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Noise, Regression Dilution Bias, and
Solar-Wind/Magnetosphere Coupling
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Using numerical experiments, the effects of noise in the solar-wind and magnetospheric
data on fits to the data are examined. In particular, the impact of noise amplitude on the
functional forms of best-fit solar-wind driver functions is explored. The presence of noise
(measurement error) will make it difficult to use solar wind and magnetosphere data to
uncover (or confirm) the formula that describes the physics of the driving of the
magnetosphere.
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INTRODUCTION

Solar-wind/magnetosphere coupling is often studied by examining “driver functions” created from
multiple solar-wind variables and testing how well the driver functions do in statistically describing
the time-dependent activity of the Earth’s magnetosphere-ionosphere system, with that activity
typically measured with a single geomagnetic index. Often the goodness of the driver function is
measured by the magnitude of the Pearson linear-correlation coefficient between the time-dependent
solar-wind driver function and the time-dependent geomagnetic index. Correlation coefficients of
0.5-0.8 are typical.

Associated with the linear correlation, a least-squares linear-regression fit to the geomagnetic-
index values as a function of the driver-function values is often made. In a plot (for example,
Figure 1)of the geomagnetic index (vertical) versus the solar-wind driver function (horizontal), the
least squares fit is based on minimizing the vertical errors from a line on the plot. In a sense, this least-
squares linear-regression fit is the best fit for predicting the value of the geomagnetic index (vertical)
knowing the value of the driver (horizontal).

In this report, artificial data sets are used to explore the effects of noise in the data for the study of
solar-wind/magnetosphere coupling. For simplicity and clarity, the artificial data sets employed will
not involve time lags as the actual solar-wind and magnetospheric data do.

REGRESSION DILUTION BIAS

Data that is imperfectly correlated leads to a phenomenon denoted as “regression dilution bias” (e.g.,
Liu, 1988; Hutcheon et al,, 2010) or as “attenuation by errors” (e.g., Spearman, 1904; Bock and
Petersen, 1975). Basically, the smaller the Pearson correlation coefficient r,,, the shallower the slope
of the linear regression fit: that is the systematic “bias”. Hence, the larger the noise in the data, the
lower the correlation coefficient, and the shallower the slope of the linear-regression fit. Additionally
for data points x versus y, the linear-regression fit formula obtained for y(x) (y fitted as a function of
x) differs from the fit formula for x(y) (x fitted as a function of y).
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FIGURE 1 | A scatterplot of two sets of data (d,e) with two different
amounts of noise in the data. Only every 100th data point is plotted.

In some sense a better fit to the data is a “major-axis linear-
regression fit” (Riggs et al., 1978; Warton et al., 2006), also known
as a “total least squares fit” (Golub and Van Loan, 1980) or a
“Gaussian fit” (Borovsky et al., 1998): this fit minimizes the
perpendicular distances to the line rather than just minimizing
the vertical distances to the line. If you were to “eyeball” a
scatterplot and draw a line through the group of points, your
line would approximate the major axis fit and would have a slope
steeper than the mathematical linear-regression least-squares fit.

Figure 1 displays some of these concepts with artificial data.
Data points e (Earth activity, vertical) are plotted as a function of
d (solar wind driver, horizontal). The data sets each are
comprised of 300,000 points (d,e), although only every 100th
point is plotted. The core data set (d,.e,) is not plotted, but it is
created as follows. d,, (solar-wind driver) is a box-car distribution
of random numbers between 0 and 1. Then e, (Earth) is created as
e, = d,. If e, were to be plotted as a function of d,, all points would
lie on the line e = d, the slope of the linear-regression fit would be
1.0, and the Pearson correlation coefficient would be r.,, = 1.0.
The red points in Figure 1 are created by adding noise (boxcar
random numbers) to both d, and e, where the boxcar noise values
go from -0.15 to +0.15. The d and e distributions (d = d, + noise
and e = e, + noise) are then “standardized” so that they go from
values of 0 to values of 1. Similarly the blue points in Figure 1 are
created by adding larger-amplitude noise to the d, and e, points,
where the boxcar noise goes from -0.25 to +0.25, and the
distributions are “standardized” after the noise is added. Least-
square linear regression fits are performed and plotted as the two
lines: a red line for the red points and a blue line for the blue
points. For the red points the fit slope is 0.92 and for the more-
noisy blue points the fit slope is 0.5. Recall that the “true answer”
if there was no noise in the data would be a slope of 1.0. As noted
in the scatterplot of Figure 1, with increasing noise the Pearson
linear correlation coefficient r.,,, is reduced.
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If the physics of the solar wind d driving the magnetosphere e
is e = d as described by the e, = d, points, then noise in the
variables in Figure 1 is yielding systematically different formulas
for the driving: e = 0.92d and e = 0.5d. With increasing inaccuracy
of the data, the interpretation of the fit formulas is that the solar-
wind driving of the earth is weaker than it should be: the increase
in Earth activity associated with an increase in driving is lessened.
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FIGURE 2 | For a driver function of the form d = v;2v,°v3® for three
independent solar-wind variables v, Vo, and vg, the exponents (A-C) are
solved for as a function of time via an evolutionary algorithm that maximizes the
Pearson linear correlation between d and e.
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EFFECT OF NOISE ON A BEST-FIT
FORMULA

The solar-wind driver functions are mathematical combinations
of solar wind variables. The functional forms used are most often
multiplicative combinations of solar-wind variables with non-
unity exponents on some of the variables (cf. Table 1 of Baker,
1986, Table 1 of Newell et al., 32,007, Table 1 of Balikhin et al.,
2010, Table 1 of Borovsky, 2013), or they can be linear
combinations of solar wind variables (Borovsky and Denton,
2018; Borovsky, 2021), or they can be time integrals of solar-wind
variables (Borovsky, 2017). We don’t know the “correct”
functional form of the solar-wind driver function for the
Earth, so we often look for the solar-wind function that gives
the best correlation with geomagnetic indices (e.g., Newell et al.,
2007; Borovsky, 2014; McPherron et al., 2015). Let’s ask whether
noise in the data changes those combinations, i.e., whether noise
changes the functional form of a best-fit solar-wind formula to
describe the Earth activity.

For a mathematical gedanken experiment, let’s suppose we know
how the driving works and can describe it with a solar wind formula.
Figure 2 explores how noise in the solar-wind-magnetosphere data
can change the functional form of best-fit solar-wind driver
functions. As in Figure 1 a core data set (dye,) is created, where
here the solar-wind driver function d, is constructed from three
independent solar-wind variables vy, Vo, and vs, represented by
three sets of 100,000 random numbers. The driver function will be
taken to have a functional form like the Newell driver (Newell et al.,
2007) dy = vie"*vye?vie?®. (The Newell function is
Vew PBe 2 sin®? (Bgoa/2).) In the reference data set (dye,) of
100,000 point pairs the Earth reaction is taken to be e, = d,.
Let’s assume d, is the driver function that describes the physics
of the driving and e, is the real reaction of the Earth to d,.. As was the
case in Figure 1, noise will be added to d, and e, to make various
noisy data sets (d,e). The added noise are random numbers. The
“noise amplitude” is the standard deviation of the noise-number
distribution divided by the standard deviation of the variable to
which the noise is added. The noise will be added in three different
manners: 1) noise added only to e, (vertical noise on the e-versus-d
scatter plot), 2) noise added only to vy,, V2, and v3, (horizontal noise
on the e-versus-d scatter plot), and 3) noise added to both the vertical
and the horizontal. For each noisy data set v, v, v3, and e the
following calculation is made. An evolutionary algorithm (genetic
algorithm) (cf. Borovsky, 2017; Borovsky, 2020a) is run to solve for
the three exponents a, b, and ¢ such that the Pearson correlation
between the driver function d = v,*v,%v;° and the earth function e is
maximum. The algorithm randomly changes the values of a, b, and c:
if a random change produces a driver d = v,v,?vs° with a larger
correlation coefficient r.,.,, then the change is accepted: if the
random change produces a lower correlation coefficient, then the
change is rejected and the formula is reverted back to the pre-change
form. The algorithm evolves a, b, and ¢ to a local maximum in ry.
There is no guarantee that there is only one local maximum, but
whenever the algorithm has been run with drastically different initial
values of a, b, and c it evolves to the same final set of a, b, and ¢ values.
In the top panel of Figure 2 the values of a, b, and c that give the
maximum correlation are plotted as a function of the amplitude of
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the noise added to vy, V20, V30, and e,. The three shapes of the points
correspond to the three separate ways the noise was added. In the
middle panel of Figure 2 the maximum correlation coefficient r .,
for that amount of noise obtained by the algorithm between d =
vi*v,°v;¢ and e for the best-fit a, b, and ¢ values is plotted. As
expected, the correlation coefficient r,,, decreases with increasing
noise amplitude. Note however in the top panel that the best-fit
values of a, b, and ¢ vary with the noise amplitude if there is noise in
the solar-wind variables (round and hollow-square points). Recall
that the answer in the absence of noise wasa =4/3,b=2/3,and c =8/
3 such that d, = v;o¥*v5,72v, .. Lets call d,, the formula describing
the physics of the solar-wind driving the magnetosphere. As
Figure 2 demonstrates, with noise (which there always is in
measurements of the solar wind for the real magnetosphere) the
data yields a different formula from the one that describes the
“physics”. The changing of the values of a, b, and c in the driver
formula d = v,*v,"v5° is what this report considers as a changing of
the functional form of the driver function caused by noise.

In the bottom panel of Figure 2 the slopes of linear-regression fits
to the e values as functions of the best-fit d values are plotted as
functions of the noise amplitude. (Both d and e are standardized
here, with mean values of 0 and standard deviations of 1.) The slope
values in the bottom panel track the correlation coefficients in the
middle panel, commensurate with the regression-dilution-bias effect.
Le., for the linear best fit of e by v,*v,v35, the coefficient in front of
v12v,°v5¢ decreases with increasing noise.

Note that if there is vertical-only noise on the Earth measure
(geomagnetic index) e but not in the solar wind, the coefficients
obtained would not change with noise. However, the correlation
Ieorr decreases with noise (middle panel of Figure 2) and the
regression dilution bias still occurs with the linear-regression
slopes decreasing with noise amplitude (bottom panel of
Figure 2) interpreted as lessened Earth reaction for an
increased driver strength.

As a preview of future work, adding noise to the solar-wind
variables in real data [i.e., OMNI2, King and Papitashvili (2005)]
indeed changes the functional form of the best-fit solar-wind
driver. Fits of the form vy, Bey sin® (Ooq/2) to various time-
lagged geomagnetic indices (AE, AL, AU, Kp, Hp60, PCI) find
that adding noise to any one of the three solar-wind variables
changes the best-fit values of all three exponents a, b, and c.
Depending on the geomagnetic index that is being fit, the best-fit
values of a, b, or ¢ can either decrease with added noise or increase
with added noise. In agreement with the triangle points in the top
panel of Figure 2, adding noise only to the geomagnetic index
does not change the best-fit values of a, b, or c in a real data set.
Real solar-wind data will be explored in a future report.

SUMMARY

The functional form obtained for the best fit solar-wind driver d
depends on (at least) two things. It is a function of how the driving
works. It is also a function of noise in the measurements. If our
goal is to use real solar-wind/magnetosphere data to uncover or to
confirm the formula that tells us the physics of the driving, we
have trouble because of there always being noise in the data. One
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source of error in the solar-wind and magnetosphere data is the
fact that the solar wind that hits an upstream monitor is not the
same solar wind that hits the earth: this error has been expounded
upon (Borovsky, 2018; Borovsky, 2020b; Walsh et al., 2019;
Burkholder et al, 2020). Another source of error is that
geomagnetic indices are only indirect measures of the reaction
of the earth to the solar wind. A future research effort might
involve 1) obtaining a best-fit driver formula from the real data, 2)
assessing the amplitude and properties of the noise in the real
data, and 3) attempting to correct the formula for the effects of
the noise.
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