20

25

30

35

This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1

Regimes of near-inertial wave dynamics
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When atmospheric storms pass over the ocean, they resonantly force near-inertial waves (NIWs),
internal waves with a frequency close to the local Coriolis frequency f. It has long been recognised
that the evolution of NIWs is modulated by the ocean’s mesoscale eddy field. This can result in
NIWs being concentrated into anticyclones and provide an efficient pathway for their propagation
to depth. We here analyse the eigenmodes of NIWs in the presence of mesoscale eddies and heavily
draw on parallels with quantum mechanics. Whether the eddies are effective at modulating the
behaviour of NIWs depends on the wave dispersiveness &> = f1% /¥, where A is the deformation
radius and ¥ is a scaling for the eddy streamfunction. If &€ > 1, NIWs are strongly dispersive,
and the waves are only weakly affected by the eddies. We calculate the perturbations away from
a uniform wave field and the frequency shift away from f. If £ <« 1, NIWs are weakly dispersive,
and the wave evolution is strongly modulated by the eddy field. In this weakly dispersive limit, the
WKB approximation, from which ray tracing emerges, is a valid description of the NIW evolution
even if the large-scale atmospheric forcing apparently violates the requisite assumption of a scale
separation between the waves and the eddies. The large-scale forcing excites many wave modes,
each of which varies on a short spatial scale and is amenable to asymptotic analysis analogous
to the semi-classical analysis of quantum systems. The strong modulation of weakly dispersive
NIWs by eddies has the potential to modulate the energy input into NIWs from the wind, but we
find that this effect should be small under oceanic conditions.

Key words:

1. Introduction

Near-inertial waves (NIWs) play an important role in the global climate system. Being
associated with strong vertical shears, they are prone to shear instabilities, which are an important
driver of upper ocean mixing (for a review, see |Alford et al.[2016). As such, the generation of
NIWs is one of the primary mechanisms by which atmospheric storms induce a deepening of the
surface mixed layer. This deepening requires mixing with water from below, implicating NIWs
in the surface ocean heat budget (Jochum et al.|2013). In the interior of the ocean, NIWs make
up a major fraction of the internal wave kinetic energy (Ferrari & Wunsch|[2009; |Alford et al.
2016), and it has been hypothesised that NIW kinetic energy may provide a source of mixing in
the deep ocean (Munk & Wunsch|1998)). NIWs might also extract energy from mesoscale eddies
(Xie & Vanneste|2015; Rocha et al.|2018]) and hence play a role in the mesoscale energy budget.

In-situ observations of NIWs usually lack significant spatial resolution. The spatial structure
of NIWs can generally only be resolved through dedicated field campaigns, for example the
Ocean Storms Experiment (D’Asaro|/1985) or the NISKINe field campaign (Voet et al.|2024).

1 Email address for correspondence: sconn@caltech.edu
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2 S. Conn, J. Callies and A. Lawrence

Despite this, it has become clear that NIW evolution can be strongly modulated by the presence
of mesoscale eddies (e.g. [Thomas et al.|2020; |Conn et al.|[2024). Given the sparsity of NIW
observations, theoretical progress has been important in understanding the dynamics of NIWs in
the upper ocean.

Early work on NIW-eddy interactions was based on ray tracing theory. Kunze| (1985) derived
a dispersion relation for NIWs in the presence of a geostrophic background flow. Throughout
this paper, we will make the assumption of a barotropic (depth-independent) background flow.
The ray tracing equations for a single (flat-bottom) baroclinic mode propagating through such a
background flow are

de OJw dk ow FA2|k)? I4

E—%, d—T——a, w = 2 +'ll,'k+§, (11)
where x = (x, y) is the ray position, 7 is time, k is the horizontal wavevector, u is the background
velocity, { = 0,v — 0yu is the background vorticity, and A is the deformation radius. Here, and
throughout the rest of this paper, w refers to the frequency shift of an NIW away from the local
inertial frequency f such that the true frequency is f + w. Based on these equations, |Kunze
(1985) argued that NIWs would be trapped in regions of anticyclonic vorticity where the effective
frequency is less than the local f. This trapping arises from the refraction of rays by the background
vorticity, i.e., from changes in the wavenumber vector due to spatial gradients of the % term in
the dispersion relation. Concentration of NIW energy into anticyclones has indeed been observed
in the ocean (e.g. Perkins|1976; Kunze & Sanford|1984; Thomas et al.|2020; Yu et al.[2022).

Ray tracing is based on the assumption that the NIWs are propagating through a slowly varying
medium. This means that the horizontal scale of the waves has to be much smaller than the scale
of the background mesoscale eddy field.|Young & Ben Jelloul| (1997, from hereon YBJ) criticised
this spatial scale assumption based on the argument that NIWs are forced by large-scale storms
and so, at least initially, the waves have a much larger scale than mesoscale eddies. As a remedy,
YBJ developed a theory of NIW—eddy interactions that does not rely on the assumption of a
spatial scale separation. This was also partly motivated by a desire to explain observations from
the Ocean Storms Experiment (D’Asaro et al.|[1995), a field campaign that studied the evolution
of NIWs in the wake of a large storm in the North Pacific. A key result of this campaign was
that the effect of the mesoscale vorticity on the wave evolution was in clear contradiction with
predictions from ray tracing (D’Asaro|1995).

The YBJ equation describes the evolution of NIWs in the presence of a prescribed geostrophic
eddy field while only assuming a temporal scale separation between the inertial period and the
characteristic timescale of the eddies. For the barotropic background flow considered throughout
this paper, the wave evolution can be split into baroclinic modes that do not interact, so we
consider a single baroclinic mode with NIW velocity [u,, (x,y,t), v, (x,y,t)]g(z), where g(z) is
the baroclinic mode structure. The YBJ equation is cast in terms of the variable ¢ = (u,, +iv,, )e'/?,
where the factor ¢'/? removes oscillations at the inertial frequency and leaves ¢ to describe the
slow evolution of the envelope that modulates the NIWs. For a single mode propagating through
a barotropic background flow, the equation becomes:

ifA?
2

¢ i 2
ar +J(y, o)+ 2(15 V=0, (1.2)
where i is the background streamfunction, ¢ = V2 is the background vorticity, and J(a,b) =
0xa 0yb —0ya 0xb is the Jacobian operator. The second term describes advection of the NIW field
by the background flow. The third term is known as the {-refraction term and describes refraction
of the NIW field by the background vorticity. This term is necessary to obtain concentration of
NIWs into regions of anticyclonic vorticity. The last term is responsible for wave dispersion. Here
and throughout this paper, we set the meridional gradient of planetary vorticity S = 0. The YBJ
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Regimes of near-inertial wave dynamics 3

equation can be modified to include 8 by replacing /2 with {/2+ By in the refraction term.
The B-effect has been proposed to explain the observed equatorward propagation of NIWs in the
ocean (Anderson & Gill|1979; Garrett[2001} |Yu et al.[2022), and it can dominate the overall NIW
evolution in regions with weak mesoscale eddies (e.g. [D’Asaro et al.||[1995). Because mesoscale
vorticity gradients typically dominate over 8, however, we here restrict ourselves to g =0 for
simplicity.

Despite both ray tracing and the YBJ equation being used in the NIW literature, it remains
unclear how they relate to each other. Ray tracing has been one of the most widely used tools to
interpret observations of NIWs. Ray tracing has had qualitative success in describing observed
features of NIW evolution, however, we are not aware of any rigorous comparisons between
ray tracing predictions and observations. Ray tracing has revealed aspects of NIW dynamics
such as trapping in anticyclones along with an associated propagation to depth (Jaimes & Shay
2010), stalling in cyclones (Oey et al.|2008), and the interplay between NIWs and turbulent
dissipation (Kunze et al.|1995; Essink et al.|2022). Non-standard propagation patterns of NIWs
in observations have also been explained using ray tracing (e.g. Byun et al.|2010; |Chen et al.
2013). The YBJ equation has been used primarily as a tool in theoretical and numerical studies,
although there has been some attempt to make connections with observations. |Asselin & Young
(2020) used simulations of the YBJ equation coupled to a quasi-geostrophic mesoscale eddy field
to investigate the sequence of events that lead to the downward propagation of wind-forced NIWs.
Thomas et al.| (2020) calculated the NIW wavevector using an expression based on the YBJ
equation. The predictions from YBJ were broadly in agreement with observations. |Conn et al.
(2024) directly used the YBJ equation to interpret NIW observations on a mooring array, showing
that it successfully captured the amplitude and phase evolution, including differences across the
mooring array caused by mesoscale vorticity gradients. Any comparison of the results of these
disparate studies is complicated by the different methods used. A better understanding of the
relationship between ray tracing and YBJ would clarify the physical similarities and differences.

Further complicating the picture, observations reveal a varied picture of the importance of the
mesoscale vorticity on NIW evolution. During the Ocean Storms Experiment, mesoscale eddies
had a muted impact on the NIW field (D’Asaro|1995)), whereas other observational studies found
a strong imprint of mesoscale eddies onto the NIW field. For example, Thomas et al| (2020)
demonstrated that the evolution of the NIW wavevector was driven by gradients in the mesoscale
vorticity during the NISKINe experiment in the North Atlantic. Extending the original argument
by YBJ, Thomas et al.|(2024a) argued that these differences in the impact of mesoscale vorticity
could be explained primarily by differences in the strength of wave dispersion. The stronger
dispersion in the Ocean Storms Experiment, they argued, was the result of the forcing projecting
onto lower baroclinic modes, a stronger stratification, and weaker eddies. As a result, the effect
of refraction by mesoscale vorticity was suppressed in the Ocean Storms Experiment, whereas it
was more pronounced in NISKINe.

In this paper, we aim to clarify how ray tracing relates to YBJ dynamics. Given the widespread
use of ray tracing in the literature, we aim to understand the conditions under which results from
ray tracing are accurate. To this end, we consider the YBJ equation in both a strong and weak-
dispersion regime. We begin by providing a simplified treatment of the strong-dispersion regime.
Next, we show that the ray tracing equations emerge asymptotically from the YBJ equation in the
limit of weak dispersion. Our analysis shows that the WKB approximation and thus ray tracing
can be valid even in the presence of a large-scale forcing, despite the YBJ critique. The forcing
decomposes into several modes that themselves exhibit small-scale structure. We find the existence
of isotropic and anisotropic modes. The isotropic modes are characterised by fast variations along
streamlines, while the anisotropic modes have weak variations along streamlines. We discuss
the physical processes important in both classes. Finally, we consider how these regimes might
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Ficure 1. Wave dispersiveness 2= |f |/l2 /¥ plotted throughout the ocean for the first four baroclinic
modes, with the deformation radius A estimated from hydrography and the streamfunction magnitude ¥
from altimetry. The equatorial band is blocked out because the mean flow amplitude cannot be estimated
with confidence there.

modulate the energy injection into the NIW band by the winds, finding that such a modulation is
likely weak under oceanic conditions.

2. The YBJ equation
2.1. Decomposition into horizontal modes

We begin by non-dimensionalising the YBJ equation. Given the scalings x,y ~ L,  ~ ¥ and
t ~ L? /¥, we obtain the following non-dimensional form of the YBJ equation:

¢ il gt _,
E+J(¢,¢)+3¢—7V ¢ =0, 2.1

where &2 = £12/W is the wave dispersiveness (assuming f > 0). For readers familiar with Young
& Ben Jelloul (1997), our &% is equivalent to their Y-!. We remind the reader that we have
assumed a single baroclinic mode, but € does vary among baroclinic modes through A. The wave
dispersiveness also varies spatially throughout the ocean (Fig.[I). We calculate ¢ for the first four
baroclinic modes from observations as described in Appendix[A] Except for the high latitudes, the
first and second baroclinic modes are almost entirely in the strongly dispersive regime (g > 1).
Higher baroclinic modes are to be more weakly dispersive, with £ < 1 almost everywhere for
mode 4. For a given baroclinic mode, low-latitude regions are more strongly dispersive, while
higher latitudes and western boundary currents are more weakly dispersive.
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Note that (2.1) is a Schrodinger equation. This parallel is made clear if we write (2.1) as

2
i‘Z—‘f:Hqs, H:—%Vz—il(w,~)+g. 2.2)
The operator H is known as the Hamiltonian operator. While the presence of first derivatives in the
Hamiltonian stemming from advection may be unfamiliar to some, such terms arise in quantum
mechanics when describing a charged particle in a magnetic field. This analogy to quantum
mechanics was pointed out by Balmforth et al.| (1998), and we will here exploit it extensively.
Rocha et al.| (2018)) also used this analogy to derive the equivalent of Ehrenfest’s theorem for
NIWSs, while |Danioux et al.| (2015) explained the concentration of NIWs into anticyclones via
the analogue of quantum conservation laws. While we are setting 8 = 0 in this paper, we note that
the quantum analogue to 8 # 0 is known as the “Wannier—Stark ladder,” where the potential due
to the mesoscale vorticity modulates a linear ramp due to 8 (Balmforth & Young|1999).
The operator H is Hermitian, i.e.,

/ o' Hpd>x = / (He) ¢ d*x (2.3)

for sufficiently regular functions ¢ and ¢ so it has real eigenvalues. We also assume H is compact
so that the eigenmodes form a complete orthonormal basis. Let p label the eigenmodes ¢ MERY)
and associated eigenvalues w,, of the operator H,

Hp, =wud,. (2.4)
The field ¢ can then be expanded in the eigenmode basis as
$06y.0) = Y a0, (x,), 2.5)
©n

where a,,(t) is the projection of ¢ onto the eigenmode ‘2’#' The coefficients a,,(t) then evolve
according to

da,,

dr

Therefore, the eigenvalue w,, represents the frequency shift of the mode away from f. The total
dimensional NIW frequency is hence given by f(1+Row,,), where Ro=Y¥/f L? is the Rossby
number. Furthermore, because the eigenvalues are real and the modes are orthogonal, the kinetic
energy of the waves is conserved.

We will consider this problem on a doubly periodic domain with size 27 X 27. This is intended
to represent a local view of an ocean that is filled with a random sea of eddies. The solutions we
calculate are perfectly periodic and extend across all eddies. In reality, of course, the background
field is not perfectly periodic and this causes the solutions to become localised in certain regions.
Therefore, the solutions we calculate on the 27 X 27 should be thought of similarly.

As a key example in this paper, we will consider a 27 X 2 domain that contains a dipole vortex
given by (figure[2} ¢f., [Asselin ez al.|2020)

=—iwyay, SO a, (1) =a,(0)e @nl, (2.6)

1
Y= 3 (sinx —siny). 2.7
The analysis below is general, however, and can be applied to more general background flows.

2.2. Numerical calculation of eigenvalues and eigenmodes

For most choices of the background flow i, analytical solutions for the eigenfunctions of H
do not exist and numerical solutions are required. Solving the eigenvalue equation numerically
requires us to discretise the operator H. The discrete eigenfunction is expressed as a vector, and
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Vorticity ¢
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Ficure 2. Dipole vorticity with an anticyclone in the upper left corner and a cyclone in the lower right
corner. The contours depict the streamfunction with positive values denoted by solid lines and negative
values denoted by dashed lines.

the problem reduces to finding the eigenvalues of a finite matrix. The operator H is Hermitian, and
so it is desirable for any discrete representation of H to also be Hermitian. A fourth-order central
finite difference scheme for the Laplacian term preserves this property. More care is required
for the advection operator, for which we use the enstrophy-conserving scheme from [Arakawal
to preserve the Hermitian nature of the operator and guarantee that the eigenvalues of the
matrix are real. Having real eigenvalues ensures that the conservation of NIW kinetic energy is
respected in the discrete system. The exact method of numerically solving the eigenvalue problem
is detailed in Appendix B}

3. The strong-dispersion limit

The limit &£ > 1 is known as the strong-dispersion limit. YBJ showed that in this limit, the
solution to the YBJ equation becomes proportional to the streamfunction . They additionally
showed that frequency shifts away from f are proportional to the domain-averaged kinetic energy
of the mesoscale flow. These same results can be derived by considering the eigenvalue problem
posed above; see (3.8) and (3-11) for the result. In our framework, we can additionally derive
information about the next-order perturbations to the NIW field; see (3.13) and (3:16) below.

When ¢ is large, we split the operator H into two parts

H=&HO + gD, (3.1)

where H® = —1V? and H) = 1£-iJ(y,"). Because & > 1, this implies H'!) is a small
correction to £2H'?), and perturbation theory can be used to solve this system. We expand both
&5“ and w,, in powers of e

5’# = Z 8_2"652’), Wy = &2 Z s_znwLn). (3.2)
n=0 n=0

At O(g?) the eigenvalue problem is

HO3Y =03, (3.3)
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where (}i?) is the eigenfunction of the unperturbed problem with eigenvalue wﬁ)). We assume the
domain is doubly periodic and goes from 0 to 27 in x and y. The solution is

2
_ FRON | ]

~(0 i 1
R

(3.4)
where p is a two-dimensional vector with integer components, such that the eigenfunctions are
plane waves in x and y.

3.1. The leading-order mode

NIWs are forced by atmospheric storms, which have a much larger horizontal scale than
mesoscale eddies and can be idealised as a uniform forcing. We assume that the result of this
forcing is the excitation of a constant non-zero ¢. The projection of this initial condition onto a
given mode can thus be found by integrating that mode across the domain. For plane waves, a
domain integral will vanish unless g = 0, such that a uniform forcing will only project onto the
1 =0 mode in the unperturbed case. We begin by focusing on that case to obtain expressions for
the perturbations to its spatial structure as well as its frequency shift. A small part of the forcing,
however, projects onto modes with g # 0, and we will return to these higher modes below.

The leading-order solution for p =0 is &éo) =1 and a)(()o) =0, and there is no modulation of
the waves by the mesoscale eddy field. To obtain this modulation, we must go to higher order. At
0(&%), the eigenvalue problem is

5 (0) _

~ (1 ~(1 ~(0
HOB +HDB = 003 + 03 (3.5)

With a)(()o) =0 and the advection term in H(!) vanishing when acting on (25(()0) =1, this reduces to

Loony &y
—EV ¢0 +§=a)0 . 3.6)
The two terms on the left vanish when integrated over the doubly periodic domain, so we conclude
that (") = 0.
There is, however, a correction to the eigenfunction at this order, determined by

V23" = V2. 3.7)

With periodic boundary conditions, the solution to this is

3" =, (3.8)

where we have assumed that ¢ is defined such that it has zero domain average. This recovers
the expression for ? from YBIJ. The structure of the mesoscale eddy field is imprinted onto the
waves by the 3’2&)(() ) term. Because the modulation is by the real streamfunction ¢, only the NIW
amplitude is modulated by mesoscale eddies. The NIW field remains in phase across the domain.

We now also seek the leading non-zero correction to the eigenvalue, for which we go up another
order. The eigenvalue equation at O (g7?) is

A (1) _

H(O)&éz) +H<1)¢0 (()2)

0) 4 1) 4 (1 2) 4 (0
07+l + 0 3. (3.9)

With w(()o) = w(()l) =0and J(y,y) = 0, this simplifies to

1 22
_EV b0

The first term on the left vanishes under domain integration. Integrating the second term on the

| )
+§¢/V v=wy. (3.10)
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left by parts yields
Lo _1[IVuld
0 2 /‘ Lz
The leading-order frequency shift is s’2w(<)2) . Given that 72 < 1, the frequency shift away from f

is suppressed substantially, even compared to the small frequency shift assumed from the outset.
Re-dimensionalising the expression results in

@) __ 1 / |V¢|2d2$
0 2 foA? /d2ac

This agrees with the YBJ result for the dispersion relation in the strong-dispersion regime,
indicating that the frequency shift is proportional to the average kinetic energy of the eddy field.

@3.11)

(3.12)

3.2. Higher-order modes

We now return to the higher modes with p # 0. These modes are degenerate to leading order. For
example, the modes (1,0),(—1,0),(0,1) and (0,—1) all have wf?) = % Degenerate perturbation
theory is necessary to calculate the first-order corrections to the eigenvalues and eigenfunctions
(e.g.|Sakurai & Napolitano|[2020). To obtain these corrections, we will proceed naively with the
calculation. We will run into a contradiction that motivates us to choose a different basis set
than was chosen in (3:4). To those familiar with degenerate perturbation theory, this may seem
unnecessary, but we believe it to be more pedagogical.

We again start from the O (&°) equation, which now reads

Hod +Hi13Y) = 0P8 +0D 3. (3.13)
Multiplying this equation by &SV *, with both v and p labelling one of the modes in the degenerate
group, and integrating over the domain results in

A(o)* 0\ 4 (1) D [ 50)5500) O 7 50 4
/ wL))qﬁ“ dzmzwg)/gbu 3 Pa /¢,, H$Y d (3.14)

Using integration by parts, the Hy on the left can be swapped for wf,o). Because the modes are
degenerate to this order, the left-hand side vanishes. Furthermore, using the orthonormality of
the eigenfunctions, the corrections to the eigenvalues are determined by

~(0)=* 0
w6, = o 2/¢L) 9\ P (3.15)

We have now arrived at our contradiction. The left-hand side of this equation is diagonal,
whereas the right-hand side is not necessarily so. In (3.4), we chose a basis for the unperturbed
eigenfunctions: {e'*,e~* ey e~} for || = 1. The key to degenerate perturbation theory is to
choose a basis of the degenerate space to avoid this contradiction. It is clear that the correct basis
must diagonalise H1, which our original choice does not.

To proceed, we calculate the right-hand side of (3.13) in the original basis. This results in a
4 x 4 matrix. We diagonalise this matrix and find the corresponding linear combination of the
original basis functions that diagonalises H;. The corresponding eigenfunction corrections can
be found by solving the screened Poisson equation obtained from the first-order equation (3.13).

(Ho-w) 3y = (wh) - 11) 3,7, (3.16)

where the &SLO) should be in the basis diagonalising H;. If H; identically vanishes in this subspace,
the degeneracy must be lifted at the next order, as in the example below.
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Ficure 3. Numerical solution to the eigenvalue problem 2:4) with & =2 for the dipole flow. A uniform
forcing primarily projects onto the mode shown on the left, with the mode with the second-highest projection
shown on the right only making up less than 2% of the energy. The eigenvalues w and projection fractions
(of energy) are shown in the panel titles. Vectors show the corresponding NIW velocities.

3.3. Dipole flow solutions

We now consider the specific example of the dipole flow (2.7). Numerical solutions for & = 2
show that a uniform initial condition projects strongly (98.5% of the energy) onto the ¢, mode
(figure[3). There is a small but negative frequency shift of wg = —0.03104. This agrees excellently
with the predicted frequency shift from (3-TT)) of 8_20)(2) = l =-0.03125. Additionally, there is
weak horizontal structure that aligns with the streamfunct1on as expected. The root- -mean- squared
error between the numerical eigenmode and the analytical eigenmode ¢00 +8_2¢0 D — +e72y
is 1%. The agreement is excellent despite & not being particularly large.

For the d1p01e flow, the right-hand side of (3:13)) is zero for all combinations of basis functions
of the a) subspace Therefore, there are no first-order frequency shifts, wL) =0, and the
degeneracy is not lifted at this order. Performing the same procedure that led to ( on the
second-order equation yields

A()* 1
)611”—42/ O3 e (3.17)

For our trial basis consisting of the four plane waves, we solve the screened Poisson equation (3.16))
for the corresponding fpf‘l) This is tedious but doable because the right-hand side is just a sum
of sines and cosines. The equation for the second-order frequency shift can be dlagonallsed and
this time the elgenvalues are not zero and the degeneracy is lifted. We find for a)L the values

916, 976, 32, and — 96, only the first of which corresponds to an elgenfuncnon that the forcing
projects onto at this order. The leading-order eigenfunction of that mode is ¢ u) —y (figure[3).
The eigenvalue szwLO) +e” cuf) =1.99739 is again in excellent agreement with the numerical
eigenvalue of 1.99729.

In this regime, horizontal structure in the waves primarily arises due to d)o , which is suppressed
by O(e7?%). There is also horizontal structure due to modes with y # 0, but these are projected
onto weakly; the fraction of the variance accounted for by such a mode is O(s™#) (Sakurai &
Napolitano|2020). As such, the wave potential energy, which depends on horizontal gradients

in the wave field, is also suppressed. | Xie & Vanneste| (2015)) associated the generation of wave
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potential energy with a sink of the background eddy kinetic energy in a process known as
stimulated generation. Given the weak generation of horizontal structure, stimulated generation
is weak in the strong-dispersion regime.

4. The weak-dispersion limit

The limit & < 1 is known as the weak-dispersion limit. Because £> multiplies the highest-order
derivative in the eigenvalue equation, the limit £ — 0 is a singular perturbation problem. Before
addressing the general problem, we build intuition with two simple examples. These examples
suggest that there are two classes of modes. One class is characterised by waves that vary slowly
along the streamlines of the background flow and more rapidly across streamlines; they are
captured by an anisotropic scaling of the wavenumber with . The other class has even faster
variations in both directions and requires an isotropic scaling. We develop a uniformly valid
approximation that captures both of these classes.

4.1. Parallel shear flow

We begin with an example of a parallel shear flow in which the streamfunction ¢ is a function
of x only. The symmetry in y means the problem reduces to a one-dimensional eigenvalue problem.
Balmforth ez al.|(1998) considered this problem for a specific example of a shear flow that can be
solved in closed form.|Zhang & Xie|(2023)) considered the limits of strong and weak dispersion for
the same mean flow. Here, we address how the weak-dispersion limit can be analysed for a general
parallel shear flow and apply the procedure to the example flow from [Balmforth ez al.| (1998).
Our goal is to calculate the structure of the eigenmodes and their corresponding eigenvalues. We
begin by introducing the WKB method from which the two scalings arise. For the anisotropic
scaling, the key result is (@.8)); for the isotropic scaling, the equivalent result is (#.12).

We assume that the streamfunction ¢ (x) is periodic on the domain [—m,7]. The eigenvalue
problem (2.4)) reduces to

& _,. .0 . N

2V¢ lvay+2¢—w¢, 4.1)
where ¢ = V2§ and v = 0,y are both functions of x only, and we have suppressed the label on
the eigenmode. The coefficients are independent of y, which motivates the ansatz ¢ = ®(x)e™”.
Given that the domain has width 27 in y, the wavenumber m must be an integer. With this ansatz,
we are left with the one-dimensional eigenvalue problem

2d2q) 2.2
—%¥+(%+mv+g)®=w®. 4.2)

This is the Schrodinger equation of a particle in one-dimensional potential, with the bracketed
term playing the role of the potential (Balmforth et al.|1998).

As ¢ is small, WKB analysis can be used to find approximations to the eigenvalues and
eigenfunctions (e.g. Bender & Orszag|1999). In WKB theory, the field @ is expanded as

®(x) = exp - Za/s (x), (4.3)

]O

where 6§ < 1 is a scaling parameter that we are yet to determine. Substituting this into {.2)) yields

g1 ds; > m? l
A § J 2 § J S _
7522 o o + +mv+ 5= w. “4.4)
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If we assume m ~ O (1), both the refraction term and the advection terms are O (1), and they must
be balanced by a dispersion term of the same order. Requiring the lowest-order dispersion term
to be O(1) implies ¢ = &, and the O(1) equation becomes
1(dSo\’
) (EO) +mv+%:w. 4.5)
By writing £~'dS/dx = ik, this equation is analogous to the dispersion relation (T.T) specialised
to this parallel shear flow. The function Sy is found to be

So(x) = ix/ii/x \/w —mv(x’) - % dx’ (4.6)

and determines the leading-order phase variations of the solution. One can additionally show
(Bender & Orszag| 1999, equation 10.1.12) that the next-order solution is

1 {
Si(x) = 4ln(a) mv 2), 4.7
which determines the leading-order amplitude modulation of the solution.

This asymptotic expansion is valid away from regions where the integrand above is zero.
These are known as turning points of the problem and exist if w < max(mv+/2). The
associated eigenfunctions are referred to as bound states. Near turning points, w —mv — /2 can
be approximated by a linear function of x, and solutions to (4.5)) are given by Airy functions. The
Airy function solutions must be asymptotically matched to the solutions away from the turning
points. This yields an integral constraint from which the eigenvalues w can be determined.
The problem as formulated above is the classic two-turning point problem, and the asymptotic
matching procedure is well documented (e.g. Bender & Orszag| (1999, equation 10.5.6). The
resulting condition for w, often referred to as a quantisation condition, is

ﬁ/)ﬂ\/w—mv(x)—@dxz(n+l)ﬂ, with n=0,1,..., (4.8)
€ Jx 2 2

where x( and x; are the turning points. The projection of a uniform forcing onto these modes can
also be calculated asymptotically. The domain integral of a mode is dominated by contributions
from the turning points (e.g. Bender & Orszag| 1999, equation 10.4.24).

If w > max({/2+mv) then there are no turning points. The corresponding eigenmodes are
referred to as free states, and the quantisation condition is replaced by

g/”\/‘”-mv(’f)—%dxnm, with n=0,1,... (4.9)

Note the lack of a half-integer shift that for bound states arises from the Airy behaviour near
turning points. The lack of turning points in the free states also means (4.0) is valid across the
entire domain. Because the eigenfunctions of these free states are oscillatory in the entire domain,
a uniform forcing projects only weakly onto them, and we do not discuss them any further. We
also note that the discretisation of the free states is due to the periodic domain; they would be
replaced by a continuum of modes in an infinite domain, while the bound states would remain
discrete.

Under this scaling, the WKB modes are anisotropic. We assumed m ~ O(1), which means
that the modes’ phase varies in y on a length scale O(1). In contrast, the leading-order phase
variations in x come from &~!S and therefore occur on a scale O(&). The phase varies slowly
along streamlines and rapidly across streamlines. This makes refraction and advection come in at
the same order as cross-streamline dispersion.
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An alternative would be to choose the scaling m ~ O (¢2). Repeating the WKB ansatz requires
a choice of § = £ and w ~ O(&72) in order to end up with an equation of a similar form to (.3):

1 dSO 2 841’112 2 2
_E(E) + > +e“my = gw. 4.10)

With the scaling given above, each term is O(1). We can solve for Sy and the corresponding
quantisation condition for bound modes:

x 2,2
So(x) = i‘/ﬁis/ \/w— £ ;n —mv(x’)dx’, 4.11)
X1 2272
ﬁ/ \/ _gn —mv(x)dx = (n+l)7r. (4.12)
e Jy 2 2

These modes are isotropic. The phase variations in y occur on a scale O(g?), which is the
same as in x because phase variations in x now come from £2S,. This makes advection and
along-streamline dispersion come in at the same order, and it makes refraction negligible.

Despite the different characteristics of the two scalings, they lead to similar quantisation
conditions that differ only by what terms are included. We can combine them into a uniformly
valid quantisation condition:

g/m\/ —#—mv(x)—%dx:(n+%)n. (4.13)

The “potential” governing the wave evolution is therefore

&*m? {(x)

V(x)= > +mv(x)+ 5y
Under the anisotropic scaling m ~ O(1), the along-streamline dispersion term is suppressed by
a factor &2, leaving the O(1) refraction and advection terms to dominate. Under the isotropic
scaling m ~ O(&7?), the advection and along-streamline dispersion terms are enhanced by a
factor £ and dominate over a now negligible refraction term. In both cases, the general equation
is obtained by retaining a term that is of higher order, which is allowed in an asymptotic theory.
A uniform forcing only projects onto modes with m = 0, so all the modes projected onto are of
the anisotropic variety.

We now consider a specific example of a parallel shear flow that varies sinusoidally in x:

(4.14)

¥ =cosx. 4.15)

This shear flow has a region of anticyclonic vorticity at the centre of the domain and cyclonic
vorticity centred on x =+ (figure [dp,b). This is a rare example in which the eigenvalue problem
(42) can be solved exactly using Mathieu functions (Balmforth ef al|[1998). The generally
applicable WKB theory described above accurately predicts the eigenvalues, even for a modestl
small & = % (figure @:). We provide the analytical solutions to the WKB integrals in Appendix
We also note that the symmetry of the problem means that a uniform wind forcing only projects
onto modes with even n.

For m = 0, the eigenmodes are shaped by the potential V = % (figure ). Where w >V, Sy is
imaginary and the solutions are oscillatory; where w < V, S is real and the solutions are decaying
(figure[Sh). Near the anticyclonic centre of the flow, the potential is at its lowest and all the modes
are oscillatory. Moving further out into the cyclonic region, more and more of the modes become
evanescent.

The dependence of the potential on the vorticity ¢ leads to trapping of NIW in anticyclones.
The trapping arises from the dephasing of the modes that make up the initial condition. This is
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Ficure 4. (a) Streamfunction and flow vectors for the shear flow example. (b) Vorticity, showing the
anticyclonic vorticity concentrated in the centre of the domain and cyclonic vorticity on the outside.
(¢) Eigenvalues w as a function of the integer wavenumber m for & = 7. The results from WKB theory
(orange crosses) are shown along with the exact eigenvalues found from numerical solutions (black circles).
The WKB results agree remarkably well with the numerical results, although there are some spurious
eigenvalues near the boundary between free and bound modes. The purple shading indicates the region
where free modes exist, which are not shown here.

analogous to the argument in regarding the vertical propagation of NIWs due to the
B-effect. The evolution occurs in three phases (figure[5p). First, refraction imprints the mesoscale
ses vorticity onto the initially uniform wave phase, leaving the amplitude unchanged (cf.,
let al|[2020). Second, once these phase gradients are sufficiently pronounced, cross-streamline
dispersion becomes important and concentrates the wave energy into the centre of the anticyclone,
and the wave field assumes a spatial scale O (¢). Third, the amplitude remains elevated on average
within the anticyclonic region but is more spread-out than during the initial concentration. It is
a0 this long-time behaviour that corresponds to the fully dephased eigenmodes. The time it takes for
this dephasing to occur depends inversely on the spacing of the eigenvalues w. As & decreases,
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FiGURE 5. (a) The potential V = 5 (black hne) of the parallel shear flow for the m = 0 mode. The dashed lines
show the level of each eigenvalue w for & = Z The solid coloured lines represent a scaled representation of
each eigenfunction corresponding to a given eigenvalue, as 1dent1ﬁed by the colours. (b) Time evolution of
the NIW amplitude |¢| for the parallel shear flow example with € = 4 , starting by a uniform field.

the eigenvalues become more finely spaced. The m = 0 modes have a spacing O (&), so it takes
t ~O(e™") for them to dephase. Another way to think of this is that as & decreases, dispersion
becomes weaker, and it takes longer for phase gradients to build up to a level where dispersion is
important.

Finally, we note that[Asselin e al.| (2020) discussed solutions to the YBJ equation for which
phase lines are aligned with streamlines and straining is ineffective in driving a decrease in the
spatial scale of the wave. That analysis sets the dispersion term to zero, however, and so only
captures the initial phase in which refraction dominates. The WKB theory presented above shows
that cross-streamline dispersion is of leading order and should not be dropped if the long-term
evolution is of interest (cf., figure [5p). Our m = 0 anisotropic modes can thus be understood as a
generalisation of [Asselin e7 al]s solution. The ineffectiveness of straining due to the alignment
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of the wave phase with streamlines remains apparent, but cross-streamline dispersion is now
taken into account such that the solution remains valid at late times. We further note that our
anisotropic modes also allow for slow variations of the wave field along streamlines, such that
advection assumes the same importance as refraction and cross-streamline dispersion. These
anisotropic modes with m > 0 may be excited by a non-uniform forcing, such as a passing
atmospheric front (cf., [Thomas et al.|2017).

4.2. Axisymmetric flow

We now consider a streamfunction with axial symmetry, such that s = (r), where r is the radial
distance from the origin. Llewellyn Smith|(1999) studied NIWs with azimuthal wavenumber zero
in an axisymmetric vortex and provided asymptotic expressions for the frequency of the lowest
radial mode. Kafiabad et al| (2021) studied a similar case but also considered the impact of
NIWSs back on the vortex. Using WKB theory, we consider NIWs with an arbitrary azimuthal
wavenumber and provide a transcendental equation that can be solved for their frequency as for
the parallel shear flows above.

We make the ansatz ¢ = A(r)e™?, where 6 is the azimuthal angle, and again we drop the mode
label. In polar coordinates, (2.4) then reduces to

2 (42 2,2
£ (dA 1dA)+(‘9'" @+£)A=wA, (4.16)
2r2 r 2

2

a2 rar
where v = d,¢ denotes the azimuthal velocity. There are some subtleties involved in applying
WKB theory to this equation. For modes with m > 0, the potential diverges at the origin. This
issue has long been noted in the quantum mechanics literature and can be addressed by performing
a so-called Langer transform on the equation. For m = 0, there is no divergence of the potential,
but there is a phase shift at the origin. As pointed out by |[Berry & Ozorio de Almeidal (1973),
both cases turn out to give the same quantisation condition:

3 !
£/ \/w—V(r)drz(n+§)7r, with n=0,1,2,..., 4.17)
€ r

where the potential is

gm?> mv (

w2 Ty
If m > 0, the integration bounds r( and r; are the two zeros of the integrand; if m =0, ro =0 and r;
is the one zero of the integrand. As in the case of a parallel shear flow, this expression is uniformly
valid in the sense that it works for both m ~ O(1) and m ~ O(£~%). These again correspond to
anisotropic and isotropic modes, respectively, with refraction, advection, and dispersion along
and across streamlines playing the same roles as before. The only difference is that the streamlines
are now circular.

We consider the concrete example of an isolated Gaussian vortex on an infinite domain:

V(r)= (4.18)

(r) :e_%. 4.19)

This corresponds to an anticyclone in the centre of the domain that is surrounded by a halo of
cyclonic vorticity (figure @,b). Again, the WKB calculation for € = % yields eigenvalues that
agree extremely well with the exact eigenvalues (figure [6f). The structure of the first few modes
is shown in ﬁgure For m = 0, the modes are concentrated in the anticyclone. For m > 0, there is
a repulsion from the very centre of the anticyclone due to the advection and dispersion terms in
V(7). This repulsion increases with m, but the modes remain primarily concentrated in the region
of anticyclonic vorticity. The modes become more isotropic as m is increased. Note that again,
a uniform forcing only projects onto the m = 0 mode due to the symmetry of the vorticity field.
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FiGURE 6. (a) Streamfunction and flow vectors for the axisymmetric flow example. (b) Vorticity field showing
the anticyclonic vorticity concentrated in the centre of the domain, which is flanked by a halo of cyclonic
vorticity. (¢) Eigenvalues w as a function of azimuthal wavenumber m for € = %. The results from WKB
theory (orange crosses) are shown along with the exact eigenvalues found from numerical solutions (black
circles). The WKB approximation agrees remarkably well with the numerical results.

We also note that only the bound states form a discrete spectrum in an infinite domain, there will
also be a continuum of free modes.

4.3. General case

Based on the intuition gained above, we wish to construct a uniformly valid asymptotic
expansion for a general two-dimensional background flow. We again make a WKB ansatz that
leads to (4.23). This equation can be solved by the method of characteristics and recovers[Kunze['s
ray tracing. The quantisation condition for the general case is (@.27).
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Ficure 7. Real part of the eigenfunctions for the axisymmetric flow example with € = JT. The radial
wavenumber 7 increases from left to right and corresponds to an increasing number of nodes in the radial
direction. The azimuthal wavenumber increases from top to bottom and corresponds to an increasing number
of nodes in the azimuthal direction.

In analogy with the isotropic scaling, we begin by assuming a solution of the form

. 1< o
,y) = — Si(x, . 4.20
$(x.y) =exp 82;8 j(x.y) (4.20)

again dropping the mode label. Substituting this into (2:4) yields

2
00 )

1 . 1 ] P& ) ’
_2_32 ZSZJVS]' _EZSZJVZSj—ngZJJ(¢,Sj)+E:w. 4.21)
j=0 j= 7=0
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Assuming w ~ O(e~2) and collecting leading-order terms, we obtain
1
—§|VSO|2—1‘J(://,SO) =£w. (4.22)

In the simple examples discussed above, we obtained a uniformly valid approximation by retaining
the higher-order refraction term in the leading-order equation arising from an isotropic scaling.
We do so again here:

1 2
—§|VSO|2—iJ(¢,So)+% = 2w. (4.23)

‘We anticipate that the order of these terms again changes for anisotropic modes. If the phase varies
slowly along streamlines, the advection term is reduced by a factor O(&?), and cross-streamline
dispersion, acting on spatial variations on a scale of O (&) rather than O (£?), will attain the same
order, whereas along-streamline dispersion becomes negligible. The equation (@.23)) can therefore
capture both isotropic and anisotropic modes.
We now introduce the wavenumber vector k by writing £ 28Sy/0x = ik. The equation (#.23)
can be solved using the method of characteristics:
dx de 0 (

- = 2 - =
dr ek+u, dr ox

¢

2 2
Z), w:ﬂm-mz. (4.24)

k+ 2
wrTy 2

These are the non-dimensionalised ray tracing equations of |Kunze| (1985). We further elaborate
on this connection between YBJ and Kunzes ray tracing below.

Numerical solutions for the dipole flow show that the majority of a uniform forcing projects
onto anisotropic modes that show little structure along streamlines and vary more rapidly across
streamlines (figure . With & = }1 there is also some projection onto modes that show more
characteristics of isotropic phase variations. The variations are more rapid, as emerges from the
isotropic scaling discussed above.

Finally, we show how approximations to the eigenvalues can be obtained in the weak-dispersion
limit when the flow problem is not separable, as it was in the cases of a parallel shear flow or
axisymmetric flow. To this end, we utilise results from the quantum mechanics literature. Recall
that the YBJ equation is equivalent to the Schrodinger equation, with the YBJ operator

2
H:—%Vz—iu-V+g (4.25)

playing the role of the Hamiltonian. The weak-dispersion limit corresponds to the classical limit
of the equivalent quantum system, and the ray tracing equations are the analogue of the classical
Hamiltonian dynamics. The classical Hamiltonian is obtained from H by making the substitution
V ik, yielding the dispersion relation in (#.24). The Hamiltonian dynamics are then

de  dw d dk o

ar “ ok " @ ow
the ray tracing equations stated in (#.24). The connection with the Schrodinger equation is most
easily seen in the Hamilton—Jacobi description of classical mechanics (e.g.|Sakurai & Napolitano
2020; Biihler|[2006).

The quantisation conditions derived above for separable problems, from which we obtained
good approximations of the frequency shifts w, can be generalised to some extent to non-
separable problems like the dipole flow (figure [2). This semi-classical analysis of a quantum
system was developed by |Einstein| (1917), Brillouin| (1926), and Keller| (1958), extending the
Bohr—Sommerfeld quantum theory. The resulting approach is referred to as the EBK method
(see also |[Keller|[1985; Berry & Mount |1972; Percival||1977). The starting point is that the rays
(classical trajectories in the quantum problem), being constrained by the invariant w (energy in

(4.26)
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FiGure 8. Real part of the eigenfunctions of the dipole flow with & = % Together, these eight eigenfunctions
represent over 97% of the energy excited by a uniform impulsive forcing. They are the eight modes with the
strongest projection and are then ordered by eigenvalue w. The eigenvalues are shown in the top left corner,
and the projections of a uniform forcing onto the eigenfunction (energy fraction) are shown in the top right
corner.
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Ficgure 9. (a) Example of a trajectory tracing out an invariant torus for the dipole case. This torus corresponds
ton=2,m=0fore= % The background colours show the vorticity field. The black line shows a finite-time
trajectory on the torus. The green and magenta lines represent a choice for the two invariant curves on
the torus. They are independent because no continuous deformation of one can transform it into the other.
(b) Different initial conditions result in different trajectories. This example is not bound to an invariant torus
but is instead an example of a chaotic trajectory.
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Ficure 10. Numerical eigenvalues (black circles) and EBK eigenvalues (orange crosses) calculated for the
dipole flow with & = 4—11. EBK calculations are only shown for the sufficiently confined modes where the
invariant tori are easy to calculate. The EBK values agree with the numerical values to 0(1073).

the quantum problem), trace out invariant tori in the phase space spanned by x and k. A ray
starting on such a torus will remain on it forever. The quantisation condition selects invariant tori
that correspond to allowed bound states by insisting that phase increments along closed loops
on the invariant torus integrate to multiples of 27. Recalling that £~2S, = ik, so k is the spatial
gradient of the phase, and k - dz is a phase increment, the quantisation conditions read

1
7{ k-dm:Zn(n+—), f k.dx=2mm, 4.27)
Ci 2 G

where n and m are integers. The contours C; and C; are topologically independent closed curves
on the invariant torus (figure [Op). In our example, the curve C; passes through the hole of the
phase space torus, whereas the curve C, goes around the hole. The two curves are independent
in the sense that neither one can be continuously deformed into the other. There is a half-integer
phase shift in the quantisation condition arising from the integral along the curve C; because
this curve passes through two caustics, the generalisation of a turning point, where additional
phase shifts are incurred (Brillouin||1926; Keller 1958 Maslov||1972). The curve C, encounters
no caustics. The integer wavenumbers n and m correspond to the cross- and along-streamline
variations, respectively. These EBK quantisation conditions are entirely analogous to the WKB
quantisation conditions derived above for the separable parallel shear flow and axisymmetric flow.

We apply the EBK quantisation to the dipole flow with € = %. Our procedure closely follows
Percival & Pomphrey| (1976)): we find the invariant tori satisfying the quantisation condition by
writing the Hamiltonian equations in action—angle variables and employing Newton’s method.
See Appendix [D] for details. All eigenvalues calculated by this EBK method show excellent
agreement with the numerical values (figure [10).

As foretold by |[Einstein| (1917), not all modes are accessible by the EBK approach. If the
system is non-integrable, trajectories in phase space can become chaotic instead of tracing out
an invariant torus (figure[9p). States corresponding to such chaotic trajectories are not amenable
to the EBK method. This “quantum chaos” has received much attention in the physics literature
and has connections to random matrix theory (e.g. Gutzwiller|1992; [Stone|2005). Methods exist
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to estimate eigenvalues as well as their statistics (e.g. [Edelman & Rao|[2005; |[Edelman & Sutton
2007). We do not pursue these issues any further here, in part because a uniform forcing projects
most strongly onto the regular modes accessible with the EBK method (figure [g).

5. Relation to the ray tracing equations

The previous section made clear that the ray tracing equations of Kunze| (1985) are closely
related to the YBJ dynamics. In the same way that Hamiltonian dynamics emerge in the classical
limit of the Schrodinger equation, the ray tracing equations emerge in the weak-dispersion limit
of the YBJ equation. YBJ criticised Kunze’s assumption that the waves have a smaller spatial
scale than the background flow, insisting that atmospheric forcing produces near-inertial waves at
larger—not smaller—scales than mesoscale eddies, calling into question Kunze’s ray-theoretical
description in general. The analysis above clarifies that the spatial scale of the forcing is not
what determines the applicability of WKB . Instead, the scale on which dynamical modes vary
determines whether WKB analysis can be applied, and this spatial scale is set by how strongly
dispersive the waves are. An initially uniform wave field can be thought of as consisting of a
superposition of several modes, all varying on a small scale but combining into a uniform field.
The distinct frequencies w of these modes make them dephase over time, and the superposition
develops the small scales of the modes.

Our analysis also provides some additional insight into the evolution of weakly dispersive
NIWs. The isotropic and anisotropic scalings show that refraction is not always of leading-order
importance. The refraction term is significant only for the anisotropic modes. For isotropic modes,
the refraction term is asymptotically weak and the dispersion relation is dominated by advection
and dispersion. A large-scale forcing, however, will project primarily onto the anisotropic modes,
as can be seen in the specific solutions for the dipole case (figure [§). More generally, the large
values of the along-streamline wavenumber m in the isotropic case produce rapid variations
that lead to strong cancellations when calculating the projection of a uniform forcing onto these
modes. As such, only a weak projection can remain.

To help interpret observations from the NISKINe study, [Thomas et al.| (2020) performed a
simplified ray tracing calculation, which predicted a rapid strain-driven growth in the wavenumber
that stood in stark contrast to the data. In this region of the North Atlantic, the waves are weakly
dispersive (Thomas et al.|[2024a)), so one may worry that this result contradicts our conclusion
that ray tracing can be deployed gainfully in the weak-dispersion regime. [Thomas et al.| (2020)
approximated the full wavevector evolution by assuming a uniform and time-independent vorticity
gradient, as well as a strain field with strain rate « and its principal axis aligned with the vorticity
gradient. In that setup, the wavenumber component & that is aligned with the vorticity gradient,
i.e. perpendicular to vorticity contours, evolves according to

ddi:z—@+aki, SO kLz—%(e‘”—l) (5.1
if £, =0 at time 7 =0, approximating large-scale wind forcing. The exponential growth predicted
by this equation does not match the data. Our analysis suggests, however, that a large-scale forcing
primarily excites modes whose phase is aligned with streamlines. In this configuration, the strain
is ineffective, and the initial wavenumber evolution is dominated by refraction:

dk, Vel v¢|

d_‘[' ) kJ_ = —TT. (52)

This recovers the Asselin ef al.|(2020) solution that/Thomas et al.|(2020) showed roughly matches
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the data. Our analysis therefore suggests that it was not ray tracing per se that caused the mismatch
with the data but the assumptions that went into the simplified solution][f]

Kunze| (1985) considered three-dimensional ray tracing, which allows for both baroclinicity in
the mean flow and a vertical wavenumber for the NIWs that corresponds to propagation of the
waves in the vertical. In this paper, we have restricted our attention to a barotropic mean flow
and considered the propagation of a single baroclinic mode, such that the problem reduces to
two-dimensional ray tracing. Exploring how the three-dimensional ray tracing is related to the
full YBJ equation that also allows for baroclinicity in the background flow is left to future work.

6. Near-inertial wind work

One may speculate that the frequency shifts in the weak-dispersion limit could impact the
energy input into NIWs by the winds. To study this, we need to consider a forced version of
the YBJ equation. So far, we have focused on the problem with a horizontally uniform initial
condition. This was to represent the NIW field excited by the passage of a large-scale atmospheric
storm, and we studied the evolution of this NIW field in the absence of any further forcing. Real
NIWSs, in contrast, are continually forced by the winds, which we now represent by including
a horizontally uniform forcing term in the modal YBJ equation. If we include sources of NIW
energy, then we must also include the sinks, such that the wave energy can equilibrate. In the real
ocean, NIW energy is primarily dissipated through mixing. Mechanisms of NIW dissipation are
complicated and depend, among other factors, on the local stratification (e.g. Kunze et al.| 1995
Qu et al. 2021)) and the mesoscale eddy field (Sanford et al.|2021} Essink et al.|2022; Thomas et al.
2024b). For simplicity, we model these processes as a linear drag. In mixed-layer models, a linear
drag is often used to model NIW propagation out of the mixed-layer (see e.g. Pollard & Millard
1970), but in our model vertical propagation is already accounted for by the decomposition into
baroclinic modes. The linear drag in our model therefore represents the irreversible sink of NIW
kinetic energy due to mixing. With these alterations, the modal YBJ equation reads

da; = (—ia)a, —rat+F,eif’)dt, (6.1)

where a, denotes the modal amplitude at time ¢, » is the linear drag coefficient, and F; the
wind forcing projected onto the mode under consideration. We suppress the mode index p for
now but keep in mind that this equation must be solved for each mode. Note also that we have
re-dimensionalised the equation here. The factor of ¢!/ back-rotates the forcing to match the
back-rotated description of the NIW evolution by the YBJ equation. To proceed, we describe the
wind by an Ornstein—Uhlenbeck process which satisfies

dFt = _CFI dt+O—dW[ (6.2)

where ¢! is the decorrelation timescale of the wind forcing, o is the amplitude of the stochastic
excitation and W; is a Wiener process. The power spectrum of the process F; is
c

S(w) = 2

At ©.3)

For w > ¢ the power falls off with frequency as w2, i.e. the spectrum is red. We find that this is
a good model of the power spectrum of the wind stress from reanalysis, especially over the ocean
(see Appendix [E] for more details).

1 It should be noted that a pure strain field does not produce a compact operator H, so the machinery
based on a discrete set of eigenmodes does not apply. Instead, one should view the pure strain field as the
local behaviour of some more complicated background flow that is described by a compact operator H.
Because ray tracing is inherently local, the behaviour detailed above would still apply.
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We consider the system spun up from ¢ = —oo, such that it has statistically equilibrated for all ¢.
This results in the formal solution for the forcing

t
F=o / et g, (6.4)

[es)

and the formal solution for the mode amplitude a is given by
t
a, = e—(iw+r)t / e[i(f+w)+r]t’Ft, dr’. (6.5)

The NIW kinetic-energy equation can be obtained in the usual way by multiplying (6.1) with a;
and adding the complex conjugate. This is allowed because it is the integral of a Wiener process
that appears in (0.1)), and not the Wiener process itself. The wind work I'; arises as

1.
I,= 3 (atelf’F, +c.c.) . (6.6)

We are interested in the average of ['; over an ensemble of many realisations of the wind-forcing.
Let (-) denote such the ensemble average. Hence, the ensemble average wind work is

t
(T,) == ( [i(f+w)-rlt / el i(f+w)+r]t’ (F;,Fﬁdl’ +C.C.) ) 6.7)
The covariance function of the Ornstein—Uhlenbeck process F; is

0-2 _ 4t
(FiF) = e, (6.8)
so the ensemble average of I'; reduces to

c+r
2¢ (c+r)2+(f+w)?

As expected, given the initialisation at t = —co, the power input is independent of time ¢. This
equilibrated wind work is balanced by the linear drag, such that the ensemble averaged kinetic
energy in a given mode is finite. From this expression, we can furthermore see that (I';) is smaller
for w > 0 than for w < 0. This is because the wind forcing has more power at low frequencies.

We now define Q as the ratio between the equilibrium wind work in the presence of a mesoscale
eddy field to the equivalent wind work in the absence of mesoscale eddies. Without mesoscale
eddies, ¢ = 0 and there are no frequency shifts, so w = 0 for the uniform mode excited by the
wind. The wind work is simply

<t>_

(6.9)

o2 c+r

20 (c+r)2+ f2

We calculate Q as a weighted sum of the ratio over individual modes, where the weighting is
given by the projection F,, of the forcing onto a given mode p:

2 2
0= [Fu (ctr)+f 6.11)
m

(c+r)?+(f+wy)?

(Iy) = (6.10)

where we restored the subscripts for the modes. This expression depends on the wave dispersive-
ness &2 through F w and w,. If we make the assumption that the r < ¢, meaning that the timescale
of NIW dissipation is much longer than the memory of the winds, this expression reduces to

2
Q= ZI ,L|2C2 c+f (6.12)

+(f+wu)?
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Ficure 11. (a) Ratio Q of NIW wind work in the presence of mesoscale eddies to that without as a function of
the wave dispersiveness £ and the wind stress memory parameter ¢/ f. Modulation of the NIW wind work by
the mesoscale eddy field appears only for low € and ¢/ f. These values correspond to a re-dimensionalisation
of w by Ro =0.5. (b) Schematic illustrating the enhancement of NIW wind work in the weak-dispersion
regime. The solid black curve illustrates the wind stress power as a function of frequency on a log-log plot.
At the inertial frequency, the power is rapidly falling off. The circles indicate the modes that a uniform initial
condition projects onto. In the strong-dispersion case, the forcing projects onto a single mode with a small
frequency shift. In the weak-dispersion case, the forcing projects onto a wide variety of modes with large
frequency shifts.

We use this reduced expression in the following analysis because r < ¢ appears reasonable and
because r would be difficult to estimate.

Modulation of the NIW wind work by mesoscale eddies occurs only for & < 1. Using the dipole
flow as an example, we calculate Q from as a function of ¢ and ¢ (figure[TT). For large &,
Q quickly approaches unity, regardless of the value of c. For small &, the contours of Q become
horizontal and there is little dependence of Q on €. The dependence is primarily on ¢ with a lower
value of ¢ resulting in a higher value of Q, i.e. a more substantial enhancement of the wind work.
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Our framework provides physical motivation for why mesoscale eddies can modulate the wind
work in the weak-dispersion case. Assuming ¢ < f, which is generally the case for the wind stress
over the ocean, we see that the inertial frequency f is in the w ™2 part of the wind power spectrum.
Any process that shifts the frequency of NIWs will modulate the wind power felt by the waves.
Because the wind power spectrum falls off like w2, a shift to lower frequencies will raise the
wind power felt by the waves, and a shift to higher frequencies will lower it. This is the essence
of (6.12). As we have shown above, frequency shifts are small in the strong-dispersion limit, and
so the waves should feel similar wind power regardless of the presence of mesoscale eddies. As
such, Q is close to unity in the strong-dispersion limit. In the weak-dispersion limit, in contrast,
there can be significant frequency shifts. A uniform forcing will project onto many modes with
a range of frequency shifts. Due to the curvature of the wind power spectrum, going like w2,
the fractional increase in power for negative frequency shifts will be greater than the fractional
decrease in power for positive frequency shifts of the same magnitude. As a result, there will be
a net increase in NIW wind work when summing over all modes (see figure[TIp for a schematic).
The question remains whether this will be an appreciable effect in the ocean.

We estimate Q from observations. For each location in the ocean, we estimate & from the
deformation radius and satellite altimetry observations of the eddy field (see Appendix [A), and
we estimate ¢ from atmospheric reanalysis (see Appendix [E). We calculate the modes of the
dipole flow for a range of &, which gives us w,, and |F, u|2’ and we re-dimensionalise w,, using
the Rossby number Ro = ¢/ f calculated from satellite altimetry. We use the spatial structure of
the vortex dipole as a stand-in for the real eddy structure. This provides an (admittedly crude)
estimate of the combined effect of an anti-cyclone and a cyclone. We calculate Q by using
and then interpolating onto the correct €.

Our estimate reveals that deviations of Q from unity are weak, at most 5%. This effect is entirely
concentrated in the western boundary current regions. This is because the dimensional frequency
shift scales with Ro. Over most of the ocean Ro is far too weak to produce any modulation of
the NIW wind work. While this mechanism may be important for individual NIW events (Conn
et al.|[2024), it is clear that on average there is not a significant modulation of the NIW wind
work by mesoscale eddies. The maximum modulation of 5% is significantly smaller than current
uncertainties in the NIW wind work (Alford |2020). That being said, our approximation of the
wind stress as an Ornstein—Uhlenbeck process is highly simplified. The real forcing is dominated
by intermittent atmospheric cyclones. The linear drag is also an extremely crude representation
of NIW dissipation and should be thought of as nothing more than a stand-in for a more realistic
representation.

7. Limitations of the model

All the limitations of the YBJ model are inherent in our analysis above. Specifically, there is no
feedback of the waves onto the background flow. |Xie & Vanneste|(2015) extended the YBJ model
by coupling it to a quasi-geostrophic model for the background flow that included wave feedbacks.
These wave feedbacks can significantly alter the characteristics of the background flow (Xie &
Vanneste|2015;Wagner & Young|2016;Rocha et al.[2018).|Kafiabad et al.| (202 1) showed that this
wave feedback can cause frequency shifts in the near-inertial waves. Furthermore, |Kafiabad et al.
(2021)) also noticed that strong wave feedbacks can generate instabilities which cause small-scale
structure in the vorticity field.

The scaling assumptions of the original YBJ equation should be kept in mind in the context of
the asymptotic expansions performed above. The Rossby number is Ro = ¥/ fL?, and the Burger
number is Bu = A%/L?, such that £? = Bu/Ro. The YBJ equations arises asymptotically in the
limit where Bu — 0 while Bu/Ro is kept fixed (see|Asselin & Young2019), so ¢ < 1 and € > 1
do not violate the YBJ scaling.
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Thomas et al.|(2017) conducted a detailed study of the evolution of NIWs in different scaling
regimes. They considered a “very weak—dispersion regime” where Bu ~ Ro? which is equivalent
to &> ~ Ro. An additional term arises compared to the YBJ equation, but they found the YBJ
equation to still work well in simulations. They also considered a ‘“strong-dispersion regime”
where Bu ~ 1. In this regime they found a leading-order uniform NIW solution, but also with the
excitation of super-inertial frequencies that are not captured by YBJ. The frequency shift of the
uniform mode is as predicted by YBJ. Another way to improve on the YBJ model is the YBJ*
scheme of |Asselin & Young|(2019). It has a dispersion relation that remains accurate over a wider
range of Bu, and it has desirable numerical properties. The YBJ* equation is not a Schrodinger
equation any more, however, and we do not pursue its analysis here.

Throughout this paper, we have dealt with the case in which the background flow does not
evolve. In the ray tracing framework, the background flow could be allowed to evolve. The
Hamiltonian operator would be time-dependent, but the equations can still be integrated along
rays. For our analysis of eigenmodes to be applicable to the time-dependent case, the evolution of
the background flow should be adiabatic, i.e. it should be slow compared to the wave evolution.
The time for eigenmodes to dephase depends on the difference between their frequencies. In
the strong-dispersion case, the frequency difference between the leading-order eigenmode and
the higher eigenmodes is O (&%), meaning that the time to dephase should be small relative to
the timescale for evolution of the background flow. In the weak-dispersion limit, the eigenvalues
become ever-closely packed, meaning the timescale for dephasing can become large. For the
adiabatic assumption to hold, an invariant torus should deform much more slowly than the time it
takes a particle to traverse the torus. If the time taken to traverse the torus is given by the advective
timescale, then these two timescales are formally the same order. The adiabatic assumption will
only hold if there is a symmetry which causes the torus to persist for a longer timescale. The dipole
vortex is an extreme example of this where the tori never deform, yet the advective timescale
is finite. In the ocean, eddies often persist as coherent features for times much longer than the
advective timescale. As such, we expect that the weak-dispersion results to continue to provide
insight even in the time-dependent case.

We have also assumed that the background flow is barotropic. This allows the YBJ equation
to be expanded into the baroclinic normal modes. If the background flow is baroclinic, such a
decomposition is not possible and the modes become coupled. This coupling of the modes means
that the YBJ equation no longer reduces to the Schrodinger equation. This does not necessarily
destroy the quantum analogy, as the techniques employed here may still be applicable with some
modifications. We leave an exploration of these issues to future work.

Finally, we note that in the real ocean, vorticity variance increases at smaller scales. One
may worry that the frequency shifts would diverge with increasing resolution. While a detailed
discussion of this issue is beyond the scope of this paper, dispersion should have a regularising
effect on small-scale vorticity, which leaves the problem well-posed.

8. Conclusions

In the YBJ framework, the evolution of NIWs in the presence of a mesoscale eddy field is
governed by the wave dispersiveness €2 = fA%/%. The limit of £ > 1 corresponds to the strong-
dispersion limit and £ <« 1 corresponds to the weak-dispersion limit. Both of these limits are
relevant for the ocean, as the wave dispersiveness decreases with vertical mode number and the
strength of mesoscale eddies.

The YBIJ equation is a Schrodinger equation, with the YBJ operator playing the role of
the Hamiltonian operator in quantum mechanics. As is conventional in quantum mechanics,
the evolution of NIWs can be described using the eigenmodes of the YBJ operator and their
eigenvalues, which determine the frequency shift away from the inertial frequency. Perturbation
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methods from quantum mechanics yield insight into YBJ dynamics and its relationship to the ray
tracing equations of |[Kunze| (1985)).

In the strong-dispersion regime & > 1, perturbation theory yields closed-form expressions for
the NIW modes. To leading order, a spatially uniform forcing excites a spatially uniform NIW
mode. This mode is modulated by an order £~2 perturbation proportional to the streamfunction
of the eddy field. The frequency shift is also of order £2 and proportional to the average kinetic
energy of the eddies. Both of these results recover predictions from|Young & Ben Jelloul| (1997)
through an alternative approach. The same approach also yields expressions for the modes that
are not spatially uniform to leading order. The degeneracy of these modes at leading order is lifted
at higher order, and the frequency shifts and spatial structures can be determined. Wind patterns
associated with sharp atmospheric fronts may excite these modes more strongly than the uniform
forcing assumed throughout this work (e.g. Thomas|2017).

In the weak-dispersion regime & < 1, the YBJ equation is amenable to WKB analysis. In
simple (separable) background flow geometries, this allows the straightforward calculation of
eigenmodes and their frequency shifts, which are excellent approximations of the exact frequency
shifts even for modestly small . More generally, the weak-dispersion limit of the YBJ equation
corresponds to the classical limit of quantum mechanics. The YBJ equation reduces to the ray
equations of Kunze|(1985)), the equivalent to the corresponding classical Hamiltonian dynamics.
The semi-classical EBK analysis allows the calculation of frequency shift for non-separable
background flows for the regular part of the spectrum, which again are in excellent agreement
with the full shifts. The emergence of the ray equations in the classical limit furthermore suggests
that they can be applied if dispersion is weak, whether or not the forcing has a large horizontal
scale. The spatial-scale separation underlying the ray equations emerges because a uniform initial
condition projects onto many modes, and these modes exhibit small-scale structure.

The frequency shift of NIW modes away from the inertial frequency implies that the NIW
wind work can be modulated by mesoscale eddies. We quantify this using Q which measures
the ratio of the NIW wind work in the presence of mesoscale eddies to that without mesoscale
eddies. This modulation arises due to the curvature of the wind power spectrum, which enhances
the power input into modes with a shift to lower frequencies more than it suppresses the power
input into modes with a shift to higher frequencies. On average, this effect is weak in the ocean,
however, with the modulations always being less than 5%.
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Appendix A. Calculating the wave dispersiveness

Here, we describe the calculations used to estimate the wave dispersiveness &> = f12/¥ from
observations. At each location, we estimate the set of deformation radii 4 from hydrography and
the characteristic strength of the streamfunction ¥ from altimetry.

Following Smith| (2007)), we calculate A by solving the baroclinic eigenvalue equation using
finite differences. We perform this calculation using the climatology from the Estimating the
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Circulation and Climate of the Ocean (ECCO) state estimate version 4 release 4 (Fukumori ef al.
2020; [Forget et al.|[2015). We solve the baroclinic eigenvalue equation at each horizontal grid
cell on the ECCO grid to obtain maps of the deformation radii. We display &2 for the lowest four
baroclinic modes only, for which the numerical approximation has a minimal effect.

To calculate ¥, we use sea surface height (SSH) observations from the Data Unification and
Altimeter Combination System’s (DUACS) delayed-time (DT) 2018 release|Taburet ef al.[(2019).
The SSH is provided at a (nominal) (1/4)° and daily resolution. We calculate a geostrophic
streamfunction using y = gn/f, where 7 is the SSH and f is the (now latitude-dependent)
Coriolis frequency. We take observations from 2007 to 2022 and estimate ¥ as the RMS ¢ over
that period. Again, we are assuming that the streamfunction is barotropic.

Appendix B. Numerical solutions to the eigenvalue problem

To numerically solve the eigenvalue problem (2.4), we discretise the Hamiltonian operator H
using finite differences. We use a fourth-order central difference scheme for the Laplacian operator
in the dispersion term. For the advection term, we employ the fourth-order enstrophy-conserving
scheme of |Arakawal (1966)), which preserves the Hermitian nature of the operator and translates
into energy conservation in this context. In the notation of |Arakawal (1966), we employ 2J1 — J3,
where J| = % (JH+J>+ ) and Jp = %(J><>< +JX* +J*%). For the refraction term, we evaluate ¢
analytically at each point, although in general it could be calculated from the streamfunction using
finite differences as well.

We use a spatial resolution of up to 1024 x 1024 points and solve for the lowest eigenvalues
using Lanczos iteration. The resolution is chosen by checking the convergence of the eigenvalues.
The number of eigenvalues solved for depends on the value of &, which controls how densely
packed the eigenvalues are and thus how many must be computed to find all eigenmodes that a
uniform forcing projects onto substantially. We ensure a large enough number of eigenvalues are
computed by summing the square of the projection coefficients.

Appendix C. Analytical solutions to shear flow WKB integrals

Here, we provide analytical solutions to the WKB problem with the sinusoidal shear flow. First
we rewrite the potential as

&*m? 1
V(x) = A, cos(x+6,,)+ 5 where A, = m2+Z and tand,, = —-2m. Ch

If m > 0 and arctan corresponds to the principal value, then it follows that §,,, = 7 +arctan (—2m).
Because the domain is periodic, we can consider any interval of length 27. For convenience,
we choose [—m — arctan(—2m), — arctan(—2m)]. We can now make the change of variable
x" =x+arctan(—2m). The transformed potential is

2.2
V(x,):&:m

— A, cos(x). (C2)

With the potential in this form, the WKB integral (#.6)) can be evaluated in terms of the elliptic
integral of the second kind E (¢|k?):

2m? 1 24
So=+2V2ieyJw— o + A, E| S| —22m
2 2 w-+Ap

(C3)




795

800

805

Regimes of near-inertial wave dynamics 29

Wff can obtain an equation for the eigenvalues from ({4.13). Letting x| denote the positive turning
point given by

, - £~
x] = m —arccos | ——— |, (C4)
Ap
we obtain
1
ETT (I’l + E) x’ 24
E(¢|k?) = , where ¢=— and k2:+. (C5)
2 2 w—e*m?[2+ A,
4.2 (a) _ gy A,,,)
This is a transcendental equation that can be solved numerically for the eigenvalues w.
The eigenvectors can be normalised by requiring
T
/ [, (x)])%dx =2n. (C6)
-7
Letting C be the normalisation constant, we obtain
8C?
F(glk®) =2z, (C7)

w—=+ A,

where F(¢|k?) is the elliptic integral of the first kind (see Bender & Orszag|1999).
The projection of a uniform forcing onto a given mode with even symmetry about the bottom
of the potential is

a, = l‘/”fﬁn(x)dx. (CB)
21 J_»

This integral can be evaluated (again see |Bender & Orszag|1999) as

1 £
A —wt 2 V2F(plk?)

Appendix D. Further Details about the EBK Method

We principally follow |Percival & Pomphrey| (1976) to calculate the invariant tori satisfying
quantisation conditions and the associated EBK predictions for the eigenvalues w. We write the
angle Hamilton equations, which are partial differential equations that describe the invariant
torus:

lan|* = (C9)

v%+yg—;=szk+u, D1
V%+ﬂ% =&l +v, (D2)
V%*”%z_( g—Z+ %+%g—i) D3)
%+#%:_(k%+l%+%g—i)' D4)

The quantization conditions can then be written as integrals over the angles 8 and ¢:

/(k%+l%) do =2nmm, /(kg—;+lz—j;) do =27(2n+1+m). D5)
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The integration along 6 passes around the hole of the torus (like contour C; in figure [9). The
integration along ¢ passes through the hole twice and also around the hole once, so we double
the radial phase increment 27 (n + %) and add the azimuthal phase increment 27rm in the second
quantization condition. We average these numerical integrals over the respective other coordinate
to increase the accuracy.

We discretise the above equations by dividing the [0,27] intervals that the angles 6 and ¢ vary
over using 64 points and approximate derivatives using an eighth-order finite difference scheme.
‘We initialise the calculation with 8 = —%, Y= %,

1 1 . . . .
x= z(l +cosg)cosf, y= 5(1 +cosg)sind, k=-g&  singcosf, [=-& singsinf
(D6)
for the (n,m) = (0,0) torus and apply Newton iteration to satisfy the above equations. We
determine w by applying the dispersion relation at each point of the torus and averaging over all
grid points. We then change the quantum numbers to other values and start the Newton iteration
from the previously found torus, using iterations at intermediate values if needed.

Appendix E. Estimating the decorrelation time of wind stress

Here, we describe the calculations used to estimate the decorrelation time ¢! of the wind
stress. For the wind forcing, we use the European Centre for Medium-Range Weather Forecasting
ERA-5 reanalysis (Hersbach er al.|[2018)). For the calculations below, we use data from 2015
to 2020. At each grid cell, we use the 10 m zonal (u,,) and meridional (v,,) winds with hourly
resolution. Following [Pollard & Millard (1970) we convert this to a wind stress using a bulk
aerodynamic drag formulation. The time series at each location is used to calculate a power
spectrum of the wind stress. The decorrelation timescale is obtained by fitting the following
model to the estimated spectrum:

A

1+(2)"
where A and s are additional fitted parameters that we do not use here. Over the ocean s =2 is a
reasonable approximation, which motivates our use of the Ornstein—Uhlenbeck process above.

S(w) = (ED)
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