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ABSTRACT  1 

 The distribu?on of fitness effects (DFE) characterizes the range of selec?on coefficients 2 

from which new muta?ons are sampled, and thus holds a fundamentally important role in 3 

evolu?onary genomics. To date, DFE inference in primates has been largely restricted to 4 

haplorrhines, with limited data availability leaving the other suborder of primates, 5 

strepsirrhines, largely under-explored. To advance our understanding of the popula?on gene?cs 6 

of this important taxonomic group, we here map exonic divergence in aye-ayes (Daubentonia 7 

madagascariensis) – the only extant member of the Daubentoniidae family of the Strepsirrhini 8 

suborder. We further infer the DFE in this highly-endangered species, u?lizing a recently 9 

published high-quality annotated reference genome, a well-supported model of demographic 10 

history, as well as both direct and indirect es?mates of underlying muta?on and recombina?on 11 

rates. The inferred distribu?on is generally characterized by a greater propor?on of deleterious 12 

muta?ons rela?ve to humans, providing evidence of a larger long-term effec?ve popula?on size. 13 

In addi?on however, both immune-related and sensory-related genes were found to be 14 

amongst the most rapidly evolving in the aye-aye genome.  15 
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MAIN 16 

 The distribu?on of fitness effects (DFE) summarizes the range of selec?on coefficients 17 

from which new muta?ons are sampled. Consequently, characterizing the DFE holds a 18 

fundamentally important role in evolu?onary genomics, as it quan?fies the frac?on of neutrally 19 

evolving genomic muta?ons, provides insights into the expected rela?ve frequencies of 20 

purifying rela?ve to posi?ve selec?on, and informs the expected effects of selec?on at linked 21 

sites, to name but a few implica?ons (see reviews of Eyre-Walker and Keightley 2007; Keightley 22 

and Eyre-Walker 2010; Bank et al. 2014a). Moreover, given that the vast majority of fitness-23 

impac?ng muta?ons are deleterious, the constant elimina?on of these variants via purifying 24 

selec?on and the associated background selec?on (BGS) effects (Charlesworth et al. 1993) 25 

represent constantly opera?ng processes shaping levels and pa`erns of genomic varia?on in 26 

and around func?onal regions. As such, an accurate characteriza?on of these effects is cri?cal 27 

for the construc?on of any evolu?onary baseline model for a given species (Comeron 2014, 28 

2017; Johri et al. 2022a; Howell et al. 2023; Terbot et al. 2023; Soni et al. 2023; Soni and Jensen 29 

2024), and, because these effects may differ strongly depending on the rela?ve propor?on of 30 

weakly rela?ve to strongly deleterious muta?ons, the DFE shape again emerges as a 31 

fundamental component for any evolu?onary modeling or inference (Charlesworth et al. 1993; 32 

Hudson and Kaplan 1994; Charlesworth et al. 1995; Ewing and Jensen 2014, 2016; Johri et al. 33 

2020). 34 

 Generally speaking, there are two classes of DFE inference, one applicable to lab-35 

tractable organisms that may be experimentally evolved, and one applicable to natural 36 

popula?on analysis. The former includes muta?on accumula?on experiments – in which a 37 
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popula?on of organisms can be maintained ocen in replicate, sampled at regular intervals, and 38 

the fitness effects of newly arising muta?ons characterized with respect to, for example, the 39 

wild-type state (e.g., Lenski et al. 1991; Barrick and Lenski 2013; Desai 2013; Böndel et al. 2019; 40 

Morales-Arce et al. 2022; Crombie et al. 2024). This class also includes mutagenesis experiments 41 

– in which hundreds or thousands of individuals can be maintained that carry one or very few 42 

muta?ons, and their fitness assessed by, for example, rela?ve growth rates (e.g., Hietpas et al. 43 

2011; Jacquier et al. 2013; Bank et al. 2014b; Fowler and Fields 2014; Matuszewski et al. 2015). 44 

Both methods represent powerful DFE inference approaches for the organisms in which they 45 

can be applied (e.g., Saccharomyces cerevisiae, Caenorhabdi6s elegans, Chlamydomonas 46 

reinhard6i), with the caveat being that they provide DFE inference only within the context of a 47 

lab-grown environment. 48 

 With regards to natural popula?on analysis, which will be our focus here, there are 49 

generally approaches u?lizing divergence data, polymorphism data, or a combina?on of both. 50 

Perhaps the most basic approach u?lized to infer aspects of the DFE relies on comparisons 51 

between non-synonymous and synonymous divergence. Assuming that synonymous sites are 52 

effec?vely neutral, and thus characterized by a subs?tu?on rate equal to their muta?on rate 53 

(Kimura 1968), one may quan?fy the frac?on of non-synonymous muta?ons that are 54 

deleterious (and thus characterized by reduced fixa?on probabili?es rela?ve to neutrality) by 55 

assessing the depression in non-synonymous divergence rela?ve to the synonymous neutral 56 

standard (e.g., Eyre-Walker et al. 2002). Similarly, if advantageous muta?ons are present 57 

(characterized by increased fixa?on probabili?es rela?ve to neutrality), one may assess this 58 

frac?on of the DFE via the accelera?on of non-synonymous divergence rela?ve to synonymous 59 
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(e.g., Smith and Eyre-Walker 2002). These advances largely owed to the realiza?on that a 60 

McDonald-Kreitman-style test (McDonald and Kreitman 1991) could be used to infer 61 

propor?ons of adap?ve subs?tu?ons (Charlesworth 1994). Synonymous and non-synonymous 62 

muta?ons aside, one may similarly u?lize this divergence-based logic to assess selec?ve 63 

constraints ac?ng in different genomic regions (e.g., coding rela?ve to intronic rela?ve to 64 

intergenic; Andolfa`o 2005). 65 

 When incorpora?ng polymorphism data into DFE inference, one ini?al challenge is the 66 

need to incorporate the demographic history of the popula?on into the inference procedure, 67 

given that this history may also act to shape levels and pa`erns of varia?on and thus may 68 

poten?ally result in mis-inference if unaccounted for (see review of Johri et al. 2022b). One of 69 

the first advances in this regard u?lized the site frequency spectrum (SFS) at puta?vely neutral 70 

synonymous or non-coding sites in order to infer a popula?on history, and then condi?oned on 71 

that history to infer the DFE at puta?vely func?onal non-synonymous sites (Williamson et al. 72 

2005; Keightley and Eyre-Walker 2007). Such step-wise approaches yielded some of the first 73 

polymorphism-based DFE es?mates for a variety of organisms (Eyre-Walker and Keightley 2007; 74 

Boyko et al. 2008; Eyre-Walker and Keightley 2009; Schneider et al. 2011). A related category of 75 

methods also arose for u?lizing ?me-sampled polymorphism data in order to infer individual 76 

muta?onal effects based on observed allele frequency changes – as may be applicable to 77 

ecological datasets or ancient DNA sampling – with the stochas?c effects of gene?c dric 78 

associated with the given popula?on history being incorporated by es?ma?ng an effec?ve 79 

popula?on size based on the variance observed in neutral allele frequencies (e.g., Malaspinas et 80 

al. 2012; Foll et al. 2015; Ferrer-Admetlla et al. 2016; and see review of Malaspinas 2016). 81 
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However, in addi?on to generally being limited to rela?vely simple popula?on-size change 82 

models (though more complex models have been developed; e.g., Ma et al. 2013; Kim et al. 83 

2017), these ini?al single- and mul?-?mepoint approaches also assume independence amongst 84 

sites, and thus neglect any role of background selec?on or other forms of gene?c hitchhiking in 85 

further shaping levels of polymorphism (see reviews of Charlesworth and Jensen 2021, 2022). 86 

 In order to address these polymorphism-based challenges, simultaneous inference 87 

approaches have recently been developed. Though accoun?ng for the effects of selec?on on 88 

linked sites within an analy?cal framework remains challenging, Cvijovic et al. (2018) obtained 89 

expressions for the SFS at sites experiencing BGS in a constant size popula?on, and Friedlander 90 

and Steinrücken (2022) described a numerical framework to obtain expected SFS and linkage 91 

disequilibrium (LD) pa`erns around a selected region with changing popula?on size. In order to 92 

allow for more complex models, progress has also been made using approximate Bayesian 93 

computa?on (ABC) approaches with forward simula?ons, in order to model both complex 94 

popula?on histories and flexible DFE shapes, whilst accoun?ng for the resul?ng effects of 95 

selec?on on linked sites. For example, Johri et al. (2020) developed a joint ABC approach 96 

es?ma?ng the DFE densi?es of neutral, weakly deleterious, moderately deleterious, and 97 

strongly deleterious muta?ons, together with a history of popula?on size change, u?lizing 98 

aspects of the SFS, LD, and divergence as summary sta?s?cs. Notably, the exclusion of BGS 99 

effects in previous methods was found to result in an under-es?ma?on of weakly deleterious 100 

muta?ons and an over-es?ma?on of popula?on growth, a bias which is corrected within this 101 

ABC framework (Johri et al. 2021). Subsequent work has also demonstrated the poten?al mis-102 

inference that may arise by neglec?ng underlying heterogeneity in rates of both muta?on and 103 
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recombina?on (Soni et al. 2024a). Taken together, this literature thus emphasizes the 104 

importance of incorpora?ng popula?on history, the effects of selec?on at linked sites, and 105 

muta?on and recombina?on rate maps / uncertain?es when performing DFE inference. 106 

 In primates specifically, these various divergence- and polymorphism-based approaches 107 

have been employed widely, with humans being the best studied in this regard. For example, 108 

Keightley and Eyre-Walker (2007) fit a gamma-distributed DFE u?lizing a gene set associated 109 

with severe disease or inflammatory response, and es?mated a large propor?on (~40%) of 110 

strongly deleterious muta?ons and a rela?vely low (~20%) propor?on of effec?vely neutral 111 

muta?ons. Huber et al. (2017) u?lized a wider selec?on of genes, resul?ng in a DFE skewed 112 

towards effec?vely neutral muta?ons (~50%; similar to the es?mate of Johri et al. 2023 u?lizing 113 

a different subset of genes), and a smaller propor?on of strongly deleterious muta?ons (~20%). 114 

Thus, these differences may well simply and accurately reflect true DFE differences in the 115 

underlying gene sets evaluated. Similar inference has also been performed across the great apes 116 

(e.g., Castellano et al. 2019; Tataru and Bataillon 2020), and considera?ons have been extended 117 

to general regulatory regions as well (e.g., Simkin et al. 2014; Anderson et al. 2020; Kuderna et 118 

al. 2024). 119 

 Notably however, owing largely to data availability, these es?mates have been 120 

performed primarily in haplorrhines, with the other suborder of primates, strepsirrhines, being 121 

largely unexplored. Yet, a number of recent advances have uniquely enabled inves?ga?on in this 122 

neglected space of the primate clade. Firstly, Versoza & Pfeifer (2024) have recently provided an 123 

annotated chromosome-level genome assembly for aye-ayes (Daubentonia madagascariensis), 124 

thereby allowing for the essen?al demarca?on of func?onal and non-func?on genomic regions 125 
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needed for performing DFE inference. Secondly, recent work has also generated high-quality 126 

direct muta?on and recombina?on rates for aye-ayes from mul?-genera?on pedigree data 127 

(Versoza et al. 2024a,b; Versoza, Lloret-Villas, et al. 2024) – as well as indirect fine-scale 128 

es?mates based on autosomal pa`erns of LD and neutral divergence (Soni, Versoza, et al. 2024). 129 

Finally, u?lizing high-coverage whole-genome data from unrelated individuals, Terbot et al. 130 

(2024) recently es?mated a well-fiong popula?on history for aye-ayes (and see Soni et al. 131 

2024b) – which described a severe and ancient popula?on size decline likely associated with the 132 

human coloniza?on of Madagascar, as well as a more recent decline likely associated with 133 

habitat destruc?on – thereby providing the needed accoun?ng of the role of popula?on history 134 

in shaping observed SFS across the genome. 135 

 136 

Interpre?ng exonic divergence 137 

 Building upon these recent results, we replaced the original aye-aye genome in the 447-138 

way mammalian mul?ple species alignment (Zoonomia Consor?um 2020) that includes 139 

hundreds of closely related primate species (Kuderna et al. 2023) with the high-quality aye-aye 140 

reference genome of Versoza and Pfeifer (2024) to quan?fy fine-scale exonic divergence in the 141 

species. Figure 1 summarizes observed exonic divergence on the aye-aye branch, with the 142 

maximum neutral divergence for 1kb and 1Mb windows (Soni, Versoza, et al. 2024) provided for 143 

orienta?on. Although a considerable number of exons were characterized by rates of fixa?on 144 

greater than the maximum neutral divergence observed in 1Mb windows, no exons were found 145 

to be in excess of the neutral rate observed in 1kb windows – the more appropriate comparison 146 

given that the mean exonic length is <1kb. Thus, exonic divergence was observed to be lower 147 
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than the maximum neutral divergence in aye-ayes without excep?on, as expected from the 148 

dominant ac?on of purifying selec?on in func?onal regions (Charlesworth et al. 1993). 149 

 However, given that even recurrent posi?ve selec?on is s?ll expected to be rare rela?ve 150 

to purifying selec?on, the absence of en?re exons evolving faster than neutrality does not itself 151 

eliminate the possibility of posi?ve selec?on contribu?ng to exonic divergence in subsets of 152 

genes. For example, dis?nct classes of exons were found to occupy the tails of the exonic 153 

divergence distribu?on, and were found to be in excess of the mean neutral fixa?on rate. 154 

U?lizing the genome annota?ons from the Versoza and Pfeifer (2024) reference genome to 155 

calculate the mean divergence per gene, we ran a gene func?onal analysis using g:Profiler 156 

(Kolberg et al. 2023) on all coding regions with a mean divergence greater than the 75th 157 

percen?le of neutral divergence (0.039694). Figure 2 provides the divergence distribu?on of all 158 

examined exons, compared with the distribu?ons of the two fastest-evolving gene classes – 159 

those related to sensory and immune func?on.  160 

 Immune-related genes have long been observed to be amongst the most rapidly 161 

evolving across vertebrates, as popula?ons con?nually respond to challenges of pathogen 162 

exposure (e.g., George et al. 2011; Rausell and Telen? 2014), and our results remain consistent 163 

with this pa`ern. With regards to the sensory-related distribu?on, both the nocturnal ac?vity 164 

pa`erns of aye-ayes (with the sugges?on previously being made that dichromacy may enable 165 

aye-ayes to perceive color whilst foraging in moonlight condi?ons; Perry et al. 2007), together 166 

with evidence that aye-ayes may discriminate between individuals based on scent (Price and 167 

Feistner 1994) and use scent-marking to a`ract mates (Winn 1994), both suggest poten?ally 168 

significant roles for opsin- and olfactory-related genes throughout the evolu?onary history of 169 
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the species. Furthermore, Soni et al. (2024b) recently found that a number of sensory func?onal 170 

categories including G-protein coupled receptors and olfactory receptors had strong sta?s?cal 171 

support for being maintained by long-term balancing selec?on in aye-ayes – no?ng that 172 

diversity in these genes may increase the number of different odorant-binding sites (Lancet 173 

1994) – further suppor?ng these hypotheses. 174 

 175 

U?lizing pa`erns of exonic divergence to infer the DFE 176 

 Divergence is an informa?ve summary sta?s?c when inferring pa`erns of long-term 177 

selec?on, as the general features of the DFE are likely to remain rela?vely stable over deep 178 

evolu?onary ?me. As such, we ran forward-in-?me simula?ons in SLiM4.0.1 (Haller and Messer 179 

2023) in order to fit observed empirical exonic divergence with a DFE shape consis?ng of 180 

neutral, weakly deleterious, moderately deleterious, and strongly deleterious muta?onal 181 

classes. In brief, we simulated a 54.9 million year divergence ?me of the aye-aye branch 182 

(Horvath et al. 2008), assuming a genera?on ?me of 5 years (Ross 2003; Louis et al. 2020) – 183 

both of which have addi?onally been recently supported by whole-genome neutral divergence 184 

pa`erns (Soni, Versoza, et al. 2024) – and u?lized the es?mated demographic model of Terbot 185 

et al. (2024) in order to characterize the recent history of the species. Using our mul?ple-186 

species alignment to compute the number of divergent sites along the aye-aye branch, we were 187 

able to directly compare this empirical observa?on with the number of fixa?ons accrued in our 188 

simulated popula?on during the divergence phase. 189 

 As depicted in Figure 3, observed divergence was fit well by a DFE of new muta?ons 190 

characterized by a majority of nearly neutral variants, and a remaining even mix of moderately 191 
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and strongly deleterious variants. For comparison, a recent es?mate of the DFE from human 192 

popula?ons (Johri et al. 2023) has also been included. As shown, humans were characterized by 193 

a higher density of neutral variants and a lower density of more strongly deleterious variants 194 

rela?ve to aye-ayes, likely consistent with the smaller effec?ve popula?on size of the former. 195 

Notably however, this inference in aye-ayes assumes a muta?on rate of  196 

0.4e-8/site/genera?on, as was directly inferred from pedigree data (Versoza et al. 2024a). Yet, 197 

this pedigree inference was for the youngest parents in the study (9-11 years of age), and a 198 

strong parental age effect was observed. Namely, the oldest parents in the study (24-26 years of 199 

age) were characterized by a rate of 2.0e-8/site/genera?on, with an average rate across the 200 

pedigree of 1.1e-8/site/genera?on. Given that aye-ayes reach sexual maturity by 3 years of age 201 

(Winn 1994), reproduc?on in the wild likely occurs amongst individuals even younger than the 202 

youngest in the pedigree, and given support for the 0.4e-8/site/genera?on rate from recent 203 

indirect divergence-based inference (Soni, Versoza, et al. 2024), we believe this to be a 204 

reasonable es?mate for our conversion here. However, if the true rate were to be even lower 205 

owing to parents being generally younger throughout the evolu?onary history of the species, 206 

the inferred DFE would resul?ngly become more skewed towards nearly neutral variants and 207 

thus poten?ally more similar to the human es?mate. It is also noteworthy that long-term 208 

muta?on rates on the aye-aye branch higher than 0.4e-8/site/genera?on become very difficult 209 

to reconcile with the fossil-record (see Tavaré et al. 2002; Soni, Versoza, et al. 2024), consistent 210 

with the sugges?on of generally lower rates in prosimians rela?ve to other primates (see the 211 

reviews of Tran and Pfeifer 2018; Chintalapa? and Moorjani 2020). 212 

 213 
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Concluding summary 214 

 We have here characterized func?onal divergence in aye-ayes, finding, as expected, that 215 

exonic divergence is generally much reduced rela?ve to neutral divergence. Yet, amongst exons, 216 

we also found evidence of an increased rate of divergence in genes related to immune and 217 

sensory-related func?ons, in agreement with previous work across vertebrates for the former, 218 

and in primates more specifically for the la`er. Employing forward simula?ons to fit a DFE to 219 

observed exonic divergence, we found evidence of an increased propor?on of newly arising 220 

deleterious variants in aye-ayes rela?ve to humans, likely related to their larger es?mated 221 

effec?ve popula?on size. These findings also generally support a rela?vely low muta?on rate in 222 

aye-ayes compared to other primates, as has been proposed both from indirect neutral 223 

divergence as well as from direct pedigree-based inference.  224 
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Figure 1: Exonic divergence sca`er plot with maximum neutral divergence values marked for 517 
windows of size 1Mb (red dashed line) and 1kb (red do`ed line), as well as the mean neutral 518 
divergence for 1kb windows (red solid line), as calculated from Soni, Versoza, et al. (2024). 519 
Exonic divergence was calculated by replacing the aye-aye in the 447-way mammalian mul?ple 520 
species alignment (Zoonomia Consor?um 2020; Kuderna et al. 2023) with the high-quality aye-521 
aye reference genome of Versoza and Pfeifer (2024), via the Cactus alignment socware 522 
(Armstrong et al. 2020), and extrac?ng divergent sites along the aye-aye branch using the HAL 523 
socware package (Hickey et al. 2013). Exonic divergence was calculated by dividing the number 524 
of divergent sites in each exon by the total accessible exonic length, and only exons with a 525 
minimum of 100bp of accessible sites were included. Each dot represents an autosomal exon, 526 
and the mean exonic divergence is plo`ed (green solid line).  527 

divergence
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Figure 2: Density plots of exonic divergence in aye-ayes for all exons (blue), exons located in 528 
genes implicated in sensory-related func?ons (purple), and exons located in genes implicated in 529 
immune-related func?ons (gold). U?lizing the Versoza and Pfeifer (2024) genome annota?ons, 530 
the mean divergence per gene was calculated, and gene func?onal analysis was performed 531 
using g:Profiler (Kolberg et al. 2023) on the set of genes with a divergence value greater than 532 
the 75th percen?le of neutral divergence in aye-ayes (0.0397; Soni, Versoza, et al. 2024).   533 
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Figure 3: Comparison of the empirical and simulated divergence under the best-fiong DFE. 534 
Simula?ons were run in SLiM4.01 (Haller and Messer 2023) under the Terbot et al. (2024) aye-535 
aye demographic model, assuming 54.9 million years since the branch split (Horvath et al. 2008) 536 
and a genera?on ?me of 5 years (Ross 2003; Louis et al. 2020). Simula?ons included a 537 
10Nancestral genera?on burn-in ?me prior to the demographic model (where Nancestral is the ini?al 538 
popula?on size and s the reduc?on in fitness of the mutant homozygote rela?ve to wild type). 539 
For this example, the simulated exon length was 2,978bp (i.e., the mean empirical length of 540 
exons of size greater than 1kb). Muta?on and recombina?on rate heterogeneity was modelled 541 
such that each simulated exon had a rate drawn from a normal distribu?on, with the mean rate 542 
across all 100 simulated exons equal to the mean pedigree es?mated rates of  543 
0.4e-8/bp/genera?on and 0.85cM/Mb for muta?on and recombina?on, respec?vely (Versoza et 544 
al. 2024; Versoza, Lloret-Villas et al. 2024). Exonic muta?ons were drawn from a DFE comprised 545 
of four fixed classes (following Johri et al. 2020), denoted by f0 with 0 ≤ 2Nancestral s < 1  546 
(i.e., effec?vely neutral muta?ons), f1 with 1 ≤ 2Nancestral s < 10 (i.e., weakly deleterious 547 
muta?ons), f2 with 10 ≤ 2Nancestral s < 100 (i.e., moderately deleterious muta?ons), and f3 with 548 
100 ≤ 2Nancestral s (i.e., strongly deleterious muta?ons).  549 
LeS panel: Best-fiong discrete DFE in ayes-ayes (blue), as compared to the Johri et al. (2023) 550 
DFE inferred for humans (grey). Right panel: Comparison of empirical and simulated divergence 551 
values for the best-fiong DFE. Green lines represent the mean value, whilst boxes represent 25 552 
and 75 percen?les.  553 
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