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Abstract

The rate of input of new genetic mutations, and the rate at which that variation is
reshuffled, are key evolutionary processes shaping genomic diversity. Importantly,
these rates vary not just across populations and species, but also across individual
genomes. Despite previous studies having demonstrated that failing to account for rate
heterogeneity across the genome can bias the inference of both selective and neutral
population genetic processes, mutation and recombination rate maps have to date only
been generated for a relatively small number of organisms. Here, we infer such fine-
scale maps for the aye-aye (Daubentonia madagascariensis) — a highly endangered
strepsirrhine that represents one of the earliest splits in the primate clade, and thus
stands as an important outgroup to the more commonly-studied haplorrhines — utilizing
a recently released fully-annotated genome combined with high-quality population
sequencing data. We compare our indirectly inferred rates to previous pedigree-based
estimates, finding further evidence of relatively low mutation and recombination rates in

aye-ayes compared to other primates.
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Introduction

The rate of input of new genetic variation, and the rate at which that variation is
shuffled into potentially novel combinations via crossover and non-crossover events,
are fundamental evolutionary forces shaping observed genomic diversity. Over the past
decades, it has become clear that mutation rates vary at a variety of scales, from
between sites in a genome, to between individuals in a population, to between
populations of a species, as well as broadly across the Tree of Life (see reviews of Baer
et al. 2007; Lynch 2010; Hodgkinson and Eyre-Walker 2011; Pfeifer 2020b). The same is
true of recombination, with modifications of underlying rates observed to occur at even
more rapid timescales (see reviews of Ritz et al. 2017; Stapley et al. 2017). Importantly,
heterogeneity in both mutation and recombination rates across a genome can
significantly alter interactions between other evolutionary processes; for example,
modifying Hill-Robertson effects (Hill and Robertson 1966; Felsenstein 1974), thereby
modulating the genomic impact of selection at linked sites (Maynard Smith and Haigh
1974; Begun and Aquadro 1992; Charlesworth et al. 1993; and see Charlesworth and
Jensen 2021, 2022). Furthermore, neglecting this underlying rate heterogeneity in favor
of using single, species-averaged rates for mutation and recombination —as is common
practice in evolutionary models — has been shown to result in potentially mis-leading
inference when performing downstream analyses that rely on these estimates (e.g., for
inferring both population history and distributions of fitness effects, Soni et al. 2024a;
Soni and Jensen 2024; and see Dapper and Payseur 2018; Samuk and Noor 2022;

Ghafoor et al. 2023).
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Aside from classical disease-incidence approaches (e.g., Haldane 1932, 1935),
there are generally two classes of experiments to infer mutation rates in primates and
other large organisms. Direct mutation rate estimation relies on high-throughput
genome sequencing of parent-offspring trios or multi-generation pedigrees, counting
the number of de novo mutations occurring from one generation to the next (see review
of Pfeifer 2020b). As mutations are rare, this generally results in only a genome-wide
estimate over the limited number of generations considered, rather than providing a
finer-scale map. Relatedly, tremendous caution must be exercised in the applied
computational approach as errors introduced during sequencing will generally far
outnumber genuine spontaneous mutations (Pfeifer 2021; Bergeron et al. 2022).
Alternatively, indirect mutation rate estimation from species-level divergence data
instead relies on Kimura's (1968) observation that the neutral mutation rate is equal to
the neutral divergence rate. Specifically, the number of substitutions Kthat accumulate
in a lineage in time T is equal to (¢/G)T, where uis the per-generation mutation rate and
G the generation time. As such, historically-averaged mutation rates can be inferred
from phylogenetic sequence data in neutral genomic regions, with the caveat that such
estimates must generally be couched within the context of underlying uncertainties in
both divergence and generation times (thus generally resulting in a range of possible
mutation rates). Complicating matters further, the identification of neutral regions
necessary for this indirect rate estimation requires high-quality genome annotations

which are not yet widely available for many organisms.

Similarly for recombination, taking a pedigree-based approach enables the

detection of contemporary crossover and non-crossover events in males and females
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separately. As with direct mutation rate estimation, these approaches have the
advantage of direct observation, though the genome-scale resolution is again relatively
coarse given the small number of meiotic exchanges that can be observed within a
pedigree (see the review of Clark et al. 2010). By contrast, population-based
approaches using unrelated individuals can indirectly infer historical recombination
rates from patterns of linkage disequilibrium (LD) observed in the sample (see reviews
of Stumpf and McVean 2003; Pefialba and Wolf 2020). As such, these approaches offer
a higher genomic resolution and may thus provide for fine-scale mapping, though
inferred rates are necessarily sex-averaged, and may be confounded by other
population-level factors that can alter levels of LD (e.g., population history or selective
effects; Dapper and Payseur 2018; Samuk and Noor 2022). For this reason, itis
important to both directly model a fit demographic history when performing such
inference, and to carefully annotate neutral genomic regions prior to analysis (Johri et

al. 2020, 2022).

In primates, many of the highest quality estimates of both mutation and
recombination rates have been obtained in humans and their closest relatives (i.e., non-
human great apes) as well as in species of biomedical relevance (e.g., Kong et al. 2002;
Auton et al. 2012; Stevison et al. 2016; Pfeifer 2020a; Xue et al. 2020; Wall et al. 2022;
Versoza, Weiss, et al. 2024). In humans, for example, large-scale sequencing of
pedigrees has yielded mutation rate estimates of ~10® per base pair per generation (see
review of Ségurel et al. 2014), which is roughly two-fold lower than the initial indirect
estimates obtained from phylogenetic data (Nachman and Crowell 2000; Kondrashov

2003); while crossover rates have been inferred to range from 0.96 cM/Mb t0 2.11


https://doi.org/10.1101/2024.12.28.630620

bioRxiv preprint doi: https://doi.org/10.1101/2024.12.28.630620; this version posted December 28, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

84 cM/Mb for the longest and shortest autosomes, respectively, with an overall sex-

85 averaged rate of ~1 cM/Mb (Kong et al. 2002). Recently however, owing to the generation
86  of high-quality population genomic data from pedigreed individuals, combined with the
87 release of a fully annotated, chromosomal-level genome assembly (Versoza and Pfeifer
88  2024), we now additionally have direct mutation and recombination rate estimates for
89 aye-ayes (Daubentonia madagascariensis), a highly-endangered strepsirrhine that

90 represents one of the earliest splits in the primate clade (Versoza et al. 2024a,b;

91 Versoza, Lloret-Villas, et al. 2024). These direct estimates suggested an average

92 genome-wide mutation rate of ~1.1 x 108 per base pair per generation for the species -
93 although mutation rates in the wild may be closer to a rate of ~0.4 x 10 per base pair
94  pergeneration, as was estimated for individuals in the pedigree reproducing at an early
95 age-and a sex-averaged crossover rate of 0.85 cM/Mb. Importantly, utilizing

96 polymorphism data from unrelated individuals, Terbot et al. (2024) additionally

97 estimated a well-fitting population history for aye-ayes (and see Soni et al. 2024b),

98 describing a severe and relatively ancient population decline in the species coinciding
99  with the arrival of humans to Madagascar, as well as a far more recent decline likely

100 associated with habitat destruction and fragmentation over the past few decades.

101 Taking advantage of this newly available high-coverage genome-wide

102 polymorphism data from both unrelated and pedigreed individuals, the recent

103 annotation of the genome enabling the masking of functional (i.e., directly selected)
104 regions, as well as these pedigree-based direct coarse-scale estimates allowing for
105 meaningful comparison, we here infer indirect fine-scale mutation and recombination

106 rate maps across the aye-aye genome utilizing both levels and patterns of variation as
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107  well as divergence from other closely related primate species. Aside from the biological
108 insightinto the rates of mutation and recombination gained in this study, by allowing for
109 theincorporation of the observed rate heterogeneity, these newly developed fine-scale
110  maps will thus also be vitally important to improve future primate evolutionary models.

111

112 Results and Discussion

113 Fine-scale mutation rate map

114 We calculated aye-aye divergence by removing the existing (but outdated) aye-
115  aye genome from the 447-way multiple species alignment, consisting of the combined
116  mammalian multiple species alignment of the Zoonomia Consortium (2020) and the
117  primate multiple species alignment of Kuderna et al. (2024), and replaced it with the
118 current NCBI reference genome for the species (i.e., the high-quality, fully annotated
119 aye-aye genome of Versoza and Pfeifer (2024); see the "Materials and Methods" section
120 for details). By masking both functional regions and segregating variants, we calculated
121 neutral divergence across accessible sites for a range of window sizes (1kb, 10kb,

122  100kb, and 1Mb), yielding a mean neutral divergence rate of 0.043 at the 1Mb-scale
123 relative to the reconstructed ancestor (Supplementary Figure S1). Utilizing lower- and
124  upper-bounds of aye-aye divergence times (54.9 million years ago [mya] and 74.7 mya;
125 Horvarth et al. 2008) and bounds of likely generation times (3 years and 5 years; Ross
126  2003; Louis et al. 2020), we calculated neutral mutation rates across these genomic
127 windows, as depicted in Table 1. The average mutation rate varied from 1.73 x 10°°

128 mutations per base pair per generation (under a divergence time of 74.7 mya and a
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129  generation time of 3 years) and 3.93 x 10° mutations per base pair per generation (under
130 adivergence time of 54.9 mya and a generation time of 5 years). Figure 1a provides

131 density plots of mutation rates for these divergence and generation times, whilst Figures
132 1band 1c provide the heterogeneity in mutation rates across a single chromosome-

133 length scaffold (using the longest autosomal scaffold as an example; and see

134  Supplementary Figures S2-S14 for mutation rate heterogeneity across all other

135 autosomal scaffolds) and across the whole genome, respectively.

136 Taking the reverse tack, we additionally estimated aye-aye divergence times

137  utilizing the recently inferred mutation rates from multi-generation aye-aye pedigree
138 data (Table 1; Versoza et al. 2024a). These rates ranged from 0.4 x 108 per base pair per
139 generation in individuals born to young parents (<12 years of age) to 2.0 x 108 per base
140  pair per generation in individuals born to old parents (>24 years of age), with an average
141 rate of ~1.1 x 108 per base pair per generation, resulting in estimated divergence times
142  spanning the very large range from 53.8 mya to 6.45 mya (when considering the highest
143 and lowest generation times as well). These results strongly suggest that average ages
144  of reproduction in the wild are comparatively young, given that the rates associated with
145  older parents in captivity provide unrealistically recent divergence times relative to the
146  fossilrecord (Gingerich 2006; Smith et al. 2006; and see the review of Gingerich 2012) —
147 anobservation in agreement with previous ecological studies that reported average
148  reproductive ages of 3to 5 years in the wild (Ross 2003; Louis et al. 2020). Further, the
149 times associated with younger parents are consistent with previous estimates of

150 divergence based on a limited set of genetic markers encompassing ~9kb of nuclear

151 sequence (Horvath et al. 2008), and thus the lower direct pedigree mutation rate of 0.4 x
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152  10°® per base pair per generation is likely the more appropriate long-term estimate for
153 the species. Indeed, given that this estimate falls within our indirectly inferred mean
154  mutation rate in this study as well, and that prosimians have been shown to have

155  generally lower mutation rates compared to other primates (Tran and Pfeifer 2018;

156  Chintalapati and Moorjani 2020), these results taken together represent a strong body of
157  evidence that supports relatively low mutation rates in aye-ayes. Importantly, there is a
158 considerable discordance in divergence time estimates of the strepsirrhine-haplorrhine
159  split between those based on molecular data and the sparse fossil record — with the

160 former placing the split as early as 90 mya and the latter at 55 mya (Hartwig 2011).

161 Hence, with our improved estimates of mutation rates from both pedigree-based and
162  divergence data, our estimate of ~53.8 mya is in agreement with the origin of primates
163  (Tavaré et al. 2002; Zhang et al. 2008), and thus with strepsirrhines representing one of

164  the earliest splits in the primate clade (Pozzi et al. 2014).

165

166  Fine-scale recombination rate map

167 We utilized two different approaches to infer fine-scale rates of recombination.
168 The first, LDhat (McVean et al. 2002, 2004; Auton and McVean 2007), is an approach
169 employed in earlier studies investigating the landscape of recombination in non-human
170  primates such as the PanMap (Auton et al. 2012) and Great Ape Recombination Maps
171 (Stevison et al. 2016) projects —which generated fine-scale genetic maps for Western
172 chimpanzees (Pan troglodytes verus), Nigerian chimpanzees (Pan troglodytes ellioti),

173 bonobos (Pan paniscus), and Western gorillas (Gorilla gorilla gorilla) — as well as the
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174  projects that generated population-scale recombination maps for biomedically-

175 relevant species such as vervet monkeys (Chlorocebus aethiops sabaeus; Pfeifer

176  2020a). The second is the more recently developed software pyrho (Spence and Song
177  2019) which, unlike LDhat, can explicitly account for the population size change history

178 when performing inference (see "Materials and Methods" section for details).

179 To assess the performance of these two tools, we simulated a region of 1.6Mb
180 (i.e., the longest accessible intergenic stretch in the aye-aye genome) based on a fixed
181 recombination rate (0.85 cM/Mb; Versoza, Lloret-Villas et al. 2024), mutation rate (0.4 x
182 10%and 1.1 x 108 per base pair per generation; Versoza et al. 2024a), and the recently
183 estimated demographic history for the species consisting of multiple population

184  declines (Terbot et al. 2024), as well as a constant population size for comparison. Our
185 simulations demonstrate that LDhat generally performs well, with estimates falling
186  within the range of the defined recombination rate even under the non-equilibrium

187 demographic model (Figure 2). In contrast, pyrho consistently underestimates

188 recombination rates across all parameter combinations, despite utilizing the defined
189 demographic model during inference. Taken together, these results suggest that LDhat
190 isthe superior estimator; additionally, they highlight that the LDhat estimates are

191 themselves relatively robust to the underlying demographic history characterizing aye-

192  ayes.

193 Assuming an ancestral population size of ~11,750 diploid genomes as recently
194 inferred in the demographic model of Terbot et al. (2024), we thus converted the
195 population-scaled recombination rate estimates inferred using LDhat to per-generation

196 recombination rate estimates, yielding an average genome-wide recombination rate of

10
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197 1.04x10° per base pair at the 1Mb-scale (Supplementary Figure S15) — about an order
198 of magnitude lower than the average rate reported for anthropoid apes (~10®

199 recombination events per base pair per generation, or ~1 cM/Mb, for humans and ~1.2
200 cM/Mb for bonobos, chimpanzees, and gorillas; Kong et al. 2002; Auton et al. 2012;
201 Stevison et al. 2016). This observation of a notable reduction of recombination rates in
202 aye-ayes compared to humans and other haplorrhines is consistent with pedigree-
203 based estimates of sex-specific crossover rates being considerably lower in aye-ayes

204 thaninthe great apes (Versoza, Lloret-Villas et al. 2024).

205 However, despite the reduction in overall rate, aye-ayes exhibit a landscape of
206 recombination similar to those of other primates (Auton et al. 2012; Stevison et al.

207  2016; Pfeifer 2020a; Wall et al. 2022; Versoza, Weiss, et al. 2024); for example,

208 recombination rates are generally elevated towards the telomeric ends and depressed
209 within centromeric and pericentromeric regions of each autosomal scaffold (see Figure
210 3 for genome-wide recombination rates and Supplementary Figures S16-S29 for the
211 fine-scale variation in recombination rates across each individual autosomal scaffold).
212  Moreover, in aye-ayes, about 80% of recombination occurs in approximately 8% of the
213 genome (Figure 4) — the same fraction than in human individuals of European ancestry
214  (Auton et al. 2012) — potentially hinting at similarities in the concentration of hotspots

215 across the genome.

216

217

218

11
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219 Correlations between fine-scale rates of recombination with genomic features

220 In order to gain a better understanding of the evolution of the recombination
221 landscape in aye-ayes, we studied the impact of several genomic features on scale-
222  specific recombination rates. To this end, we calculated nucleotide diversity and

223 divergence based on the aye-aye population genomic data and the 447-way

224 mammalian multiple species alignment as noted above, as well as GC-content (as a
225 measure for genome composition) and exon-content (as a proxy for evolutionary

226  constraint) based on the annotated aye-aye assembly in 1kb-regions along the genome.
227 We applied a discrete wavelet transformation in order to obtain information on the

228 heterogeneity in each feature, with detail coefficients providing scale-specific

229 information at a range of (2") scales. After transformation, we performed a linear model
230 analysis of these detail coefficients to study the scale-specific relationships between

231 the heterogeneity in each genomic feature and recombination rate.

232 Figure 5a provides the detail coefficients for each genomic feature (diagonal

233  plots) as well as their pairwise correlations (off-diagonal plots) at scales ranging from 2°
234  to 2", and Figure 5b the corresponding linear model analysis of the detail coefficients
235 forthe longest autosomal scaffold as an example (for all other autosomal scaffolds, see
236  Supplementary Figures S30-S42). Similar to haplorrhines (Spencer et al. 2016; Pfeifer
237 2020a), aye-ayes exhibit the highest level of heterogeneity in nucleotide diversity and
238 neutral divergence at the finest (2kb) scale. In contrast, the largest heterogeneity in

239 recombination rate occurs over scales of 2-8kb, in the same range previously observed
240 invervet monkeys (2kb; Pfeifer 2020a) and humans (8kb; Spencer et al. 2006), and

241 similar to the heterogeneity observed in exon-content (4-8kb). Due to the organization of

12
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242  primate genomes into GC-rich and GC-poor isochores (Costantini et al. 2009), base
243  composition displays a concave distribution, with the highest heterogeneities observed
244  atboth the fine (2-8kb) and broad (>1Mb) scales. Focusing on the pairwise correlations
245  between the detail coefficients at the fine (2-8kb) scale, nucleotide diversity is

246  significantly positively correlated with both neutral divergence and GC-content, as

247  expected given that the rate of mutation, which jointly impacts diversity and divergence,
248 varies depending on the local base composition in the genome (Figure 1c, and see

249  review of Hodgkinson and Eyre-Walker 2011). The rates of divergence are also

250 significantly negatively correlated with exon-content at the fine to intermediate scales,
251 as anticipated from evolutionary constraint to maintain proper gene function, thereby
252  subjecting these regions to purifying selection (see reviews of Charlesworth and Jensen
253 2021, 2022). In addition to mutation, and similar to other primates (Spencer et al. 2006;
254  Auton et al. 2012; Pfeifer and Jensen 2016; Stevison et al. 2016), GC-rich genomic

255 regions are also associated with higher rates of recombination in aye-ayes. Contributing
256 tothis positive correlation at the fine-scale is GC-biased gene conversion, an

257 evolutionary process associated with meiotic recombination that elevates the GC-

258 content of aregion through the preferential transmission of GC over AT alleles (Duret
259  and Galtier 2009), thus leading to a higher GC-content in regions of frequent

260 recombination (i.e., recombination hotspots). Additionally, in regions of high

261 recombination, the effects of selection at linked sites (e.g., background selection and
262  selective sweeps) will be reduced, allowing more genetic diversity to persistin close
263  proximity (Maynard Smith and Haigh 1974; Begun and Aquadro 1992; Charlesworth et
264  al. 1993). However, recombination hotspots are highly localized (within 1-2kb regions;

265 Baudatetal. 2010; Myers et al. 2010; Parvanov et al. 2010) and often flanked by regions

13
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266  of low recombination which, in turn, extend genetic hitchhiking effects, thus reducing
267 nucleotide diversity at intermediate (10s to 100s of kb) scales (Maynard Smith and

268 Haigh 1974; Begun and Aquadro 1992; Charlesworth et al. 1993).

269

270 Concluding thoughts

271 In this study, we have characterized the underlying heterogeneity in mutation and
272 recombination rates across the genome of aye-ayes. We found that mutation rates in
273 this species are lower than in other primates, which is in agreement with previous

274  studies showing lower mutation rates in prosimians (Tran and Pfeifer 2018; Chintalapati
275 and Moorjani 2020). Notably, this indirect divergence-based estimate supports the

276  recent pedigree-based estimate of 0.4 x 108 per base pair per generation characteristic
277  ofyounger parents (Versoza et al. 2024a), suggesting a relatively young long-term

278  reproductive age in the wild, as might be expected from previous studies of the life

279 history and socioecology of the species (Ross 2003). This rate also implies a split time
280 of ~54 mya, consistent with the earliest primates in the fossil record, as opposed to the
281 much older and difficult to reconcile split times previously proposed. We similarly

282  found a notable reduction of recombination rate in aye-ayes compared to the great apes
283  (Auton et al. 2012; Stevison et al. 2016), despite overall similarities in the recombination
284 landscape, including the concentration of hotspots across the genome. Given the

285 recently reported enrichment of crossover events in regions harboring predicted great
286 ape PRDMO9 binding motifs — a zinc-finger protein controlling the activation of hotspots

287 in primates —in pedigreed aye-aye individuals (Versoza, Lloret-Villas et al. 2024), the

14
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288  future characterization of hotspots in the species should thus be of great interest to the

289 comparative primate genomics community.

290 With rate maps available in only a limited number of species, itis common

291 practice to use a single, species-averaged rate for both mutation and recombination
292 when modelling population genetic processes. However, failing to account for the

293 underlying heterogeneity in mutation and recombination rates has been shown to

294  potentially bias the inference of both population history as well as the distribution of
295 fitness effects (e.g., Soni et al. 2023, 2024a). Thus, the rate maps provided here will
296 facilitate more robust inference of population genetic processes in the highly

297 endangered aye-aye specifically, as well as in evolutionary models of primate evolution

298 more broadly.

15
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299 Materials and Methods

300 Updating the aye-aye genome in the 447-way mammalian multiple species alignment

301 We obtained the 447-way multiple species alignment, consisting of the
302 combined mammalian multiple species alignment of the Zoonomia Consortium (2020)
303 and the primate multiple species alignment of Kuderna et al. (2024), from

304 https://cglgenomics.ucsc.edu/november-2023-nature-zoonomia-with-expanded-

305 primates-alignment/ and removed the outdated aye-aye genome assembly using the

306 halRemoveGenome function implemented in HAL v.2.2 (Hickey et al. 2013). Next, we
307 added the current NCBI reference genome for the species —that is, the high-quality,

308 fully annotated aye-aye assembly of Versoza and Pfeifer (2024) (DMad_hybrid; GenBank
309 accession number: JBFSEQO000000000) - to the alignment, by first extracting the

310 ancestral genomes PrimatesAnc005 and PrimatesAnc011 from the 447-way alignment
311 using HAL's hal2fasta function, and then aligning these ancestral genomes with the new
312 aye-aye genome in Cactus v.2.9.2 (Armstrong et al. 2020) using the branch lengths

313  previously inferred in the 447-way alignment. Finally, we attached this alignment back

314  into the 447-way alignment using HAL's halReplaceGenome function.

315

316 Inferring fine-scale rates of neutral divergence and mutation

317 To infer fine-scale rates of neutral divergence and mutation, we first used the
318  halSummarizeMutations function implemented in HAL v.2.2 (Hickey et al. 2013) to
319 retrieve 'point mutations' along the aye-aye branch (i.e., substitutions between the aye-

320 aye and PrimateAnc005), thereby masking any sites within 10kb of functional regions to
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321 avoid the potentially confounding effects of selection. From these point mutations, we
322 thenremoved all sites associated with segregating polymorphisms in the species,

323 resulting in a final dataset from which we calculated neutral divergence by dividing the
324 number of divergent sites by the number of accessible sites in any given genomic

325 window (Soni et al. 2024b). Specifically, divergence was estimated genome-wide, as
326 wellasinwindows of size 1kb, 10kb, 100kb and 1Mb using a sliding window approach
327  with a step size of 1kb, 5kb, 50kb, and 500kb, respectively. To obtain mutation rates for
328 each genomic window, we divided by the divergence time in generations, using

329 divergence times of 54.9 mya and 74.7 mya (Horvarth et al. 2008) and generation times

330 of 3years and 5 years (Ross 2003; Louis et al. 2020) for comparison.

331

332 Inferring fine-scale rates of recombination

333 We utilized two different approaches to infer fine-scale rates of recombination —
334 the demography-unaware estimator LDhat (McVean et al. 2002, 2004; Auton and

335 McVean 2007) and the demography-aware estimator pyrho (Spence and Song 2019) -
336  both of which rely on patterns of LD observed in sequencing data to estimate

337 recombination rates. To this end, we took advantage of a recently generated population
338 genomic dataset of unrelated individuals (Soni et al. 2024b) for which we implemented
339 asetof stringent filter criteria (supplementing the standard quality control practices
340 appliedinthe previous study as described in Pfeifer 2017) to eliminate spurious single
341 nucleotide polymorphisms (SNPs) that may lead to artefactual breaks in patterns of LD.
342  Specifically, following the guidelines described in earlier studies investigating the

343 landscape of recombination in non-human primates (Auton et al. 2012; Stevison et al.
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344 2016; Pfeifer 2020a), we removed both SNP clusters — defined here as three or more
345  SNPs within a 10bp window (calculated using the Genome Analysis Toolkit [GATK]

346 v.4.2.6.1 VariantFiltration function together with the parameters ' --cluster-size 3 'and
347  '--cluster-window-size 10 '; van der Auwera and O’Connor 2020) — as well as SNPs
348 exhibiting an excess of heterozygosity — defined here as sites with a Hardy-Weinberg
349  equilibrium p-value of <0.01 (calculated using the ' --hardy ' option in VCFtools v.0.1.14;
350 Daneceketal. 2011) -from the published dataset. Additionally, we excluded all SNPs
351 located within regions blacklisted by the ENCODE Project Consortium (2012) (i.e.,
352  withinregions prone to artifacts in high-throughput sequencing experiments) by lifting
353 the data between the aye-aye (DMad_hybrid) genome assembly and the human (hg38)
354 genome assembly using the UCSC liftOver tool (Raney et al. 2024). The resulting high-
355 quality, population-level dataset, consisting of 3,454,304 biallelic autosomal SNPs
356 (transition-transversion ratio: 2.53), was then used as input for the recombination rate
357  estimators LDhat (McVean et al. 2002, 2004; Auton and McVean 2007) and pyrho

358 (Spence and Song 2019).

359 LDhat: Following previous work in catarrhines (Auton et al. 2012; Stevison et al.
360 2016; Pfeifer 2020a), we estimated the population recombination rate using

361 LDhatv.2.2 (McVean et al. 2002, 2004; Auton and McVean 2007). In brief, we first
362 divided the high-quality population-level dataset into 4,000-SNP regions with a
363 200-SNP overlap between adjacent regions, and then ran the interval function of
364 LDhat with a block penalty of 5 (' -bpen 5') for 60 million iterations (' -its

365 60000000 ") using a sampling scheme of 40,000 iterations (' -samp 40000 ').

366 Afterward, we used LDhat's stat function to discard the burn-in — defined here as

18


https://doi.org/10.1101/2024.12.28.630620

bioRxiv preprint doi: https://doi.org/10.1101/2024.12.28.630620; this version posted December 28, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

367 the first 20 million iterations (' -burn 500 ') of the Monte Carlo Markov Chain —and
368 combined the region-based recombination rate estimates at the midpoint of the
369 overlap. In keeping with previous best practices, we checked for regions with
370 recombination rate estimates of > 100 between adjacent SNPs as well as gaps
371 > 50 kb in the genome assembly that might spuriously interrupt patterns of LD,
372 but no such regions were identified. Lastly, as LDhat estimates the population
373 recombination rate p=4 N.r, where N. is the effective population size and ris the
374 per-generation recombination rate, we used the ancestral population size

375 inferred in the demographic model of Terbot et al. (2024) (i.e., ~11,750 diploid
376 genomes) to convert ptor.

377 pyrho: Following the recommendations of the developers (Spence and Song
378 2019), we estimated the per-generation recombination rate r using pyrho v.0.1.7.
379 In brief, we first generated a likelihood lookup table using pyrho's make_table
380 function, taking into account the population size change history previously

381 inferred by Terbot et al. (2024) (' --popsizes

382 2570,2944.784,3374.224,3866.288,4430.111,5076.157,5816.415,6585,23389
383 --epochtimes 1,2,3,4,5,6,7,1133 "), and then ran the hyperparam function with
384 the species-specific mutation rate estimated by Versoza et al. (2024a) for

385 individuals reproducing at a young age (' --mu 0.4e-8"'), as likely the case in the
386 wild (Ross 2003), to determine the optimal parameter settings for window size
387 and block penalty. We then used pyrho's optimize function with the

388 recommended window size of 30 (' --windowsize 30 ') and block penalty of 45
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389 (' --blockpenalty 45 ') to estimate per-generation recombination rates across the
390 genome.
391

392  Assessing the performance of recombination rate estimators using simulations

393 To compare the performance of the demography-unaware recombination rate
394  estimator LDhat with the demography-aware estimator pyrho, we used msprime v.1.3.2
395 (Baumdicker et al. 2022) to simulate 10 replicates of a 1.6Mb region (i.e., the longest
396 uninterrupted accessible intergenic region in the aye-aye genome) with multiple

397 parameter combinations. Specifically, to test the robustness of both tools with regards
398 tothe underlying demographic history, we implemented two models in our simulations:
399 (1) the bottleneck-decline model from Terbot et al. (2024) and (2) a constant equilibrium
400 model. Moreover, in addition to the species-specific average mutation rate recently

401 estimated from a 14-individual three-generation pedigree in Versoza et al. (2024a) (1.1 x
402 10°®per base pair per generation), we also considered the lowest reported pedigree

403 estimate (0.4 x 10°® per base pair per generation) in our models to account for

404 individuals potentially reproducing at a young age in the wild. Finally, we used the

405 coarse-scale recombination rate estimate from pedigreed individuals (0.85 cM/Mb)

406 reported in Versoza, Lloret-Villas et al. (2024) in all models.

407

408

409
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410 Assessing the correlation of fine-scale rates of recombination with genomic features

411 Following previous work in humans (Spencer et al. 2006), we first calculated
412  nucleotide diversity and divergence based on the aye-aye population genomic data and
413  the 447-way mammalian multiple species alignment as noted above, as well as GC-
414  content (as a measure of base composition) and exon-content (as a proxy for

415  evolutionary constraint) based on the annotated aye-aye (DMad_hybrid) genome

416  assembly (GenBank accession number: JBFSEQO000000000; Versoza and Pfeifer 2024)
417  in 1kb windows along the 14 autosomal scaffolds (i.e., scaffolds 1-8 and 10-15), and
418 then applied a discrete wavelet transformation using the Rwave and wavethresh

419  packagesimplemented in Rv.4.2.2 to obtain information on the heterogeneity in each
420 genomic feature at varying scales. To study scale-specific correlations, we additionally
421 performed a linear model analysis on the log-transformed recombination, nucleotide

422  diversity, and divergence rates.
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divergence time
54.9 mya 74.7 mya
2.36E-09 1.73E-09
3.93E-09 2.89E-09

‘ pedigree-based mutation rate
4.0E-09 1.1E-08 2.0E-08
generation 3 ‘ 32.3mya 11.7mya 6.45mya
time(years) 5 | 53.8mya 19.5mya 10.8 mya

Table 1: Inferred aye-aye divergence times based on the observed mean neutral divergence rate of 0.043 for two different possible
generation times (3 years and 5 years; Ross 2003; Louis et al. 2020) and three different pedigree-based mutation rates estimated for
parents of differing ages by Versoza et al. (2024a) (shown in blue). Relatedly, the resulting divergence-based mutation rate estimates

based on two possible divergence times (54.9 million years ago [mya] and 74.7 mya; Horvarth et al. 2008) and two possible generation
times (3 years and 5 years; Ross 2003; Louis et al. 2020) are given for comparison (shown in orange).
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Figure 1: (a) Density plots of the per base pair per generation (/bp/gen) mutation rate implied by neutral divergence for two possible
generation times (3 years and 5 years; Ross 2003; Louis et al. 2020) and two possible divergence times (54.9 million years ago [mya] and
74.7 mya; Horvarth et al. 2008). (b) Fine-scale mutation rates along the longest autosomal scaffold (i.e., scaffold 1) for genomic
windows of size 1Mb, with a 500kb step size (see Supplementary Figures S2-14 for mutation rate heterogeneity across all other
autosomal scaffolds). (c) Genome-wide mutation rates for genomic windows of size 1Mb, with a 500kb step size.
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Figure 2: Performance of two common estimators of recombination —the demography-
unaware estimator LDhat (shown in teal) and the demography-aware estimator pyrho
(shown in red) — across varying mutation rates (u = 0.4 x 10®and 1.1 x 10 per base pair
per generation [/bp/gen]; Versoza et al. 2024a) and demographic histories, including the
demographic history recently estimated by Terbot et al. (2024) for the species consisting
of multiple population declines (demography) as well as a constant population size
(equilibrium) for comparison. The yellow dashed line depicts the recombination rate
that was used in the simulations (i.e., 0.85 cM/Mb; Versoza, Lloret-Villas et al. 2024).

31


https://doi.org/10.1101/2024.12.28.630620

<
o 1.5x10%+
(=)
—
o
2
-
% 1.0 x 10°%-
.
c
o
©
£ 0.5x10°
0
3
(@)
Q
g
0 T T T T T T1
1 2 3 4 5 6 7 8 10 11 12 131415
scaffold

Figure 3: Genome-wide per-base per-generation (/bp/gen) recombination rates for genomic windows of size 1Mb, with a 500kb step size
(and see Supplementary Figures S16-S29 for the recombination rate heterogeneity across each individual autosomal scaffold).
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Figure 4: Comparison of the genome-wide distribution of fine-scale recombination
rates in aye-ayes (shown in pink) with those of different haplorrhines (with humans of
African ancestry shown in black and of European ancestry in beige, chimpanzees
originating from Western populations in teal [Auton et al. 2012] and from Nigerian
populations in red, bonobos in yellow, gorillas originating from Western populations in
blue [Stevison et al. 2016], and vervet monkeys in purple [Pfeifer 2020a]). The figure was
adapted from Pfeifer 2020a to include aye-ayes.
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Figure 5: (a) The detail coefficients of each genomic feature (diagonal plots) on the left
and right arms of scaffold 1 (shown in dark and light yellow, respectively) as well as their
pairwise correlations based on Kendall's rank correlation (off-diagonal plots with the
bottom left showing the left-arm and the top right showing the right-arm) at a range of
(2" scales. Correlations significant at the 1%-level under a two-tailed test are
highlighted by crosses. (b) Linear model analysis of the detail coefficients. Red and blue
coloring indicate significant positive and negative relationships under a two-sided t-
test, with the color intensity being proportional to the significance level. Adjusted r?
specifies the proportion of heterogeneity that can be explained by the linear model.
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