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ABSTRACT The integration of Internet of Things (IoT) technology in industrial surveillance and the
proliferation of surveillance cameras in smart cities has empowered the development of real-time activity
recognition and violence detection systems, respectively. These systems are crucial in enhancing safety
measures, improving operational efficiency, reducing accident risks, and providing automatic monitoring in
dynamic environments. In this paper, we propose a three-stage deep learning-based end-to-end framework
for violence detection. The lightweight convolutional neural network (CNN) model initially identifies
individuals in the video stream to minimize the processing of irrelevant frames. Subsequently, a sequence
of 50 frames with identified persons is directed to a 3D-CNN model, where the spatiotemporal features
of these sequences are extracted and passed to the classifier. Unlike traditional methods that process all
frames indiscriminately, this targeted filtering mechanism allows computational resources to be allocated
more effectively. Next, SoftMax classifier processes the extracted features to categorize frame sequences
as violent or non-violent. The classifier’s predictions trigger real-time alerts, enabling rapid intervention.
The modularity of this stage supports adaptability to new datasets, as it can leverage transfer learning
to generalize across diverse surveillance contexts. Unlike traditional systems constrained by hand-crafted
features, this design dynamically learns from data, reducing reliance on prior domain knowledge and
improving generalizability. We conducted experiments on violence detection across four datasets, comparing
the performance of our model with convolutional CNN models. A computation time analysis revealed that
our lightweight model requires significantly less computation time, demonstrating its efficiency. We also
conducted cross-data experiments to assess the model’s capacity to perform consistently across various
datasets. Experiments show that our proposed model outperforms the methods mentioned in the existing
literature. These experiments demonstrate that the model’s adaptability and robustness need to be improved.

INDEX TERMS Activity detection, industrial surveillance, violence detection, computer vision, deep
learning.

I. INTRODUCTION has emerged as a critical application area in computer

The use of Internet of Things (IoT) technology for activity
recognition in industrial surveillance has become increas-
ingly important in recent years [1]. This is due to the need
for real-time monitoring and analysis of workers’ activities
to ensure safety, improve efficiency, and reduce the risk of
accidents. With the surge in video data due to the ubiquity of
surveillance cameras and mobile devices, violence detection
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vision. The goal of violence detection is to recognize violent
activities or behaviors automatically, making it crucial for
public safety and security. However, traditional activity
recognition methods may not be sufficient for recognizing
activities in complex and dynamic industrial environments.
Many techniques based on deep learning features [2], [3], [4]
have emerged.

Over the past few years, many assessments were conducted
by researchers on deep learning approaches [12], and
deep learning approaches has shown remarkable success in
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violence detection, outperforming traditional methods. Deep
learning models can automatically extract representative
features from raw data, offering a major advantage over
traditional machine learning approaches. For instance, Con-
volutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) have been widely used to identify spatial
and temporal features in video data, respectively.

In recent studies, models such as the 3D Convolutional
Neural Networks (3D-CNNs) and Long Short-Term Memory
(LSTM) networks have demonstrated promising results in
violence detection. 3D-CNNs are a variation of CNNs
designed to handle three-dimensional data such as videos.
Unlike traditional 2D-CNNSs, which operate on static images
and understand height and width, 3D-CNNss also consider the
temporal dimension (time) in videos. This is accomplished by
performing convolutions in three dimensions - height, width,
and time - enabling the 3D-CNNs to capture both spatial
features (such as objects and their shapes) and temporal
features (such as the motion of these objects over time). This
makes 3D-CNNs especially useful for video analysis tasks
like action recognition or violence detection, since they can
comprehend the video as a continuous sequence of events
rather than a collection of individual frames. For instance,
a study by Muhammad et al. [18] employed a 3D-CNN model
on a large video dataset and achieved an accuracy of 74.2%.

Existing models of neural networks are highly promising
in identifying human actions in a variety of applications,
from healthcare to entertainment. However, when it comes to
detecting violent activities in complex real-world situations,
these models face significant challenges. The accuracy of
these models is often compromised by factors such as
background noise, visual distractions that include moving
objects, and varying lighting conditions that result in false
positives and false negatives being reported.

Another challenge arises from the processing of many
irrelevant frames. Traditional models often analyze each
frame in the video sequence, which causes unnecessary
computational overhead on a computer. This inefficiency is
particularly problematic in real-time surveillance applica-
tions where rapid and accurate decision-making is crucial.
The need for a more focused and computationally efficient
approach is evident, especially in real-time applications like
violence detection in public spaces or industrial settings.

We propose a three-stage deep learning based end-to-
end framework for accurate and efficient violence detection.
A lightweight CNN is used as an initial screening mechanism
in the first stage. The light-weighted CNN model is
optimized for computational efficiency, allowing for fast
scanning of incoming video streams. Its main purpose is to
recognize and separate frames with human beings, reducing
the requirement to analyze unnecessary frames. Selective
frame processing considerably minimizes computing cost
and accelerates detection. The second stage employs a more
detailed 3D-CNN model. This model extracts spatiotemporal
information from 50 frames including identified people from
the first stage. Training the 3D-CNN to identify complicated
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sequential patterns associated with violent behaviors makes
it very effective. A classifier receives the extracted features
in the third stage and classifies frame sequences as violent or
non-violent. If the classifier identifies violence, it generates
alerts. The technology has a real-time warning function
that alerts nearby security agencies or police stations of
any detected violence. This allows for quick response and
intervention, bringing practicality to the system.

We used four different datasets to analyze the performance
of the proposed model on violence detection, i.e., RWF-2000,
the hockey fight dataset, the surveillance fight dataset, and
the Industrial Surveillance dataset [22]. The proposed 3D-
CNN method demonstrates superior performance compared
to other machine learning models, including ConvLSTM,
across all tested datasets. This highlights its effectiveness for
real-world violence detection applications.

We also conducted cross-dataset testing to evaluate the
ability of the proposed model to generalize across various
datasets. The primary objective is to assess whether the
model has a sufficiently comprehensive understanding of
violence to identify violent actions across diverse datasets,
which is crucial for practical applications in a range
of scenarios with varied data. These tests offer insights
into the model’s adaptability and robustness, confirming
its potential for widespread use in different monitoring
situations. Additionally, a computation time analysis was
performed, highlighting the efficiency of our approach to
processing video data.

The rest of the paper is organized as follows: Section II
covers the background of human action recognition and
violence detection. Section III discussed violence detection
using deep learning Methods. The proposed methodology is
discussed in Section IV and Section V covers results and
analysis. Section VI concludes the paper and discusses future
work. Section VII includes acknowledgment.

Il. BACKGROUND

This section reviews previous work in human action recog-
nition, the application of deep learning in human action
recognition and violence detection in video data.

A. HUMAN ACTION RECOGNITION
Automated methods of video sequence analysis and
decision-making regarding the behaviors shown in videos
are used in human activity detection for video surveillance
systems. In 1999, Gavrilla created the research field of 2D
and 3D approaches [1] for the development of human action
recognition (HAR) systems. While the early models were
highly reliant on feature extraction from single image or
sets of images, they laid the groundwork for more complex
systems that integrated spatial and temporal data over time.
A different team of researchers, led by JK Aggarwal and
Q Cai, developed a new taxonomy centered on the study of
human motion, monitoring from different types of camera
views and human activity detection [2]. Two methods exist for
HAR: using still images and using video data. Video-based
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algorithms outperform those based on still images, as they
convey both spatial and temporal information. Videos capture
continuous movements and interactions, which are essential
for distinguishing between different types of actions, such
as walking, running, or violent movements. This temporal
data provides context that static images cannot, making it
indispensable for effective HAR systems.

However, relying solely on video-based approaches also
presents challenges. These algorithms need to handle large
amounts of data efficiently, as processing continuous streams
of video can be computationally expensive. In addition,
video data is often noisy, making it essential to clean
the input before analysis. The process typically starts with
noise reduction to eliminate irrelevant information from the
video frames. Techniques such as background subtraction
are commonly used to isolate the human figure from its
surroundings.

Once noise is reduced, the form of a human is extracted
from the backdrop images by analyzing sequences of video
frames and observing changes in position over time. Human
shapes are usually identified through a combination of feature
extraction techniques and tracking algorithms. Classification
of objects, including humans, is done by evaluating their
movement characteristics and shape, using methods such as
optical flow, which analyzes the pattern of motion between
frames, or shape-based descriptors that focus on the contour
and skeletal structure of the human body.

Nonetheless, even with these advancements, traditional
HAR methods remain limited by their inability to effectively
handle complex scenes with multiple interacting people, poor
lighting conditions, and varying camera angles. Additionally,
most of these methods rely on handcrafted features, which
require domain knowledge and limit their adaptability to new
environments or unseen data.

Figure 1 showcases a range of different methods for
Human Action Recognition, highlighting the diversity of
approaches used in this field [41].

HAR Methods
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FIGURE 1. Methods of HAR [41].

The field has now shifted towards deep learning-based
approaches, which have significantly improved HAR systems
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by automating feature extraction and learning complex
spatiotemporal patterns from raw data. Deep learning models,
such as CNNs and RNNs, have demonstrated superior per-
formance in recognizing human actions in videos, especially
when integrated with large-scale datasets. For instance,
CNNs have been widely used to extract spatial features
from video data [17]. In contrast, LSTMs and their variants,
such as deep bidirectional LSTMs (BiLSTMs), are useful for
capturing temporal dependencies in video sequences, making
them crucial for action recognition tasks [22]. Recent studies
such as Zhang et al. [5S] have shown how deep learning models
with attention mechanisms can significantly improve action
recognition by focusing on the most relevant spatiotemporal
features in video data.

B. STATE OF THE ART APPROACH TO HAR

Wang et al. [17] present a LSTM mechanism that simulates
the cognitive memory processes of the human brain for
visual monitoring in IoT-assisted smart cities. The primary
objective is to enable timely detection of violent actions and
prevent false tracking in clear environments. The proposed
model utilizes a unique props function within its storage
mechanism to perform real-time processing when envi-
ronmental conditions change and conventional algorithms
become ineffective. However, the props function may also
introduce limitations in scalability, as it may require frequent
updates to account for environmental variations, which could
increase computational overhead. Additionally, the model’s
performance in more complex real-world scenarios, such as
crowded industrial environments or highly dynamic urban
spaces, remains unexplored. This raises concerns about
its robustness in diverse surveillance contexts, particularly
where lighting conditions, background clutter, or overlapping
objects may impede accurate detection.

Muhammad et al. [18] introduced a HAR method that
employs an attention-based LSTM network combined with
dilated CNN features. The authors developed a BiLSTM
network with an attention mechanism to effectively learn
the spatiotemporal properties present in sequential data.
This network design enables the model to adjust attention
weights, thus allowing it to easily recognize and focus
on learned global features for detecting human actions in
video data.The use of attention-based mechanisms signif-
icantly improves the model’s ability to focus on critical
spatiotemporal features, making it more efficient in detecting
complex actions. The BiLSTM’s ability to process data
in both directions (forward and backward) provides a
more comprehensive understanding of the action sequences,
particularly for recognizing subtle behaviors. However,
this method also introduces considerable computational
complexity, which may make real-time deployment difficult,
especially in resource-constrained environments like IoT-
based surveillance. Furthermore, the model’s reliance on
global feature learning could result in missed fine-grained
details, particularly in dense environments where actions may
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occur in close proximity or in highly occluded scenes. The
dilated CNN features, while useful for capturing contextual
information, may also cause the model to lose sensitivity
to smaller, rapid movements that are crucial for violence
detection.

Zhang et al. [5] delved into the challenge of few-shot
activity recognition using a cross-modal memory network.
A cross-modal memory network stores information from
multiple modalities (e.g., video, audio) and enables the model
to utilize these diverse inputs to improve learning in complex
environments, particularly when training data is limited.
The proposed model is designed to recognize new videos
with a limited number of labeled samples by leveraging
visual contextual embedding for few-shot classification.
Few-shot learning models are crucial in situations where
collecting large, annotated datasets is impractical or costly.
By leveraging visual contextual embedding, this approach
allows the model to generalize well to unseen activities
with minimal supervision. However, the success of few-shot
learning heavily depends on the quality and diversity
of the training samples. In surveillance contexts, where
lighting, camera angles, and occlusions can vary greatly,
the limited training data used in few-shot learning may
not sufficiently capture these complexities. Moreover, few-
shot models tend to struggle with generalization when faced
with highly variable or noisy environments. The use of
cross-modal [5] memory networks helps in cross-referencing
data from multiple modalities, which improves recognition
capabilities, but this also increases the demand for high-
quality, synchronized data from different modalities, which
may not always be available in practical settings.

Haroon et al. [6] put forward a multi-stream framework
for human interaction recognition, which aims to capture and
analyze complex human interactions in various scenarios.
The proposed approach combines a 1D-CNN with BiLSTM
stream to learn human interactions based on key features
extracted using a pose estimation algorithm, and a 3D-CNN
model to learn temporal information from video sequences.
The multi-stream framework proposed is advantageous for
analyzing multi-person interactions or complex human activ-
ities. By combining 1D-CNNs with BiLSTM and 3D-CNN
models, the framework can capture both spatial and temporal
information, making it more robust in understanding complex
human interactions in diverse environments. However, the
reliance on pose estimation algorithms has limitations,
especially in environments where occlusions, low-resolution
video, or poor lighting hinder accurate pose detection.
In such cases, misestimations in pose can lead to inaccurate
action recognition. Additionally, the computational overhead
of running multiple streams (ID-CNN, BiLSTM, 3D-
CNN) could limit the framework’s scalability, particularly
in real-time applications or on low-power edge devices.
The fusion of pose estimation and deep learning models
is promising but requires further optimization to handle
real-world surveillance challenges.
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Ullah et al. [22] proposed an Al-assisted edge vision
approach for violence detection in IoT-based industrial
surveillance networks. The framework comprises five main
steps: training a lightweight CNN for efficient edge process-
ing; acquiring data using resource-constrained vision sensors;
detecting suspicious humans or objects and generating alerts;
sending relevant frames to a more powerful backend for
deeper investigation; and finally, using the backend system
for accurate violence detection.The edge-based architecture
proposed by Ullah et al. [22] addresses one of the main
challenges of real-time violence detection in industrial
environments: limited computational resources. By utilizing
a lightweight CNN for initial processing, the framework
minimizes the amount of data that needs to be sent to
the backend, which reduces bandwidth usage and latency.
This makes the approach particularly well-suited for IoT-
based systems where energy and computational resources
are constrained. However, the reliance on a more powerful
backend for deeper investigation introduces latency that could
impact real-time performance in time-critical situations.
Additionally, the effectiveness of the lightweight CNN in
accurately detecting violence, especially in complex scenes
with occlusions or overlapping objects, remains a concern.
Another potential limitation is the framework’s adaptability
to different industrial contexts, where sensor configurations
and environmental factors vary significantly.

Chen et al. [8] introduced a spatiotemporal graph con-
volutional network (ST-GCN) for skeleton-based HAR in
surveillance environments. The proposed model captures
both spatial and temporal information about human actions
by incorporating graph convolutional layers, which effec-
tively model the relationships between different body joints
in the skeleton data.The use of ST-GCNs for skeleton-based
action recognition offers a highly structured approach to
modeling human actions, as it focuses on the movement and
relationships of body joints. This approach is particularly
useful in environments where clear skeletal data can be
extracted, such as sports events or controlled laboratory con-
ditions. However, in real-world surveillance environments,
extracting high-quality skeleton data is challenging due to
occlusions, varying camera angles, and environmental noise.
Furthermore, ST-GCNs rely heavily on accurate skeleton
detection, which may not be feasible in industrial or crowded
public spaces where body movements are obscured or erratic.
Additionally, the performance of this method in recognizing
subtle or non-standard movements, such as those seen in
violence detection scenarios, may be limited, as the skeletal
structure alone may not capture the full context of the action.

Kim and Lee [9] proposed a multi-modal fusion approach
for anomaly detection in video streams, integrating both
visual and auditory data to improve the overall performance
of the system. The authors developed a deep neural network
architecture that combines a 3D-CNN for visual feature
extraction and a 1D-CNN for auditory feature extraction,
followed by a fusion layer that effectively combines the
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extracted features for better anomaly detection. The inte-
gration of auditory data alongside visual data enhances the
detection of anomalies, as certain violent actions may be
accompanied by distinct sounds. However, the reliance on
auditory features introduces additional challenges, especially
in noisy environments like factories or urban areas, where
background noise may interfere with the detection process.
The 1D-CNN for auditory feature extraction, while use-
ful, may require substantial filtering and preprocessing to
handle the variability of audio data in these environments.
Furthermore, the fusion of multiple modalities increases the
computational complexity of the system, which could hinder
real-time performance, particularly in resource-constrained
settings like edge devices or low-power surveillance systems.
Ensuring synchronization between the audio and video
streams is another challenge that must be addressed to avoid
inconsistencies in anomaly detection.

Ill. VIOLENCE DETECTION USING DEEP

LEARNING METHODS

Deep learning forms the backbone of all the methods
discussed in the papers discussed in Section II. In the
context of violence detection, CNN-based 3D algorithms
have been widely used due to their ability to model both
spatial and temporal features simultaneously. The 3D-CNN
algorithm is designed to capture the spatiotemporal patterns
present in video sequences, making it particularly well-suited
for tasks like violence detection, where the timing and
sequence of actions are critical. However, the development
of a 3D-CNN model often requires complex, hand-crafted
algorithms to fine-tune the model for specific applications.
These models are computationally intensive, making them
less feasible for deployment in real-time or resource-
constrained environments. As a result, there is an ongoing
effort to develop more efficient 3D-CNN architectures that
can deliver high accuracy while maintaining computational
efficiency.

By contrast, more powerful models based on newer archi-
tectures, such as Transformers or spatiotemporal attention
networks, have been developed to automatically extract
features and understand complex interactions without the
need for extensive manual tuning. These models are capable
of analyzing both short- and long-range dependencies in
video sequences, making them highly effective for HAR and
violence detection tasks. However, these advanced models are
still in the experimental stages and face challenges related to
computational cost and data requirements.

Table 1 outlines some of the approaches used in violence
detection, showcasing the diversity of deep learning models
in terms of both accuracy and computational efficiency. For
instance, the Visual Geometry Group (VGG-f) model [21],
which utilizes the ImageNet method of object detection,
is well-suited for real-time detection tasks. Achieving an
accuracy range of 91%-94%, this model is effective for
detecting objects in crowded environments. However, as a
purely spatial method, it lacks the ability to capture
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the temporal progression of actions, which is critical for
understanding violent behavior in video sequences.

On the other hand, the 3D-CNN approach developed
by Ding et al. [26] extends the capability of standard
CNNs by incorporating temporal information through 3D
convolutions. This method achieves an accuracy of 91% and
is particularly effective in crowded environments where both
spatial and temporal patterns must be considered. However,
its reliance on the backpropagation method for training
introduces significant computational overhead, which may
limit its deployment in real-time scenarios.

The VGG vector of locally aggregated descriptors (VLAD)
model for image retrieval, presented by Zhou et al. [36],
also uses a backpropagation method and achieves an
approximate accuracy of 90% in crowded environments.
This method, while powerful for place recognition tasks,
is less specialized for violence detection as it does not
consider temporal dynamics essential for action recognition
in video sequences. Similarly, Karpathy et al. [11] employed
a multi-modal approach, combining CNNs with Mel Filter
Bank (MFB) audio features, achieving an approximate
accuracy of 90%. By integrating audio cues like shouting or
alarms, this method enhances violence detection capabilities
in crowded environments. However, the need to process
both visual and auditory streams introduces additional
complexity, particularly when dealing with noisy or cluttered
environments.

One of the most promising approaches in the table is
the use of ConvLSTM networks for violence detection.
Muhammad et al. [18] developed a model combining
CNNs with ConvLSTM, achieving approximately 97%
accuracy. ConvLSTM is designed to handle both spatial
and temporal dependencies, making it highly effective in
recognizing violent actions in crowded settings. By lever-
aging the strengths of both CNNs and LSTMs, this model
excels at detecting violent behaviors that unfold over
time, which are difficult to capture with purely spatial
models.

The highest accuracy in the table is reported by
Haroon et al. [6], whose deep CNN combined with optical
flow analysis reached 98% accuracy. This method tracks
motion trajectories, making it particularly adept at identi-
fying violent actions by analyzing the movement patterns
of individuals. While this approach provides exceptional
accuracy, the computational demands of combining deep
CNNs with optical flow analysis may present challenges
for real-time deployment, especially in resource-constrained
environments.

IV. THE PROPOSED METHODOLOGY

In this section we discuss the proposed three-staged end-to-
end framework in detail. Different types of datasets such as
the surveillance fight dataset [15], RWF-2000 Dataset [16],
hockey fight dataset [17], and New Industrial Surveillance
Dataset [9] were used in experiments.
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TABLE 1. Performance comparison of different methods.

STM [18]

Technique Method Model Dataset Accuracy
Convolutional Neural Network for | ImageNet method of object de- | VGG-f model Violent Flows, UCF Web | 91%-94%
Real-Time Detection [21] tection Abnormality and UMN

Abnormal Crowd datasets
Violence Detection Using 3D-CNN | 3D convolution for spatial in- | Backpropagation Hockey dataset 91%
[26] formation method
Deep Architecture for Place Recog- | VGG VLAD method for image | Backpropagation Hockey Fight dataset, BE- | Approx. 90%
nition [36] retrieval method HAVE dataset and Crowd

Violence dataset
Tracking Violence Sites Using | MFB (Mel Filter Bank) CNN model Sports-1M dataset Approx. 90%
CNN and Deep Audio Features
[11]
Detecting Violence Using ConvL- | CNN with ConvLSTM CNN model UCF11, UCF Sports, and | Approx.97%

J-HMDB dataset

Detecting Human Violent Behavior
by Integrating Trajectory and Deep
CNN [6]

Deep CNN

NTU-RGB+D and
HuDaAct-RGBD

Optical flow method 98%

A. THE PROPOSED THREE STAGE VIOLENCE DETECTION
FRAMEWORK

Figure 2 shows the proposed three-stage violence detection
framework. In the first Stage, a lightweight CNN is used
to scan the video stream rapidly since it is computationally
efficient. Its main purpose is to segregate frames with
human beings, reducing the requirement to filter unnecessary
frames. Selective frame processing considerably minimizes
computational overhead and accelerates detection. A more
complicated 3D-CNN model is used in the second stage. This
model extracts spatiotemporal information from 50 frames
including people identified in the first stage.. Training the 3D-
CNN to recognize complicated sequential patterns associated
with violent behaviors makes it effective. A Softmax
classifier receives the extracted features in the third stage
and classify frame sequences as violent or non-violent.
If the classifier identifies violence, it generates alerts. The
technology automatically alerts the nearest security agency or
police station if violence is detected. This allows immediate
response and intervention, making the system useful for the
real-world situations.

Given the challenges associated with limited training
data, the model also employs transfer learning techniques.
This allows the model to generalize better across different
scenarios and increases its overall performance.

By employing this multi-stage, multi-modal approach, the
proposed model aims to combine computational efficiency
with high accuracy, making it well-suited for practical, real-
world applications. Edge computing is used to run the model
directly on IoT devices, enabling real-time processing and
immediate response to violent acts.

The following provides a detailed explanation of the
model’s workflow:

o Video Capture: The initial stage involves capturing
real-time video data, which is sourced from various
types of videos capturing devices, including but not
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limited to, surveillance cameras. This raw video data
is critical, as it serves as the foundational input for
the entire model. The quality, frame rate, audio, and
resolution of this video data are crucial factors that
can significantly influence the model’s performance in
subsequent stages.

o Person Detection using MobileNet CNN [9]: The first
objective in the model’s workflow after capturing a
video is to identify the person in the sequences.
This crucial action prepares the ground for the later
identification of violence. We use the MobileNet Single
Shot MultiBox Detector (MobileNet-SSD) architecture,
a CNN that is known for its fast-processing speed
and minimal computing requirements, to achieve this.
The use of depth-wise separable convolutional layers
rather than conventional convolutional layers distin-
guishes this design from others. The network is divided
into 2819 layers, except for the last layer, which is
completely linked, each layer being followed by a
batch normalization procedure and a ReLLU activation.
Figure 3 shows detection in hockey fight dataset [22].

The initial convolutional layer in the architecture
functions with a two-step stride employing a 3 x 3 X
3 x 32 filter. It takes an input with dimensions
of 224 x 224 x 3. The next step is a depth-wise
convolutional layer that works with a single-step stride,
a3 x 3 x 32 filter, and an input of 112 x 112 x
32 dimensions. While MobileNet is generally used for
classification tasks, in this context, its SSD extension
is vital for pinpointing the location of objects in the
video frames. This SSD extension is integrated at
the end of the MobileNet architecture and executes
feed-forward convolutions to yield a predetermined
set of bounding boxes. These boxes are examined to
confirm the presence or absence of human figures, based
on the extracted feature maps and applied convolutional
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FIGURE 2. The three-stage process for violence detection.

FIGURE 3. Detection in hockey fight dataset using MobileNet-SSD.
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FIGURE 4. Detailed architecture of the C3D network used in the model.

filters. Each bounding box includes a set of class
predictions with corresponding probabilities, and the
class with the maximum probability is chosen. A zero
probability indicates a lack of any object of interest.

o Learning with 3D-CNNs: The core of our violence
detection model lies in its ability to extract spa-
tiotemporal features, which is accomplished through
a 3D-CNN. This network is specifically designed to
handle sequences of 50 frames containing the detected
person from the previous MobileNet-SSD model. Unlike
2D-CNNs, which only capture spatial information,
3D-CNNs are adept at preserving both spatial and
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temporal information due to their 3D convolution and
pooling operations.

For our model, we have fine-tuned a 3D-CNN
architecture inspired by the C3D model [9], initially
developed using a version of Caffe. This architecture
is particularly effective for video-based tasks and has
been validated in multiple studies. The C3D model
is composed of eight convolutional layers, five max-
pooling layers, and two fully connected layers, culmi-
nating in a SoftMax output layer. Each convolutional
layer uses 3 x 3 x 3 kernels with a stride of one.
The max-pooling layers predominantly employ a 2 x
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2 x 2 kernel se ize, except for the first layer, which
uses a 1 x 2 x 2 kernel with a stride of two to
preserve temporal information. The convolutional
layers are structured with a varying number of filters:
64 in the first layer, 128 in the second, and 256 in the
third. These layers also feature kernels with a defined
temporal depth, denoted by size D. The convolutional
operations are performed with a kernel size of 3 and
padding of 1. The fully connected layers, labeled as
fc6 and fc7, contain 4096 neurons each. The SoftMax
layer’s output is tailored to the dataset’s classes, which,
in this case, are limited to two: violent and non-violent.
To address the issue of overfitting and to enhance the
model’s learning capabilities, we employ random crops
of size 3 x 16 x 128 x 128 from the original 50-
frame input sequence during training. This architectural
design allows the network to act as a hierarchical feature
extractor. Lower layers focus on basic patterns like
corners and edges, while higher layers capture more
complex, global features. An illustrative representation
of the C3D architecture is provided in Figure 4
below.

o Activity Classification using SoftMax Classifier: The
features extracted by the 3D-CNN serve as the input for
a SoftMax classifier. The SoftMax function is usually
used in the last layer of a neural network-based classifier
to make sure that the output probabilities are normalized
and add up to one. This makes it possible to effectively
label each frame as either violent or non-violent. The
result classification directly influences the subsequent
alert mechanism.

o Alert Generation: If the model predicts violence,
an alarm is triggered, notifying the nearest security
department. This immediate alert system allows for
prompt action to be taken in response to the detected
violent event, potentially averting dangerous situations
and ensuring safety.

B. DATASETS

We have used the most widely used benchmark datasets: the
hockey fight dataset, survellience fight dataset, and RWF-
2000 dataset. We also used industrial surveillance dataset
collected by Ullah, FUM [9]. These datasets are well
balanced, labeled and they had 80%/20% split for training and
testing purposes. Besides, these datasets cover mainly indoor
scenes, outdoor scenes and a few weather conditions.

1) EXISTING BENCHMARK DATASETS

The surveillance fight dataset [15] includes indoor, outdoor,
night, and daytime films from real-world surveillance and
YouTube. This 300-video dataset has equal aggressive and
nonviolent acts. RWF-2000 Dataset [16] includes factory,
workplace, and other indoor, outdoor, day, and night videos.
This dataset only contains surveillance videos without
multimedia editing. This 2000-video collection has equal
violent and nonviolent acts. The hockey fight dataset [17]
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is gathered on the National Hockey League (NHL) hockey
grounds. This dataset contains 1000 NHL hockey game films
with equal amounts of violent and nonviolent activities, with
two players often in close bodily contact.

2) THE INDUSTRIAL SURVEILLANCE DATASET

Ullah, EU.M [9] collected the industrial surveillance dataset
from different sources and search engines such as YouTube
and Google by inserting diverse queries, such as violence
scenes in industrial surveillance, in factories, and in steel
mills. The obtained videos from different sources have
distinct video resolution and frame rate. The length of
retrieved videos ranges from 7 to 12 min that are trimmed
to 5-seconds violent and nonviolent clips for each class.
They arranged the dataset in the same standard format,
such as surveillance fight dataset. The industrial surveillance
dataset consists of varied scenes such as industries, stores,
offices, and petrol pumps. Compared to existing datasets, the
industrial surveillance dataset is more challenging because
most of the actions are aside of the center point from the
camera and the frame per seconds (fps) varies like other
surveillance datasets. Several samples of each dataset are
given in Figure 5.

C. MODEL DEVELOPMENT AND TRAINING

The model is developed using TensorFlow as the primary
framework for implementing the deep learning algorithms.
The model is trained on an NVIDIA GeForce RTX
3080 laptop GPU, providing the computational power needed
for efficient training and model optimization. The Adam
optimizer is used to minimize the binary cross-entropy loss
function. Early stopping is applied based on the validation
loss to prevent over-fitting. For the hockey fight and RWF-
2000 datasets, the learning rate and batch size are set at
0.001 and 32, respectively. For the Surveillance Fight and
the Industrial Surveillance datasets, the learning rate and
batch size are set at 0.0001 and 16, respectively. The model
is trained for 50 epochs. After each epoch, the model is
evaluated on a testing set to monitor its performance. The
evaluation metrics include binary accuracy and binary cross-
entropy loss.

D. MODEL EVALUATION

The model’s performance is evaluated using a comprehensive
set of metrics that include accuracy, precision, recall,
Fl1-score, and area under the ROC curve (AUC-ROC). The
metrics chosen for this evaluation include True Positive (TP),
True Negative (TN), False Positive (FP), False Negative (FN),
Accuracy, Area Under the Receiver Operating Characteristic
Curve (AUC ROC), Precision, Recall, and F1-score. These
metrics provide a holistic view of the model’s effectiveness
in classifying violent and non-violent activities. A simple
train-test split is used for validation. This approach allows
for a straightforward yet effective way to assess the model’s
performance on unseen data. The model’s performance is
compared against existing models and techniques in the field
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FIGURE 5. Samples from both classes of each violence detection dataset, with violent frames in first three columns and
non-violent frames in following three columns. (a) Sample frames from surveillance fight dataset (b) Hockey fight dataset:
violent and nonviolent frames. (c) Sample frames from RWF-2000 collection of real-world surveillance footage. (d) Sample

frames from both industrial surveillance dataset groups.

of violence detection. This benchmarking helps to position
the proposed model within the broader landscape of violence
detection solutions. The model is tested across different
datasets to assess its generalizability. This is crucial for
ensuring that the model performs well not just on the data
it was trained on but also on new, unseen data. The time
taken for the model to make a prediction is measured. This is
particularly important for real-time applications where quick
decision-making is essential.

V. RESULTS AND ANALYSIS

A. MODEL PERFORMANCE COMPARISON

Table 2 presents a comparative evaluation of two state-of-the-
art deep learning models employed for violence detection:
ConvLSTM and the Proposed 3D-CNN. Figure 6 shows the
confusion matrices of the two models for the four datasets.

The proposed 3D-CNN method consistently demonstrates
superior or equivalent performance compared to the Con-
vLSTM method across all the datasets. For instance, in the
RWEF-2000 dataset, the proposed 3D-CNN model achieved an
accuracy of 92.5%, significantly improving upon the 85.3%
accuracy recorded for the ConvLSTM method. In this dataset,
the 3D-CNN model correctly classified 185 violent incidents
(TP) and 185 non-violent incidents (TN). However, it also
produced 16 false positives (misclassifying non-violent acts
as violent) and 14 false negatives (failing to detect actual
violent incidents), highlighting the challenges posed by the
diverse and complex scenes in this dataset.

In the hockey fight dataset, the proposed 3D-CNN model
exhibited exceptional performance, achieving an accuracy
of 97.2%, surpassing the 94% accuracy of the ConvLSTM
method. With 98 TP and 96 TN, the model accurately
identified most violent and non-violent events. The minor
discrepancies, seen in 3 FP and 3 FN, can be attributed to the
dynamic and aggressive nature of hockey, where fast-paced
non-violent actions are often mistaken for violent ones.
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For the surveillance fight dataset, the proposed 3D-CNN
model demonstrated a notable improvement in performance.
It correctly produced 28 TP and 26 TN, with only 3 FP
and 3 FN, leading to an accuracy of 89.7%, compared to the
62% accuracy of the ConvLSTM method. The false positives
are likely caused by the model misclassifying non-violent
actions due to occlusions and congested camera views.

In the Industrial Surveillance dataset, both models show
comparable performance, but the proposed 3D-CNN model
still outperforms the ConvLSTM. The proposed model
achieved an accuracy of 88.89%, compared to 73% for
ConvLSTM. The proposed 3D-CNN model produced 26 TP
and 27 TN, with 4 FP and 3 FP. The FP in this dataset
likely stem from the model misinterpreting normal industrial
activities as violent due to the complexity of the environment,
while the false negatives suggest some violent events may
have been obscured or subtle.

Overall, the proposed 3D-CNN method emerges as a
highly promising technique for violence detection. Its
robust performance, particularly on the RWF-2000, Industrial
Surveillance, and Hockey Fight datasets, further solidifies
its standing as a reliable and effective method for violence
detection across various settings. However, while the model
outperforms ConvLSTM in most metrics, addressing the
remaining false positives and false negatives will be crucial
for future improvements, especially in complex or fast-paced
environments.

As demonstrated in Table 3, our proposed 3D-CNN
method exhibits superior performance on across the four
datasets, achieving an accuracy of 97.2% with a standard
deviation of 1.55. This surpasses most state-of-the-art
methods on the hockey fight dataset. While methods like
ViF [20], OViF [21], DiMOLIF [22], and HOMO [23]
consider both the orientation and magnitude changes of the
optical flow, they still fall short of the performance achieved
by the proposed 3D-CNN model. Despite the complexity
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TABLE 2. The detailed evaluation results of the convistm and proposed 3D-CNN based on accuracy, AUC, precision, recall, and F1-score.

Method Dataset TP | TN | FP | FN | Accuracy (%) | AUC | Precision | Recall | Fl-score

ConvLSTM Surveillance Fight 18 18 13 9 62.0 0.584 0.581 0.667 0.621
RWEF-2000 158 | 183 | 42 17 85.3 0.867 0.813 0915 0.861
Hockey Fight 92 96 6 6 94.0 0.982 0.941 0.941 0.941
Industrial Surveillance | 23 21 8 73.0 0.824 0.724 0.724 0.724

Proposed 3D-CNN | Surveillance Fight 28 26 3 3 89.7 0.822 0.724 0.778 0.750
RWF-2000 185 | 185 | 16 14 92.5 0911 0.849 0.930 0.888
Hockey Fight 98 96 3 97.2 0.986 0.951 0.951 0.951
Industrial Surveillance | 26 27 4 3 88.89 0.846 0.833 0.833 0.833

Surveillance Fight Dataset RWF-2000 Dataset

True label
True label

Negative
Negative

Positive Positive

Negative Negative

Predicted label Predicted label

Hockey Fight Dataset Industrial Surveillance Dataset

True label
True label

Negative
Negative

Positive Positive

Negative
Predicted label

Negative
Predicted label

FIGURE 6. Visual representation of the confusion matrix for the proposed 3D-CNN. (a) Surveillance fight dataset. (b) RWF-2000 dataset. (c) Hockey fight

dataset. (d) Industrial surveillance dataset.

TABLE 3. Accuracy and Standard Deviation (SD) of various methods
evaluated on the hockey fight dataset.

Method Accuracy (%) SD
ViF [20] 81.6 0.22
OViF [21] 84.2 3.33
DiMOLIF [22] 88.6 1.20
HOMO [23] 89.3 091
Conv-LSTM [24] 97.1 0.55
Proposed 3D-CNN 97.2 1.55

of their approach, our architecture still outperforms theirs.
This highlights the efficiency of our simpler architecture in
capturing the most relevant frames and regions for violence
detection. In comparison with Conv-LSTM [24], our method
still achieves higher accuracy. These methods consider all
frames as input, leading to the inclusion of redundant
information that can adversely affect the network’s decision-
making process.

B. CROSS-DATA EXPERIMENTS

We also conducted cross-data experiments [40] to evaluate
the model’s generalizability across different datasets. The
primary objective was to determine whether the model’s
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Auc = 0821 Auc = 091

FIGURE 7. ROC and AUC of 3D-CNN: (a) Surveillance fight dataset,
(b) RWF-2000 Dataset,(c)Hockey fight dataset, (d) Industrial surveillance
dataset.

understanding of violence is sufficiently generic to accurately
detect violent activities across diverse datasets. This is
crucial for real-world applications where the model may
be deployed in various environments with different types
of data. The experiments involved training the model on
one dataset and testing it on another, providing valuable
insights into the model’s adaptability and robustness. For
example, when trained on the surveillance fight dataset
and tested on the RWF-2000 dataset, the model achieved
an accuracy of 63.67%, and when tested on the industrial
surveillance dataset, the accuracy reached 77.46%. Similarly,
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TABLE 4. Cross data experimentation results: generalization performance.

Training Dataset Testing Dataset Accuracy (%)
RWF-2000 Surveillance Fight Dataset 64.12
RWEF-2000 Industrial Surveillance Dataset 59.85
RWF-2000 Hockey Fight Dataset 67.83
Industrial Surveillance Dataset Surveillance Fight Dataset 73.78
Industrial Surveillance Dataset RWF-2000 68.43
Industrial Surveillance Dataset ~ Hockey Fight Dataset 70.12
Surveillance Fight Dataset RWF-2000 63.67
Surveillance Fight Dataset Industrial Surveillance Dataset 77.46
Surveillance Fight Dataset Hockey Fight Dataset 69.27
Hockey Fight Surveillance Fight Dataset 70.19

the model achieved its lowest accuracy (59.85%) when
trained on RWF-2000 and tested on Industrial surveillance,
highlighting the challenges of generalizing across datasets
with different characteristics. These results, summarized in
Table 4, emphasize that while the model can generalize, its
performance depends heavily on the diversity and complexity
of the datasets used during training. The cross-dataset
experimentation not only validates the model’s effectiveness
but also underscores its potential for scalable deployment
in diverse surveillance settings, where variations in scene
types, camera angles, and environmental conditions pose
challenges.

The overall reduction in accuracy across cross-dataset
experiments underscores the inherent challenges in gen-
eralizing between datasets with different characteristics.
These challenges arise due to variations in factors such
as video quality, scene diversity, camera angles, and the
nature of violent actions across datasets. Video quality
differences, including resolution and noise levels, affect the
model’s ability to adapt to new environments. Scene diversity
and varying camera angles, such as those found in fixed
industrial surveillance versus dynamic sports footage, further
complicate generalization. Additionally, the specific contexts
in which violent actions occur can differ greatly across
datasets, making it difficult for models to identify consistent
patterns.

C. TIME COMPLEXITY ANALYSIS

Processing time is a critical consideration for video data
in Industrial Internet of Things (IloT)-aided surveillance
systems. In this study, the ConvLSTM model and the
proposed 3D-CNN model were evaluated for their efficiency
in handling video frames. The ConvLSTM model processed
28 frames per second, while the proposed model handled
72 frames per second. This means the proposed model
processes one frame in approximately 0.01389 seconds,
making it 2.57 times faster than the ConvLSTM model.
This improved processing speed underscores the efficiency
of the proposed approach. In terms of model complexity,
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the ConvLSTM model consists of 18,976,770 parameters,
while the proposed model significantly reduces this to
4,470,298 parameters. This substantial reduction in param-
eters highlights the optimization and efficiency achieved by
the proposed model, both in terms of processing speed and
model size.

The models were trained and tested on a high-performance
system featuring a 64-bit operating system and an x64-based
Intel(R) Core(TM) i17-10870H CPU, clocked at 2.20GHz
with a turbo boost up to 2.21GHz. The system was also
equipped with 64.0 GB of RAM, which provided ample
memory to handle the intensive computational tasks involved
in processing video data for surveillance purposes.This
hardware setup facilitated not only fast training and testing
but also ensured that the models could efficiently handle
large batches of video frames, which is crucial for real-time
surveillance applications.The proposed model is designed
to be efficient enough to run on edge devices, such as
IoT-based surveillance systems, which often have limited
computational resources compared to high-end GPUs. This
is achieved by using a lightweight initial stage (CNN for
human detection) to reduce the number of frames that need
to be processed by the more computationally intensive 3D-
CNN. The ability to run models like the proposed 3D-CNN
in such an environment is a strong indicator that these models
are scalable and could be deployed in real-world IToT-aided
surveillance systems, where quick response times and the
ability to process high-resolution video data in real-time are
paramount. This combination of hardware capability and
optimized model design further emphasizes the practicality
and applicability of the proposed model in demanding IIoT
scenarios.

VI. CONCLUSION AND FUTURE WORK

In this paper, a three-staged end-to-end framework is pro-
posed for violence detection in a surveillance video stream.
In the first stage, human are detected using an efficient
CNN model to remove unwanted frames, which results in
reducing the overall processing time. Next, frame sequences
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with persons are fed into a 3D-CNN model trained on three
benchmark datasets, where the spatiotemporal features are
extracted and forwarded to the SoftMax classifier for final
predictions. Experimental results over various benchmark
datasets confirm that our method is a good fit for violence
detection in surveillance and achieves better accuracy than
several other existing techniques. We want to use our
methodology on devices with limited resources. Our paper
involves implementing edge intelligence in order to identify
instances of violence in the IoT devices. Our future research
aims to improve violence detection by leveraging multiview
data for thorough analysis.Additionally, We plan to enhance
the model’s adaptability to varying environmental conditions
by incorporating sound sensor data. This approach is intended
to be particularly useful in challenging light conditions,
where visual data alone may be insufficient. By integrating
auditory inputs, we aim to improve the robustness and overall
performance of the model in diverse real-world scenarios.
This is necessary since existing algorithms depend on single
cameras, which are unable to capture the complete picture.
Hence, multiview enables thorough surveillance of activity
from any perspective.
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