

Inferring fine-scale mutation and recombination rate maps in aye-ayes (*Daubentonia madagascariensis*)

Vivak Soni^{1,*}, Cyril J. Versoza^{1,*}, John W. Terbot II¹, Jeffrey D. Jensen^{1,†} and Susanne P. Pfeifer^{1,†}

¹ Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA

* these authors contributed equally to this work

† co-corresponding authors; jointly supervised the project

(susanne@spfeiferlab.org; jeffrey.d.jensen@asu.edu)

Keywords

primate; strepsirrhine; mutation; recombination; fine-scale mapping; population genomics

1 **Abstract**

2 The rate of input of new genetic mutations, and the rate at which that variation is
3 reshuffled, are key evolutionary processes shaping genomic diversity. Importantly,
4 these rates vary not just across populations and species, but also across individual
5 genomes. Despite previous studies having demonstrated that failing to account for rate
6 heterogeneity across the genome can bias the inference of both selective and neutral
7 population genetic processes, mutation and recombination rate maps have to date only
8 been generated for a relatively small number of organisms. Here, we infer such fine-
9 scale maps for the aye-aye (*Daubentonia madagascariensis*) – a highly endangered
10 strepsirrhine that represents one of the earliest splits in the primate clade, and thus
11 stands as an important outgroup to the more commonly-studied haplorrhines – utilizing
12 a recently released fully-annotated genome combined with high-quality population
13 sequencing data. We compare our indirectly inferred rates to previous pedigree-based
14 estimates, finding further evidence of relatively low mutation and recombination rates in
15 aye-ayes compared to other primates.

16 **Introduction**

17 The rate of input of new genetic variation, and the rate at which that variation is
18 shuffled into potentially novel combinations via crossover and non-crossover events,
19 are fundamental evolutionary forces shaping observed genomic diversity. Over the past
20 decades, it has become clear that mutation rates vary at a variety of scales, from
21 between sites in a genome, to between individuals in a population, to between
22 populations of a species, as well as broadly across the Tree of Life (see reviews of Baer
23 et al. 2007; Lynch 2010; Hodgkinson and Eyre-Walker 2011; Pfeifer 2020b). The same is
24 true of recombination, with modifications of underlying rates observed to occur at even
25 more rapid timescales (see reviews of Ritz et al. 2017; Stapley et al. 2017). Importantly,
26 heterogeneity in both mutation and recombination rates across a genome can
27 significantly alter interactions between other evolutionary processes; for example,
28 modifying Hill-Robertson effects (Hill and Robertson 1966; Felsenstein 1974), thereby
29 modulating the genomic impact of selection at linked sites (Maynard Smith and Haigh
30 1974; Begun and Aquadro 1992; Charlesworth et al. 1993; and see Charlesworth and
31 Jensen 2021, 2022). Furthermore, neglecting this underlying rate heterogeneity in favor
32 of using single, species-averaged rates for mutation and recombination – as is common
33 practice in evolutionary models – has been shown to result in potentially mis-leading
34 inference when performing downstream analyses that rely on these estimates (e.g., for
35 inferring both population history and distributions of fitness effects, Soni et al. 2024a;
36 Soni and Jensen 2024; and see Dapper and Payseur 2018; Samuk and Noor 2022;
37 Ghafoor et al. 2023).

38 Aside from classical disease-incidence approaches (e.g., Haldane 1932, 1935),
39 there are generally two classes of experiments to infer mutation rates in primates and
40 other large organisms. Direct mutation rate estimation relies on high-throughput
41 genome sequencing of parent-offspring trios or multi-generation pedigrees, counting
42 the number of *de novo* mutations occurring from one generation to the next (see review
43 of Pfeifer 2020b). As mutations are rare, this generally results in only a genome-wide
44 estimate over the limited number of generations considered, rather than providing a
45 finer-scale map. Relatedly, tremendous caution must be exercised in the applied
46 computational approach as errors introduced during sequencing will generally far
47 outnumber genuine spontaneous mutations (Pfeifer 2021; Bergeron et al. 2022).
48 Alternatively, indirect mutation rate estimation from species-level divergence data
49 instead relies on Kimura's (1968) observation that the neutral mutation rate is equal to
50 the neutral divergence rate. Specifically, the number of substitutions K that accumulate
51 in a lineage in time T is equal to $(\mu/G)T$, where μ is the per-generation mutation rate and
52 G the generation time. As such, historically-averaged mutation rates can be inferred
53 from phylogenetic sequence data in neutral genomic regions, with the caveat that such
54 estimates must generally be couched within the context of underlying uncertainties in
55 both divergence and generation times (thus generally resulting in a range of possible
56 mutation rates). Complicating matters further, the identification of neutral regions
57 necessary for this indirect rate estimation requires high-quality genome annotations
58 which are not yet widely available for many organisms.

59 Similarly for recombination, taking a pedigree-based approach enables the
60 detection of contemporary crossover and non-crossover events in males and females

61 separately. As with direct mutation rate estimation, these approaches have the
62 advantage of direct observation, though the genome-scale resolution is again relatively
63 coarse given the small number of meiotic exchanges that can be observed within a
64 pedigree (see the review of Clark et al. 2010). By contrast, population-based
65 approaches using unrelated individuals can indirectly infer historical recombination
66 rates from patterns of linkage disequilibrium (LD) observed in the sample (see reviews
67 of Stumpf and McVean 2003; Peñalba and Wolf 2020). As such, these approaches offer
68 a higher genomic resolution and may thus provide for fine-scale mapping, though
69 inferred rates are necessarily sex-averaged, and may be confounded by other
70 population-level factors that can alter levels of LD (e.g., population history or selective
71 effects; Dapper and Payseur 2018; Samuk and Noor 2022). For this reason, it is
72 important to both directly model a fit demographic history when performing such
73 inference, and to carefully annotate neutral genomic regions prior to analysis (Johri et
74 al. 2020, 2022).

75 In primates, many of the highest quality estimates of both mutation and
76 recombination rates have been obtained in humans and their closest relatives (i.e., non-
77 human great apes) as well as in species of biomedical relevance (e.g., Kong et al. 2002;
78 Auton et al. 2012; Stevison et al. 2016; Pfeifer 2020a; Xue et al. 2020; Wall et al. 2022;
79 Versoza, Weiss, et al. 2024). In humans, for example, large-scale sequencing of
80 pedigrees has yielded mutation rate estimates of $\sim 10^{-8}$ per base pair per generation (see
81 review of Ségurel et al. 2014), which is roughly two-fold lower than the initial indirect
82 estimates obtained from phylogenetic data (Nachman and Crowell 2000; Kondrashov
83 2003); while crossover rates have been inferred to range from 0.96 cM/Mb to 2.11

84 cM/Mb for the longest and shortest autosomes, respectively, with an overall sex-
85 averaged rate of ~1 cM/Mb (Kong et al. 2002). Recently however, owing to the generation
86 of high-quality population genomic data from pedigree individuals, combined with the
87 release of a fully annotated, chromosomal-level genome assembly (Versoza and Pfeifer
88 2024), we now additionally have direct mutation and recombination rate estimates for
89 aye-ayes (*Daubentonia madagascariensis*), a highly-endangered strepsirrhine that
90 represents one of the earliest splits in the primate clade (Versoza et al. 2024a,b;
91 Versoza, Lloret-Villas, et al. 2024). These direct estimates suggested an average
92 genome-wide mutation rate of $\sim 1.1 \times 10^{-8}$ per base pair per generation for the species –
93 although mutation rates in the wild may be closer to a rate of $\sim 0.4 \times 10^{-8}$ per base pair
94 per generation, as was estimated for individuals in the pedigree reproducing at an early
95 age – and a sex-averaged crossover rate of 0.85 cM/Mb. Importantly, utilizing
96 polymorphism data from unrelated individuals, Terbot et al. (2024) additionally
97 estimated a well-fitting population history for aye-ayes (and see Soni et al. 2024b),
98 describing a severe and relatively ancient population decline in the species coinciding
99 with the arrival of humans to Madagascar, as well as a far more recent decline likely
100 associated with habitat destruction and fragmentation over the past few decades.

101 Taking advantage of this newly available high-coverage genome-wide
102 polymorphism data from both unrelated and pedigree individuals, the recent
103 annotation of the genome enabling the masking of functional (i.e., directly selected)
104 regions, as well as these pedigree-based direct coarse-scale estimates allowing for
105 meaningful comparison, we here infer indirect fine-scale mutation and recombination
106 rate maps across the aye-aye genome utilizing both levels and patterns of variation as

107 well as divergence from other closely related primate species. Aside from the biological
108 insight into the rates of mutation and recombination gained in this study, by allowing for
109 the incorporation of the observed rate heterogeneity, these newly developed fine-scale
110 maps will thus also be vitally important to improve future primate evolutionary models.
111

112 **Results and Discussion**

113 Fine-scale mutation rate map

114 We calculated aye-aye divergence by removing the existing (but outdated) aye-
115 aye genome from the 447-way multiple species alignment, consisting of the combined
116 mammalian multiple species alignment of the Zoonomia Consortium (2020) and the
117 primate multiple species alignment of Kuderna et al. (2024), and replaced it with the
118 current NCBI reference genome for the species (i.e., the high-quality, fully annotated
119 aye-aye genome of Versoza and Pfeifer (2024); see the "Materials and Methods" section
120 for details). By masking both functional regions and segregating variants, we calculated
121 neutral divergence across accessible sites for a range of window sizes (1kb, 10kb,
122 100kb, and 1Mb), yielding a mean neutral divergence rate of 0.043 at the 1Mb-scale
123 relative to the reconstructed ancestor (Supplementary Figure S1). Utilizing lower- and
124 upper-bounds of aye-aye divergence times (54.9 million years ago [mya] and 74.7 mya;
125 Horvarth et al. 2008) and bounds of likely generation times (3 years and 5 years; Ross
126 2003; Louis et al. 2020), we calculated neutral mutation rates across these genomic
127 windows, as depicted in Table 1. The average mutation rate varied from 1.73×10^{-9}
128 mutations per base pair per generation (under a divergence time of 74.7 mya and a

129 generation time of 3 years) and 3.93×10^{-9} mutations per base pair per generation (under
130 a divergence time of 54.9 mya and a generation time of 5 years). Figure 1a provides
131 density plots of mutation rates for these divergence and generation times, whilst Figures
132 1b and 1c provide the heterogeneity in mutation rates across a single chromosome-
133 length scaffold (using the longest autosomal scaffold as an example; and see
134 Supplementary Figures S2-S14 for mutation rate heterogeneity across all other
135 autosomal scaffolds) and across the whole genome, respectively.

136 Taking the reverse tack, we additionally estimated aye-aye divergence times
137 utilizing the recently inferred mutation rates from multi-generation aye-aye pedigree
138 data (Table 1; Versoza et al. 2024a). These rates ranged from 0.4×10^{-8} per base pair per
139 generation in individuals born to young parents (<12 years of age) to 2.0×10^{-8} per base
140 pair per generation in individuals born to old parents (>24 years of age), with an average
141 rate of $\sim 1.1 \times 10^{-8}$ per base pair per generation, resulting in estimated divergence times
142 spanning the very large range from 53.8 mya to 6.45 mya (when considering the highest
143 and lowest generation times as well). These results strongly suggest that average ages
144 of reproduction in the wild are comparatively young, given that the rates associated with
145 older parents in captivity provide unrealistically recent divergence times relative to the
146 fossil record (Gingerich 2006; Smith et al. 2006; and see the review of Gingerich 2012) –
147 an observation in agreement with previous ecological studies that reported average
148 reproductive ages of 3 to 5 years in the wild (Ross 2003; Louis et al. 2020). Further, the
149 times associated with younger parents are consistent with previous estimates of
150 divergence based on a limited set of genetic markers encompassing ~ 9 kb of nuclear
151 sequence (Horvath et al. 2008), and thus the lower direct pedigree mutation rate of $0.4 \times$

152 10⁻⁸ per base pair per generation is likely the more appropriate long-term estimate for
153 the species. Indeed, given that this estimate falls within our indirectly inferred mean
154 mutation rate in this study as well, and that prosimians have been shown to have
155 generally lower mutation rates compared to other primates (Tran and Pfeifer 2018;
156 Chintalapati and Moorjani 2020), these results taken together represent a strong body of
157 evidence that supports relatively low mutation rates in aye-ayes. Importantly, there is a
158 considerable discordance in divergence time estimates of the strepsirrhine–haplorrhine
159 split between those based on molecular data and the sparse fossil record – with the
160 former placing the split as early as 90 mya and the latter at 55 mya (Hartwig 2011).
161 Hence, with our improved estimates of mutation rates from both pedigree-based and
162 divergence data, our estimate of ~53.8 mya is in agreement with the origin of primates
163 (Tavaré et al. 2002; Zhang et al. 2008), and thus with strepsirrhines representing one of
164 the earliest splits in the primate clade (Pozzi et al. 2014).

165

166 Fine-scale recombination rate map

167 We utilized two different approaches to infer fine-scale rates of recombination.
168 The first, LDhat (McVean et al. 2002, 2004; Auton and McVean 2007), is an approach
169 employed in earlier studies investigating the landscape of recombination in non-human
170 primates such as the PanMap (Auton et al. 2012) and Great Ape Recombination Maps
171 (Stevison et al. 2016) projects – which generated fine-scale genetic maps for Western
172 chimpanzees (*Pan troglodytes verus*), Nigerian chimpanzees (*Pan troglodytes elliotti*),
173 bonobos (*Pan paniscus*), and Western gorillas (*Gorilla gorilla gorilla*) – as well as the

174 projects that generated population-scale recombination maps for biomedically-
175 relevant species such as vervet monkeys (*Chlorocebus aethiops sabaeus*; Pfeifer
176 2020a). The second is the more recently developed software *pyrho* (Spence and Song
177 2019) which, unlike *LDhat*, can explicitly account for the population size change history
178 when performing inference (see "Materials and Methods" section for details).

179 To assess the performance of these two tools, we simulated a region of 1.6Mb
180 (i.e., the longest accessible intergenic stretch in the aye-aye genome) based on a fixed
181 recombination rate (0.85 cM/Mb; Versoza, Lloret-Villas et al. 2024), mutation rate (0.4 x
182 10^{-8} and 1.1×10^{-8} per base pair per generation; Versoza et al. 2024a), and the recently
183 estimated demographic history for the species consisting of multiple population
184 declines (Terbot et al. 2024), as well as a constant population size for comparison. Our
185 simulations demonstrate that *LDhat* generally performs well, with estimates falling
186 within the range of the defined recombination rate even under the non-equilibrium
187 demographic model (Figure 2). In contrast, *pyrho* consistently underestimates
188 recombination rates across all parameter combinations, despite utilizing the defined
189 demographic model during inference. Taken together, these results suggest that *LDhat*
190 is the superior estimator; additionally, they highlight that the *LDhat* estimates are
191 themselves relatively robust to the underlying demographic history characterizing aye-
192 ayes.

193 Assuming an ancestral population size of ~11,750 diploid genomes as recently
194 inferred in the demographic model of Terbot et al. (2024), we thus converted the
195 population-scaled recombination rate estimates inferred using *LDhat* to per-generation
196 recombination rate estimates, yielding an average genome-wide recombination rate of

197 1.04 x 10⁻⁹ per base pair at the 1Mb-scale (Supplementary Figure S15) – about an order
198 of magnitude lower than the average rate reported for anthropoid apes (~10⁻⁸
199 recombination events per base pair per generation, or ~1 cM/Mb, for humans and ~1.2
200 cM/Mb for bonobos, chimpanzees, and gorillas; Kong et al. 2002; Auton et al. 2012;
201 Stevison et al. 2016). This observation of a notable reduction of recombination rates in
202 aye-ayes compared to humans and other haplorrhines is consistent with pedigree-
203 based estimates of sex-specific crossover rates being considerably lower in aye-ayes
204 than in the great apes (Versoza, Lloret-Villas et al. 2024).

205 However, despite the reduction in overall rate, aye-ayes exhibit a landscape of
206 recombination similar to those of other primates (Auton et al. 2012; Stevison et al.
207 2016; Pfeifer 2020a; Wall et al. 2022; Versoza, Weiss, et al. 2024); for example,
208 recombination rates are generally elevated towards the telomeric ends and depressed
209 within centromeric and pericentromeric regions of each autosomal scaffold (see Figure
210 3 for genome-wide recombination rates and Supplementary Figures S16-S29 for the
211 fine-scale variation in recombination rates across each individual autosomal scaffold).
212 Moreover, in aye-ayes, about 80% of recombination occurs in approximately 8% of the
213 genome (Figure 4) – the same fraction than in human individuals of European ancestry
214 (Auton et al. 2012) – potentially hinting at similarities in the concentration of hotspots
215 across the genome.

216

217

218

219 Correlations between fine-scale rates of recombination with genomic features

220 In order to gain a better understanding of the evolution of the recombination
221 landscape in aye-ayes, we studied the impact of several genomic features on scale-
222 specific recombination rates. To this end, we calculated nucleotide diversity and
223 divergence based on the aye-aye population genomic data and the 447-way
224 mammalian multiple species alignment as noted above, as well as GC-content (as a
225 measure for genome composition) and exon-content (as a proxy for evolutionary
226 constraint) based on the annotated aye-aye assembly in 1kb-regions along the genome.
227 We applied a discrete wavelet transformation in order to obtain information on the
228 heterogeneity in each feature, with detail coefficients providing scale-specific
229 information at a range of (2^n) scales. After transformation, we performed a linear model
230 analysis of these detail coefficients to study the scale-specific relationships between
231 the heterogeneity in each genomic feature and recombination rate.

232 Figure 5a provides the detail coefficients for each genomic feature (diagonal
233 plots) as well as their pairwise correlations (off-diagonal plots) at scales ranging from 2^1
234 to 2^{17} , and Figure 5b the corresponding linear model analysis of the detail coefficients
235 for the longest autosomal scaffold as an example (for all other autosomal scaffolds, see
236 Supplementary Figures S30-S42). Similar to haplorrhines (Spencer et al. 2016; Pfeifer
237 2020a), aye-ayes exhibit the highest level of heterogeneity in nucleotide diversity and
238 neutral divergence at the finest (2kb) scale. In contrast, the largest heterogeneity in
239 recombination rate occurs over scales of 2-8kb, in the same range previously observed
240 in vervet monkeys (2kb; Pfeifer 2020a) and humans (8kb; Spencer et al. 2006), and
241 similar to the heterogeneity observed in exon-content (4-8kb). Due to the organization of

242 primate genomes into GC-rich and GC-poor isochores (Costantini et al. 2009), base
243 composition displays a concave distribution, with the highest heterogeneities observed
244 at both the fine (2-8kb) and broad (>1Mb) scales. Focusing on the pairwise correlations
245 between the detail coefficients at the fine (2-8kb) scale, nucleotide diversity is
246 significantly positively correlated with both neutral divergence and GC-content, as
247 expected given that the rate of mutation, which jointly impacts diversity and divergence,
248 varies depending on the local base composition in the genome (Figure 1c, and see
249 review of Hodgkinson and Eyre-Walker 2011). The rates of divergence are also
250 significantly negatively correlated with exon-content at the fine to intermediate scales,
251 as anticipated from evolutionary constraint to maintain proper gene function, thereby
252 subjecting these regions to purifying selection (see reviews of Charlesworth and Jensen
253 2021, 2022). In addition to mutation, and similar to other primates (Spencer et al. 2006;
254 Auton et al. 2012; Pfeifer and Jensen 2016; Stevison et al. 2016), GC-rich genomic
255 regions are also associated with higher rates of recombination in aye-ayes. Contributing
256 to this positive correlation at the fine-scale is GC-biased gene conversion, an
257 evolutionary process associated with meiotic recombination that elevates the GC-
258 content of a region through the preferential transmission of GC over AT alleles (Duret
259 and Galtier 2009), thus leading to a higher GC-content in regions of frequent
260 recombination (i.e., recombination hotspots). Additionally, in regions of high
261 recombination, the effects of selection at linked sites (e.g., background selection and
262 selective sweeps) will be reduced, allowing more genetic diversity to persist in close
263 proximity (Maynard Smith and Haigh 1974; Begun and Aquadro 1992; Charlesworth et
264 al. 1993). However, recombination hotspots are highly localized (within 1-2kb regions;
265 Baudat et al. 2010; Myers et al. 2010; Parvanov et al. 2010) and often flanked by regions

266 of low recombination which, in turn, extend genetic hitchhiking effects, thus reducing
267 nucleotide diversity at intermediate (10s to 100s of kb) scales (Maynard Smith and
268 Haigh 1974; Begun and Aquadro 1992; Charlesworth et al. 1993).

269

270 **Concluding thoughts**

271 In this study, we have characterized the underlying heterogeneity in mutation and
272 recombination rates across the genome of aye-ayes. We found that mutation rates in
273 this species are lower than in other primates, which is in agreement with previous
274 studies showing lower mutation rates in prosimians (Tran and Pfeifer 2018; Chintalapati
275 and Moorjani 2020). Notably, this indirect divergence-based estimate supports the
276 recent pedigree-based estimate of 0.4×10^{-8} per base pair per generation characteristic
277 of younger parents (Versoza et al. 2024a), suggesting a relatively young long-term
278 reproductive age in the wild, as might be expected from previous studies of the life
279 history and socioecology of the species (Ross 2003). This rate also implies a split time
280 of ~54 mya, consistent with the earliest primates in the fossil record, as opposed to the
281 much older and difficult to reconcile split times previously proposed. We similarly
282 found a notable reduction of recombination rate in aye-ayes compared to the great apes
283 (Auton et al. 2012; Steviston et al. 2016), despite overall similarities in the recombination
284 landscape, including the concentration of hotspots across the genome. Given the
285 recently reported enrichment of crossover events in regions harboring predicted great
286 ape PRDM9 binding motifs – a zinc-finger protein controlling the activation of hotspots
287 in primates – in pedigree aye-aye individuals (Versoza, Lloret-Villas et al. 2024), the

288 future characterization of hotspots in the species should thus be of great interest to the
289 comparative primate genomics community.

290 With rate maps available in only a limited number of species, it is common
291 practice to use a single, species-averaged rate for both mutation and recombination
292 when modelling population genetic processes. However, failing to account for the
293 underlying heterogeneity in mutation and recombination rates has been shown to
294 potentially bias the inference of both population history as well as the distribution of
295 fitness effects (e.g., Soni et al. 2023, 2024a). Thus, the rate maps provided here will
296 facilitate more robust inference of population genetic processes in the highly
297 endangered aye-aye specifically, as well as in evolutionary models of primate evolution
298 more broadly.

299 **Materials and Methods**

300 Updating the aye-aye genome in the 447-way mammalian multiple species alignment

301 We obtained the 447-way multiple species alignment, consisting of the
302 combined mammalian multiple species alignment of the Zoonomia Consortium (2020)
303 and the primate multiple species alignment of Kuderna et al. (2024), from
304 <https://cglgenomics.ucsc.edu/november-2023-nature-zoonomia-with-expanded-primates-alignment/> and removed the outdated aye-aye genome assembly using the
305 *halRemoveGenome* function implemented in HAL v.2.2 (Hickey et al. 2013). Next, we
306 added the current NCBI reference genome for the species – that is, the high-quality,
307 fully annotated aye-aye assembly of Versoza and Pfeifer (2024) (DMad_hybrid; GenBank
309 accession number: JBFSEQ000000000) – to the alignment, by first extracting the
310 ancestral genomes PrimatesAnc005 and PrimatesAnc011 from the 447-way alignment
311 using HAL's *hal2fasta* function, and then aligning these ancestral genomes with the new
312 aye-aye genome in Cactus v.2.9.2 (Armstrong et al. 2020) using the branch lengths
313 previously inferred in the 447-way alignment. Finally, we attached this alignment back
314 into the 447-way alignment using HAL's *halReplaceGenome* function.

315

316 Inferring fine-scale rates of neutral divergence and mutation

317 To infer fine-scale rates of neutral divergence and mutation, we first used the
318 *halSummarizeMutations* function implemented in HAL v.2.2 (Hickey et al. 2013) to
319 retrieve 'point mutations' along the aye-aye branch (i.e., substitutions between the aye-
320 aye and PrimateAnc005), thereby masking any sites within 10kb of functional regions to

321 avoid the potentially confounding effects of selection. From these point mutations, we
322 then removed all sites associated with segregating polymorphisms in the species,
323 resulting in a final dataset from which we calculated neutral divergence by dividing the
324 number of divergent sites by the number of accessible sites in any given genomic
325 window (Soni et al. 2024b). Specifically, divergence was estimated genome-wide, as
326 well as in windows of size 1kb, 10kb, 100kb and 1Mb using a sliding window approach
327 with a step size of 1kb, 5kb, 50kb, and 500kb, respectively. To obtain mutation rates for
328 each genomic window, we divided by the divergence time in generations, using
329 divergence times of 54.9 mya and 74.7 mya (Horvarth et al. 2008) and generation times
330 of 3 years and 5 years (Ross 2003; Louis et al. 2020) for comparison.

331

332 Inferring fine-scale rates of recombination

333 We utilized two different approaches to infer fine-scale rates of recombination –
334 the demography-unaware estimator LDhat (McVean et al. 2002, 2004; Auton and
335 McVean 2007) and the demography-aware estimator pyrho (Spence and Song 2019) –
336 both of which rely on patterns of LD observed in sequencing data to estimate
337 recombination rates. To this end, we took advantage of a recently generated population
338 genomic dataset of unrelated individuals (Soni et al. 2024b) for which we implemented
339 a set of stringent filter criteria (supplementing the standard quality control practices
340 applied in the previous study as described in Pfeifer 2017) to eliminate spurious single
341 nucleotide polymorphisms (SNPs) that may lead to artefactual breaks in patterns of LD.
342 Specifically, following the guidelines described in earlier studies investigating the
343 landscape of recombination in non-human primates (Auton et al. 2012; Stevison et al.

344 2016; Pfeifer 2020a), we removed both SNP clusters – defined here as three or more
345 SNPs within a 10bp window (calculated using the Genome Analysis Toolkit [GATK]
346 v.4.2.6.1 *VariantFiltration* function together with the parameters '--cluster-size 3' and
347 '--cluster-window-size 10'; van der Auwera and O'Connor 2020) – as well as SNPs
348 exhibiting an excess of heterozygosity – defined here as sites with a Hardy-Weinberg
349 equilibrium *p*-value of < 0.01 (calculated using the '--hardy' option in VCFtools v.0.1.14;
350 Danecek et al. 2011) – from the published dataset. Additionally, we excluded all SNPs
351 located within regions blacklisted by the ENCODE Project Consortium (2012) (i.e.,
352 within regions prone to artifacts in high-throughput sequencing experiments) by lifting
353 the data between the aye-aye (DMad_hybrid) genome assembly and the human (hg38)
354 genome assembly using the UCSC liftOver tool (Raney et al. 2024). The resulting high-
355 quality, population-level dataset, consisting of 3,454,304 biallelic autosomal SNPs
356 (transition-transversion ratio: 2.53), was then used as input for the recombination rate
357 estimators LDhat (McVean et al. 2002, 2004; Auton and McVean 2007) and pyrho
358 (Spence and Song 2019).

359 LDhat: Following previous work in catarrhines (Auton et al. 2012; Stevenson et al.
360 2016; Pfeifer 2020a), we estimated the population recombination rate using
361 LDhat v.2.2 (McVean et al. 2002, 2004; Auton and McVean 2007). In brief, we first
362 divided the high-quality population-level dataset into 4,000-SNP regions with a
363 200-SNP overlap between adjacent regions, and then ran the *interval* function of
364 LDhat with a block penalty of 5 ('-bpen 5') for 60 million iterations ('-its
365 60000000') using a sampling scheme of 40,000 iterations ('-samp 40000').
366 Afterward, we used LDhat's *stat* function to discard the burn-in – defined here as

367 the first 20 million iterations ('-burn 500') of the Monte Carlo Markov Chain – and
368 combined the region-based recombination rate estimates at the midpoint of the
369 overlap. In keeping with previous best practices, we checked for regions with
370 recombination rate estimates of > 100 between adjacent SNPs as well as gaps
371 > 50 kb in the genome assembly that might spuriously interrupt patterns of LD,
372 but no such regions were identified. Lastly, as LDhat estimates the population
373 recombination rate $\rho = 4 N_e r$, where N_e is the effective population size and r is the
374 per-generation recombination rate, we used the ancestral population size
375 inferred in the demographic model of Terbot et al. (2024) (i.e., ~11,750 diploid
376 genomes) to convert ρ to r .

377 *pyrho*: Following the recommendations of the developers (Spence and Song
378 2019), we estimated the per-generation recombination rate r using *pyrho* v.0.1.7.
379 In brief, we first generated a likelihood lookup table using *pyrho*'s *make_table*
380 function, taking into account the population size change history previously
381 inferred by Terbot et al. (2024) ('--popsizes
382 2570,2944.784,3374.224,3866.288,4430.111,5076.157,5816.415,6585,23389
383 --epochtimes 1,2,3,4,5,6,7,1133'), and then ran the *hyperparam* function with
384 the species-specific mutation rate estimated by Versoza et al. (2024a) for
385 individuals reproducing at a young age ('--mu 0.4e-8'), as likely the case in the
386 wild (Ross 2003), to determine the optimal parameter settings for window size
387 and block penalty. We then used *pyrho*'s *optimize* function with the
388 recommended window size of 30 ('--windowsize 30') and block penalty of 45

389 (' --blockpenalty 45 ') to estimate per-generation recombination rates across the
390 genome.

391

392 Assessing the performance of recombination rate estimators using simulations

393 To compare the performance of the demography-unaware recombination rate
394 estimator LDhat with the demography-aware estimator pyrho, we used msprime v.1.3.2
395 (Baumdicker et al. 2022) to simulate 10 replicates of a 1.6Mb region (i.e., the longest
396 uninterrupted accessible intergenic region in the aye-aye genome) with multiple
397 parameter combinations. Specifically, to test the robustness of both tools with regards
398 to the underlying demographic history, we implemented two models in our simulations:
399 (1) the bottleneck-decline model from Terbot et al. (2024) and (2) a constant equilibrium
400 model. Moreover, in addition to the species-specific average mutation rate recently
401 estimated from a 14-individual three-generation pedigree in Versoza et al. (2024a) ($1.1 \times$
402 10^{-8} per base pair per generation), we also considered the lowest reported pedigree
403 estimate (0.4×10^{-8} per base pair per generation) in our models to account for
404 individuals potentially reproducing at a young age in the wild. Finally, we used the
405 coarse-scale recombination rate estimate from pedigreed individuals (0.85 cM/Mb)
406 reported in Versoza, Lloret-Villas et al. (2024) in all models.

407

408

409

410 Assessing the correlation of fine-scale rates of recombination with genomic features

411 Following previous work in humans (Spencer et al. 2006), we first calculated
412 nucleotide diversity and divergence based on the aye-aye population genomic data and
413 the 447-way mammalian multiple species alignment as noted above, as well as GC-
414 content (as a measure of base composition) and exon-content (as a proxy for
415 evolutionary constraint) based on the annotated aye-aye (DMad_hybrid) genome
416 assembly (GenBank accession number: JBFSEQ000000000; Versoza and Pfeifer 2024)
417 in 1kb windows along the 14 autosomal scaffolds (i.e., scaffolds 1-8 and 10-15), and
418 then applied a discrete wavelet transformation using the *Rwave* and *wavethresh*
419 packages implemented in R v.4.2.2 to obtain information on the heterogeneity in each
420 genomic feature at varying scales. To study scale-specific correlations, we additionally
421 performed a linear model analysis on the log-transformed recombination, nucleotide
422 diversity, and divergence rates.

423

424 **Acknowledgements**

425 We would like to thank the Duke Lemur Center for providing the aye-aye samples
426 used in this study, and members of the Jensen Lab and Pfeifer Lab for helpful
427 discussion. Computations were performed on the Sol supercomputer at Arizona State
428 University (Jennewein et al. 2023) and on the Open Science Grid, which is supported by
429 the National Science Foundation and the U.S. Department of Energy's Office of Science.
430 This is Duke Lemur Center publication # XXXX.

431

432 **Funding**

433 This work was supported by the National Institute of General Medical Sciences
434 of the National Institutes of Health under Award Number R35GM151008 to SPP and the
435 National Science Foundation under Award Number DBI-2012668 to the Duke Lemur
436 Center. VS, JT, and JDJ were supported by National Institutes of Health Award Number
437 R35GM139383 to JDJ. CJV was supported by the National Science Foundation CAREER
438 Award DEB-2045343 to SPP. The content is solely the responsibility of the authors and
439 does not necessarily represent the official views of the National Institutes of Health or
440 the National Science Foundation.

441

442

443

444

445

446

447

448

449

450

451 **References**

- 452 Armstrong J, Hickey G, Diekhans M, Fiddes IT, Novak AM, Deran A, Fang Q, Xie D, Feng S,
453 Stiller J, et al. 2020. Progressive Cactus is a multiple-genome aligner for the thousand-
454 genome era. *Nature*. 587(7833):246–251.
- 455
- 456 Auton A, Fledel-Alon A, Pfeifer S, Venn O, Ségurel L, Street T, Leffler EM, Bowden R,
457 Aneas I, Broxholme J, et al. 2012. A fine-scale chimpanzee genetic map from population
458 sequencing. *Science*. 336(6078):193–198.
- 459
- 460 Auton A, McVean G. 2007. Recombination rate estimation in the presence of hotspots.
461 *Genome Res.* 17(8):1219–1227.
- 462
- 463 Baer CF, Miyamoto MM, Denver DR. 2007. Mutation rate variation in multicellular
464 eukaryotes: causes and consequences. *Nat Rev Genet.* 8(8):619–631.
- 465
- 466 Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M, Coop G, de Massy B.
467 2010. PRDM9 is a major determinant of meiotic recombination hotspots in humans and
468 mice. *Science*. 327(5967):836–840.
- 469
- 470 Baumdicker F, Bisschop G, Goldstein D, Gower G, Ragsdale AP, Tsambos G, Zhu S,
471 Eldon B, Ellerman EC, Galloway JG, et al. 2022. Efficient ancestry and mutation
472 simulation with msprime 1.0. *Genetics*. 220(3):iyab229.
- 473
- 474 Begun DJ, Aquadro CF. 1992. Levels of naturally occurring DNA polymorphism correlate
475 with recombination rates in *D. melanogaster*. *Nature*. 356(6369):519–520.
- 476
- 477 Bergeron LA, Besenbacher S, Turner TN, Versoza CJ, Wang RJ, Price AL, Armstrong E,
478 Riera M, Carlson J, Chen HY, et al. 2022. The mutationathon highlights the importance
479 of reaching standardization in estimates of pedigree-based germline mutation
480 rates. *eLife*. 11:e73577.
- 481
- 482 Charlesworth B, Morgan MT, Charlesworth D. 1993. The effect of deleterious mutations
483 on neutral molecular variation. *Genetics*. 134(4):1289–1303.
- 484
- 485 Charlesworth B, Jensen JD. 2021. Effects of selection at linked sites on patterns of
486 genetic variability. *Annu Rev Ecol Evol Syst.* 52:177–197.
- 487
- 488 Charlesworth B, Jensen JD. 2022. How can we resolve Lewontin’s Paradox? *Gen Biol
489 Evol.* 14(7):evac096.
- 490
- 491 Chintalapati M, Moorjani P. 2020. Evolution of the mutation rate across primates. *Curr
492 Opin in Genet Dev.* 62:58–64.
- 493
- 494 Clark AG, Wang X, Matise T. 2010. Contrasting methods of quantifying fine structure of
495 human recombination. *Annu Rev Genomics Hum Genet.* 11:45–64.
- 496

- 497 Costantini M, Cammarano R, Bernardi G. 2009. The evolution of isochore patterns in
498 vertebrate genomes. *BMC Genomics*. 10:146.
- 499
- 500 Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE,
501 Lunter G, Marth GT, Sherry ST, et al. 2011. The variant call format and VCFtools.
502 *Bioinformatics*. 27(15):2156–2158.
- 503
- 504 Dapper AL, Payseur BA. 2018. Effects of demographic history on the detection of
505 recombination hotspots from linkage disequilibrium. *Mol Biol Evol*. 35(2):335–353.
- 506
- 507 Duret L, Galtier N. 2009. Biased gene conversion and the evolution of mammalian
508 genomic landscapes. *Annu Rev Genomics Hum Genet*. 10:285–311.
- 509
- 510 ENCODE Project Consortium. 2012. An integrated encyclopedia of DNA elements in the
511 human genome. *Nature*. 489(7414):57–74.
- 512
- 513 Felsenstein J. 1974. The evolutionary advantage of recombination. *Genetics*. 78(2):737–
514 756.
- 515
- 516 Ghafoor S, Santos J, Versoza CJ, Jensen JD, Pfeifer SP. 2023. The impact of sample size
517 and population history on observed mutational spectra: a case study in human and
518 chimpanzee populations. *Gen Biol Evol*. 15(3):evad019.
- 519
- 520 Gingerich PD. 2006. Environment and evolution through the Paleocene-Eocene thermal
521 maximum. *Trends Ecol Evol*. 21(5):246–253.
- 522
- 523 Gingerich PD. 2012. Primates in the Eocene. *Palaeobiodivers Palaeoenviron*. 92:649–
524 663.
- 525
- 526 Haldane JBS. 1932. The causes of evolution. Longmans, Green, & Co, London, UK.
- 527
- 528 Haldane JBS. 1935. The rate of spontaneous mutation of a human gene. *J Genet*.
529 31:317–326
- 530
- 531 Hartwig W. 2011. Chapter 3: Primate evolution. In Campbell CJ et al. (eds) *Primates in*
532 *perspective*. 2nd ed, Oxford University Press, pp. 19–31.
- 533
- 534 Hickey G, Paten B, Earl D, Zerbino D, Haussler D. 2013. HAL: a hierarchical format for
535 storing and analyzing multiple genome alignments. *Bioinformatics*. 29(10):1341–1342.
- 536
- 537 Hill WG, Robertson A. 1966. The effect of linkage on limits to artificial selection. *Genet*
538 *Res*. 8(3):269–294.
- 539
- 540 Hodgkinson A, Eyre-Walker A. 2011. Variation in the mutation rate across mammalian
541 genomes. *Nat Rev Genet*. 12(11):756–766.
- 542

- 543 Horvath JE, Weisrock DW, Embry SL, Fiorentino I, Balhoff JP, Kappeler P, Wray GA,
544 Willard HF, Yoder AD. 2008. Development and application of a phylogenomic toolkit:
545 resolving the evolutionary history of Madagascar's lemurs. *Genome Res.* 18(3):489–499.
546
- 547 Jennewein DM, Lee J, Kurtz C, Dizon W, Shaeffer I, Chapman A, Chiquete A, Burks J,
548 Carlson A, Mason N, et al. 2023. The Sol Supercomputer at Arizona State University.
549 Practice and Experience in Advanced Research Computing, 296–301.
550
- 551 Johri P, Charlesworth B, Jensen JD. 2020. Toward an evolutionarily appropriate null
552 model: jointly inferring demography and purifying selection. *Genetics*. 215(1):173–192.
553
- 554 Johri P, Aquadro CF, Beaumont M, Charlesworth B, Excoffier L, Eyre-Walker A, Keightley
555 PD, Lynch M, McVean G, Payseur BA, et al. 2022. Recommendations for improving
556 statistical inference in population genomics. *PLoS Biol.* 20(5):e3001669.
557
- 558 Kimura M. 1968. Evolutionary rate at the molecular level. *Nature*. 217(5129):624–626.
559
- 560 Kondrashov AS. 2003. Direct estimates of human per nucleotide mutation rates at 20
561 loci causing Mendelian diseases. *Hum Mutat*. 21(1):12–27.
562
- 563 Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B,
564 Sigurdardottir S, Barnard J, Hallbeck B, Masson G, et al. 2002. A high-resolution
565 recombination map of the human genome. *Nat Genet*. 31(3):241–247.
566
- 567 Kuderna LFK, Ulirsch JC, Rashid S, Ameen M, Sundaram L, Hickey G, Cox AJ, Gao H,
568 Kumar A, Aguet F, et al. 2024. Identification of constrained sequence elements across
569 239 primate genomes. *Nature*. 625(7996):735–742.
570
- 571 Louis E, Sefczek T, Randimbiharinirina D, Raharivololona B, Raktondratrazandy J, Manjary
572 D, Aylward M, Ravelomandratra F. 2020. *Daubentonia madagascariensis*. *IUCN Red List*
573 *Threat. Species*.
574
- 575 Lynch M. 2010. Evolution of the mutation rate. *Trends Genet*. 26(8):345–352.
576
- 577 Maynard Smith J, Haigh J. 1974. The hitch-hiking effect of a favourable gene. *Genet Res*.
578 23(1):23–35.
579
- 580 McVean G, Awadalla P, Fearnhead P. 2002. A coalescent-based method for detecting
581 and estimating recombination from gene sequences. *Genetics*. 160(3):1231–1241.
582
- 583 McVean GAT, Myers SR, Hunt S, Deloukas P, Bentley DR, Donnelly P. 2004. The fine-
584 scale structure of recombination rate variation in the human genome. *Science*.
585 304(5670):581–584.
586
- 587 Myers S, Bowden R, Tumian A, Bontrop RE, Freeman C, MacFie TS, McVean G, Donnelly
588 P. 2010. Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic
589 recombination. *Science*. 327(5967):876–879.

- 590
- 591 Nachman MW, Crowell SL. 2000. Estimate of the mutation rate per nucleotide in
592 humans. *Genetics*. 156(1):297–304.
- 593
- 594 Parvanov ED, Petkov PM, Paigen K. 2010. PRDM9 controls activation of mammalian
595 recombination hotspots. *Science*. 327(5967):835.
- 596
- 597 Peñalba JV, Wolf JBW. 2020. From molecules to populations: appreciating and
598 estimating recombination rate variation. *Nat Rev Genet*. 21(8):476–492.
- 599
- 600 Pfeifer SP. 2017. From next-generation resequencing reads to a high-quality variant
601 data set. *Heredity (Edinb)*. 118(2):111–124.
- 602
- 603 Pfeifer SP. 2020a. A fine-scale genetic map for vervet monkeys. *Mol Biol Evol*.
604 37(7):1855–1865.
- 605
- 606 Pfeifer SP. 2020b. Spontaneous mutation rates. In Ho SYW (ed) The Molecular
607 Evolutionary Clock. Theory and Practice. Springer Nature, pp. 35–44.
- 608
- 609 Pfeifer SP. 2021. Studying mutation rate evolution in primates—the effects of
610 computational pipelines and parameter choices. *Giga Science*. 10(10):giab069.
- 611
- 612 Pfeifer SP, Jensen JD. 2016. The impact of linked selection in chimpanzees: a
613 comparative study. *Genome Biol Evol*. 8(10):3202–3208.
- 614
- 615 Pozzi L, Hodgson JA, Burrell AS, Sterner KN, Raaum RL, Disotell TR. 2014. Primate
616 phylogenetic relationships and divergence dates inferred from complete mitochondrial
617 genomes. *Mol Phylogenet Evol*. 75:165–183.
- 618
- 619 Raney BJ, Barber GP, Benet-Pagès A, Casper J, Clawson H, Cline MS, Diekhans M,
620 Fischer C, Navarro Gonzalez J, Hickey G, et al. 2024. The UCSC Genome Browser
621 database: 2024 update. *Nucleic Acids Res*. 52(D1):D1082–D1088.
- 622
- 623 Ritz RR, Noor MAF, Singh ND. 2017. Variation in recombination rate: adaptive or not?
624 *Trends Genet*. 33(5):364–374.
- 625
- 626 Ross C. 2003. Life history, infant care strategies, and brain size in primates. In: Kappeler
627 PM, Pereira ME, editors. Primate life histories and socioecology. Chicago (IL): Chicago
628 University Press. pp. 266–284.
- 629
- 630 Samuk K, Noor MAF. 2022. Gene flow biases population genetic inference of
631 recombination rate. *G3 (Bethesda)*. 12(11):jkac236.
- 632
- 633 Ségurel L, Wyman MJ, Przeworski M. 2014. Determinants of mutation rate variation in
634 the human germline. *Annu Rev Genomics Hum Genet*. 15:47–70.
- 635

- 636 Smith T, Rose KD, Gingerich PD. 2006. Rapid Asia-Europe-North America geographic
637 dispersal of earliest Eocene primate *Teilhardina* during the Paleocene-Eocene Thermal
638 Maximum. *Proc Natl Acad Sci U S A.* 103(30):11223–11227.
- 639
- 640 Spencer CC, Deloukas P, Hunt S, Mullikin J, Myers S, Silverman B, Donnelly P, Bentley D,
641 McVean G. 2006. The influence of recombination on human genetic diversity. *PLoS
642 Genet.* 2(9):e148.
- 643
- 644 Soni V, Jensen JD. 2024. Inferring demographic and selective histories from population
645 genomic data using a two-step approach in species with coding-sparse genomes: an
646 application to human data. *BioRxiv*, preprint.
647 <https://www.biorxiv.org/content/10.1101/2024.09.19.613979v2>
- 648
- 649 Soni V, Johri P, Jensen JD. 2023. Evaluating power to detect recurrent selective sweeps
650 under increasingly realistic evolutionary null models. *Evolution.* 77(10):2113–2127.
- 651
- 652 Soni V, Pfeifer SP, Jensen JD. 2024a. The effect of mutation and recombination rate
653 heterogeneity on the inference of demography and the distribution of fitness
654 effects. *Genome Biol Evol.* 16(2):evae004.
- 655
- 656 Soni V, Terbot JW, Versoza CJ, Pfeifer SP, Jensen JD. 2024b. A whole-genome scan for
657 evidence of recent positive and balancing selection in aye-ayes (*Daubentonia
658 madagascariensis*) utilizing a well-fit evolutionary baseline model. *BioRxiv*, preprint.
659 <https://www.biorxiv.org/content/10.1101/2024.11.08.622667v1>
- 660
- 661 Spence JP, Song YS. 2019. Inference and analysis of population-specific fine-scale
662 recombination maps across 26 diverse human populations. *Sci Adv.* 5(10):eaaw9206.
- 663
- 664 Stapley J, Feulner PGD, Johnston SE, Santure AW, Smadja CM. 2017. Variation in
665 recombination frequency and distribution across eukaryotes: patterns and processes.
666 *Philos Trans R Soc Lond B Biol Sci.* 372(1736):20160455.
- 667
- 668 Steviston LS, Woerner AE, Kidd JM, Kelley JL, Veeramah KR, McManus KF, Great Ape
669 Genome Project, Bustamante CD, Hammer MF, Wall JD. 2016. The time scale of
670 recombination rate evolution in great apes. *Mol Biol Evol.* 33(4):928–945.
- 671
- 672 Stumpf MPH, McVean GAT. 2003. Estimating recombination rates from population-
673 genetic data. *Nat Rev Genet.* 4(12):959–968.
- 674
- 675 Tavaré S, Marshall CR, Will O, Soligo C, Martin RD. 2002. Using the fossil record to
676 estimate the age of the last common ancestor of extant primates. *Nature.*
677 416(6882):726–729.
- 678
- 679 Terbot JW, Soni V, Versoza CJ, Pfeifer SP, Jensen JD. 2024. Inferring the demographic
680 history of aye-ayes (*Daubentonia madagascariensis*) from high-quality, whole-genome,
681 population-level data. *BioRxiv*, preprint.
682 <https://www.biorxiv.org/content/10.1101/2024.11.08.622659v1>

- 683
684 Tran LA, Pfeifer SP. 2018. Germ line mutation rates in old world monkeys. In: John Wiley
685 & Sons, Ltd, editor. eLS. 1st ed. Wiley. p. 1–10.
686
687 van der Auwera G, O'Connor B. 2020. Genomics in the Cloud. 1st edition. O'Reilly
688 Media.
689
690 Versoza CJ, Ehmke E, Jensen JD, Pfeifer SP. 2024a. Characterizing the rates and patterns
691 of *de novo* germline mutations in the aye-aye (*Daubentonia madagascariensis*). BioRxiv,
692 preprint.
693 <https://www.biorxiv.org/content/10.1101/2024.11.08.622690v1>
694
695 Versoza CJ, Jensen JD, Pfeifer SP. 2024b. The landscape of structural variation in aye-
696 ayes (*Daubentonia madagascariensis*). BioRxiv, preprint.
697 <https://www.biorxiv.org/content/10.1101/2024.11.08.622672v1>
698
699 Versoza CJ, Lloret-Villas A, Jensen JD, Pfeifer SP. 2024. A pedigree-based map of
700 crossovers and non-crossovers in aye-ayes (*Daubentonia madagascariensis*). BioRxiv,
701 preprint.
702 <https://www.biorxiv.org/content/10.1101/2024.11.08.622675v1>
703
704 Versoza CJ, Pfeifer SP. 2024. A hybrid genome assembly of the endangered aye-aye
705 (*Daubentonia madagascariensis*). *G3 (Bethesda)*. 14(10):jkae185.
706
707 Versoza C, Weiss S, Johal R, La Rosa B, Jensen JD, Pfeifer SP. 2024. Novel insights into
708 the landscape of crossover and non-crossover events in rhesus macaques (*Macaca*
709 *mulatta*). *Gen Biol Evol*. 16(1):evad223.
710
711 Wall JD, Robinson JA, Cox LA. 2022. High-resolution estimates of crossover and
712 noncrossover recombination from a captive baboon colony. *Genome Biol Evol*. 14(4):
713 evac040.
714
715 Xue C, Rustagi N, Liu X, Raveendran M, Harris RA, Venkata MG, Rogers J, Yu F. 2020.
716 Reduced meiotic recombination in rhesus macaques and the origin of the human
717 recombination landscape. *PLoS One*. 15:e0236285.
718
719 Zhang R, Wang Y-Q, Su B. 2008. Molecular evolution of a primate-specific microRNA
720 family. *Mol Biol Evol*. 25(7):1493–1502.
721
722 Zoonomia Consortium. 2020. A comparative genomics multitool for scientific discovery
723 and conservation. *Nature*. 587(7833):240–245.

		pedigree-based mutation rate			divergence time	
		4.0E-09	1.1E-08	2.0E-08	54.9 mya	74.7 mya
generation time (years)	3	32.3 mya	11.7 mya	6.45 mya	2.36E-09	1.73E-09
	5	53.8 mya	19.5 mya	10.8 mya	3.93E-09	2.89E-09

Table 1: Inferred aye-aye divergence times based on the observed mean neutral divergence rate of 0.043 for two different possible generation times (3 years and 5 years; Ross 2003; Louis et al. 2020) and three different pedigree-based mutation rates estimated for parents of differing ages by Versoza et al. (2024a) (shown in blue). Relatedly, the resulting divergence-based mutation rate estimates based on two possible divergence times (54.9 million years ago [mya] and 74.7 mya; Horvarth et al. 2008) and two possible generation times (3 years and 5 years; Ross 2003; Louis et al. 2020) are given for comparison (shown in orange).

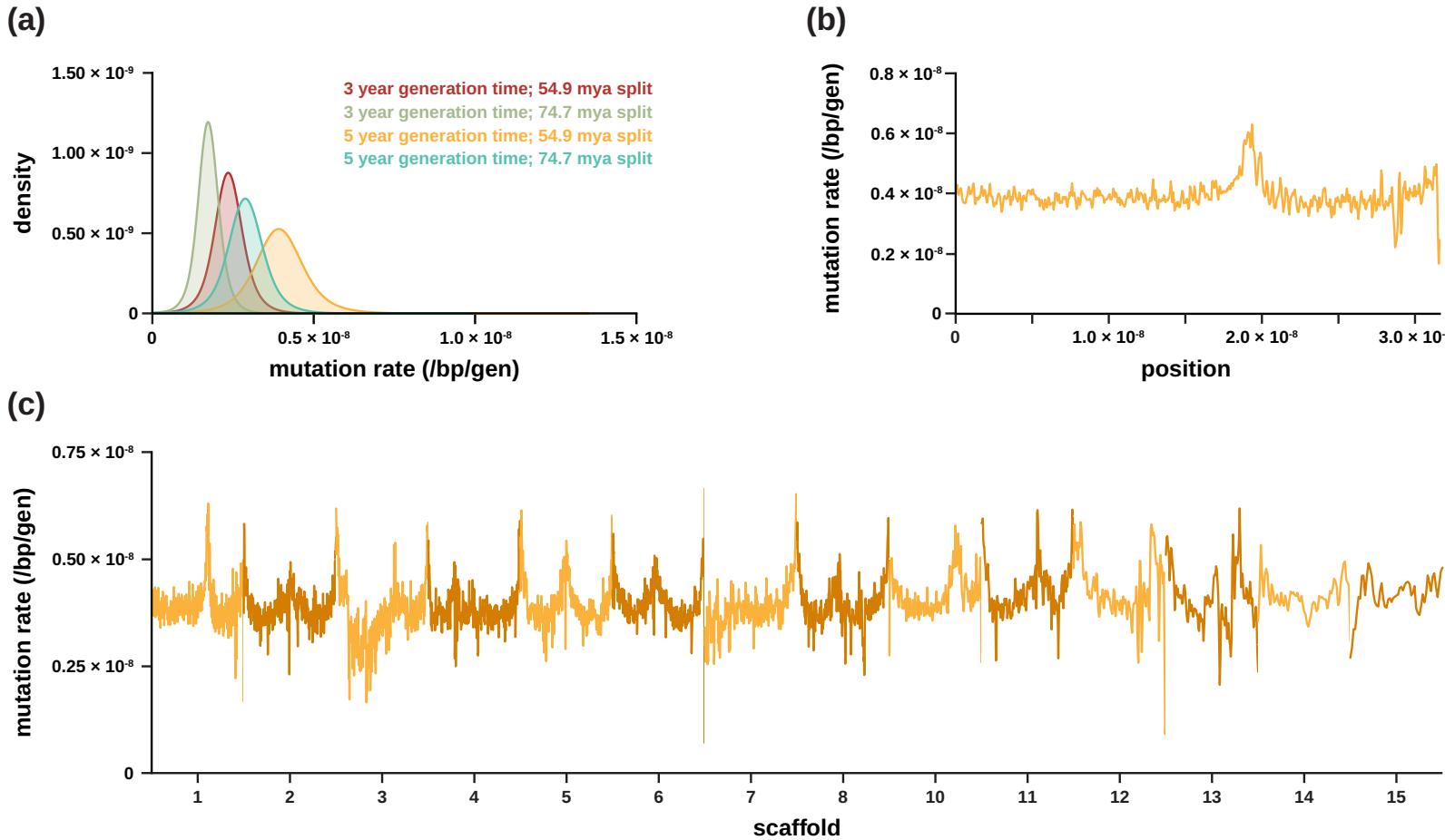


Figure 1: (a) Density plots of the per base pair per generation (/bp/gen) mutation rate implied by neutral divergence for two possible generation times (3 years and 5 years; Ross 2003; Louis et al. 2020) and two possible divergence times (54.9 million years ago [mya] and 74.7 mya; Horvarth et al. 2008). (b) Fine-scale mutation rates along the longest autosomal scaffold (i.e., scaffold 1) for genomic windows of size 1Mb, with a 500kb step size (see Supplementary Figures S2-14 for mutation rate heterogeneity across all other autosomal scaffolds). (c) Genome-wide mutation rates for genomic windows of size 1Mb, with a 500kb step size.

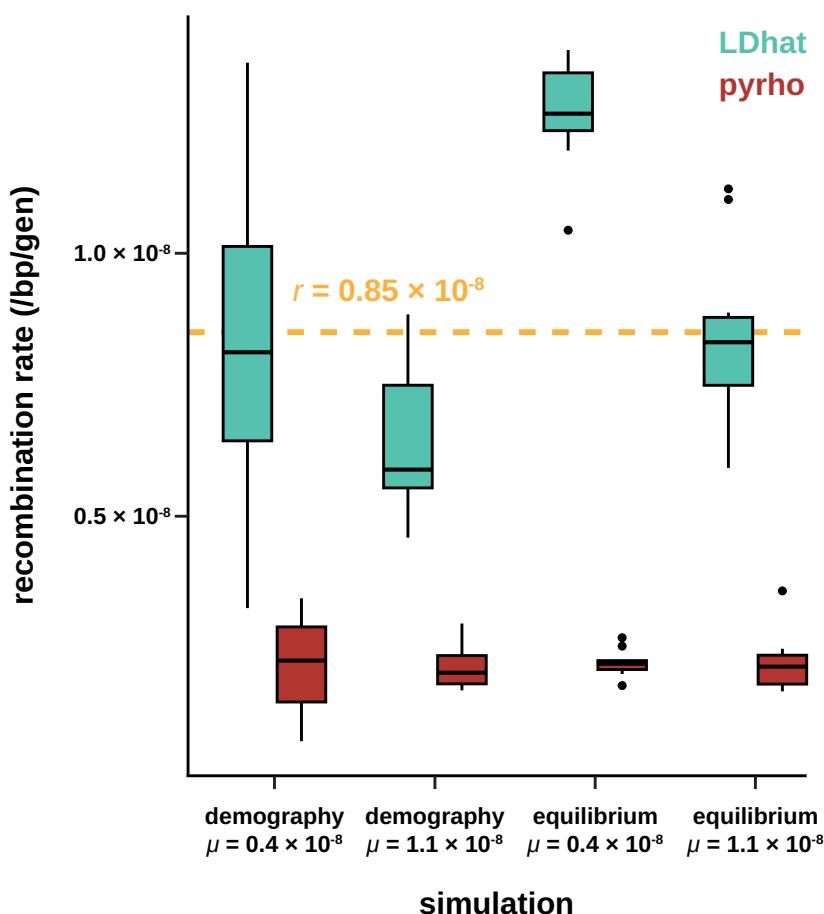


Figure 2: Performance of two common estimators of recombination – the demography-unaware estimator LDhat (shown in teal) and the demography-aware estimator pyrho (shown in red) – across varying mutation rates ($\mu = 0.4 \times 10^{-8}$ and 1.1×10^{-8} per base pair per generation [bp/gen]; Versoza et al. 2024a) and demographic histories, including the demographic history recently estimated by Terbot et al. (2024) for the species consisting of multiple population declines (demography) as well as a constant population size (equilibrium) for comparison. The yellow dashed line depicts the recombination rate that was used in the simulations (i.e., 0.85 cM/Mb; Versoza, Lloret-Villas et al. 2024).

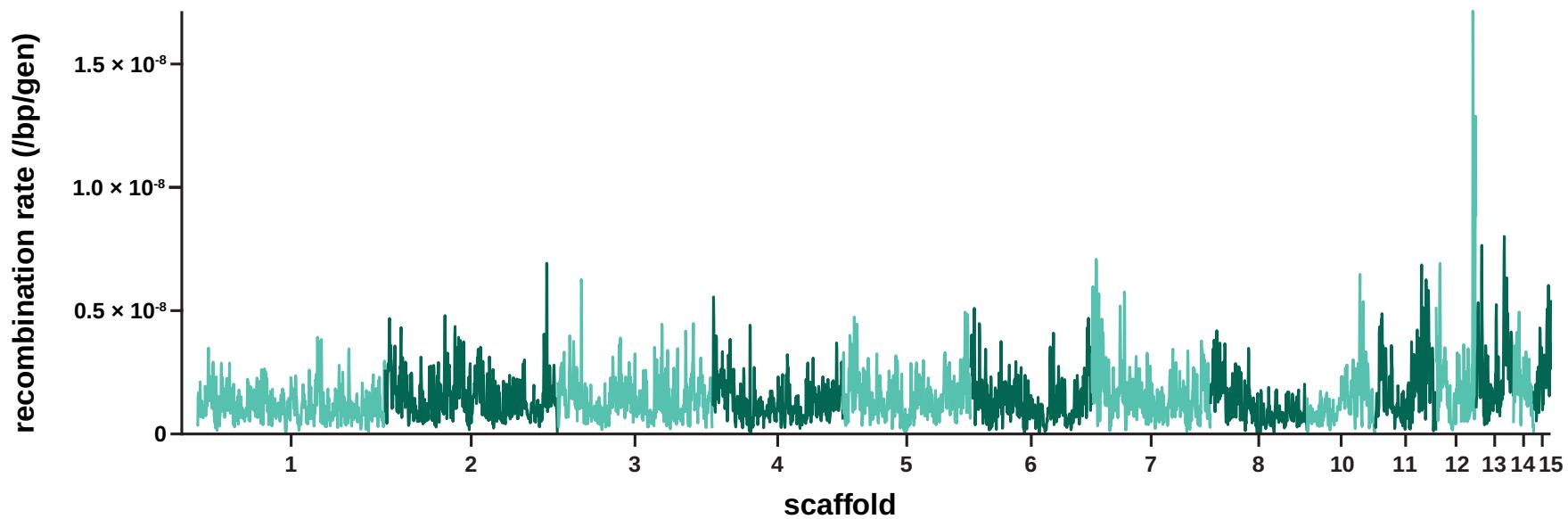


Figure 3: Genome-wide per-base per-generation (/bp/gen) recombination rates for genomic windows of size 1Mb, with a 500kb step size (and see Supplementary Figures S16-S29 for the recombination rate heterogeneity across each individual autosomal scaffold).

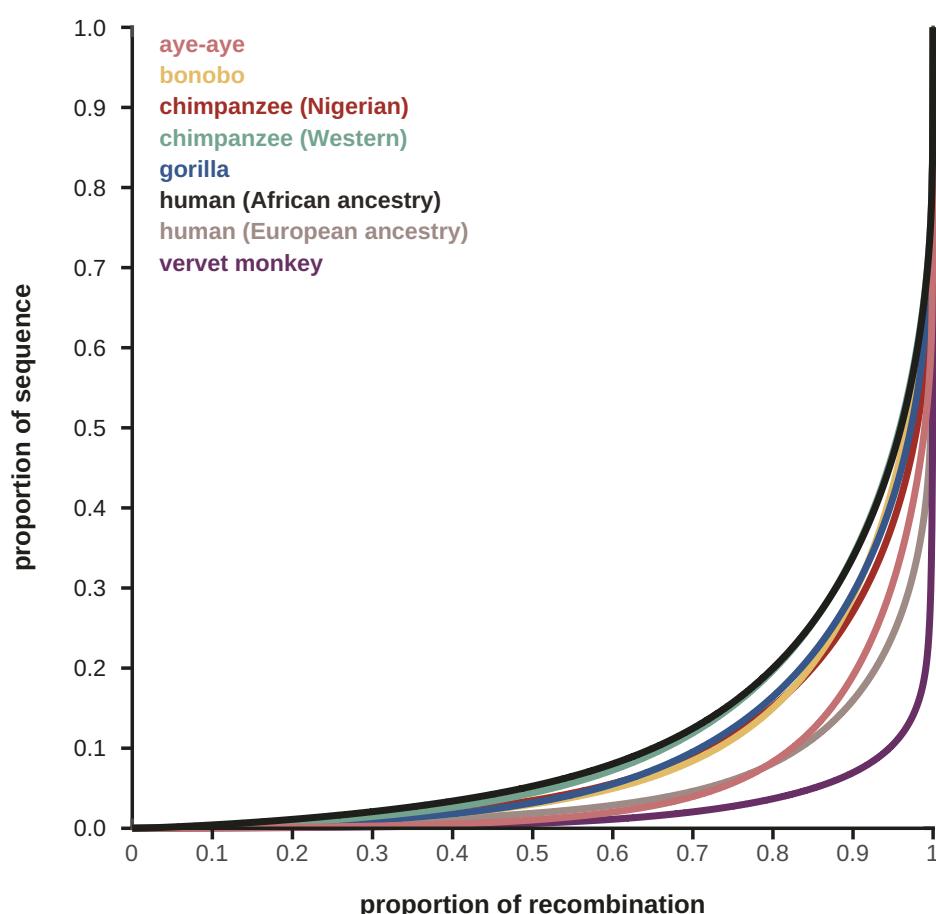


Figure 4: Comparison of the genome-wide distribution of fine-scale recombination rates in aye-ayes (shown in pink) with those of different haplorrhines (with humans of African ancestry shown in black and of European ancestry in beige, chimpanzees originating from Western populations in teal [Auton et al. 2012] and from Nigerian populations in red, bonobos in yellow, gorillas originating from Western populations in blue [Stevison et al. 2016], and vervet monkeys in purple [Pfeifer 2020a]). The figure was adapted from Pfeifer 2020a to include aye-ayes.

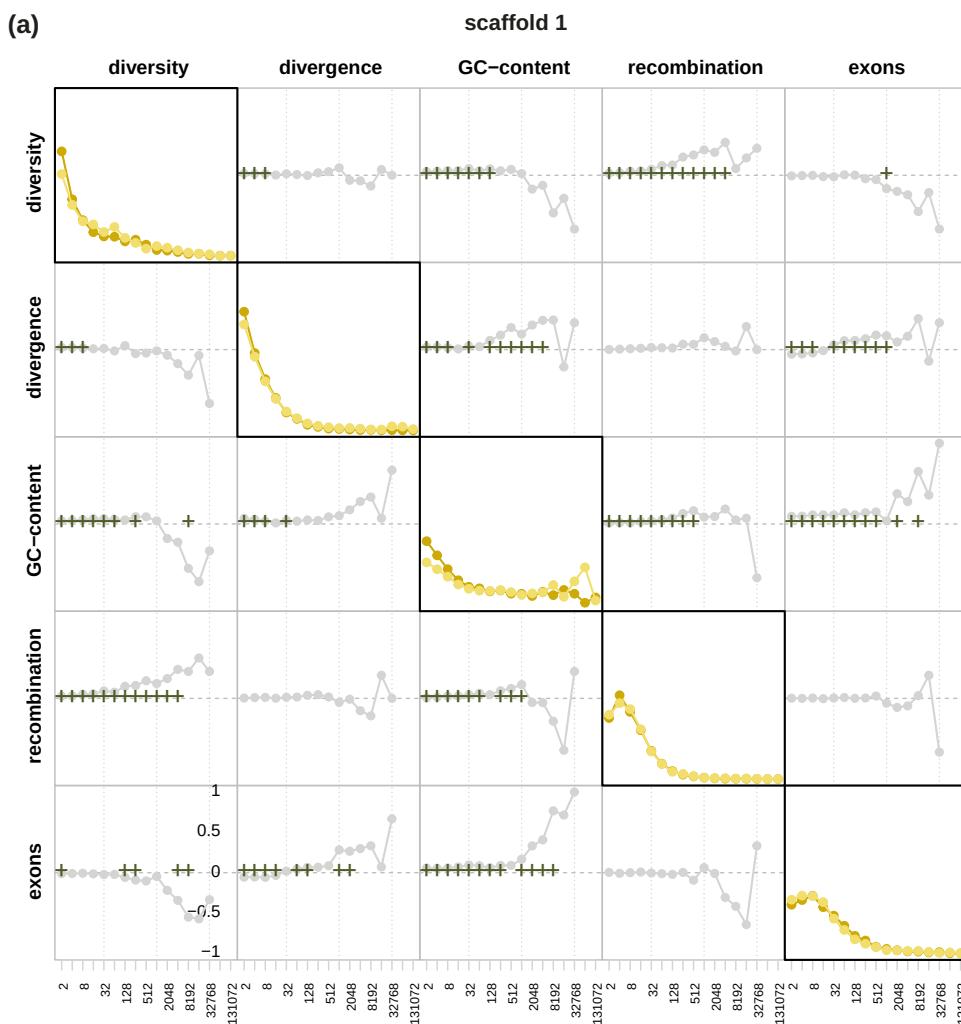
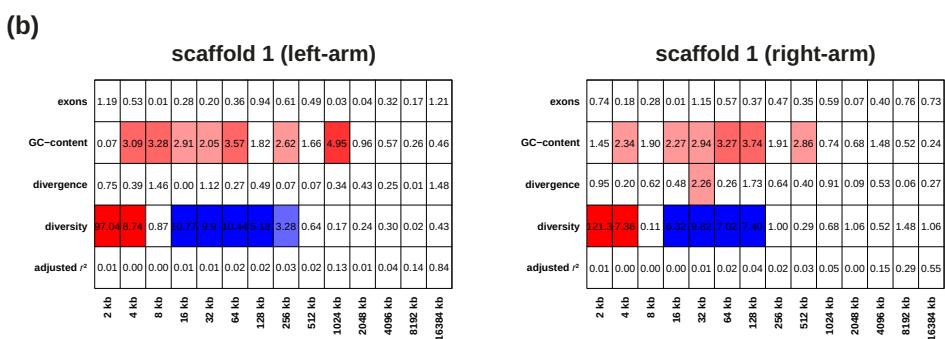


Figure 5: (a) The detail coefficients of each genomic feature (diagonal plots) on the left and right arms of scaffold 1 (shown in dark and light yellow, respectively) as well as their pairwise correlations based on Kendall's rank correlation (off-diagonal plots with the bottom left showing the left-arm and the top right showing the right-arm) at a range of (2^n) scales. Correlations significant at the 1%-level under a two-tailed test are highlighted by crosses. (b) Linear model analysis of the detail coefficients. Red and blue coloring indicate significant positive and negative relationships under a two-sided t -test, with the color intensity being proportional to the significance level. Adjusted r^2 specifies the proportion of heterogeneity that can be explained by the linear model.