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ARTICLE INFO ABSTRACT

Keywords: A reliable quantification of fresh submarine groundwater discharge (SGD) is key to understanding and managing

Multi-Objective Optimization water quality and habitat of coastal ecosystems. However, current radon tracer-based SGD quantifications suffer

T greatly from uncertainty and subjectivity in tracer signal processing an e indirect estimation of non-

Radon tly fi tainty and subjectivity in t 1 d the indirect estimation of non-SGD
racers

related tracer sources and sinks. In this study we provide a new procedure and model SGD rates as upper en-
velopes in radon and inverted salinity vs. water depth regressions over tidal cycles. We use non-linear quantile
regression to model these envelopes and account for signal-lag correction and noise suppression via optimization
towards matched radon and inverted salinity envelope data, and a monotonic (i.e., non-oscillating) trend for the
water depth. We then quantify the SGD rate based on the temporal change of the modeled radon envelope in-
ventory and define the radon signature of the fresh groundwater endmember (which is critically important for
the calculation of volumetric discharge rates) as the zero-salinity intercept in the envelope regression. Our results
indicate that the traditional radon mass balance, if applied at a data aggregation interval of < 1 h and if based on
a subjective mixing loss estimation, may lead to a substantial overestimate of SGD. This limitation should be
carefully considered in the calibration of lager scale, model-based SGD analyses.

Coastal Hydrology
Signal Processing

1. Introduction

The analysis of fresh submarine groundwater discharge (SGD) —
defined broadly as meteoric water that discharges across a coastal
aquifer — is crucial to understanding terrestrial influences on marine
ecosystems. SGD of solutes from natural sources or anthropogenic
pollution can lead to complex biogeochemical responses that can elevate
or harm critical ecosystem functions (Alorda-Kleinglass et al., 2021;
Richardson et al., 2017; Silbiger et al., 2020). However, despite its
importance, a reliable quantification of the fresh SGD flux has been
challenging due to a lack of direct, watershed-specific measurements
(Schubert et al., 2019; Taniguchi et al., 2019) and its complex response
to tides, wave setup, terrestrial hydraulic gradients and aquifer hetero-
geneity (Geng et al., 2021; Kreyns et al., 2020; Robinson et al., 2018).

Previous experimental work and modeling studies have shown that
fresh SGD from a simplified unconfined coastal aquifer occurs along a
narrow discharge “tube”, located in-between an intertidal upper saline
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plume (USP) and the lower saltwater wedge. Along the margins of this
“tube”, density-driven convection from freshwater and seawater mixing
will cause saline SGD; as does tide- or wave action-driven seawater
discharge at the base of the USP (Fang et al., 2022; Kuan et al., 2019;
Robinson et al., 2018; Xin et al., 2015; Yu et al., 2017). This “tube” fresh
SGD model is difficult to apply to complex settings such as tropical
volcanic islands and fringing coral reefs, where shallow confining
aquitards (e.g., the “reef flat plate”) and abundant karstic conduits
greatly distort the geometries of the USP, saltwater wedge and SGD
“tube” (Fig. 1b; Hagedorn et al., 2020; Houben et al., 2018; Kreyns et al.,
2020; Michael et al., 2016). One interesting finding is that aquifer het-
erogeneity appears to widen the freshwater-seawater interface and to
move its toe inland (Geng et al., 2021; Fig. 1b).

The key issue in current SGD research is that tracer inventory-based
SGD quantifications, which are critically important for a calibration of
model-based SGD estimates for any setting (i.e., with or without a fresh
SGD “tube” or USP; Fig. 1a, b), are themselves uncertain. Reasons for
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this include (1) buoyancy-driven geochemical stratification of the water
column and the unrealistic assumption of a “well mixed” tracer in-
ventory, (2) the difficult-to-document end-member chemistry of
groundwater discharging as SGD, (3) the sensitivity of the SGD estimate
to the temporal resolution of the monitoring signals, (4) the challenge of
“aligning” signals of SGD tracers from different detection systems with
different measurement frequencies, response delays and signal resolu-
tion, and (5) the uncertainty from non-SGD related tracer sources and
sinks, especially the signal dilution by offshore water; a process
commonly referred to as the “mixing loss” or Fp;, (Adyasari et al., 202.3;
Savatier and Rocha, 2021; Schubert et al., 2022). A specific problem
associated with the Fp; parameter is that it is not measured, but typi-
cally estimated via subjective interpolation and extrapolation of nega-
tive excursions in tracer (i.e., radon) inventory changes. This
subjectivity, among other factors, translates into drastic uncertainty in
the SGD flux estimate.

In this paper, we present a new methodology for fresh SGD quanti-
fication that addresses these challenges. We focus specifically on iden-
tifying monitoring periods for which the assumption of a well-mixed
tracer inventory holds true and for which a monotonic tracer vs. water
depth regression from a tidal forcing can be modeled as a non-linear
regression envelope. We define this envelope as a quantile regression
function between water depth and the upper extreme of radon and
inverted salinity distributions. We attribute positive changes in the en-
velope inventories during the falling tide (when the hydraulic gradient
increases) to the flux of SGD (Fsgp), and negative changes during the
rising tide (when the gradient decreases) to a low frequency mixing loss
(Fmix (ow freq))- We furthermore attribute upper deviations in the
measured radon and inverted salinity signals from the envelopes to
statistical (i.e., white) noise and lower deviations from the envelopes to
the combined effects of white noise and atmospheric degassing (if only
affecting the volatile radon tracer) and a high frequency mixing
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component (Fix (high freq))- The latter reflects the inventory loss from the
combined effects of longshore currents and wave action on buoyant
freshwater at the stationary SGD monitoring point. The key strengths of
our method relative to the traditional mass balance are: (1) it is cali-
brated because it is based on the envelope function match of two inde-
pendent SGD tracers: radon and salinity, (2) it has a physical basis and
that is the non-linear head loss vs discharge relationship of an uncon-
fined sloping aquifer and (3) it is not dependent on any of the other
difficult-to-estimate radon sources and sinks of the traditional mass
balance model (e.g., Fgm and Fp;,). We test our method on multiple
datasets collected from a tropical, high level volcanic island (Mo’orea,
French Polynesia) and demonstrate its relevance and utility for SGD
quantifications in other settings.

2. Theoretical background

2.1. SGD estimates from radon mass balance — assumptions and
conceptual limitations

The traditional approach for settings, where the effects of surface
runoff and evaporation are minor, is to estimate the fresh SGD water flux

Fspgw (in m/d) at a stationary monitoring point as (Adyasari et al.,
2023; Burnett and Dulaiova, 2003):

F. SGD ( Smun)
F, = 1- (€D)]
SGDgw ng Sref

where Fsgp (in dpm/mz/d) is the total SGD flux (i.e., fresh and saline
SGD) determined from a transient radon mass balance, Sy, (in psu) is
the measured salinity at the subtidal SGD monitoring point, Sy (in psu)
is the reference salinity of non-diluted seawater and Cg, (in dpm/mg) is
the radon concentration of the groundwater endmember at the SGD exit
point. This value is typically approximated from sampling of inland
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Fig. 1. Conceptual schematics of fresh SGD and saline SGD processes in (a) homogeneous and (b) heterogeneous coastal aquifers (modified from Geng et al., 2021).
Everything starts with an inland freshwater hydraulic gradient (1), driven by recharge of fresh meteoric water (2) and causing terrestrial groundwater discharge
seaward through the narrow fresh SGD “tube” (3). Processes (4) and (5) indicate saline SGD driven by tides and waves, respectively, in the USP. Process (6) indicates
groundwater circulation due to density gradients formed along the dispersed interfaces between fresh water and saltwater. Note the inland shift of the fresh SGD
discharge zone in the heterogenous aquifer. Subtidal tracer surveys in (b) (see location of blue star) would yield significantly lower SGD fluxes than in (a). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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groundwater wells that are sometimes far removed from the actual SGD
exit point.
The transient radon mass balance applies as:

FSGD = Fnet+ Fmi.x (2)
with.
dI

Free = Et+Fam + Faec + Flide (ebb) — Fride (flood) — Fsed 3)

where Fpe (in dprn/mz/d) is the net radon flux calculated from
measured differences in the radon inventory between successive
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measurements (dI/dt), and from indirect estimates of the mixing loss
(Fmix), atmospheric degassing (Fqy,), radioactive decay (Fgec), tidal cur-
rents (Fide (ebb) and Fge (floog)) and diffusion from seafloor sediments
(Fsed)- Fseq and Fg, are typically considered negligible for fringing coral
reef settings because of the low-porosity reef caprock and the short
duration of tidal cycles, respectively (e.g., Correa et al., 2021; Oehler
et al., 2019; Tait et al., 2013, etc.).

The first problem of the method is the assumption of a well-mixed
water column and a homogenous radon inventory I, which is
computed as the product of the measured radon activity and water
depth. This assumption only applies to settings where SGD is sampled in
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Fig. 2. Example radon mass balance at 10-minute (a), 30-minute (b) and 60-minute (c) aggregation intervals. Note the attenuating effect of longer intervals on mean
radon fluxes. This is especially relevant for F,,; because this parameter is typically interpolated and extrapolated over its minima throughout the monitoring period
(see red dashed lines). Shorter aggregation intervals yield significantly higher F,,;, amplitudes for this interpolation/extrapolation. If this interpolation/extrapolation
were to be used as a proxy for Fpy, the discrepancy in the Fsgp estimates for the different aggregation intervals would be significantly greater. See Appendix A for the
dataset used to generate this figure. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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shallow water directly from- or slightly above the buoyant freshwater
exit point. Away from this exit point, the water column can be extremely
stratified, dependent on current direction and magnitude, with fresh-
water being confined to a shallow surface layer (see, e.g., Johnson et al.,
2008; their Fig. 2, or Oehler et al., 2019; their Fig. 3). Radon surveys in a
stratified water column will yield overestimates of tracer inventories
and unrealistic Fsgp rates for equation (1).

The second problem of the method is the assumption that fresh and
saline SGD exhibit the same radon activities, but different salinity
chemistries so that their relative dominance can be estimated from a
simple salinity mass balance (Eq. (1)). This is inconsistent with field
studies where saline groundwater sampled within the USP, between the
high and low tide marks, yielded significantly lower radon activities
than fresh, regional groundwater sampled upgradient of the USP
(Colbert et al., 2008a, 2008b; Hagedorn and Tsuda, 2022; Lamontagne
et al., 2008). Additionally, in tropical-humid systems, a strong negative
linear correlation has been observed between radon activity and salinity
values of coastal waters (e.g., Cyronak et al., 2014; Peterson et al., 2009;
Su et al., 2014, etc.). This suggests that at well-mapped SGD exit points,
the radon contribution from saline SGD throughout tidal cycles is either
negligible, or SGD yields salinity vs radon data points that fall on a
negative linear fresh groundwater — seawater mixing line. For such a

scenario, the (1 -3
ref

S"'"") term in equation (1) should not be used to

specifically differentiate between fresh vs saline SGD, but to distinguish
SGD, as a combination of fresh and saline SGD, from seawater.

The third problem of the traditional radon mass balance is the de-
pendency of the model result on the signal processing method. The de-
cision to aggregate, smooth or filter time series data is rarely discussed in
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the SGD literature, although it has been shown to significantly impact
model results in other disciplines (e.g., Alarcon Falconi et al., 2020;
Cheng and Adepeju, 2014; Duchesne and Gaillot, 2011; Fefferman et al.,
2005; Rostami-Tabar and Mircetic, 2023; Roy, 2020). In relation to SGD,
there are two aspects to consider. The first is how the processing method
affects the propagation of errors in the Fp, Fsgp and Fp;y values. The
second is how it causes a delay or lag effect for individual signals.

In terms of processing method, most SGD studies follow a simple
aggregation approach and “downscale” higher frequency salinity and
water depth signals to a longer-interval radon sensor counting cycle that
may range from as short as 10 min (e.g., Tait et al., 2013) toup to 2 h (e.
g., Burnett and Dulaiova, 2003). A longer aggregation interval will result
in a higher signal to noise ratio (SNR), but long intervals may not be able
to represent well the temporal SGD dynamics throughout a tidal cycle. A
shorter aggregation interval, in turn, translates into a better preservation
of higher frequency signals, but also causes lower SNR ratios and thus
higher random error signal oscillations. These oscillations have a com-
pounding effect when signals are combined, such as when calculating
the radon inventory, I and its change in time dI/dt. The same will be the
case for other dependent parameters: Fyu, (estimated from measured
radon activity, temperature, salinity and wind speed-derived solubility
and gas transfer coefficients), Fyde (flood) (estimated as the product of the
positive unit change in water depth over the measurement interval times
the radon activity of offshore water) and Fige (ebb) (estimated as the
product of the negative unit change in water depth imes the measured
radon concentration in nearshore water). Importantly, the effect of the
oscillations will not cancel out for Fp,; because the magnitude of Fige (ebb)
will always be higher than that of Fiige (7004) due to the former’s inclusion
of a higher- and time-variant radon signal.
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Fig. 3. Case study example (data from Hagedorn and Tsuda, 2022) of radon fluxes from a 24-hour monitoring dataset processed at an 1 h aggregation interval.
Because Fyer = Fsgp — Fmix and because neither Fggp nor Fpix can be measured directly, the latter is commonly estimated based on negative Fye (a), or an inter-
polation/extrapolation of Fpe; minima (b) and the former is estimated as the residual of the equation. Note the drastic effect of the interpolation/extrapolation and its

subjectivity on the mean Fggp estimate.
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The problem with data aggregation is even more drastic for Fsgp and
Fnix because the distinction between them is essentially categorical: Fp;y
is assumed to equal Fp,; when Fggp = 0 and Fpe < 0, whereas Fsgp is
assumed to equal Fpe when Fpix = 0 and Fyper > 0. This means that every
random error-related positive and negative Fy, excursion will cause a
“false” signal and overestimate of Fsgp and Fpy, respectively. Fig. 2 a-c
illustrates this problem and shows the attenuating effect of a longer
aggregation interval (and lower SNR) on the mean Fye, Fsgp and Fpx
estimates. In this case, Fp;, is estimated conservatively to occur only
when Fpe < 0; i.e., there is no interpolation and extrapolation of Fy
minima throughout the time series. Importantly, a Fp,; minima inter-
polation and extrapolation, as commonly done in the literature (e.g.,
Burnett and Dulaiova, 2003; their Fig. 4), will exacerbate the discrep-
ancy from different aggregation intervals even further (compare red
dashed lines in Fig. 2a-c).

The delay or lag effect from signal aggregation is caused by the
method’s reliance on past values in the average calculation. Because raw
water depth, salinity and radon records may exhibit different variances
and amplitudes, they will ultimately be subjected to a different delay
effect for a specific aggregation interval. The result can be (1) a non-
synchronous tracer time series, (2) an erroneous record of the radon
inventory and an erroneous radon vs salinity regression. A compounding
issue here is that the radon signal exhibits an additional response delay
(Petermann and Schubert, 2015; Santos et al., 2012; Stieglitz et al.,
2010; Zhao et al., 2022) that varies not only with gas equilibration setup
(particularly closed air loop volume and pump flow), but also with
equipment wear over time (e.g., clogging of water pump and aeration
chamber nozzles by suspended sediment, tubing leaks/kinks, pump flow
reductions from declining battery voltage, etc.). While the latter effects
may be controlled to some degree, the various response delays of the
monitored datasets should still be reevaluated for a specific monitoring
campaign. In this study, we highlight the value of a radon vs salinity
regression for such a reevaluation.

The fourth and probably most significant problem of the traditional
radon mass balance is uncertainty and subjectivity in the indirect esti-
mation of the non-SGD related radon sources and sinks: Fige (ebb)s Fride
(flood)> Famm, and, most importantly, Fy;. It is, for example, not clear how
representative the water temperature and wind speed derived Fy;, loss
of radon is at the SGD monitoring point, several cm below the water
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surface and often 100 s of meters, or even kilometers away from the
nearest weather station. Recent research has, in fact, indicated water
turbulence (i.e., wave white caps and associated cavitation) as a much
more significant driver for Fy, than wind speed and water temperature
alone (Schubert et al., 2022). Likewise, it is uncertain how reliable the
indirect estimate of Fpde (fiood) and Fride (ebb) are as radon-enriched or
depleted nearshore water may very well be cycled back and forth by
consecutive ebb and flood currents. Some studies (e.g., Luo et al., 2020)
address this uncertainty using a “return flow factor” that accounts for a
specific percentage of the tidal prism that returns from the open sea
during a rising tide. The problem here is that reliable measurements of
this factor are very difficult to obtain for a specific monitoring site.
The key issue of the F,; parameter is circularity in its estimation
because it depends on the same input variables as Fsgp (Egs. (2), (3)). As
mentioned before, Fsgp is quantified as the positive Fpe, while Fpy;y is
quantified as the negative F., with most studies interpolating and
extrapolating Fy,; minima to occur over the entire monitoring period
(Figs. 2, 3; Adyasari et al., 2023; Burnett and Dulaiova, 2003). The
purpose here is to allow Fp;, to occur during low tide and to “increase”
the Fsgp estimate when Fp is positive. Not only is the approach
dependent on the magnitude of negative Fy; excursions and thus on the
afore-discussed choice of signal processing method (e.g., short vs long
aggregation interval; see Fig. 2), but also is it subjective. There is typi-
cally no explanation regarding the interpolation method (e.g., linear vs
spline interpolation, etc.). Furthermore, most studies attempt to keep a
certain portion of the negative Fy,; below the interpolation line to reduce
the influences of negative outliers, but these portions are typically not
specified. Lastly, extrapolation beyond any measured F,, minima
drastically increases uncertainty towards the boundaries. These issues
are clearly illustrated in Fig. 3, where Fig. 3a shows a conservative F;,
estimation approach without interpolation and extrapolation. In this
case, Fpix occurs only when Fpe < 0. Fig. 3b shows the more commonly
applied Fp;, interpolation within the measured Fp, minima and ac-
counting for a negative outlier offset. Also shown is an extrapolation
towards the left boundary (see red dashed line). In this example, the
subjective Fp;, interpolation/extrapolation more than doubles the mean
Fsgp estimate (compare Fig. 3a and b). This raises the question as to why
one should not consider the opposite approach and interpolate and
extrapolate Fsgp through a specific portion of Fy,; maxima and calculate
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Fpix as the residual in Eq. (2)? This would allow Fsgp to occur irrelevant
of tidal stage and even during high tide. From a methodological
perspective, such an approach should be considered as “unrealistic” as
the commonly applied Fp.; minima interpolation/extrapolation-based
Fnix estimation.

There is no “right” choice per se, so Fp; needs to be constrained
independently. Some studies attempt this through measurements (and
estimates) of velocities and volumes of moving coastal waters (Oehler
et al., 2019; Savatier and Rocha, 2021; Tait et al., 2013; Wolfe et al.,
2023), but representative measurements are, again, difficult to obtain at
the subtidal SGD monitoring location. An important point to make here
is that the mixing loss is not only related to the effects of tide- or wind
speed/direction-controlled surface currents on a freshwater plume. Most
studies, in fact, sample the water below the water surface very close to
the actual freshwater exit point. A more significant factor in this case
will be the horizontal back and forth shearing effect from wave setup
when buoyancy-driven advective flow greatly outweighs diffusion.
Because the water column in these settings is mixed only across a very
“narrow” band above the discharge point, minor back and forth motions
of the buoyant freshwater plume, relative to the stationary SGD moni-
toring point (i.e., pump inlet), will translate into a highly variable radon
inventory and monitoring signal. These variations will be amplified
during low tide when the Fggp signal tends to be strongest. The back-
and-forth shearing effect causes the homogeneous radon inventory
assumption to apply only to a subset of the monitored signal.

2.2. Refining SGD estimates — new approach

To reliably quantify SGD rates, a clear distinction needs to be to be
made between the processes attributed to the terrestrial hydraulic
gradient and other, higher frequency processes related to other external
influences. While Fggp regulates tracer inventory gains (i.e. positive dI/
dt; Eq. (3) during the falling tide when the gradient increases, a mixing
loss, hereafter referred to as the low frequency mixing 10ss Fruix (tow freq)»
will always regulate the inventory loss (negative dI/dt) during the rising
tides when the gradient decreases. This Fiix (ow fregp should not be
interpolated or manually “extended” throughout the entire monitoring
campaign because its magnitude is controlled by the tidal stage itself.
This is different from the “higher” frequency mixing loss, Fmix (high freq)>
that reflects the more random tracer signal dilutions from longshore
currents, wave action, and the overall motion of a buoyant freshwater
plume relative to the SGD monitoring point. This mixing loss will
happen throughout the monitoring campaign, independent of tidal stage
and hydraulic gradient, but quantifying its relative influence, like that of
Fam (Eq. (3)), is extremely difficult. Also, inventory gains and losses
from Fsgp and Fiix (ow freqy Should not be “normalized” to mean tidal
height, as is done with the F4, term in the traditional mass balance,
because the tidal height controls the hydraulic gradient and as such the
magnitude of Fsgp and Frix (low freg)-

Our new approach is to model tide-controlled Fsgp and Fix (iow freq)
as non-linear envelope functions in regressions of radon and inverted
salinity vs. water level data. We refer to the term envelopes here as re-
gressions with upper extremes of the response variable distribution and
relate these to causal relationships where only a subset of limiting fac-
tors applies (Carling et al., 2022). In this case, the envelopes reflect SGD
monitoring segments for which the assumption of a homogeneous in-
ventory holds true and for which only the changing magnitudes of Fsgp
and Frix (ow freq) control the signal. Upper signal deviations from both
the radon and inverted salinity envelopes reflect only statistical (i.e.,
white) noise, whereas lower deviations reflect the combined effects of
white noise and Fgn, if occurring only for the volatile radon tracer, and
Funix (high freqs if occurring for both tracers, radon and inverted salinity.
The key assumptions of our method are: (1) groundwater discharging as
SGD exhibits a uniform radon and salinity chemistry, (2) monitoring
signals are synchronized; i.e., corrected for statistical or instrument-
specific response lags, (3) Fsgp and Fyix (tow freq) Cause mirror-inverted
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radon and salinity envelope patterns, (4) the capture zone of the SGD
monitoring system extends throughout the entire water column, (5)
changes in water level are monotonic throughout a tidal segment, thus
removing the effect of changing inventory due simply to error in the
water level measurements, and (6) the SNRs of monitoring data are
maximized; i.e., the Fsgp and Fix (low freq)- controlled radon and salinity
trends are also monotonic for a given tidal segment. Accordingly, the
modeled radon envelope inventory (Ienyeiope) in the monitored radon
time series can be used to quantify Fsgp as:

dlenyel
er(l;te e = net = L'mix (low frequency) +F. SGD (4)

lenyetope + : ;
w2 is negative. This

where Frix (tow freq) is considered a loss only when

Fsgp can be converted to Fsgpgy following equation (1). Importantly,
however, this Fsgp reflects the SGD component distinguished from
seawater by concurrently measured radon and salinity data. It, there-
fore, cannot be further “subdivided” into fresh or saline SGD compo-

nents, so the <1 — Sé"—";‘) term in equation (1) should be set to one. The

Cgqw term in equation (1) can be estimated as the zero-salinity intercept of
the modeled radon and salinity envelope data. The key assumption here
is that the radon contribution from saline SGD is negligible and that the
fresh groundwater salinity is orders of magnitude lower than the
seawater salinity.

2.2.1. Quantile regression

Unlike least squares regression, which estimates the conditional
mean of the response variable across values of the predictor variables,
quantile regression estimates the conditional median (or other quan-
tiles) of the response variable distribution (Allen et al., 2009; Cade and
Noon, 2003; Carling et al., 2021; Koenker, 2017; Le Cook and Manning,
2013). In situations where there is a weak relationship between the
mean of the response variable distribution and the explanatory vari-
ables, envelopes (defined as quantile regressions against upper or lower
extremes of the response variable distribution) may indicate more useful
relationships of how different factors or variables affect different parts of
the data (Bergherr, 2018; Cade, 2017).

What makes quantile regression particularly useful for hydro-
geologic research is that it extends to non-linear longitudinal data (Chen
et al., 2016; Cleophas and Zwinderman, 2021; Geraci, 2019; Hao and
Naiman, 2007; Koenker and Park, 1996). This allows it to capture the
non-linear, but monotonic head loss vs. discharge relationship of un-
confined sloping aquifers (see: Rupp and Selker, 2006 and references
therein) and associated tracer concentration changes in seawater
affected by groundwater discharge during a falling or rising tide.
Another advantage of quantile regression is that it can be used to address
the signal noise and associated regression uncertainty of the dependent
variable as an exceedance probability through the quantile. This can be
determined for different tracers and their detection systems from simple
calibration experiments. Similarly, a filter for the explanatory variable
(here: water depth) can be applied to minimize the effect of water level
signal oscillations from low SNRs on F,. Finally, optimization towards
matched envelope data of independent tracers — radon and inverted
salinity — allows for an objective determination of the appropriate
quantiles, filter parameters, tracer signal lags and Cgy.

3. Materials and methods
3.1. Study site and datasets

This study focuses on a total of 7 subtidal SGD surveys carried out on
the island of Mo’orea, French Polynesia, in August 2021 and March
2022 (Fig. 4). Like other tropical volcanic islands, Mo’orea exhibits a
complex hydrogeologic regime with (1) pronounced spatial recharge
gradients and (2) transitions from fractured basaltic rock aquifers in the
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island’s interior to a coastal sedimentary wedge of alluvial volcanic
sediments, calcareous paleo-reef deposits, and organic debris. This
aquifer heterogeneity highlights the challenge of identifying the
appropriate Cg, value for the Fsgpgy calculation (Eq. (1)).

The selection of monitoring sites for this study was based on recent
investigations along the western and northern shores of Mo’orea that
have revealed low salinities in nearshore waters, indicating potential
fresh SGD into the reef (Becker et al., 2023; Hagedorn et al., 2020;
Habler et al., 2019; Knee et al., 2016). The fringing reef along these
shorelines is dominated by coral aggregations several meters in diam-
eter, separated by unconsolidated calcareous sand. There is no clear
explanation for the documented uneven distribution of fresh SGD on
Mo’orea, but results from previous research at other sites (e.g., Cardenas
et al., 2010; Correa et al., 2021; Null et al., 2014; Pain et al., 2020)
suggest submarine karst-like features, generated by COs-rich acidic
groundwater, as possible pathways for localized fresh groundwater
seepage.

Radon activities and conductivity, temperature and depth (CTD)
data were measured at two separate subtidal monitoring sites (hereafter
referred to as the Varari and Cabral sites; Fig. 4) over several tidal cycles.
Each monitoring dataset captures peak high and peak low tide
changepoints, except for one Cabral falling tide dataset, where technical
issues prevented capturing peak low tide. Radon was measured with the
RAD7/Aqua monitor (Durridge Company, Inc., Billerica, MA) and CTD
was logged concurrently with In Situ Aqua Troll 600 (In-Situ Inc., Fort
Collins, CO) and HOBO U24 (Onset Computer Corporation, Bourne, MA)
sensors. The detection system was connected to a bilge pump that ran at
~ 5 L/min with its inlet always located about > 10 cm above the
mapped SGD seep. This was done to prevent suspended sediment clog-
ging of the pump inlet and the RAD Aqua spray chamber nozzles and to
minimize the effect of water stratification that is commonly observed
away from the SGD discharge point. As a compromise between allowing
high temporal resolution and keeping the RAD7 counting error at a
reasonable level, we followed Petermann and Schubert’s (2015)
approach and selected a 5 min counting cycle for the radon data. CTD
readings were aggregated over the same 5 min window. All records were
subsequently allocated to the midpoint of each measurement cycle/ag-
gregation window and transformed to a 1 min time-series based on a
linear interpolation (see Fig. 5 as an example for a preprocessed dataset).
All collected monitoring data of this study are listed in Appendix A.

3.2. Optimization algorithm

An algorithm was coded in R to model the Fggp flux as the upper
envelope in radon vs water level regressions combining non-linear
quantile regression (nlqr), signal filtering and multi objective optimi-
zation. The goal of the algorithm is to find a combination of signal
processing parameters that (1) maximizes the correlation between the
upper envelopes of the radon vs. water level- and inverted salinity vs.
water level regressions and (2) minimizes the effect of error in the water
depth signal on F,.. Envelope data are then processed according to
equations (4) and (1) to quantify Fggpgy for the tidal segment. A flow-
chart detailing the individual processing steps of the algorithm is shown
in Fig. 6. The code can be found in Appendix B.

As the first step of the algorithm, we correct the measured radon-in-
air data from the RAD7 for the system-specific response delay using the
lag function of R’s xts (eXtensible Time Series) package. To account for
run- and setup-specific variability, lag is set as one adjustable decision
variable in the optimization with bounds of + 60 min. The lagged radon
measurements are subsequently converted to radon-in-water activities
using water/air partitioning coefficients adapted from Schubert et al
(2012), and excess values are calculated by subtracting the dissolved
oceanic %?°Ra activity (~100 + 12 dpm/m3, n = 4). We measured this
oceanic activity near our monitoring sites following the methods out-
lined by Kim et al. (2001) and Wang et al. (2017).

Next, we subdivide monitoring data into either low to high tide (lh)-
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Fig. 5. Unprocessed monitoring data of water level (a), salinity (b) and radon
activities (¢) collected at the Varari site from 2022,/03/20 to 2022/03/21. Note
the constant amplitude in the error related signal oscillations in the water depth
data and the changing amplitudes in the radon and salinity signals. High am-
plitudes in the radon and salinity signal oscillations at low tide reflect complex
mixing processes between buoyant freshwater and seawater at the SGD moni-
toring point. Segmented regression line (blue), change points (red dashed
vertical lines) and adjustable change point (CP) trim periods for the optimiza-
tion algorithm are shown in (a). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

or high to low tide (hl) segments to ensure monotonic tracer vs. water
level trends for the envelope analysis. This step is necessary because of
the hysteretic behavior of water level vs. salinity and water level vs.
radon- activity regressions (Fig. 7). Interestingly, there is a contrasting
behavior in our monitored data from 2022 (Fig. 7a, b) and 2021 (Fig. 7c,
d). Salinity defines an anticlockwise loop from peak high- to peak low
tide for the 2022 data and a clockwise sigmoidal loop for the 2021 data.
We relate the 2022 trend to a delayed but sudden salinity dilution from
freshwater during the falling tide at depths < 0.7 m. The salinity mini-
mum (~31 psu) occurs shortly before peak low tide and values plateau
at that minimum well into the rising tide. Then, at depths > 0.7 m,
values sharply increase back to the maximum of ~ 37 psu. The 2021
salinity data is different in that there is a much more “immediate”
decrease and increase after peak low- and peak high tide, respectively.
For radon, all these trends are reversed, i.e., maximum values occur
around peak low tide, and vice versa. Similar hysteresis loops have been
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Fig. 6. Flowchart showing the coding steps and application of the SGD quantification algorithm.

documented in tracer vs. discharge studies of streams (e.g., Arora et al.,
2020; Cartwright et al., 2014; Lloyd et al., 2016; Wymore et al., 2019)
and more recently in tidally influenced coastal groundwater (Grande
etal., 2023) and signify clearly the complex transitions in the form of the
SGD vs hydraulic gradient relationship. Tidal segments for our SGD
analysis are defined based on change points (CPs) in the water level time
series. The segmented R package (Muggeo, 2016), that is used for this
task, identifies CPs iteratively through linearization, maximizing the
difference in slope between linear regression lines at the optimized CP
(see Fig. 5a as an example). To account for uncertainty in the water level
data and to allow for a better nlqr model convergence per tidal segment,
we apply a trimming decision variable, derived through optimization, at

the starting (trimg) and the ending (trim.nq) CP of each segment as:

CP high/low tide = CP, segmented + trim (5)

Optimization bounds for the trim variable are set to & 10 min.

In the third step, we change the sign on the salinity dataset (multi-
plied by negative one) so that all the signals were the same shape. We
then range-scale all salinity, radon and water level data as:

(xvymeasured - x7ymin)
(xy,}/mux - x,ymin)

In the fourth step, we model tracer envelopes via nlqr using the
quantreg R package (Koenker, 2017). These envelopes reflect the Fsgp

©

X, Yscaled =
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Fig. 7. Hysteresis loops in unprocessed salinity (upper panel) and radon (lower panel) vs water depth regressions from continuous surveys at Varari on 3/21,/2022
(a, b) and Cabral on 08/09/2021 (c, d). Arrows indicate loop segment pathways from high to low tide and vice versa. Note the opposing pathway directions for

different tracers and different sampling campaigns.

and Frix (ow freq) Signals over a tidal segment and are expressed as the
upper extremes of the radon and inverted salinity distribution against
filtered water level data. We define these extremes or “non exceedance
probabilities” using quantiles (zg, as the radon quantile and g as the
inverted salinity quantile) that we determine via optimization. Bounds
for g, are 0.9-0.99 based on CTD sensor calibration experiments that
indicate a salinity precision error of < 10 %. Bounds for 7z, are more
difficult to assign because of Poisson statistics of radioactive decay and
the associated signal resolution dependence on signal strength and
counting cycle length (Justus, 2019). Theoretically, g, should change
throughout a tidal segment from a low precision (low 7g,) signal during
high tide to a higher precision (high 7g,) signal during low tide, when
the groundwater input of radon is strongest. Noting this uncertainty, we
set 7g, to a broader range of 0.01-0.99.

To maximize the SNR of the water depth data, we apply the Whit-
taker Henderson (WH) filter, programmed after Eilers (2003) and Wei-
nert (2007), based on a recent filter performance assessment by Schmid
et al. (2022). Optimization bounds for the WH filter parameter (1) are set
to 10,000-1,000,000 based on preliminary sample runs that indicate
best optimization performance in this parameter range.

For the nlqr function of the envelopes, we select a logistic (sigmoid)
curve based on a preliminary analysis of tracer vs. water level hysteresis
loop segment shape (see Fig. 7). This curve can be parameterized as:

Ymin Y m;x (7)
1 ()

where x and y are the explanatory and dependent variable, respec-
tively, ¥Ymax and Ymin are the maximum and minimum asymptotes, c is the
point of inflection half-way between yqx and ymin and b is Hill’s slope of
the curve at point c. Equation (7) represents a symmetric 4-parameter
logistic (4pl) correlation where the asymptotes are defined. This can
be simplified to a 3-parameter logistic (3pl) correlation wherein one of
the asymptotes is fixed to better handle truncated data (Archontoulis
and Miguez, 2015; deAyala, 2021). Both options are considered in this
study and the one that provided the best optimization results is used for

Y = Ymax +

further processing. To embed the nlqr model in the optimization algo-
rithm, it is programmed to (1) use both the SSlogis or SSfpl self-starting
functions to compute initial estimates of the 3pl and 4pl curve fitting
parameters, respectively, (2) apply the non-linear least squares (nils) R
function to converge on a best fit regression and (3) wrap the code in R’s
try statement to prevent premature model “choking” and ensure
continued optimization iterations after nls non-convergences (see lines
173 to 183 of the code in Appendix B).

In the fifth step, the two nlqr models per tidal segment are embedded
in a multi objective optimization. In this study, we use the Mixed Integer
Distributed Ant Colony Optimization (MIDACO) solver (Schlueter et al.,
2013; Schliiter et al., 2009) because of its ability to handle both discrete
integer- and continuous decision variables and because of its demon-
strated success in other computationally expensive applications (e.g.,
Hagedorn, 2020; Schlueter, 2014; Zobaa, 2019). The first optimization
objective, F1, minimizes the mean absolute error (MAE; Eq. (8)) be-
tween fitted radon and inverted salinity envelope data as:

iR = Si
n

F1 = MAE = ®

with |Rn; — S| as the absolute difference between the radon and
inverted salinity envelope data. The second objective, F2, minimizes the
effect of random error in the water depth signal on Fy, by ensuring a
monotonic water depth trend over a specific tidal segment. We accom-
plish this by maximizing the Spearman p correlation (Eq. (9)) between
water depth and time for each rising or falling tidal segment as:

D

F2=1-
nn®—-1)

©)

where d is the difference between the two ranks of each observation
and n is the total number of observations.

In the sixth step, the best fit output for the radon and inverted salinity
envelopes are de-normalized and processed according to equation (4) to
calculate mean values of Frer, Fimix (low freq) and Fsgp. The latter is then

converted in step 7 to the freshwater flux, Fsgpew, by setting (1 - i":f")
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to one and by determining Cg, for each tidal segment via linear
regression (i.e., zero-salinity intercept) of the envelope data.

4. Results and discussion
4.1. Quantile regression envelopes

Modeled results for the 7 tidal segments considered in this study are
listed in Table 1 and 2. Very low MAE values for objective F1 (mean
value: 0.052) indicate a very good match between inverted salinity and
radon envelopes. That each model converged on a perfect Spearman p of
1 (F2 = 0) renders the second objective as an effective constraint,
ensuring a minimized objective 1 at a monotonic water depth. The 3pl
model outperformed the 4pl for all but two of the tidal segments; an
observation in line with most of the data not being asymptotic with
either 0, 0 or 1, 1 (Fig. 8). There is a broad range in the optimized filter
parameter 4 (34,615 — 832,534; mean value: 251,094) that reflects the
different degrees of noise in the different water level and tracer datasets
and, consequently, the different degrees of filtering required to limit F2
to zero. The encountered 4, 7g, and 7s ranges confirm the importance of a
campaign-specific signal filtering procedure for a reliable SGD analysis.

Five of the 7 tidal segments revealed lower 7z, than zg values
(Table 1) which suggests an overall lower SNR and thus more positive
outliers in the radon signal. The discrepancy between 7z, than zg is
particularly high for the Varari 03/28/22 lh segment (Table 1). While
the low 7, for this segment (0.699) could be attributed to radon
detection outliers related to the often-reported “tailing” or “memory
effect” when the radon signal drops (Adyasari et al., 2023; Petermann
and Schubert, 2015), it is not clear why the discrepancy is so particularly
pronounced in the Varari 03/28/22 lh segment, as compared to the other
low-to high tide segments. Rather, positive excursions in the inverted
salinity signal at low tide (see Fig. 8a, right panel) could be responsible
for an exceptionally high zg value, and, consequently, a pronounced g,
and 7 discrepancy. The high modeled 7y, for the Varari 08/04/2021 lh
and Varari 08/05/2021 hl segments (0.941 — 0.988) likely reflects the
extreme degassing loss of radon as these datasets were collected during a
period of water turbulence with pronounced wave white caps. It appears
that the algorithm counteracts the degassing loss by shifting the radon
envelope towards a higher quantile. Interestingly, this turbulent water
period is not reflected in the wind speed data from nearby (i.e., 2 km
north) Hotel Tipaniers weather station which yields a lower mean
windspeed value for the 08/04/21 and 08/05/21 tidal segments (2.88
m/s) than that for the entire dataset of (4.64 m/s; data from windguru
online portal). This finding underscores the limitation of indirect
degassing loss estimates from wind speed measurements collected at
“nearby” weather stations (Schubert et al., 2022, 2019).

The optimization for 3 of the 7 datasets yielded a negative lag (i.e., a
backward shift) for the radon time series (Table 1). This is surprising

Table 1
nlgr results for high to low tide (hl) and low to high tide (Ih) segments.
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because the response delay from radon detectors typically requires a
forward shift. However, it is important to point out here that the lag
parameter is optimized for a match between radon and salinity enve-
lope- and not raw regression data (Fig. 9). In situations where the
variance in the radon signal is low relative to that of the salinity signal
(e.g., Fig. 8a and c), the upper salinity envelope will span a higher water
depth range which, because water depth is proportional to time, will
cause the salinity envelope to “lag” the radon envelope. The situation for
the Varari 08/04/21 lh segment is different because the variance in the
salinity signal is relatively low (compare mid and right panels of
Fig. 8g). In this case, however, the radon signal appears to be signifi-
cantly affected by the aforementioned “tailing” effect and the negative
radon lag is simply required to match the steep 3pl pattern of the salinity
envelope.

4.2. Optimized Cg, estimates

Regressions of modeled envelopes define strong linear correlations
that differ from those of the unprocessed input data (Fig. 9). The dif-
ference is particularly drastic for the high-water turbulence datasets,
Varari 08/05/21 hl and Varari 08/04/21 lh (Fig. 9f and g), where
extensive radon degassing is evident. Zero-salinity intercepts of all the
envelope data reveal a vast radon activity range (Table 2) with mean
(441,593 dpm/ms) and standard deviation (466,965 dpm/m3) values
that are still lower than what we encountered for 4 groundwater and two
spring samples from Mo’orea (mean value: 1,104,056 dpm/m?, standard
deviation: 610,089 dpm/m?% Table 3). The groundwater sample
collected closest to our study area (Coastal Spring, which is located near
the Cabral site) was pumped from a limestone aquifer, whereas all other
groundwater samples were collected from basaltic fractured rock aqui-
fers. Importantly, the radon range in groundwater samples not only
reflects compositional differences of the aquifers, but also textural fac-
tors such as grain shape and size and pore material density (Barillon
et al., 2005). These parameters are difficult to account for at a scale that
integrates the groundwater flow path form the recharge entry point in
the mountainous interior to the SGD exit point along the coast.

The encountered range of envelope zero salinity intercepts reflect
these factors. Interestingly, the radon endmembers determined from
consecutive segments at the Varari site (03/21/222 hl and [h) reveal a
decrease from 235,095 dpm/m? to 168,310 dpm/m?, that may indicate
(1) a changing groundwater radon signal from, e.g., recharge dilution by
an antecedent rain event, and/or (2) saline SGD of tidally recirculated
seawater affecting the signal of one tidal segment to a greater degree.
The similarity of the envelope patterns for radon and inverted salinity
for both segments indicates mechanism (1) as the more likely explana-
tion, as a shift towards more saline SGD should coincide with a flattening
of the salinity envelope amplitude. Longer-term radon, salinity and
groundwater level monitoring are necessary to confirm this. The more

Parameter Varari 2022/03/ Varari 2022/03/ Varari 2022/03/ Varari 2021/08/ Varari 2021/08/ Varari 2021/08/ Varari 2021/08/
28 h 21 hl 21t 09 th 09 hl 05 hl 04 lh
Best-fit nlgr 3pl 3pl 4pl 4pl 3pl 3pl 3pl
function
Objective Functions
Objective function 0.026 0.003 0.048 0.058 0.189 0.022 0.021
F1
Objective function 0 0 0 0 0 0 0
F2
Decision Variables
Trn () 0.699 0.960 0.931 0.917 0.628 0.941 0.988
Tsal (=) 0.925 0.909 0.992 0.989 0.999 0.999 0.904
lag (min) -31 0 -8 37 1 59 -25
trimgeare (Min) -10 10 -10 1 -10 -10 6
trimeng (min) 10 -10 1 -9 1 3 1
A=) 457,117 832,534 34,615 97,684 45,266 244,016 46,426
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Table 2
Flux estimates from nlqr-optimized envelope data.
Parameter Varari 2022/03/ Varari 2022/03/ Varari 2022/03/ Varari 2021/08/ Varari 2021/08/ Varari 2021/08/ Varari 2021/08/
28 lh 21 hl 21 lh 09 lh 09 hl 05 hl 04 lh
Optimized Results
mean Fpe; (dpm/m?/ —67,524 91,946 —61,392 12,550 19,307 147,640 —13,015
d)
mean Fp,;x (dpm/ —71,274 —2398 —90,238 —24,223 —243 0 —14,734
m?/d)
mean Fsgp (dpm/ 3750 94,344 28,846 36,773 19,550 147,640 1719
2
m</d)
Cow (dpm/mj3) 709,109 235,095 168,310 1,355,500 481,616 132,340 9180
mean Fggp,, (m/d) 0.005 0.401 0.171 0.030 0.041 1.12 0.187

pronounced endmember decrease modeled for the Cabral 08/09/2021
Ih to hl segments (1,355,500 dpm/rn3 to 481,616 dpm/m3), however,
likely reflects the shortened hl dataset, as we were not able to extend our
monitoring to peak low tide at < 0.3 m water depth (compare Fig. 8d
and e).

Considering all these observations, and the documented ground-
water radon variability reported in SGD studies from other apparently
monolithologic regimes (e.g., Colbert et al., 2008a; Hagedorn and
Tsuda, 2022; Santos et al., 2010; Tait et al., 2013, etc.), we strongly
caution against the use of radon data from groundwater well samples as
proxies for Cg, in Equation (1). Even if the groundwater radon is
determined from beach piezometers near an SGD exit point, this
groundwater may not be representative for confined groundwater
flowing through karstic conduits and discharging as SGD further
offshore. As a more reliable approach, we recommend using the zero-
salinity intercept of the envelope radon vs. salinity regression as a
proxy for Cgy.

4.3. Optimized Fsgp estimates

Comparing our modeled Fsgp time series to those derived from the
processed optimization data subjected to the traditional mass balance
(Fig. 10) reveals the low pass filter characteristic of the optimization
algorithm, where high frequency noise in both the raw tracer and water
level time series are clearly suppressed. The mean Fggp estimates for the
two successive tidal segment datasets considered in this study (i.e.,
~32,809 dpm/m?/d for Varari 03/21/2022 and 28,161 dpm/m?2/d for
Cabral 08/09/2021) fall within the documented range reported for
other tropical high-level volcanic islands (Moosdorf et al., 2015).

However, any accuracy assessment for our modeled Fsgp rates is
complicated by the lack of any measured Fsgp calibration data from, e.g.,
seepage meters and the traditional mass balance’s dependence on hard-
or even impossible-to-measure input parameters. Fig. 11a-c compares
our modeled Fye, Fnix and Fsgp values to those derived from the tradi-
tional radon mass balance. In this case, we apply the mass balance to the
unprocessed input data (i.e., no lag or response delay correlation)
without any Fp, minima interpolation (i.e., Fpjx = Fper if Fper < 0). We
account for uncertainty only by using both 30- and 60- minute aggre-
gation intervals, but it should be noted that the lowering of the mean
Fnix through the typically applied Fp: minima interpolation/extrapola-
tion would increase this uncertainty greatly (Fig. 2). Nevertheless, there
are significant positive correlations in each of the regressions (% >
0.571, p < 0.05) and there is also a tendency for the traditional mass
balance, particularly at the shorter aggregation interval, to overpredict
Fret, Fmix and Fsgp. The overpredictions are most pronounced for the two
successive Cabral 08/09/2021 [h and hl segments for which the tradi-
tional mass balance appears to overpredict Fyy, due to the high wind
speeds at the nearby Hotel Tipaniers weather station (Fig. 12). This
suggests that these wind speed data are not representative for local
conditions during monitoring. Importantly, we were able to match our
modeled Fpe, Fpix and Fsgp values with the respective mass balance
values for all segments through manual adjustments of Fig. and Fgm.

11

However, we were not able to accomplish this match for scenarios in
which (1) data were aggregated to < 30-minute intervals, and (2) Fpy
was parameterized through an interpolation of Fp,; minima. Our findings
thus indicate a tendency of the traditional mass balance to overpredict
SGD rates. A subjective F,,; minima interpolation greatly exacerbates
this issue.

4.4. Application of method to other sites

Our method can be applied to any other radon, salinity and water
level monitoring dataset. However, only very few studies in the SGD
literature publish the raw radon and CTD monitoring datasets needed
for such an analysis. An even bigger issue is that processed radon,
salinity and depth time series are typically given at a very low temporal
resolution (i.e., 30 to 60-minute aggregation intervals). This will cause
statistical lag for the different datasets and a low sample size per tidal
segment (6 — 12 data points). It will, furthermore, complicate the defi-
nition of an envelope line from monitoring segments for which the
combined effects of Fiix (high freqy and Fouy are, in fact, muted. Collec-
tively, these factors will cause Fs¢p estimates from quantile regression of
low temporal resolution data to be biased low. We thus urge future SGD
monitoring studies to report raw radon and CTD monitoring data at
aggregation windows of < 10 min.

Nevertheless, simple example applications of our method to 30-min-
ute aggregation interval data from Maui, Hawaii and Dor Beach, Israel
(data from Bishop et al., 2017; Weinstein et al., 2007b, 2007a) highlight
our method’s ability to define quantile regression envelopes to coarser
aggregation interval monitoring data. Fig. 13 shows the fluxes for those
example datasets calculated with our models. Interestingly, the Honolua
(Maui) dataset yields a very consistent envelope zero salinity intercept
for the four consecutive tidal segments (Cg,, = 123,928 + 6413 dpm/ms)
which suggests a temporally consistent fresh groundwater Cg,. While
this observation supports the value of our method to determine the
groundwater radon endmember and fresh SGD rates for a specific sur-
vey, the benefits of the method relative to the traditional mass balance
are still difficult to quantify due to a lack of calibration data for that site.
Such a calibration is difficult because of methodological limitations.
Numerical groundwater flow models, which are often used for SGD
calibrations (e.g., Savatier and Rocha, 2021; Schubert et al., 2019), are
uncertain at the local scale (i.e., SGD exit point) because they require
accurate input of the difficult-to-estimate parameters recharge and hy-
draulic conductivity, the latter commonly varying over several orders of
magnitudes on volcanic islands (e.g., Rotzoll et al., 2007). Flow esti-
mates from seepage meters from mapped SGD exit points may be more
useful, but those exit points typically occur as clusters of karstic conduits
and there may always be diffuse seepage from non-instrumented exit
points that contribute to the radon-enriched buoyant plume (e.g., Glenn
etal., 2013; Swarzenski et al., 2012). This causes uncertainty that should
be carefully considered in the calibration of our SGD quantification
method.

For the 11 tidal segments of the Dor Beach dataset (Fig. 13b), our
method produced a much more variable Cg,, (mean value: 620,167 dpm/
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Table 3
Radon and salinity data for Mo’orea groundwater samples.

Sample ID Aquifer type 222Rn (dpm/m®) Salinity (psu)
Coastal Spring Carbonate 830,000 0.44
FPWD #1 Silicate 958,320 0.16
FPWD #4 Silicate 886,486 0.18
FPWD Spring #2 Silicate 395,050 0.06
FPWD #6 Silicate 1,384,614 0.13
Juice Factory Well #7 Silicate 2,169,869 0.33

m>, one standard deviation: 361,023 dpm/m?) that is higher than
groundwater sampled in beach sand and an underlying sandstone
aquifer (168,000 dpm/m® and 390,000 dpm/m?, respectively; Wein-
stein et al., 2007a). As mentioned before, the Cg, variability can be
related to a time variant radon and salinity signature of SGD. Impor-
tantly, the Dor Beach dataset has calibration data from seepage meter
measurements available. Using the reported groundwater Cg, of
242,000 dpm/m3, our mean modeled advection rate of 1.04 cm/d (one
standard deviation: 1.72 cm/d) aligns much closer to the mean values
from seepage meter measurements (0.2-2.4 cm/d; Weinstein et al.,
2007b) than the average estimate from the traditional radon mass bal-
ance reported in that study (~8.1 cm/d; Weinstein et al., 2007b). This
comparison indicates superior performance of our new method relative
to the traditional radon mass balance. However, more concurrently
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collected SGD tracer and seepage meter datasets are necessary to further
validate our method’s performance.

5. Conclusions and considerations for method applications

This study demonstrates the value of nlqr, signal filtering and multi
objective optimization to quantify SGD rates. Our method considers two
independent tracers (radon and salinity), has a physical basis (i.e., it
assumes a non-linear head loss vs discharge relationship of a sloping
unconfined aquifer) and does not rely on subjective/uncertain estimates
of various radon sources and sinks (e.g., Fiige, Fmix and Fggmy). If similar
envelope patterns for radon and inverted salinity vs. water level re-
gressions can be defined, our method can quantify the fresh ground-
water flux at any site according to the procedure outlined in section 2.2.

In situations where saline SGD dominates and where a monotonic
regression envelope can only be defined for the radon tracer within a
tidal segment, our method can still be used to estimate the saline SGD
flux by (1) only modeling the radon envelope at a zero lag and high
quantile (i.e., gy > 0.5), (2) assigning Cg, to the maximum envelope

Smon
Sref

radon value and (3) keeping the (1 - ) term at a value of one (Eq.

(1)). However, this flux should be considered a cursory estimate because
of the lack of salinity data for a cross check. Appropriate radon lag, 7z,
and Cg, cannot be objectively determined without envelope data of
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other SGD tracers.

The situation becomes more complicated in cases where the signal
shifts from a fresh to saline SGD dominance within a tidal segment. Even
though our algorithm may be able to define monotonic envelopes for
radon and inverted salinity in such cases, it may struggle matching them
according to F1 (Eq. (8)). This is because fresh and saline SGD should
exhibit different end-member chemistries (i.e., high radon, low salinity
for fresh SGD and low-intermediate radon and high salinity for saline
SGD) which will ultimately result in different envelope shapes. There-
fore, in situations where the MAE of equation (8) cannot be minimized
to an acceptable level (e.g., <20 %), we also recommend only modeling
a radon envelope at a high (>0.5) g, for Fsgp estimation. Here, quan-
titative SGD assessments should only focus on the Fsgp radon flux (Eq.
(4)) because the uniform radon and salinity chemistry assumption for
SGD and zero-salinity intercept assumptions for Cg, in equation (1) do
not apply. However, a comparison of the temporal envelope patterns of
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radon and inverted salinity may provide further insight on the temporal
variability in radon sources from fresh and saline SGD. Still, more data-
driven studies utilizing concurrent and high frequency SGD tracer- and
seepage meter datasets are needed for a better differentiation between
fresh SGD and saline SGD components. Given their respective differ-
ences in fluxes and geochemical characteristics, their effects on coral
reef (and other) ecosystems may differ drastically.

There are some other methodological limitations that must be
considered for applications to other sites. One key requirement is the
availability of high-resolution monitoring data to define the envelope
lines attributed to Fiix qow freq) and Fsgp. If, for example, the degassing
loss Fgun from turbulent (e.g., wave white cap) water is significant
throughout the tidal segment, the algorithm may struggle to converge
because radon and inverted salinity envelope shapes will differ drasti-
cally. Another important aspect to consider for future research is the
dependance of the results on the type of regression function. While the
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herein applied 3pl and 4pl functions yielded better fits than other (e.g.,
Gompertz) sigmoidal curves, they may not be applicable to other data-
sets or settings. There is clearly some subjectivity in the choice of non-
linear regression function (Archontoulis and Miguez, 2015) and we
recommend following our approach of considering at least two to ac-
count for some degree of the associated uncertainty. We also recom-
mend more research on the seasonal and tidal dynamics of oceanic 2°Ra
to provide more reliable definitions of excess radon in water activities
for the regression function (see “Step 1” in Fig. 6).

Contrary to the traditional mass balance, our new method can ac-
count for the occurrences of a non-homogenous tracer inventory (i.e.,
stratified water column) as a mixing loss (Fpix (high freq))- This will be
indicated by measured radon and salinity signal deviations from their
respective envelope lines. However, if stratification persists throughout
the monitoring, such as expected if monitoring occurs at some distance
away from the SGD exit point (and the water extraction system captures
only the shallowest part of a buoyant freshwater plume), our model will
yield an overestimate of Fsgp. In this case, it is possible that the water
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extraction system captures some “legacy” radon and salinity signals
from previous low tides. These signals can greatly distort the expected
water level vs. radon and inverted salinity regressions per tidal segment.
In these situations, chemical tracers should — if at all — only be used for
a qualitative assessment of SGD.
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