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Abstract  1 

The rate of input of new genetic mutations, and the rate at which that variation is 2 

reshu8led, are key evolutionary processes shaping genomic diversity. Importantly, 3 

these rates vary not just across populations and species, but also across individual 4 

genomes. Despite previous studies having demonstrated that failing to account for rate 5 

heterogeneity across the genome can bias the inference of both selective and neutral 6 

population genetic processes, mutation and recombination rate maps have to date only 7 

been generated for a relatively small number of organisms. Here, we infer such fine-8 

scale maps for the aye-aye (Daubentonia madagascariensis) – a highly endangered 9 

strepsirrhine that represents one of the earliest splits in the primate clade, and thus 10 

stands as an important outgroup to the more commonly-studied haplorrhines – utilizing 11 

a recently released fully-annotated genome combined with high-quality population 12 

sequencing data. We compare our indirectly inferred rates to previous pedigree-based 13 

estimates, finding further evidence of relatively low mutation and recombination rates in 14 

aye-ayes compared to other primates.   15 
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Introduction 16 

The rate of input of new genetic variation, and the rate at which that variation is 17 

shu8led into potentially novel combinations via crossover and non-crossover events, 18 

are fundamental evolutionary forces shaping observed genomic diversity. Over the past 19 

decades, it has become clear that mutation rates vary at a variety of scales, from 20 

between sites in a genome, to between individuals in a population, to between 21 

populations of a species, as well as broadly across the Tree of Life (see reviews of Baer 22 

et al. 2007; Lynch 2010; Hodgkinson and Eyre-Walker 2011; Pfeifer 2020b). The same is 23 

true of recombination, with modifications of underlying rates observed to occur at even 24 

more rapid timescales (see reviews of Ritz et al. 2017; Stapley et al. 2017). Importantly, 25 

heterogeneity in both mutation and recombination rates across a genome can 26 

significantly alter interactions between other evolutionary processes; for example, 27 

modifying Hill-Robertson e8ects (Hill and Robertson 1966; Felsenstein 1974), thereby 28 

modulating the genomic impact of selection at linked sites (Maynard Smith and Haigh 29 

1974; Begun and Aquadro 1992; Charlesworth et al. 1993; and see Charlesworth and 30 

Jensen 2021, 2022). Furthermore, neglecting this underlying rate heterogeneity in favor 31 

of using single, species-averaged rates for mutation and recombination – as is common 32 

practice in evolutionary models – has been shown to result in potentially mis-leading 33 

inference when performing downstream analyses that rely on these estimates (e.g., for 34 

inferring both population history and distributions of fitness e8ects, Soni et al. 2024a; 35 

Soni and Jensen 2024; and see Dapper and Payseur 2018; Samuk and Noor 2022; 36 

Ghafoor et al. 2023). 37 
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 Aside from classical disease-incidence approaches (e.g., Haldane 1932, 1935),  38 

there are generally two classes of experiments to infer mutation rates in primates and 39 

other large organisms. Direct mutation rate estimation relies on high-throughput 40 

genome sequencing of parent-o8spring trios or multi-generation pedigrees, counting 41 

the number of de novo mutations occurring from one generation to the next (see review 42 

of Pfeifer 2020b). As mutations are rare, this generally results in only a genome-wide 43 

estimate over the limited number of generations considered, rather than providing a 44 

finer-scale map. Relatedly, tremendous caution must be exercised in the applied 45 

computational approach as errors introduced during sequencing will generally far 46 

outnumber genuine spontaneous mutations (Pfeifer 2021; Bergeron et al. 2022). 47 

Alternatively, indirect mutation rate estimation from species-level divergence data 48 

instead relies on Kimura's (1968) observation that the neutral mutation rate is equal to 49 

the neutral divergence rate. Specifically, the number of substitutions K that accumulate 50 

in a lineage in time T is equal to (µ/G)T, where µ is the per-generation mutation rate and 51 

G the generation time. As such, historically-averaged mutation rates can be inferred 52 

from phylogenetic sequence data in neutral genomic regions, with the caveat that such 53 

estimates must generally be couched within the context of underlying uncertainties in 54 

both divergence and generation times (thus generally resulting in a range of possible 55 

mutation rates). Complicating matters further, the identification of neutral regions 56 

necessary for this indirect rate estimation requires high-quality genome annotations 57 

which are not yet widely available for many organisms. 58 

 Similarly for recombination, taking a pedigree-based approach enables the 59 

detection of contemporary crossover and non-crossover events in males and females 60 
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separately. As with direct mutation rate estimation, these approaches have the 61 

advantage of direct observation, though the genome-scale resolution is again relatively 62 

coarse given the small number of meiotic exchanges that can be observed within a 63 

pedigree (see the review of Clark et al. 2010). By contrast, population-based 64 

approaches using unrelated individuals can indirectly infer historical recombination 65 

rates from patterns of linkage disequilibrium (LD) observed in the sample (see reviews 66 

of Stumpf and McVean 2003; Peñalba and Wolf 2020). As such, these approaches o8er 67 

a higher genomic resolution and may thus provide for fine-scale mapping, though 68 

inferred rates are necessarily sex-averaged, and may be confounded by other 69 

population-level factors that can alter levels of LD (e.g., population history or selective 70 

e8ects; Dapper and Payseur 2018; Samuk and Noor 2022). For this reason, it is 71 

important to both directly model a fit demographic history when performing such 72 

inference, and to carefully annotate neutral genomic regions prior to analysis (Johri et 73 

al. 2020, 2022). 74 

 In primates, many of the highest quality estimates of both mutation and 75 

recombination rates have been obtained in humans and their closest relatives (i.e., non-76 

human great apes) as well as in species of biomedical relevance (e.g., Kong et al. 2002; 77 

Auton et al. 2012; Stevison et al. 2016; Pfeifer 2020a; Xue et al. 2020; Wall et al. 2022; 78 

Versoza, Weiss, et al. 2024). In humans, for example, large-scale sequencing of 79 

pedigrees has yielded mutation rate estimates of ~10-8 per base pair per generation (see 80 

review of Ségurel et al. 2014), which is roughly two-fold lower than the initial indirect 81 

estimates obtained from phylogenetic data (Nachman and Crowell 2000; Kondrashov 82 

2003); while crossover rates have been inferred to range from 0.96 cM/Mb to 2.11 83 
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cM/Mb for the longest and shortest autosomes, respectively, with an overall sex-84 

averaged rate of ~1 cM/Mb (Kong et al. 2002). Recently however, owing to the generation 85 

of high-quality population genomic data from pedigreed individuals, combined with the 86 

release of a fully annotated, chromosomal-level genome assembly (Versoza and Pfeifer 87 

2024), we now additionally have direct mutation and recombination rate estimates for 88 

aye-ayes (Daubentonia madagascariensis), a highly-endangered strepsirrhine that 89 

represents one of the earliest splits in the primate clade (Versoza et al. 2024a,b; 90 

Versoza, Lloret-Villas, et al. 2024). These direct estimates suggested an average 91 

genome-wide mutation rate of ~1.1 x 10-8 per base pair per generation for the species – 92 

although mutation rates in the wild may be closer to a rate of ~0.4 x 10-8 per base pair 93 

per generation, as was estimated for individuals in the pedigree reproducing at an early 94 

age – and a sex-averaged crossover rate of 0.85 cM/Mb. Importantly, utilizing 95 

polymorphism data from unrelated individuals, Terbot et al. (2024) additionally 96 

estimated a well-fitting population history for aye-ayes (and see Soni et al. 2024b), 97 

describing a severe and relatively ancient population decline in the species coinciding 98 

with the arrival of humans to Madagascar, as well as a far more recent decline likely 99 

associated with habitat destruction and fragmentation over the past few decades. 100 

 Taking advantage of this newly available high-coverage genome-wide 101 

polymorphism data from both unrelated and pedigreed individuals, the recent 102 

annotation of the genome enabling the masking of functional (i.e., directly selected) 103 

regions, as well as these pedigree-based direct coarse-scale estimates allowing for 104 

meaningful comparison, we here infer indirect fine-scale mutation and recombination 105 

rate maps across the aye-aye genome utilizing both levels and patterns of variation as 106 
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well as divergence from other closely related primate species. Aside from the biological 107 

insight into the rates of mutation and recombination gained in this study, by allowing for 108 

the incorporation of the observed rate heterogeneity, these newly developed fine-scale 109 

maps will thus also be vitally important to improve future primate evolutionary models.110 

  111 

Results and Discussion 112 

Fine-scale mutation rate map 113 

We calculated aye-aye divergence by removing the existing (but outdated) aye-114 

aye genome from the 447-way multiple species alignment, consisting of the combined 115 

mammalian multiple species alignment of the Zoonomia Consortium (2020) and the 116 

primate multiple species alignment of Kuderna et al. (2024), and replaced it with the 117 

current NCBI reference genome for the species (i.e., the high-quality, fully annotated 118 

aye-aye genome of Versoza and Pfeifer (2024); see the "Materials and Methods" section 119 

for details). By masking both functional regions and segregating variants, we calculated 120 

neutral divergence across accessible sites for a range of window sizes (1kb, 10kb, 121 

100kb, and 1Mb), yielding a mean neutral divergence rate of 0.043 at the 1Mb-scale 122 

relative to the reconstructed ancestor (Supplementary Figure S1). Utilizing lower- and 123 

upper-bounds of aye-aye divergence times (54.9 million years ago [mya] and 74.7 mya; 124 

Horvarth et al. 2008) and bounds of likely generation times (3 years and 5 years; Ross 125 

2003; Louis et al. 2020), we calculated neutral mutation rates across these genomic 126 

windows, as depicted in Table 1. The average mutation rate varied from 1.73 x 10-9 127 

mutations per base pair per generation (under a divergence time of 74.7 mya and a 128 
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generation time of 3 years) and 3.93 x 10-9 mutations per base pair per generation (under 129 

a divergence time of 54.9 mya and a generation time of 5 years). Figure 1a provides 130 

density plots of mutation rates for these divergence and generation times, whilst Figures 131 

1b and 1c provide the heterogeneity in mutation rates across a single chromosome-132 

length sca8old (using the longest autosomal sca8old as an example; and see 133 

Supplementary Figures S2-S14 for mutation rate heterogeneity across all other 134 

autosomal sca8olds) and across the whole genome, respectively. 135 

Taking the reverse tack, we additionally estimated aye-aye divergence times 136 

utilizing the recently inferred mutation rates from multi-generation aye-aye pedigree 137 

data (Table 1; Versoza et al. 2024a). These rates ranged from 0.4 x 10-8 per base pair per 138 

generation in individuals born to young parents (<12 years of age) to 2.0 x 10-8 per base 139 

pair per generation in individuals born to old parents (>24 years of age), with an average 140 

rate of ~1.1 x 10-8 per base pair per generation, resulting in estimated divergence times 141 

spanning the very large range from 53.8 mya to 6.45 mya (when considering the highest 142 

and lowest generation times as well). These results strongly suggest that average ages 143 

of reproduction in the wild are comparatively young, given that the rates associated with 144 

older parents in captivity provide unrealistically recent divergence times relative to the 145 

fossil record (Gingerich 2006; Smith et al. 2006; and see the review of Gingerich 2012) – 146 

an observation in agreement with previous ecological studies that reported average 147 

reproductive ages of 3 to 5 years in the wild (Ross 2003; Louis et al. 2020).  Further, the 148 

times associated with younger parents are consistent with previous estimates of 149 

divergence based on a limited set of genetic markers encompassing ~9kb of nuclear 150 

sequence (Horvath et al. 2008), and thus the lower direct pedigree mutation rate of 0.4 x 151 
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10-8 per base pair per generation is likely the more appropriate long-term estimate for 152 

the species. Indeed, given that this estimate falls within our indirectly inferred mean 153 

mutation rate in this study as well, and that prosimians have been shown to have 154 

generally lower mutation rates compared to other primates (Tran and Pfeifer 2018; 155 

Chintalapati and Moorjani 2020), these results taken together represent a strong body of 156 

evidence that supports relatively low mutation rates in aye-ayes. Importantly, there is a 157 

considerable discordance in divergence time estimates of the strepsirrhine–haplorrhine 158 

split between those based on molecular data and the sparse fossil record – with the 159 

former placing the split as early as 90 mya and the latter at 55 mya (Hartwig 2011). 160 

Hence, with our improved estimates of mutation rates from both pedigree-based and 161 

divergence data, our estimate of ~53.8 mya is in agreement with the origin of primates 162 

(Tavaré et al. 2002; Zhang et al. 2008), and thus with strepsirrhines representing one of 163 

the earliest splits in the primate clade (Pozzi et al. 2014). 164 

 165 

Fine-scale recombination rate map 166 

We utilized two di8erent approaches to infer fine-scale rates of recombination. 167 

The first, LDhat (McVean et al. 2002, 2004; Auton and McVean 2007), is an approach 168 

employed in earlier studies investigating the landscape of recombination in non-human 169 

primates such as the PanMap (Auton et al. 2012) and Great Ape Recombination Maps 170 

(Stevison et al. 2016) projects – which generated fine-scale genetic maps for Western 171 

chimpanzees (Pan troglodytes verus), Nigerian chimpanzees (Pan troglodytes ellioti), 172 

bonobos (Pan paniscus), and Western gorillas (Gorilla gorilla gorilla) – as well as the 173 
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projects that generated population-scale recombination maps for biomedically-174 

relevant species such as vervet monkeys (Chlorocebus aethiops sabaeus; Pfeifer 175 

2020a). The second is the more recently developed software pyrho (Spence and Song 176 

2019) which, unlike LDhat, can explicitly account for the population size change history 177 

when performing inference (see "Materials and Methods" section for details).  178 

To assess the performance of these two tools, we simulated a region of 1.6Mb 179 

(i.e., the longest accessible intergenic stretch in the aye-aye genome) based on a fixed 180 

recombination rate (0.85 cM/Mb; Versoza, Lloret-Villas et al. 2024), mutation rate (0.4 x 181 

10-8 and 1.1 x 10-8 per base pair per generation; Versoza et al. 2024a), and the recently 182 

estimated demographic history for the species consisting of multiple population 183 

declines (Terbot et al. 2024), as well as a constant population size for comparison. Our 184 

simulations demonstrate that LDhat generally performs well, with estimates falling 185 

within the range of the defined recombination rate even under the non-equilibrium 186 

demographic model (Figure 2). In contrast, pyrho consistently underestimates 187 

recombination rates across all parameter combinations, despite utilizing the defined 188 

demographic model during inference. Taken together, these results suggest that LDhat 189 

is the superior estimator; additionally, they highlight that the LDhat estimates are 190 

themselves relatively robust to the underlying demographic history characterizing aye-191 

ayes. 192 

Assuming an ancestral population size of ~11,750 diploid genomes as recently 193 

inferred in the demographic model of Terbot et al. (2024), we thus converted the 194 

population-scaled recombination rate estimates inferred using LDhat to per-generation 195 

recombination rate estimates, yielding an average genome-wide recombination rate of 196 
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1.04 x 10-9 per base pair at the 1Mb-scale (Supplementary Figure S15) – about an order 197 

of magnitude lower than the average rate reported for anthropoid apes (~10-8 198 

recombination events per base pair per generation, or ~1 cM/Mb, for humans and ~1.2 199 

cM/Mb for bonobos, chimpanzees, and gorillas; Kong et al. 2002; Auton et al. 2012; 200 

Stevison et al. 2016). This observation of a notable reduction of recombination rates in 201 

aye-ayes compared to humans and other haplorrhines is consistent with pedigree-202 

based estimates of sex-specific crossover rates being considerably lower in aye-ayes 203 

than in the great apes (Versoza, Lloret-Villas et al. 2024).  204 

However, despite the reduction in overall rate, aye-ayes exhibit a landscape of 205 

recombination similar to those of other primates (Auton et al. 2012; Stevison et al. 206 

2016; Pfeifer 2020a; Wall et al. 2022; Versoza, Weiss, et al. 2024); for example, 207 

recombination rates are generally elevated towards the telomeric ends and depressed 208 

within centromeric and pericentromeric regions of each autosomal sca8old (see Figure 209 

3 for genome-wide recombination rates and Supplementary Figures S16-S29 for the 210 

fine-scale variation in recombination rates across each individual autosomal sca8old). 211 

Moreover, in aye-ayes, about 80% of recombination occurs in approximately 8% of the 212 

genome (Figure 4) – the same fraction than in human individuals of European ancestry 213 

(Auton et al. 2012) – potentially hinting at similarities in the concentration of hotspots 214 

across the genome.     215 

 216 

 217 

 218 
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Correlations between fine-scale rates of recombination with genomic features 219 

In order to gain a better understanding of the evolution of the recombination 220 

landscape in aye-ayes, we studied the impact of several genomic features on scale-221 

specific recombination rates. To this end, we calculated nucleotide diversity and 222 

divergence based on the aye-aye population genomic data and the 447-way 223 

mammalian multiple species alignment as noted above, as well as GC-content (as a 224 

measure for genome composition) and exon-content (as a proxy for evolutionary 225 

constraint) based on the annotated aye-aye assembly in 1kb-regions along the genome. 226 

We applied a discrete wavelet transformation in order to obtain information on the 227 

heterogeneity in each feature, with detail coe8icients providing scale-specific 228 

information at a range of (2n) scales. After transformation, we performed a linear model 229 

analysis of these detail coe8icients to study the scale-specific relationships between 230 

the heterogeneity in each genomic feature and recombination rate.  231 

Figure 5a provides the detail coe8icients for each genomic feature (diagonal 232 

plots) as well as their pairwise correlations (o8-diagonal plots) at scales ranging from 21 233 

to 217, and Figure 5b the corresponding linear model analysis of the detail coe8icients 234 

for the longest autosomal sca8old as an example (for all other autosomal sca8olds, see 235 

Supplementary Figures S30-S42). Similar to haplorrhines (Spencer et al. 2016; Pfeifer 236 

2020a), aye-ayes exhibit the highest level of heterogeneity in nucleotide diversity and 237 

neutral divergence at the finest (2kb) scale. In contrast, the largest heterogeneity in 238 

recombination rate occurs over scales of 2-8kb, in the same range previously observed 239 

in vervet monkeys (2kb; Pfeifer 2020a) and humans (8kb; Spencer et al. 2006), and 240 

similar to the heterogeneity observed in exon-content (4-8kb). Due to the organization of 241 
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primate genomes into GC-rich and GC-poor isochores (Costantini et al. 2009), base 242 

composition displays a concave distribution, with the highest heterogeneities observed 243 

at both the fine (2-8kb) and broad (>1Mb) scales. Focusing on the pairwise correlations 244 

between the detail coe8icients at the fine (2-8kb) scale, nucleotide diversity is 245 

significantly positively correlated with both neutral divergence and GC-content, as 246 

expected given that the rate of mutation, which jointly impacts diversity and divergence, 247 

varies depending on the local base composition in the genome (Figure 1c, and see 248 

review of Hodgkinson and Eyre-Walker 2011). The rates of divergence are also 249 

significantly negatively correlated with exon-content at the fine to intermediate scales, 250 

as anticipated from evolutionary constraint to maintain proper gene function, thereby 251 

subjecting these regions to purifying selection (see reviews of Charlesworth and Jensen 252 

2021, 2022). In addition to mutation, and similar to other primates (Spencer et al. 2006; 253 

Auton et al. 2012; Pfeifer and Jensen 2016; Stevison et al. 2016), GC-rich genomic 254 

regions are also associated with higher rates of recombination in aye-ayes. Contributing 255 

to this positive correlation at the fine-scale is GC-biased gene conversion, an 256 

evolutionary process associated with meiotic recombination that elevates the GC-257 

content of a region through the preferential transmission of GC over AT alleles (Duret 258 

and Galtier 2009), thus leading to a higher GC-content in regions of frequent 259 

recombination (i.e., recombination hotspots). Additionally, in regions of high 260 

recombination, the e8ects of selection at linked sites (e.g., background selection and 261 

selective sweeps) will be reduced, allowing more genetic diversity to persist in close 262 

proximity (Maynard Smith and Haigh 1974; Begun and Aquadro 1992; Charlesworth et 263 

al. 1993). However, recombination hotspots are highly localized (within 1-2kb regions; 264 

Baudat et al. 2010; Myers et al. 2010; Parvanov et al. 2010) and often flanked by regions 265 
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of low recombination which, in turn, extend genetic hitchhiking e8ects, thus reducing 266 

nucleotide diversity at intermediate (10s to 100s of kb) scales (Maynard Smith and 267 

Haigh 1974; Begun and Aquadro 1992; Charlesworth et al. 1993). 268 

 269 

Concluding thoughts 270 

 In this study, we have characterized the underlying heterogeneity in mutation and 271 

recombination rates across the genome of aye-ayes. We found that mutation rates in 272 

this species are lower than in other primates, which is in agreement with previous 273 

studies showing lower mutation rates in prosimians (Tran and Pfeifer 2018; Chintalapati 274 

and Moorjani 2020). Notably, this indirect divergence-based estimate supports the 275 

recent pedigree-based estimate of 0.4 x 10-8 per base pair per generation characteristic 276 

of younger parents (Versoza et al. 2024a), suggesting a relatively young long-term 277 

reproductive age in the wild, as might be expected from previous studies of the life 278 

history and socioecology of the species (Ross 2003). This rate also implies a split time 279 

of ~54 mya, consistent with the earliest primates in the fossil record, as opposed to the 280 

much older and di8icult to reconcile split times previously proposed. We similarly 281 

found a notable reduction of recombination rate in aye-ayes compared to the great apes 282 

(Auton et al. 2012; Stevison et al. 2016), despite overall similarities in the recombination 283 

landscape, including the concentration of hotspots across the genome. Given the 284 

recently reported enrichment of crossover events in regions harboring predicted great 285 

ape PRDM9 binding motifs – a zinc-finger protein controlling the activation of hotspots 286 

in primates – in pedigreed aye-aye individuals (Versoza, Lloret-Villas et al. 2024), the 287 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 28, 2024. ; https://doi.org/10.1101/2024.12.28.630620doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.28.630620


 15 

future characterization of hotspots in the species should thus be of great interest to the 288 

comparative primate genomics community. 289 

With rate maps available in only a limited number of species, it is common 290 

practice to use a single, species-averaged rate for both mutation and recombination 291 

when modelling population genetic processes. However, failing to account for the 292 

underlying heterogeneity in mutation and recombination rates has been shown to 293 

potentially bias the inference of both population history as well as the distribution of 294 

fitness e8ects (e.g., Soni et al. 2023, 2024a). Thus, the rate maps provided here will 295 

facilitate more robust inference of population genetic processes in the highly 296 

endangered aye-aye specifically, as well as in evolutionary models of primate evolution 297 

more broadly.  298 
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Materials and Methods 299 

Updating the aye-aye genome in the 447-way mammalian multiple species alignment 300 

We obtained the 447-way multiple species alignment, consisting of the 301 

combined mammalian multiple species alignment of the Zoonomia Consortium (2020) 302 

and the primate multiple species alignment of Kuderna et al. (2024), from 303 

https://cglgenomics.ucsc.edu/november-2023-nature-zoonomia-with-expanded-304 

primates-alignment/ and removed the outdated aye-aye genome assembly using the 305 

halRemoveGenome function implemented in HAL v.2.2 (Hickey et al. 2013). Next, we 306 

added the current NCBI reference genome for the species – that is, the high-quality, 307 

fully annotated aye-aye assembly of Versoza and Pfeifer (2024) (DMad_hybrid; GenBank 308 

accession number: JBFSEQ000000000) – to the alignment, by first extracting the 309 

ancestral genomes PrimatesAnc005 and PrimatesAnc011 from the 447-way alignment 310 

using HAL's hal2fasta function, and then aligning these ancestral genomes with the new 311 

aye-aye genome in Cactus v.2.9.2 (Armstrong et al. 2020) using the branch lengths 312 

previously inferred in the 447-way alignment. Finally, we attached this alignment back 313 

into the 447-way alignment using HAL's halReplaceGenome function.  314 

 315 

Inferring fine-scale rates of neutral divergence and mutation 316 

 To infer fine-scale rates of neutral divergence and mutation, we first used the 317 

halSummarizeMutations function implemented in HAL v.2.2 (Hickey et al. 2013) to 318 

retrieve 'point mutations' along the aye-aye branch (i.e., substitutions between the aye-319 

aye and PrimateAnc005), thereby masking any sites within 10kb of functional regions to 320 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 28, 2024. ; https://doi.org/10.1101/2024.12.28.630620doi: bioRxiv preprint 

https://cglgenomics.ucsc.edu/november-2023-nature-zoonomia-with-expanded-primates-alignment/
https://cglgenomics.ucsc.edu/november-2023-nature-zoonomia-with-expanded-primates-alignment/
https://doi.org/10.1101/2024.12.28.630620


 17 

avoid the potentially confounding e8ects of selection. From these point mutations, we 321 

then removed all sites associated with segregating polymorphisms in the species, 322 

resulting in a final dataset from which we calculated neutral divergence by dividing the 323 

number of divergent sites by the number of accessible sites in any given genomic 324 

window (Soni et al. 2024b). Specifically, divergence was estimated genome-wide, as 325 

well as in windows of size 1kb, 10kb, 100kb and 1Mb using a sliding window approach 326 

with a step size of 1kb, 5kb, 50kb, and 500kb, respectively. To obtain mutation rates for 327 

each genomic window, we divided by the divergence time in generations, using 328 

divergence times of 54.9 mya and 74.7 mya (Horvarth et al. 2008) and generation times 329 

of 3 years and 5 years (Ross 2003; Louis et al. 2020) for comparison. 330 

 331 

Inferring fine-scale rates of recombination 332 

We utilized two di8erent approaches to infer fine-scale rates of recombination – 333 

the demography-unaware estimator LDhat (McVean et al. 2002, 2004; Auton and 334 

McVean 2007) and the demography-aware estimator pyrho (Spence and Song 2019) – 335 

both of which rely on patterns of LD observed in sequencing data to estimate 336 

recombination rates. To this end, we took advantage of a recently generated population 337 

genomic dataset of unrelated individuals (Soni et al. 2024b) for which we implemented 338 

a set of stringent filter criteria (supplementing the standard quality control practices 339 

applied in the previous study as described in Pfeifer 2017) to eliminate spurious single 340 

nucleotide polymorphisms (SNPs) that may lead to artefactual breaks in patterns of LD. 341 

Specifically, following the guidelines described in earlier studies investigating the 342 

landscape of recombination in non-human primates (Auton et al. 2012; Stevison et al. 343 
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2016; Pfeifer 2020a), we removed both SNP clusters – defined here as three or more 344 

SNPs within a 10bp window (calculated using the Genome Analysis Toolkit [GATK] 345 

v.4.2.6.1 VariantFiltration function together with the parameters ' --cluster-size 3 ' and  346 

' --cluster-window-size 10 '; van der Auwera and O’Connor 2020) – as well as SNPs 347 

exhibiting an excess of heterozygosity – defined here as sites with a Hardy-Weinberg 348 

equilibrium p-value of < 0.01 (calculated using the ' --hardy ' option in VCFtools v.0.1.14; 349 

Danecek et al. 2011) – from the published dataset. Additionally, we excluded all SNPs 350 

located within regions blacklisted by the ENCODE Project Consortium (2012) (i.e., 351 

within regions prone to artifacts in high-throughput sequencing experiments) by lifting 352 

the data between the aye-aye (DMad_hybrid) genome assembly and the human (hg38) 353 

genome assembly using the UCSC liftOver tool (Raney et al. 2024). The resulting high-354 

quality, population-level dataset, consisting of 3,454,304 biallelic autosomal SNPs 355 

(transition-transversion ratio: 2.53), was then used as input for the recombination rate 356 

estimators LDhat (McVean et al. 2002, 2004; Auton and McVean 2007) and pyrho 357 

(Spence and Song 2019). 358 

LDhat: Following previous work in catarrhines (Auton et al. 2012; Stevison et al. 359 

2016; Pfeifer 2020a), we estimated the population recombination rate using 360 

LDhat v.2.2 (McVean et al. 2002, 2004; Auton and McVean 2007). In brief, we first 361 

divided the high-quality population-level dataset into 4,000-SNP regions with a 362 

200-SNP overlap between adjacent regions, and then ran the interval function of 363 

LDhat with a block penalty of 5 (' -bpen 5 ') for 60 million iterations (' -its 364 

60000000 ') using a sampling scheme of 40,000 iterations (' -samp 40000 '). 365 

Afterward, we used LDhat's stat function to discard the burn-in – defined here as 366 
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the first 20 million iterations (' -burn 500 ') of the Monte Carlo Markov Chain – and 367 

combined the region-based recombination rate estimates at the midpoint of the 368 

overlap. In keeping with previous best practices, we checked for regions with 369 

recombination rate estimates of > 100 between adjacent SNPs as well as gaps  370 

> 50 kb in the genome assembly that might spuriously interrupt patterns of LD, 371 

but no such regions were identified. Lastly, as LDhat estimates the population 372 

recombination rate r = 4 Ne r, where Ne is the e8ective population size and r is the 373 

per-generation recombination rate, we used the ancestral population size 374 

inferred in the demographic model of Terbot et al. (2024) (i.e., ~11,750 diploid 375 

genomes) to convert r to r.  376 

pyrho: Following the recommendations of the developers (Spence and Song 377 

2019), we estimated the per-generation recombination rate r using pyrho v.0.1.7. 378 

In brief, we first generated a likelihood lookup table using pyrho's make_table 379 

function, taking into account the population size change history previously 380 

inferred by Terbot et al. (2024) (' --popsizes 381 

2570,2944.784,3374.224,3866.288,4430.111,5076.157,5816.415,6585,23389  382 

--epochtimes 1,2,3,4,5,6,7,1133 '), and then ran the hyperparam function with 383 

the species-specific mutation rate estimated by Versoza et al. (2024a) for 384 

individuals reproducing at a young age (' --mu 0.4e-8 '), as likely the case in the 385 

wild (Ross 2003), to determine the optimal parameter settings for window size 386 

and block penalty.  We then used pyrho's optimize function with the 387 

recommended window size of 30 (' --windowsize 30 ') and block penalty of 45  388 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 28, 2024. ; https://doi.org/10.1101/2024.12.28.630620doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.28.630620


 20 

(' --blockpenalty 45 ') to estimate per-generation recombination rates across the 389 

genome.   390 

 391 

Assessing the performance of recombination rate estimators using simulations 392 

To compare the performance of the demography-unaware recombination rate 393 

estimator LDhat with the demography-aware estimator pyrho, we used msprime v.1.3.2 394 

(Baumdicker et al. 2022) to simulate 10 replicates of a 1.6Mb region (i.e., the longest 395 

uninterrupted accessible intergenic region in the aye-aye genome) with multiple 396 

parameter combinations. Specifically, to test the robustness of both tools with regards 397 

to the underlying demographic history, we implemented two models in our simulations: 398 

(1) the bottleneck-decline model from Terbot et al. (2024) and (2) a constant equilibrium 399 

model. Moreover, in addition to the species-specific average mutation rate recently 400 

estimated from a 14-individual three-generation pedigree in Versoza et al. (2024a) (1.1 x 401 

10-8 per base pair per generation), we also considered the lowest reported pedigree 402 

estimate (0.4 x 10-8 per base pair per generation) in our models to account for 403 

individuals potentially reproducing at a young age in the wild. Finally, we used the 404 

coarse-scale recombination rate estimate from pedigreed individuals (0.85 cM/Mb) 405 

reported in Versoza, Lloret-Villas et al. (2024) in all models.  406 

 407 

 408 

 409 
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Assessing the correlation of fine-scale rates of recombination with genomic features 410 

 Following previous work in humans (Spencer et al. 2006), we first calculated 411 

nucleotide diversity and divergence based on the aye-aye population genomic data and 412 

the 447-way mammalian multiple species alignment as noted above, as well as GC-413 

content (as a measure of base composition) and exon-content (as a proxy for 414 

evolutionary constraint) based on the annotated aye-aye (DMad_hybrid) genome 415 

assembly (GenBank accession number: JBFSEQ000000000; Versoza and Pfeifer 2024) 416 

in 1kb windows along the 14 autosomal sca8olds (i.e., sca8olds 1-8 and 10-15), and 417 

then applied a discrete wavelet transformation using the Rwave and wavethresh 418 

packages implemented in R v.4.2.2 to obtain information on the heterogeneity in each 419 

genomic feature at varying scales. To study scale-specific correlations, we additionally 420 

performed a linear model analysis on the log-transformed recombination, nucleotide 421 

diversity, and divergence rates.  422 
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  pedigree-based mutation rate divergence time  
    4.0E-09 1.1E-08 2.0E-08 54.9 mya 74.7 mya 
generation 
time (years) 

3 32.3 mya 11.7 mya 6.45 mya 2.36E-09 1.73E-09 
5 53.8 mya 19.5 mya 10.8 mya 3.93E-09 2.89E-09 

 

Table 1: Inferred aye-aye divergence times based on the observed mean neutral divergence rate of 0.043 for two di8erent possible 
generation times (3 years and 5 years; Ross 2003; Louis et al. 2020) and three di8erent pedigree-based mutation rates estimated for 
parents of di8ering ages by Versoza et al. (2024a) (shown in blue). Relatedly, the resulting divergence-based mutation rate estimates 
based on two possible divergence times (54.9 million years ago [mya] and 74.7 mya; Horvarth et al. 2008) and two possible generation 
times (3 years and 5 years; Ross 2003; Louis et al. 2020) are given for comparison (shown in orange).  
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Figure 1: (a) Density plots of the per base pair per generation (/bp/gen) mutation rate implied by neutral divergence for two possible 
generation times (3 years and 5 years; Ross 2003; Louis et al. 2020) and two possible divergence times (54.9 million years ago [mya] and 
74.7 mya; Horvarth et al. 2008). (b) Fine-scale mutation rates along the longest autosomal sca8old (i.e., sca8old 1) for genomic 
windows of size 1Mb, with a 500kb step size (see Supplementary Figures S2-14 for mutation rate heterogeneity across all other 
autosomal sca8olds). (c) Genome-wide mutation rates for genomic windows of size 1Mb, with a 500kb step size.
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Figure 2: Performance of two common estimators of recombination – the demography-
unaware estimator LDhat (shown in teal) and the demography-aware estimator pyrho 
(shown in red) – across varying mutation rates (µ = 0.4 x 10-8 and 1.1 x 10-8 per base pair 
per generation [/bp/gen]; Versoza et al. 2024a) and demographic histories, including the 
demographic history recently estimated by Terbot et al. (2024) for the species consisting 
of multiple population declines (demography) as well as a constant population size 
(equilibrium) for comparison. The yellow dashed line depicts the recombination rate 
that was used in the simulations (i.e., 0.85 cM/Mb; Versoza, Lloret-Villas et al. 2024).
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Figure 3: Genome-wide per-base per-generation (/bp/gen) recombination rates for genomic windows of size 1Mb, with a 500kb step size 
(and see Supplementary Figures S16-S29 for the recombination rate heterogeneity across each individual autosomal sca8old).
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Figure 4: Comparison of the genome-wide distribution of fine-scale recombination 
rates in aye-ayes (shown in pink) with those of di8erent haplorrhines (with humans of 
African ancestry shown in black and of European ancestry in beige, chimpanzees 
originating from Western populations in teal [Auton et al. 2012] and from Nigerian 
populations in red, bonobos in yellow, gorillas originating from Western populations in 
blue [Stevison et al. 2016], and vervet monkeys in purple [Pfeifer 2020a]). The figure was 
adapted from Pfeifer 2020a to include aye-ayes.     
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Figure 5: (a) The detail coe8icients of each genomic feature (diagonal plots) on the left 
and right arms of sca8old 1 (shown in dark and light yellow, respectively) as well as their 
pairwise correlations based on Kendall's rank correlation (o8-diagonal plots with the 
bottom left showing the left-arm and the top right showing the right-arm) at a range of 
(2n) scales. Correlations significant at the 1%-level under a two-tailed test are 
highlighted by crosses. (b) Linear model analysis of the detail coe8icients. Red and blue 
coloring indicate significant positive and negative relationships under a two-sided t-
test, with the color intensity being proportional to the significance level. Adjusted r2 
specifies the proportion of heterogeneity that can be explained by the linear model. 
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