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ABSTRACT

The distribution of fitness effects (DFE) characterizes the range of selection coefficients
from which new mutations are sampled, and thus holds a fundamentally important role in
evolutionary genomics. To date, DFE inference in primates has been largely restricted to
haplorrhines, with limited data availability leaving the other suborder of primates,
strepsirrhines, largely under-explored. To advance our understanding of the population genetics
of this important taxonomic group, we here map exonic divergence in aye-ayes (Daubentonia
madagascariensis) — the only extant member of the Daubentoniidae family of the Strepsirrhini
suborder. We further infer the DFE in this highly-endangered species, utilizing a recently
published high-quality annotated reference genome, a well-supported model of demographic
history, as well as both direct and indirect estimates of underlying mutation and recombination
rates. The inferred distribution is generally characterized by a greater proportion of deleterious
mutations relative to humans, providing evidence of a larger long-term effective population size.
In addition however, both immune-related and sensory-related genes were found to be

amongst the most rapidly evolving in the aye-aye genome.
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MAIN

The distribution of fitness effects (DFE) summarizes the range of selection coefficients
from which new mutations are sampled. Consequently, characterizing the DFE holds a
fundamentally important role in evolutionary genomics, as it quantifies the fraction of neutrally
evolving genomic mutations, provides insights into the expected relative frequencies of
purifying relative to positive selection, and informs the expected effects of selection at linked
sites, to name but a few implications (see reviews of Eyre-Walker and Keightley 2007; Keightley
and Eyre-Walker 2010; Bank et al. 2014a). Moreover, given that the vast majority of fitness-
impacting mutations are deleterious, the constant elimination of these variants via purifying
selection and the associated background selection (BGS) effects (Charlesworth et al. 1993)
represent constantly operating processes shaping levels and patterns of genomic variation in
and around functional regions. As such, an accurate characterization of these effects is critical
for the construction of any evolutionary baseline model for a given species (Comeron 2014,
2017; Johri et al. 2022a; Howell et al. 2023; Terbot et al. 2023; Soni et al. 2023; Soni and Jensen
2024), and, because these effects may differ strongly depending on the relative proportion of
weakly relative to strongly deleterious mutations, the DFE shape again emerges as a
fundamental component for any evolutionary modeling or inference (Charlesworth et al. 1993;
Hudson and Kaplan 1994; Charlesworth et al. 1995; Ewing and Jensen 2014, 2016; Johri et al.
2020).

Generally speaking, there are two classes of DFE inference, one applicable to lab-
tractable organisms that may be experimentally evolved, and one applicable to natural

population analysis. The former includes mutation accumulation experiments —in which a
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population of organisms can be maintained often in replicate, sampled at regular intervals, and
the fitness effects of newly arising mutations characterized with respect to, for example, the
wild-type state (e.g., Lenski et al. 1991; Barrick and Lenski 2013; Desai 2013; Bondel et al. 2019;
Morales-Arce et al. 2022; Crombie et al. 2024). This class also includes mutagenesis experiments
— in which hundreds or thousands of individuals can be maintained that carry one or very few
mutations, and their fitness assessed by, for example, relative growth rates (e.g., Hietpas et al.
2011; Jacquier et al. 2013; Bank et al. 2014b; Fowler and Fields 2014; Matuszewski et al. 2015).
Both methods represent powerful DFE inference approaches for the organisms in which they
can be applied (e.g., Saccharomyces cerevisiae, Caenorhabditis elegans, Chlamydomonas
reinhardtii), with the caveat being that they provide DFE inference only within the context of a
lab-grown environment.

With regards to natural population analysis, which will be our focus here, there are
generally approaches utilizing divergence data, polymorphism data, or a combination of both.
Perhaps the most basic approach utilized to infer aspects of the DFE relies on comparisons
between non-synonymous and synonymous divergence. Assuming that synonymous sites are
effectively neutral, and thus characterized by a substitution rate equal to their mutation rate
(Kimura 1968), one may quantify the fraction of non-synonymous mutations that are
deleterious (and thus characterized by reduced fixation probabilities relative to neutrality) by
assessing the depression in non-synonymous divergence relative to the synonymous neutral
standard (e.g., Eyre-Walker et al. 2002). Similarly, if advantageous mutations are present
(characterized by increased fixation probabilities relative to neutrality), one may assess this

fraction of the DFE via the acceleration of non-synonymous divergence relative to synonymous
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(e.g., Smith and Eyre-Walker 2002). These advances largely owed to the realization that a
McDonald-Kreitman-style test (McDonald and Kreitman 1991) could be used to infer
proportions of adaptive substitutions (Charlesworth 1994). Synonymous and non-synonymous
mutations aside, one may similarly utilize this divergence-based logic to assess selective
constraints acting in different genomic regions (e.g., coding relative to intronic relative to
intergenic; Andolfatto 2005).

When incorporating polymorphism data into DFE inference, one initial challenge is the
need to incorporate the demographic history of the population into the inference procedure,
given that this history may also act to shape levels and patterns of variation and thus may
potentially result in mis-inference if unaccounted for (see review of Johri et al. 2022b). One of
the first advances in this regard utilized the site frequency spectrum (SFS) at putatively neutral
synonymous or non-coding sites in order to infer a population history, and then conditioned on
that history to infer the DFE at putatively functional non-synonymous sites (Williamson et al.
2005; Keightley and Eyre-Walker 2007). Such step-wise approaches yielded some of the first
polymorphism-based DFE estimates for a variety of organisms (Eyre-Walker and Keightley 2007;
Boyko et al. 2008; Eyre-Walker and Keightley 2009; Schneider et al. 2011). A related category of
methods also arose for utilizing time-sampled polymorphism data in order to infer individual
mutational effects based on observed allele frequency changes — as may be applicable to
ecological datasets or ancient DNA sampling — with the stochastic effects of genetic drift
associated with the given population history being incorporated by estimating an effective
population size based on the variance observed in neutral allele frequencies (e.g., Malaspinas et

al. 2012; Foll et al. 2015; Ferrer-Admetlla et al. 2016; and see review of Malaspinas 2016).
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82  However, in addition to generally being limited to relatively simple population-size change
83  models (though more complex models have been developed; e.g., Ma et al. 2013; Kim et al.
84  2017), these initial single- and multi-timepoint approaches also assume independence amongst
85  sites, and thus neglect any role of background selection or other forms of genetic hitchhiking in
86  further shaping levels of polymorphism (see reviews of Charlesworth and Jensen 2021, 2022).
87 In order to address these polymorphism-based challenges, simultaneous inference
88 approaches have recently been developed. Though accounting for the effects of selection on
89 linked sites within an analytical framework remains challenging, Cvijovic et al. (2018) obtained
90 expressions for the SFS at sites experiencing BGS in a constant size population, and Friedlander
91 and Steinrlicken (2022) described a numerical framework to obtain expected SFS and linkage
92  disequilibrium (LD) patterns around a selected region with changing population size. In order to
93  allow for more complex models, progress has also been made using approximate Bayesian
94  computation (ABC) approaches with forward simulations, in order to model both complex
95 population histories and flexible DFE shapes, whilst accounting for the resulting effects of
96 selection on linked sites. For example, Johri et al. (2020) developed a joint ABC approach
97 estimating the DFE densities of neutral, weakly deleterious, moderately deleterious, and
98 strongly deleterious mutations, together with a history of population size change, utilizing
99  aspects of the SFS, LD, and divergence as summary statistics. Notably, the exclusion of BGS
100 effects in previous methods was found to result in an under-estimation of weakly deleterious
101  mutations and an over-estimation of population growth, a bias which is corrected within this
102  ABC framework (Johri et al. 2021). Subsequent work has also demonstrated the potential mis-

103 inference that may arise by neglecting underlying heterogeneity in rates of both mutation and


https://doi.org/10.1101/2025.01.02.631144

bioRxiv preprint doi: https://doi.org/10.1101/2025.01.02.631144; this version posted January 3, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

104 recombination (Soni et al. 2024a). Taken together, this literature thus emphasizes the

105 importance of incorporating population history, the effects of selection at linked sites, and

106  mutation and recombination rate maps / uncertainties when performing DFE inference.

107 In primates specifically, these various divergence- and polymorphism-based approaches
108 have been employed widely, with humans being the best studied in this regard. For example,
109 Keightley and Eyre-Walker (2007) fit a gamma-distributed DFE utilizing a gene set associated
110  with severe disease or inflammatory response, and estimated a large proportion (~40%) of

111  strongly deleterious mutations and a relatively low (~20%) proportion of effectively neutral

112  mutations. Huber et al. (2017) utilized a wider selection of genes, resulting in a DFE skewed

113  towards effectively neutral mutations (~50%; similar to the estimate of Johri et al. 2023 utilizing
114  adifferent subset of genes), and a smaller proportion of strongly deleterious mutations (~20%).
115  Thus, these differences may well simply and accurately reflect true DFE differences in the

116  underlying gene sets evaluated. Similar inference has also been performed across the great apes
117  (e.g., Castellano et al. 2019; Tataru and Bataillon 2020), and considerations have been extended
118  to general regulatory regions as well (e.g., Simkin et al. 2014; Anderson et al. 2020; Kuderna et
119  al. 2024).

120 Notably however, owing largely to data availability, these estimates have been

121 performed primarily in haplorrhines, with the other suborder of primates, strepsirrhines, being
122 largely unexplored. Yet, a number of recent advances have uniquely enabled investigation in this
123  neglected space of the primate clade. Firstly, Versoza & Pfeifer (2024) have recently provided an
124  annotated chromosome-level genome assembly for aye-ayes (Daubentonia madagascariensis),

125 thereby allowing for the essential demarcation of functional and non-function genomic regions
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126  needed for performing DFE inference. Secondly, recent work has also generated high-quality
127  direct mutation and recombination rates for aye-ayes from multi-generation pedigree data

128  (Versoza et al. 2024a,b; Versoza, Lloret-Villas, et al. 2024) — as well as indirect fine-scale

129  estimates based on autosomal patterns of LD and neutral divergence (Soni, Versoza, et al. 2024).
130  Finally, utilizing high-coverage whole-genome data from unrelated individuals, Terbot et al.

131  (2024) recently estimated a well-fitting population history for aye-ayes (and see Soni et al.

132  2024b) — which described a severe and ancient population size decline likely associated with the
133  human colonization of Madagascar, as well as a more recent decline likely associated with

134  habitat destruction — thereby providing the needed accounting of the role of population history
135  in shaping observed SFS across the genome.

136

137 Interpreting exonic divergence

138 Building upon these recent results, we replaced the original aye-aye genome in the 447-
139  way mammalian multiple species alignment (Zoonomia Consortium 2020) that includes

140 hundreds of closely related primate species (Kuderna et al. 2023) with the high-quality aye-aye
141  reference genome of Versoza and Pfeifer (2024) to quantify fine-scale exonic divergence in the
142  species. Figure 1 summarizes observed exonic divergence on the aye-aye branch, with the

143 maximum neutral divergence for 1kb and 1Mb windows (Soni, Versoza, et al. 2024) provided for
144  orientation. Although a considerable number of exons were characterized by rates of fixation
145  greater than the maximum neutral divergence observed in 1Mb windows, no exons were found
146  to be in excess of the neutral rate observed in 1kb windows —the more appropriate comparison

147  given that the mean exonic length is <1kb. Thus, exonic divergence was observed to be lower
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148  than the maximum neutral divergence in aye-ayes without exception, as expected from the
149  dominant action of purifying selection in functional regions (Charlesworth et al. 1993).

150 However, given that even recurrent positive selection is still expected to be rare relative
151  to purifying selection, the absence of entire exons evolving faster than neutrality does not itself
152  eliminate the possibility of positive selection contributing to exonic divergence in subsets of
153  genes. For example, distinct classes of exons were found to occupy the tails of the exonic

154  divergence distribution, and were found to be in excess of the mean neutral fixation rate.

155  Utilizing the genome annotations from the Versoza and Pfeifer (2024) reference genome to
156  calculate the mean divergence per gene, we ran a gene functional analysis using g:Profiler

157  (Kolberg et al. 2023) on all coding regions with a mean divergence greater than the 75"

158 percentile of neutral divergence (0.039694). Figure 2 provides the divergence distribution of all
159 examined exons, compared with the distributions of the two fastest-evolving gene classes —
160 those related to sensory and immune function.

161 Immune-related genes have long been observed to be amongst the most rapidly

162  evolving across vertebrates, as populations continually respond to challenges of pathogen

163  exposure (e.g., George et al. 2011; Rausell and Telenti 2014), and our results remain consistent
164  with this pattern. With regards to the sensory-related distribution, both the nocturnal activity
165  patterns of aye-ayes (with the suggestion previously being made that dichromacy may enable
166  aye-ayes to perceive color whilst foraging in moonlight conditions; Perry et al. 2007), together
167  with evidence that aye-ayes may discriminate between individuals based on scent (Price and
168  Feistner 1994) and use scent-marking to attract mates (Winn 1994), both suggest potentially

169 significant roles for opsin- and olfactory-related genes throughout the evolutionary history of
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170 the species. Furthermore, Soni et al. (2024b) recently found that a number of sensory functional
171  categories including G-protein coupled receptors and olfactory receptors had strong statistical
172  support for being maintained by long-term balancing selection in aye-ayes — noting that

173 diversity in these genes may increase the number of different odorant-binding sites (Lancet

174  1994) — further supporting these hypotheses.

175

176 Utilizing patterns of exonic divergence to infer the DFE

177 Divergence is an informative summary statistic when inferring patterns of long-term

178  selection, as the general features of the DFE are likely to remain relatively stable over deep

179  evolutionary time. As such, we ran forward-in-time simulations in SLiM4.0.1 (Haller and Messer
180 2023) in order to fit observed empirical exonic divergence with a DFE shape consisting of

181 neutral, weakly deleterious, moderately deleterious, and strongly deleterious mutational

182  classes. In brief, we simulated a 54.9 million year divergence time of the aye-aye branch

183  (Horvath et al. 2008), assuming a generation time of 5 years (Ross 2003; Louis et al. 2020) —
184  both of which have additionally been recently supported by whole-genome neutral divergence
185  patterns (Soni, Versoza, et al. 2024) — and utilized the estimated demographic model of Terbot
186 et al. (2024) in order to characterize the recent history of the species. Using our multiple-

187  species alignment to compute the number of divergent sites along the aye-aye branch, we were
188  able to directly compare this empirical observation with the number of fixations accrued in our
189  simulated population during the divergence phase.

190 As depicted in Figure 3, observed divergence was fit well by a DFE of new mutations

191  characterized by a majority of nearly neutral variants, and a remaining even mix of moderately

10
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192  and strongly deleterious variants. For comparison, a recent estimate of the DFE from human
193  populations (Johri et al. 2023) has also been included. As shown, humans were characterized by
194  ahigher density of neutral variants and a lower density of more strongly deleterious variants
195 relative to aye-ayes, likely consistent with the smaller effective population size of the former.
196  Notably however, this inference in aye-ayes assumes a mutation rate of

197  0.4e-8/site/generation, as was directly inferred from pedigree data (Versoza et al. 2024a). Yet,
198 this pedigree inference was for the youngest parents in the study (9-11 years of age), and a
199  strong parental age effect was observed. Namely, the oldest parents in the study (24-26 years of
200 age) were characterized by a rate of 2.0e-8/site/generation, with an average rate across the
201  pedigree of 1.1e-8/site/generation. Given that aye-ayes reach sexual maturity by 3 years of age
202  (Winn 1994), reproduction in the wild likely occurs amongst individuals even younger than the
203  youngest in the pedigree, and given support for the 0.4e-8/site/generation rate from recent
204  indirect divergence-based inference (Soni, Versoza, et al. 2024), we believe this to be a

205 reasonable estimate for our conversion here. However, if the true rate were to be even lower
206  owing to parents being generally younger throughout the evolutionary history of the species,
207  theinferred DFE would resultingly become more skewed towards nearly neutral variants and
208  thus potentially more similar to the human estimate. It is also noteworthy that long-term

209  mutation rates on the aye-aye branch higher than 0.4e-8/site/generation become very difficult
210  to reconcile with the fossil-record (see Tavaré et al. 2002; Soni, Versoza, et al. 2024), consistent
211  with the suggestion of generally lower rates in prosimians relative to other primates (see the
212 reviews of Tran and Pfeifer 2018; Chintalapati and Moorjani 2020).

213

11


https://doi.org/10.1101/2025.01.02.631144

bioRxiv preprint doi: https://doi.org/10.1101/2025.01.02.631144; this version posted January 3, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

214  Concluding summary

215 We have here characterized functional divergence in aye-ayes, finding, as expected, that
216  exonic divergence is generally much reduced relative to neutral divergence. Yet, amongst exons,
217  we also found evidence of an increased rate of divergence in genes related to immune and

218 sensory-related functions, in agreement with previous work across vertebrates for the former,
219  and in primates more specifically for the latter. Employing forward simulations to fit a DFE to
220 observed exonic divergence, we found evidence of an increased proportion of newly arising
221  deleterious variants in aye-ayes relative to humans, likely related to their larger estimated

222  effective population size. These findings also generally support a relatively low mutation rate in
223 aye-ayes compared to other primates, as has been proposed both from indirect neutral

224  divergence as well as from direct pedigree-based inference.

12
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517  Figure 1: Exonic divergence scatter plot with maximum neutral divergence values marked for
518 windows of size 1Mb (red dashed line) and 1kb (red dotted line), as well as the mean neutral
519 divergence for 1kb windows (red solid line), as calculated from Soni, Versoza, et al. (2024).

520 Exonic divergence was calculated by replacing the aye-aye in the 447-way mammalian multiple
521  species alighment (Zoonomia Consortium 2020; Kuderna et al. 2023) with the high-quality aye-
522  aye reference genome of Versoza and Pfeifer (2024), via the Cactus alignment software

523  (Armstrong et al. 2020), and extracting divergent sites along the aye-aye branch using the HAL
524  software package (Hickey et al. 2013). Exonic divergence was calculated by dividing the number
525  of divergent sites in each exon by the total accessible exonic length, and only exons with a

526  minimum of 100bp of accessible sites were included. Each dot represents an autosomal exon,
527  and the mean exonic divergence is plotted (green solid line).
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528  Figure 2: Density plots of exonic divergence in aye-ayes for all exons (blue), exons located in
529 genes implicated in sensory-related functions (purple), and exons located in genes implicated in
530 immune-related functions (gold). Utilizing the Versoza and Pfeifer (2024) genome annotations,
531 the mean divergence per gene was calculated, and gene functional analysis was performed

532  using g:Profiler (Kolberg et al. 2023) on the set of genes with a divergence value greater than
533  the 75" percentile of neutral divergence in aye-ayes (0.0397; Soni, Versoza, et al. 2024).
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534  Figure 3: Comparison of the empirical and simulated divergence under the best-fitting DFE.

535  Simulations were run in SLiM4.01 (Haller and Messer 2023) under the Terbot et al. (2024) aye-
536 aye demographic model, assuming 54.9 million years since the branch split (Horvath et al. 2008)
537 and a generation time of 5 years (Ross 2003; Louis et al. 2020). Simulations included a

538  10Nancestral gENEration burn-in time prior to the demographic model (where Nancestral is the initial
539  population size and s the reduction in fitness of the mutant homozygote relative to wild type).
540  For this example, the simulated exon length was 2,978bp (i.e., the mean empirical length of
541  exons of size greater than 1kb). Mutation and recombination rate heterogeneity was modelled
542  such that each simulated exon had a rate drawn from a normal distribution, with the mean rate
543  across all 100 simulated exons equal to the mean pedigree estimated rates of

544  0.4e-8/bp/generation and 0.85cM/Mb for mutation and recombination, respectively (Versoza et
545  al. 2024; Versoza, Lloret-Villas et al. 2024). Exonic mutations were drawn from a DFE comprised
546  of four fixed classes (following Johri et al. 2020), denoted by fo with 0 £ 2Nancestral S < 1

547  (i.e., effectively neutral mutations), f1 with 1 £ 2Nancestral S < 10 (i.e., weakly deleterious

548  mutations), f> with 10 € 2Nancestral S < 100 (i.e., moderately deleterious mutations), and f5 with
549 100 < 2Nancestral S (i.€., strongly deleterious mutations).

550 Left panel: Best-fitting discrete DFE in ayes-ayes (blue), as compared to the Johri et al. (2023)
551 DFE inferred for humans (grey). Right panel: Comparison of empirical and simulated divergence
552  values for the best-fitting DFE. Green lines represent the mean value, whilst boxes represent 25
553  and 75 percentiles.
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