-
tion is detected but is falsely attributed to the incorrect hy-
brid taxon. That is, if the triple contains a hybrid, and HyDe
detects it, but identifies the wrong taxon as the hybrid
taxon, we consider this a wrong hybrid (WH). For example,
in the n4h1 network, the triple {1,2, 3} contains a hybrid

(taxon 2). HyDe could test whether 1 and 3 are the parents
of hybrid taxon 2 (correct hybrid), or whether 2 and 3 are
parents of hybrid taxon 1 (wrong hybrid). If the latter test
is significant, then HyDe correctly identified that there is
a hybrid relationship among these taxa, but wrongly iden-
tified the hybrid taxon. We define the Wrong Hybrid Rate
(WHR) as WHR = WH/(WH + TP + FP). We use Phy-
loNetworks (Solis-Lemus et al., 2017), a Julia package that
allows for efficient manipulation of phylogenetic networks
to easily identify triples or quartets with hybrid relation-
ships in all networks under study. PhyloNetworks also al-
lowed us to filter for only identifiable hybrids between non-
sister lineages, as these patterns can be simplified to a tree
structure. Any gene flow between sister taxa in the triplet
or quartet is excluded from consideration as a hybrid in the
results, due to their lack of detectability.

Figure 4. Visual description of false positives, false nega-
tives, wrong hybrids (for HyDe only), true positives and true
negatives.

2.4 Hybridizations in the bee subfamily
Nomiinae

To demonstrate the use of these hybrid detection methods
on real data, we compare method performance on a dataset
of ultraconserved elements (UCEs) from the bee subfamily
Nomiinae. This data originates from a paper investigating
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the impacts of gene tree estimation error on species tree re-
construction (Bossert et al., 2020), and was used to demon-
strate improved tree reconstruction with weighted ASTRAL
(Zhang & Mirarab, 2022), a new version of ASTRAL that
weights quartets based on their uncertainty (branch sup-
port) and terminal branch lengths in input gene trees. The
dataset is available for download on https://datadryad.org/
stash/dataset/doi:10.5061/dryad.z08kprrbé.

This dataset contains sequences and gene trees of up
to 852 UCEs, for a total concatenated sequence length of
576,041 base pairs for each of 32 taxa. In the original study
(Bossert et al., 2020), gene trees were estimated using six
different methods, (1) 1Q-Tree2 with the GTR-G substitu-
tion model, (2) IQ-Tree2 with the substitution model cho-
sen by ModelFinder, (3) MrBayes with the GTR-G substi-
tution model, (4) MrBayes with reversible jump MCMC, (5)
PhyloBayes, and (6) RAXML. The original investigation
found a consensus tree using PhyloBayes on concatenated
UCEs.

Here, we use each of the proposed sets of gene trees cre-
ated using the six different methods, as input for MSCquar-
tets, and apply a Bonferroni correction to evaluate signifi-
cant quartets which may contain hybridization. We use the
proposed species tree and gene trees in combination for
TICR, for which we interpret a poor fit of the observed qc-
CFs to either possibility of incorrect species tree, presence
of hybridization, or a combination of the two. Next, we use
the original UCE sequences and concatenate them to run
HyDe, using Lasioglossum albipes as the outgroup, as indi-
cated by the consensus tree constructed with PhyloBayes
(Bossert et al., 2020), and a Bonferroni correction for sig-
nificance. As the original study included two outgroups, La-
sioglossum albipes and Dufourea novaeangilae, we removed
Dufourea novaeangilae from all gene trees and sequences
prior to running hybrid detection methods because these
methods require only one outgroup.

3 Results

3.1 Simulations

Figure 5 shows the proportion of times that TICR correctly
rejects the major tree from true and estimated gene trees,
and thus, detects the presence of hybridizations under the
different networks under study. We highlight that TICR ac-
curately detects hybridizations for the case of single shal-
low hybridizations, n10h1gan0w and n15h1gpanew. However,
TICR does not detect deeper hybridizations as in n10h1 geep,
n15hlintermediate; and N15hlgeep or multiple hybridizations
in the same network as in n5h2, n8h3, n10h2, n15h3, and
n25h5. TICR also does not detect hybridizations on net-
works with four taxa (as n4hl or n4hliy;ogression) and those
results are not included in the figure. We highlight the
decreased accuracy in performance when using estimated
gene trees across all tested networks.

Figure 6 shows the false positive rate (yellow), precision
(pink) and recall (gray) for MSCquartets (from true and es-
timated gene trees), HyDe, Patterson’s D-Statistic, D,, and
D3 on the networks: ndhlipgogression (N€twork with single

shallow introgression event), n5h2 (network with two over-
lapping hybridization events), n8h3 (network with three
overlapping hybridization events), and n25h5 (network
with five overlapping hybridization events). As in (Kong
& Kubatko, 2021), an overlapping hybridization event is
defined as a hybridization where one taxon is the parent
of multiple hybridization events. For HyDe, an additional
metric, wrong hybrid rate (blue) describes the rate at which
hybridization is detected but is falsely attributed to the in-
correct hybrid taxon. The network n4hliyiogression displays
an introgression event which is easily detected by all meth-
ods (high precision and high recall). All methods also dis-
play no false positive rates on this network, as all triples or
quartets tested contain a hybrid relationship. For the case
of two hybridizations (n5h2), all methods display a high
precision and high recall, except for HyDe which has a lower
recall than others. False positive rate is low and compara-
ble for all methods in this network. For three hybridizations
(n8h3), all methods have high precision and lower recall.
As more taxa become part of the network, certain com-
binations contain hybrids that arise from ghost lineages,
which may not have strong signal to detect the hybridiza-
tion events. In this figure, all test are Bonferroni-corrected
at a level of significance oz = 0.05/number of tests, but we
also show the uncorrected version (a = 0.05) in Figures in
the Supplementary Material.

Figure 7 also shows the results on the largest network
under study (n25h5). Again, all methods show a low recall
and low false positive rate both of which could be explain by
a weakening of the hybridization signal when multiple hy-
bridizations are affecting the same taxa. All methods have a
high precision which means that when a hybrid is detected,
it is very likely a true hybrid. HyDe has slightly lower pre-
cision compared to other methods, but this is due to the
fact that HyDe (unlike other methods) test for a very spe-
cific parent-hybrid relationship. When HyDe is tested in the
setup of clear parent-hybrid relationships (Figures in the
Supplementary Material), HyDe indeed displays high preci-
sion. It is notable that HyDe’s precision is better for n25h5
compared to n15h3 or n10h2. This is due to the fact that
the hybridizations in n10h2 and n15h3 involve ghost lin-
eages which is not accounted for in HyDe. In this figure,
all test are Bonferroni-corrected at a level of significance
a = 0.05/number of tests, but we also show the uncorrected
version (o = 0.05) in Figure 8 in the Supplementary Mater-
ial.

Figure 7 shows the results for the networks: n10h2 (net-
work with two hybridization events), n10h1g,a10w (network
with single shallow hybridization event) and n10hlgeep
(network with a single deep hybridization event). All meth-
ods report a lower recall compared to the simpler networks
(n4h1 and n5h2), although precision continues to be high
for all methods, except for HyDe. HyDe’s lower precision is
due to the fact that some hybridizations involve ghost lin-
eages (hybridizations when one or both parental lineages
contributing to the hybrid node are extinct or unsampled)
and HyDe cannot account for this scenario. False positive
rate is controlled in all methods. This combined with the
lower recall allows us to conclude that multiple overlapping
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Figure 5. Y axis corresponds to the proportion of replicates in which TICR correctly rejects the true major tree at a level
of 0.05 and X axis corresponds to the number of gene trees. With true gene trees as input (blue bars), TICR rejects the
null hypothesis of the major tree (equivalent to the input network sans hybridization events) for networks with single,
shallow hybridizations. TICR fails to detect deeper hybridizations such as n10h14eep, N15h1intermediate, aNd N15h1 eep. For
networks with multiple hybridization events (n5h2, n8h3, n10h2, n15h3, and n25h5), TICR is also unable to reliably
detect non-treelike patterns. With estimated gene trees as input (orange bars), TICR is unable to reject the major tree

across tested networks.

hybridizations result in loss of signal for hybridization,
rather than contradicting signal pointing at wrong hybrids.
In addition, the recall is low across all methods for the sin-
gle deep hybridization case (n10h14ep) Which means that
it is not only multiple hybridizations that result in loss
of signal, hybridizations occurring in deeper parts of the
tree have also lost signal to be detected. We also note
that unlike previous cases (e.g., Figure 6) where HyDe’s
wrong hybrid rate (blue) and false positive rate (yellow)
were overlapped, for these cases, the wrong hybrid rate
is much higher than the false positive rate. This implies
that HyDe is better able to identify hybrid relationships for
these networks, but not the correct hybrid taxon. In this
figure, all test are Bonferroni-corrected at a level of sig-
nificance a = 0.05/number of tests, but we also show the
uncorrected version (a = 0.05) in Figure 9 in the Supple-
mentary Material. Results for network n4h1 are also in the
Supplementary Material. This network is among the sim-
plest cases with a single shallow hybridization, and thus, all
methods have a high precision, low false positive rate, and
high recall for as little as 100,000 sites or 300 gene trees.
Figure 8 shows the results for the networks: n15h3 (net-
work with three hybridization events), n15hlganow (Net-
work with a single shallow hybridization event),
n15h1intermediate (Network with a single intermediate hy-
bridization event), and nl5hlge, (network with a single
deep hybridization event). As already shown in the case of
n10h2 (Figure 7), all methods have a higher false negative
rate, but controlled false positive rate except for Patterson’s
D-statistic with a high false positive rate for the case of
three hybridizations (n15h3). HyDe shows lower precision
compared to other methods which is due to the fact that

the hybridizations in n15h3 involve ghost lineages which
HyDe cannot account for. The fact that there is low re-
call even for the single shallow hybridization (n15h1gpa0w)
across of methods could provide some evidence that ghost
lineages create challenges, not just for HyDe. In this figure,
all test are Bonferroni-corrected at a level of significance
a = 0.05/number of tests, but we also show the uncorrected
version (o = 0.05) in Figure 10 in the Supplementary Mate-
rial.

3.2 Empirical running time

Each method is predicted to increase linearly with respect
to the number of gene trees or sequence length used as
input. Due to the nature of summary methods’ triple- or
quartet-wise analysis, an increase in network size corre-
sponds to a cubic or quartic increase in time, respectively,
and indeed, the running time of methods (HyDe, MSCquar-
tets, and TICR) dramatically increase with the number of
taxa and the number of gene trees (Figure 9). It is worth
noting that time complexity does not account for many
practical issues, like memory locality and cache perfor-
mance, that greatly impact runtime in practice.

3.3 Nomiinae bee subfamily

Figure 10 displays the heatmap of the proportion of times
that each taxon is involved in a significant hybridization
event as identified by MSCquartets, HyDe, Patterson’s D-
statistics and Dj3. This figure was created using ggtree (G.
Yu et al., 2017).

We selected the estimated gene trees from the IQ-
Tree2-GTRG model to use as input in MSCquartets and dis-
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Figure 6. Precision, recall, and false positive rate for MSCquartets (from true and estimated gene trees), HyDe,
Patterson’s D-Statistic, D,, and D3 on the networks: n4hlintrogression, n5h2, n8h3, and n25h5. All tests are Bonferroni-
corrected at a level of significance a = 0.05 <+ number of tests (see the Supplementary Material for results on a = 0.05).
For HyDe, an additional metric, Wrong Hybrid Rate (blue) describes the rate at which hybridization is detected but is
falsely attributed to the incorrect hybrid taxon. X axis corresponds to the number of loci. For the introgression event
(n4h1iperogression), MSCquartets, HyDe, Patterson’s D-Statistic, and D3 all behave similarly to the hybrid speciation
scenario in n4h1, with near-perfect recovery and identification of hybrid scenarios. High recall is noted for n5h2 across
MSCquartets and D-related methods. For n5h2, HyDe correctly recovers parent-hybrid relationships, but has a slightly
decreased recall. Network n8h3 displays low recall across all methods. However, precision is high, and false positive rate
across all methods are comparable. For n25h5, high precision is noted for all tests.

play the proportion of times that each taxa is involved in
a significant hybridization (Figure 10) for the Bonferroni-
corrected significance level of 0.05/14950, or 3.3 x 10% and
Figure 11 in the Supplementary Material for significance
level of o = 0.05) Stictonomia spp. is implicated in all sig-
nificant quartets, with Stictonomia schubotzi appearing with
the highest frequency. In addition, HyDe detects Stictono-
mia spp. implicated 923 times over 2851 significant hybrid
speciation events. We also show the proportion that each
taxon is identified as a parent (ancestral lineage contribut-
ing genetic material to the hybrid) in the HyDe tests which
provides a broader picture of hybridization than any of the
other methods. The results of Patterson’s D-statistics or D3
align with those of HyDe and MSCquartets in the identifica-
tion of Stictonomia spp. (especially Stictonomia schubotzi) as
involved in hybridization events. The D-related tests, how-
ever, cannot separate the hybrid taxon from the parents as
HyDe. Though MSCquartets primarily implicates Stictono-
mia spp. in hybridization, other methods find widespread
hybridization across the tree. These differences may be due
to methods’ sensitivity to the depth of hybridization
events.

These results suggest that these closely related species
may not be reproductively isolated, which can lead to gene
tree estimation error, and difficulty in reconstructing the
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phylogenetic tree. In the original study (Bossert et al.,
2020), gene tree estimation error was identified as a source
of the discordance and conflict. However, here we identify
hybridization events as a plausible explanation for the gene
tree discordance.

4 Discussion

Here, we present a deep investigation of the performance
of genome-wide hybrid detection methods. We found that
all five methods compared (TICR (Stenz et al., 2015), MSC-
quartets (Mitchell et al., 2019), HyDe (Kubatko & Chifman,
2019), Patterson’s D-Statistic (Patterson et al., 2012), D,
(Hamlin et al., 2020) and D3 (Hahn & Hibbins, 2019)) have
similar good performance (i.e., high precision and low false
positive/negative rates) on single shallow hybridizations
involving few taxa (n4h1 or n5h2). Our investigation con-
firms previous findings (Kong & Kubatko, 2021), and ex-
tends the conclusions to previously untested scenarios.

By design, both MSCQuartets and TICR should also be
able to detect complex hybridization of more than one in-
stance of gene flow among four taxa by relying on the re-
jection of a tree hypothesis. However, as more hybridiza-
tions are added involving similar groups of taxa (n8h3,
n10h2 and n15h3), all methods have a higher false negative
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Figure 7. False positive rate (yellow), precision (pink) and recall (gray) for MSCquartets (from true and estimated gene
trees), HyDe, Patterson’s D-Statistic, and D3 on the networks: n10h2, n10h1gp.0w (n10h2 with only the shallow
hybridization event), n10h114eep, (n10h2 with only the deeper hybridization event). All tests are Bonferroni-corrected at a
level of significance a = 0.05 number of tests (see the Supplementary Material for results on a = 0.05 ). X axis
corresponds to the number of loci. D3, Patterson’s D-Statistic, and MSCquartets behave comparably across network
structures, with high precision, low false positive rate, but lower recall, which is seen in the deepest hybridization
(n10h14eep). A shallower hybridization that creates a single hybrid taxon (n10h1gpanew ) is readily detected by these tests,
but still with low recall. HyDe has the lowest recall with the n10h1gc, hybridization event. While HyDe correctly detects
hybridization in triples, it often misattributes the hybridization to the wrong parent or child. When both hybridization
events are present, as in n10h2, all methods result in low recall with HyDe also having a higher FP rate.

rate which suggests that combinations of gene flow events
weaken the signal to detect such hybridizations as opposed
to creating discordant signal to identify wrong hybridiza-
tions (which would have been evidenced by an increased
false positive rate). This is also confirmed by the results
of TICR which is unable to reject the major tree in most
cases, except for those involving single shallow hybridiza-
tions even if they involve ghost lineages. This finding for
true gene trees did not hold for estimated gene trees , as
TICR was rarely able to reject the major tree when given es-
timated gene trees, even for this easier model condition.
HyDe had a lower precision that other methods when
ghost lineages were involved (n10h2 and n15h3) which
aligns with previous studies on the subject (Pang & Zhang,
2022; Tricou et al., 2022). It also showed a higher rate of
wrong hybrid identified within the hybrid triple. However,
HyDe is the only method able to detect the hybrid taxon
and the parent taxa involved in the hybridization as shown
in the bee dataset. The results of methods using site pattern
frequencies or pairwise differences is highly influenced by
the topology of the underlying species tree from which taxa
arise. Longer coalescent times introduce noise to sequence
data such that comparison to a distant outgroup or compar-
ison between distant species is no longer advantageous, as
the infinite-sites mutation model on which Patterson’s D-

Statistic is based expects a single mutation per site (Hibbins
& Hahn, 2021). With increased branch lengths, or increased
distance between taxa, convergent substitutions can cause
ABBA and BABA (and other) site patterns to accumulate
(Hibbins & Hahn, 2021). Similarly, HyDe was derived under
Jukes-Cantor model, and while previous simulations (Ku-
batko & Chifman, 2019) showed some level of robustness to
model misspecification, the fact that we do not simulate se-
quences under Jukes-Cantor could also explain HyDe’s poor
performance.

Finally, we re-analyzed the dataset of the bee subfamily
Nomiinae. While the original study (Bossert et al., 2020)
concludes that gene tree estimation error could be the
source of discordance in the clade, here we show that hy-
bridization is another plausible explanation for the discor-
dant patterns with all methods identifying Stictonomia spp.
(especially Stictonomia schubotzi) as involved in hybridiza-
tion events.

Practical advice for evolutionary biologists. From our
investigation, we can conclude that MSCquartets (Allman
& Rhodes, 2007) is an accurate method to detect hybridiza-
tion events under a variety of different scenarios. HyDe is
the only method that can identify which taxon is the hybrid
taxon among the taxa involved in the hybridization event.
However, HyDe cannot perform well when the parents of
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Figure 8. False positive rate (yellow), precision (pink) and recall (gray) for MSCquartets (from true and estimated gene
trees), HyDe, Patterson’s D-Statistic, and D3 on the networks: n15H3,n15h14ee, (215R3 with only the deepest
hybridization event), n15hgpan0w (n15h3 with only the shallowest hybridization event), and n15h1iptermediate (71503 with a
hybridization event of intermediate depth). All tests are Bonferroni-corrected at a level of significance a« = 0.05/ number
of tests (see Figure 10 in the Supplementary Material for results on o = 0.05 ). X axis corresponds to number of loci.
MSCquartets results in lower recall given deeper hybridization events, with a stable, high precision rate given more than
30 gene trees as input. All methods have a controlled false positive rate, except Patterson’s D-Statistic with n15h3. HyDe
has a similar or lower recall when compared to other tests, and again misidentifies the exact hybrid-parent relationship
in which there is a hybridization present. However, in the cases of single hybridizations, its false positive rate remains
low. For all single hybridization events, Patterson’s D-Statistic and D3 perform comparably, with the same pattern in
recall given hybridization depth. However, in the case of n15h3, D3 outperforms Patterson’s D-Statistic in terms of its
higher precision and lower false positive rate. In this case, Patterson’s D-Statistic has a very high false positive rate, of
approximately 25%.
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Figure 9. CPU time of HyDe (left), MSCquartets (center), and TICR (right) as network size and sequence length or number
of gene trees change. Note the different limits on the Y axis for HyDe, which is the fastest of all three methods. For
HyDe, a cubic increase in time is observed with respect to network size. For MSCquartets, a quartic increase in time is
observed with respect to network size.
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Tests are Bonferroni-corrected (see Figure 11 in the Supplementary Material for significance level a = 0.05 ). The clade

with the highest proportion of proposed hybridizations con

hybridization are unsampled or extinct. Furthermore, all
methods are unable to detect hybridizations when multiple
events are affecting the same set of taxa or when hybridiza-
tions are deep. That is, when the hybridization event is
close to the root. In this situation, we recommend testing a
smaller sample of taxa suspected to be involved a single hy-
bridization event, instead of testing all taxa at once. When
a given parent-hybrid relationship is to be tested, HyDe
outperforms D-Statistics-like tests by allowing the identi-
fication of hybrid taxa vs parent taxa. Finally, we conclude
that TICR is a powerful method to detect single shallow hy-
bridization events, even if they involve ghost lineages pro-
vided that gene trees can be accurately estimated.
Limitations and future work. All the networks in the
simulation study are ultrametric in coalescent units, which
implicitly assumes equal population sizes across lineages.
While this assumption is unrealistic, it is convenient to dis-
entangle the causes that create differences across methods.
A more thorough investigation of the interaction between
population structure and hybridization patterns is needed.
Along these lines, multiple sequence alignment errors can
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tains Stictonomia spp.

occur in phylogenomics data sets (Zhang et al., 2021) and
could impact the performance of all methods tested. We
simulated data under a substitution-only model and thus
all methods were given true alignments as input. Lastly,
the substitution model is well behaved (homogeneous, sta-
tionary, and reversible), which is assumed by HyDe; how-
ever, these assumptions can be violated in practice (Naser-
Khdour et al., 2019). All sequences generated from gene
trees were the same length, which does not reflect real-
life variation in gene length. Differences in performance
based on substitution model were also not explored here.
We point at a recent manuscript that explores the effect
of rate variation on the performance of introgression tests
(Frankel & Ané, 2023). Lastly, our evaluation of TICR al-
lowed it to use the major tree derived from the true net-
work, rather than an estimated species tree. It is not clear
to what extent these practicalities will impact methods, and
future work should explore them in simulations and in real
data sets.
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Data Availability

Scripts for generating simulated gene trees and conducting
data analysis and plotting are available at
https://github.com/mbjorner/hybrid-detection-compari-
son. Genetic data on the bee subfamily Nomiinae was col-
lected from Bossert et. al.'s article (Bossert et al., 2020).

Supplementary materials are available at https://doi.org/
10.5281/zenodo.13350781.
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