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A B S T R A C T

A reliable quantification of fresh submarine groundwater discharge (SGD) is key to understanding and managing 
water quality and habitat of coastal ecosystems. However, current radon tracer-based SGD quantifications suffer 
greatly from uncertainty and subjectivity in tracer signal processing and the indirect estimation of non-SGD 
related tracer sources and sinks. In this study we provide a new procedure and model SGD rates as upper en
velopes in radon and inverted salinity vs. water depth regressions over tidal cycles. We use non-linear quantile 
regression to model these envelopes and account for signal-lag correction and noise suppression via optimization 
towards matched radon and inverted salinity envelope data, and a monotonic (i.e., non-oscillating) trend for the 
water depth. We then quantify the SGD rate based on the temporal change of the modeled radon envelope in
ventory and define the radon signature of the fresh groundwater endmember (which is critically important for 
the calculation of volumetric discharge rates) as the zero-salinity intercept in the envelope regression. Our results 
indicate that the traditional radon mass balance, if applied at a data aggregation interval of < 1 h and if based on 
a subjective mixing loss estimation, may lead to a substantial overestimate of SGD. This limitation should be 
carefully considered in the calibration of lager scale, model-based SGD analyses.

1. Introduction

The analysis of fresh submarine groundwater discharge (SGD) −

defined broadly as meteoric water that discharges across a coastal 
aquifer − is crucial to understanding terrestrial influences on marine 
ecosystems. SGD of solutes from natural sources or anthropogenic 
pollution can lead to complex biogeochemical responses that can elevate 
or harm critical ecosystem functions (Alorda-Kleinglass et al., 2021; 
Richardson et al., 2017; Silbiger et al., 2020). However, despite its 
importance, a reliable quantification of the fresh SGD flux has been 
challenging due to a lack of direct, watershed-specific measurements 
(Schubert et al., 2019; Taniguchi et al., 2019) and its complex response 
to tides, wave setup, terrestrial hydraulic gradients and aquifer hetero
geneity (Geng et al., 2021; Kreyns et al., 2020; Robinson et al., 2018).

Previous experimental work and modeling studies have shown that 
fresh SGD from a simplified unconfined coastal aquifer occurs along a 
narrow discharge “tube”, located in-between an intertidal upper saline 

plume (USP) and the lower saltwater wedge. Along the margins of this 
“tube”, density-driven convection from freshwater and seawater mixing 
will cause saline SGD; as does tide- or wave action-driven seawater 
discharge at the base of the USP (Fang et al., 2022; Kuan et al., 2019; 
Robinson et al., 2018; Xin et al., 2015; Yu et al., 2017). This “tube” fresh 
SGD model is difficult to apply to complex settings such as tropical 
volcanic islands and fringing coral reefs, where shallow confining 
aquitards (e.g., the “reef flat plate”) and abundant karstic conduits 
greatly distort the geometries of the USP, saltwater wedge and SGD 
“tube” (Fig. 1b; Hagedorn et al., 2020; Houben et al., 2018; Kreyns et al., 
2020; Michael et al., 2016). One interesting finding is that aquifer het
erogeneity appears to widen the freshwater-seawater interface and to 
move its toe inland (Geng et al., 2021; Fig. 1b).

The key issue in current SGD research is that tracer inventory-based 
SGD quantifications, which are critically important for a calibration of 
model-based SGD estimates for any setting (i.e., with or without a fresh 
SGD “tube” or USP; Fig. 1a, b), are themselves uncertain. Reasons for 
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this include (1) buoyancy-driven geochemical stratification of the water 
column and the unrealistic assumption of a “well mixed” tracer in
ventory, (2) the difficult-to-document end-member chemistry of 
groundwater discharging as SGD, (3) the sensitivity of the SGD estimate 
to the temporal resolution of the monitoring signals, (4) the challenge of 
“aligning” signals of SGD tracers from different detection systems with 
different measurement frequencies, response delays and signal resolu
tion, and (5) the uncertainty from non-SGD related tracer sources and 
sinks, especially the signal dilution by offshore water; a process 
commonly referred to as the “mixing loss” or Fmix (Adyasari et al., 2023; 
Savatier and Rocha, 2021; Schubert et al., 2022). A specific problem 
associated with the Fmix parameter is that it is not measured, but typi
cally estimated via subjective interpolation and extrapolation of nega
tive excursions in tracer (i.e., radon) inventory changes. This 
subjectivity, among other factors, translates into drastic uncertainty in 
the SGD flux estimate.

In this paper, we present a new methodology for fresh SGD quanti
fication that addresses these challenges. We focus specifically on iden
tifying monitoring periods for which the assumption of a well-mixed 
tracer inventory holds true and for which a monotonic tracer vs. water 
depth regression from a tidal forcing can be modeled as a non-linear 
regression envelope. We define this envelope as a quantile regression 
function between water depth and the upper extreme of radon and 
inverted salinity distributions. We attribute positive changes in the en
velope inventories during the falling tide (when the hydraulic gradient 
increases) to the flux of SGD (FSGD), and negative changes during the 
rising tide (when the gradient decreases) to a low frequency mixing loss 
(Fmix (low freq)). We furthermore attribute upper deviations in the 
measured radon and inverted salinity signals from the envelopes to 
statistical (i.e., white) noise and lower deviations from the envelopes to 
the combined effects of white noise and atmospheric degassing (if only 
affecting the volatile radon tracer) and a high frequency mixing 

component (Fmix (high freq)). The latter reflects the inventory loss from the 
combined effects of longshore currents and wave action on buoyant 
freshwater at the stationary SGD monitoring point. The key strengths of 
our method relative to the traditional mass balance are: (1) it is cali
brated because it is based on the envelope function match of two inde
pendent SGD tracers: radon and salinity, (2) it has a physical basis and 
that is the non-linear head loss vs discharge relationship of an uncon
fined sloping aquifer and (3) it is not dependent on any of the other 
difficult-to-estimate radon sources and sinks of the traditional mass 
balance model (e.g., Fatm and Fmix). We test our method on multiple 
datasets collected from a tropical, high level volcanic island (Mo’orea, 
French Polynesia) and demonstrate its relevance and utility for SGD 
quantifications in other settings.

2. Theoretical background

2.1. SGD estimates from radon mass balance – assumptions and 
conceptual limitations

The traditional approach for settings, where the effects of surface 
runoff and evaporation are minor, is to estimate the fresh SGD water flux 
FSGDgw (in m/d) at a stationary monitoring point as (Adyasari et al., 
2023; Burnett and Dulaiova, 2003): 

FSGDgw =
FSGD

Cgw

(

1 −
Smon

Sref

)

(1) 

where FSGD (in dpm/m2/d) is the total SGD flux (i.e., fresh and saline 
SGD) determined from a transient radon mass balance, Smon (in psu) is 
the measured salinity at the subtidal SGD monitoring point, Sref (in psu) 
is the reference salinity of non-diluted seawater and Cgw (in dpm/m3) is 
the radon concentration of the groundwater endmember at the SGD exit 
point. This value is typically approximated from sampling of inland 

Fig. 1. Conceptual schematics of fresh SGD and saline SGD processes in (a) homogeneous and (b) heterogeneous coastal aquifers (modified from Geng et al., 2021). 
Everything starts with an inland freshwater hydraulic gradient (1), driven by recharge of fresh meteoric water (2) and causing terrestrial groundwater discharge 
seaward through the narrow fresh SGD “tube” (3). Processes (4) and (5) indicate saline SGD driven by tides and waves, respectively, in the USP. Process (6) indicates 
groundwater circulation due to density gradients formed along the dispersed interfaces between fresh water and saltwater. Note the inland shift of the fresh SGD 
discharge zone in the heterogenous aquifer. Subtidal tracer surveys in (b) (see location of blue star) would yield significantly lower SGD fluxes than in (a). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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groundwater wells that are sometimes far removed from the actual SGD 
exit point.

The transient radon mass balance applies as: 

FSGD = Fnet + Fmix (2) 

with. 

Fnet =
dI
dt

+ Fatm + Fdec + Ftide (ebb) − Ftide (flood) − Fsed (3) 

where Fnet (in dpm/m2/d) is the net radon flux calculated from 
measured differences in the radon inventory between successive 

measurements (dI/dt), and from indirect estimates of the mixing loss 
(Fmix), atmospheric degassing (Fatm), radioactive decay (Fdec), tidal cur
rents (Ftide (ebb) and Ftide (flood)) and diffusion from seafloor sediments 
(Fsed). Fsed and Fdec are typically considered negligible for fringing coral 
reef settings because of the low-porosity reef caprock and the short 
duration of tidal cycles, respectively (e.g., Correa et al., 2021; Oehler 
et al., 2019; Tait et al., 2013, etc.).

The first problem of the method is the assumption of a well-mixed 
water column and a homogenous radon inventory I, which is 
computed as the product of the measured radon activity and water 
depth. This assumption only applies to settings where SGD is sampled in 

Fig. 2. Example radon mass balance at 10-minute (a), 30-minute (b) and 60-minute (c) aggregation intervals. Note the attenuating effect of longer intervals on mean 
radon fluxes. This is especially relevant for Fmix because this parameter is typically interpolated and extrapolated over its minima throughout the monitoring period 
(see red dashed lines). Shorter aggregation intervals yield significantly higher Fmix amplitudes for this interpolation/extrapolation. If this interpolation/extrapolation 
were to be used as a proxy for Fmix, the discrepancy in the FSGD estimates for the different aggregation intervals would be significantly greater. See Appendix A for the 
dataset used to generate this figure. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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shallow water directly from- or slightly above the buoyant freshwater 
exit point. Away from this exit point, the water column can be extremely 
stratified, dependent on current direction and magnitude, with fresh
water being confined to a shallow surface layer (see, e.g., Johnson et al., 
2008; their Fig. 2, or Oehler et al., 2019; their Fig. 3). Radon surveys in a 
stratified water column will yield overestimates of tracer inventories 
and unrealistic FSGD rates for equation (1).

The second problem of the method is the assumption that fresh and 
saline SGD exhibit the same radon activities, but different salinity 
chemistries so that their relative dominance can be estimated from a 
simple salinity mass balance (Eq. (1)). This is inconsistent with field 
studies where saline groundwater sampled within the USP, between the 
high and low tide marks, yielded significantly lower radon activities 
than fresh, regional groundwater sampled upgradient of the USP 
(Colbert et al., 2008a, 2008b; Hagedorn and Tsuda, 2022; Lamontagne 
et al., 2008). Additionally, in tropical-humid systems, a strong negative 
linear correlation has been observed between radon activity and salinity 
values of coastal waters (e.g., Cyronak et al., 2014; Peterson et al., 2009; 
Su et al., 2014, etc.). This suggests that at well-mapped SGD exit points, 
the radon contribution from saline SGD throughout tidal cycles is either 
negligible, or SGD yields salinity vs radon data points that fall on a 
negative linear fresh groundwater − seawater mixing line. For such a 

scenario, the 
(

1 − Smon
Sref

)

term in equation (1) should not be used to 

specifically differentiate between fresh vs saline SGD, but to distinguish 
SGD, as a combination of fresh and saline SGD, from seawater.

The third problem of the traditional radon mass balance is the de
pendency of the model result on the signal processing method. The de
cision to aggregate, smooth or filter time series data is rarely discussed in 

the SGD literature, although it has been shown to significantly impact 
model results in other disciplines (e.g., Alarcon Falconi et al., 2020; 
Cheng and Adepeju, 2014; Duchesne and Gaillot, 2011; Fefferman et al., 
2005; Rostami-Tabar and Mircetic, 2023; Roy, 2020). In relation to SGD, 
there are two aspects to consider. The first is how the processing method 
affects the propagation of errors in the Fnet, FSGD and Fmix values. The 
second is how it causes a delay or lag effect for individual signals.

In terms of processing method, most SGD studies follow a simple 
aggregation approach and “downscale” higher frequency salinity and 
water depth signals to a longer-interval radon sensor counting cycle that 
may range from as short as 10 min (e.g., Tait et al., 2013) to up to 2 h (e. 
g., Burnett and Dulaiova, 2003). A longer aggregation interval will result 
in a higher signal to noise ratio (SNR), but long intervals may not be able 
to represent well the temporal SGD dynamics throughout a tidal cycle. A 
shorter aggregation interval, in turn, translates into a better preservation 
of higher frequency signals, but also causes lower SNR ratios and thus 
higher random error signal oscillations. These oscillations have a com
pounding effect when signals are combined, such as when calculating 
the radon inventory, I and its change in time dI/dt. The same will be the 
case for other dependent parameters: Fatm (estimated from measured 
radon activity, temperature, salinity and wind speed-derived solubility 
and gas transfer coefficients), Ftide (flood) (estimated as the product of the 
positive unit change in water depth over the measurement interval times 
the radon activity of offshore water) and Ftide (ebb) (estimated as the 
product of the negative unit change in water depth imes the measured 
radon concentration in nearshore water). Importantly, the effect of the 
oscillations will not cancel out for Fnet because the magnitude of Ftide (ebb) 
will always be higher than that of Ftide (flood) due to the former’s inclusion 
of a higher- and time-variant radon signal.

Fig. 3. Case study example (data from Hagedorn and Tsuda, 2022) of radon fluxes from a 24-hour monitoring dataset processed at an 1 h aggregation interval. 
Because Fnet = FSGD – Fmix and because neither FSGD nor Fmix can be measured directly, the latter is commonly estimated based on negative Fnet (a), or an inter
polation/extrapolation of Fnet minima (b) and the former is estimated as the residual of the equation. Note the drastic effect of the interpolation/extrapolation and its 
subjectivity on the mean FSGD estimate.
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The problem with data aggregation is even more drastic for FSGD and 
Fmix because the distinction between them is essentially categorical: Fmix 
is assumed to equal Fnet when FSGD = 0 and Fnet ≤ 0, whereas FSGD is 
assumed to equal Fnet when Fmix = 0 and Fnet > 0. This means that every 
random error-related positive and negative Fnet excursion will cause a 
“false” signal and overestimate of FSGD and Fmix, respectively. Fig. 2 a-c 
illustrates this problem and shows the attenuating effect of a longer 
aggregation interval (and lower SNR) on the mean Fnet, FSGD and Fmix 
estimates. In this case, Fmix is estimated conservatively to occur only 
when Fnet ≤ 0; i.e., there is no interpolation and extrapolation of Fnet 
minima throughout the time series. Importantly, a Fnet minima inter
polation and extrapolation, as commonly done in the literature (e.g., 
Burnett and Dulaiova, 2003; their Fig. 4), will exacerbate the discrep
ancy from different aggregation intervals even further (compare red 
dashed lines in Fig. 2a-c).

The delay or lag effect from signal aggregation is caused by the 
method’s reliance on past values in the average calculation. Because raw 
water depth, salinity and radon records may exhibit different variances 
and amplitudes, they will ultimately be subjected to a different delay 
effect for a specific aggregation interval. The result can be (1) a non- 
synchronous tracer time series, (2) an erroneous record of the radon 
inventory and an erroneous radon vs salinity regression. A compounding 
issue here is that the radon signal exhibits an additional response delay 
(Petermann and Schubert, 2015; Santos et al., 2012; Stieglitz et al., 
2010; Zhao et al., 2022) that varies not only with gas equilibration setup 
(particularly closed air loop volume and pump flow), but also with 
equipment wear over time (e.g., clogging of water pump and aeration 
chamber nozzles by suspended sediment, tubing leaks/kinks, pump flow 
reductions from declining battery voltage, etc.). While the latter effects 
may be controlled to some degree, the various response delays of the 
monitored datasets should still be reevaluated for a specific monitoring 
campaign. In this study, we highlight the value of a radon vs salinity 
regression for such a reevaluation.

The fourth and probably most significant problem of the traditional 
radon mass balance is uncertainty and subjectivity in the indirect esti
mation of the non-SGD related radon sources and sinks: Ftide (ebb), Ftide 

(flood), Fatm, and, most importantly, Fmix. It is, for example, not clear how 
representative the water temperature and wind speed derived Fatm loss 
of radon is at the SGD monitoring point, several cm below the water 

surface and often 100 s of meters, or even kilometers away from the 
nearest weather station. Recent research has, in fact, indicated water 
turbulence (i.e., wave white caps and associated cavitation) as a much 
more significant driver for Fatm than wind speed and water temperature 
alone (Schubert et al., 2022). Likewise, it is uncertain how reliable the 
indirect estimate of Ftide (flood) and Ftide (ebb) are as radon-enriched or 
depleted nearshore water may very well be cycled back and forth by 
consecutive ebb and flood currents. Some studies (e.g., Luo et al., 2020) 
address this uncertainty using a “return flow factor” that accounts for a 
specific percentage of the tidal prism that returns from the open sea 
during a rising tide. The problem here is that reliable measurements of 
this factor are very difficult to obtain for a specific monitoring site.

The key issue of the Fmix parameter is circularity in its estimation 
because it depends on the same input variables as FSGD (Eqs. (2), (3)). As 
mentioned before, FSGD is quantified as the positive Fnet, while Fmix is 
quantified as the negative Fnet, with most studies interpolating and 
extrapolating Fnet minima to occur over the entire monitoring period 
(Figs. 2, 3; Adyasari et al., 2023; Burnett and Dulaiova, 2003). The 
purpose here is to allow Fmix to occur during low tide and to “increase” 
the FSGD estimate when Fnet is positive. Not only is the approach 
dependent on the magnitude of negative Fnet excursions and thus on the 
afore-discussed choice of signal processing method (e.g., short vs long 
aggregation interval; see Fig. 2), but also is it subjective. There is typi
cally no explanation regarding the interpolation method (e.g., linear vs 
spline interpolation, etc.). Furthermore, most studies attempt to keep a 
certain portion of the negative Fnet below the interpolation line to reduce 
the influences of negative outliers, but these portions are typically not 
specified. Lastly, extrapolation beyond any measured Fnet minima 
drastically increases uncertainty towards the boundaries. These issues 
are clearly illustrated in Fig. 3, where Fig. 3a shows a conservative Fmix 
estimation approach without interpolation and extrapolation. In this 
case, Fmix occurs only when Fnet < 0. Fig. 3b shows the more commonly 
applied Fmix interpolation within the measured Fnet minima and ac
counting for a negative outlier offset. Also shown is an extrapolation 
towards the left boundary (see red dashed line). In this example, the 
subjective Fmix interpolation/extrapolation more than doubles the mean 
FSGD estimate (compare Fig. 3a and b). This raises the question as to why 
one should not consider the opposite approach and interpolate and 
extrapolate FSGD through a specific portion of Fnet maxima and calculate 

Fig. 4. Location of the study area and sampling sites on the island of Mo’orea in French Polynesia. Inlets depict the Varari and Cabral SGD monitoring sites on the 
western coast.
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Fmix as the residual in Eq. (2)? This would allow FSGD to occur irrelevant 
of tidal stage and even during high tide. From a methodological 
perspective, such an approach should be considered as “unrealistic” as 
the commonly applied Fnet minima interpolation/extrapolation-based 
Fmix estimation.

There is no “right” choice per se, so Fmix needs to be constrained 
independently. Some studies attempt this through measurements (and 
estimates) of velocities and volumes of moving coastal waters (Oehler 
et al., 2019; Savatier and Rocha, 2021; Tait et al., 2013; Wolfe et al., 
2023), but representative measurements are, again, difficult to obtain at 
the subtidal SGD monitoring location. An important point to make here 
is that the mixing loss is not only related to the effects of tide- or wind 
speed/direction-controlled surface currents on a freshwater plume. Most 
studies, in fact, sample the water below the water surface very close to 
the actual freshwater exit point. A more significant factor in this case 
will be the horizontal back and forth shearing effect from wave setup 
when buoyancy-driven advective flow greatly outweighs diffusion. 
Because the water column in these settings is mixed only across a very 
“narrow” band above the discharge point, minor back and forth motions 
of the buoyant freshwater plume, relative to the stationary SGD moni
toring point (i.e., pump inlet), will translate into a highly variable radon 
inventory and monitoring signal. These variations will be amplified 
during low tide when the FSGD signal tends to be strongest. The back- 
and-forth shearing effect causes the homogeneous radon inventory 
assumption to apply only to a subset of the monitored signal.

2.2. Refining SGD estimates − new approach

To reliably quantify SGD rates, a clear distinction needs to be to be 
made between the processes attributed to the terrestrial hydraulic 
gradient and other, higher frequency processes related to other external 
influences. While FSGD regulates tracer inventory gains (i.e. positive dI/ 
dt; Eq. (3) during the falling tide when the gradient increases, a mixing 
loss, hereafter referred to as the low frequency mixing loss Fmix (low freq), 
will always regulate the inventory loss (negative dI/dt) during the rising 
tides when the gradient decreases. This Fmix (low freq) should not be 
interpolated or manually “extended” throughout the entire monitoring 
campaign because its magnitude is controlled by the tidal stage itself. 
This is different from the “higher” frequency mixing loss, Fmix (high freq), 
that reflects the more random tracer signal dilutions from longshore 
currents, wave action, and the overall motion of a buoyant freshwater 
plume relative to the SGD monitoring point. This mixing loss will 
happen throughout the monitoring campaign, independent of tidal stage 
and hydraulic gradient, but quantifying its relative influence, like that of 
Fatm (Eq. (3)), is extremely difficult. Also, inventory gains and losses 
from FSGD and Fmix (low freq) should not be “normalized” to mean tidal 
height, as is done with the Ftide term in the traditional mass balance, 
because the tidal height controls the hydraulic gradient and as such the 
magnitude of FSGD and Fmix (low freq).

Our new approach is to model tide-controlled FSGD and Fmix (low freq) 
as non-linear envelope functions in regressions of radon and inverted 
salinity vs. water level data. We refer to the term envelopes here as re
gressions with upper extremes of the response variable distribution and 
relate these to causal relationships where only a subset of limiting fac
tors applies (Carling et al., 2022). In this case, the envelopes reflect SGD 
monitoring segments for which the assumption of a homogeneous in
ventory holds true and for which only the changing magnitudes of FSGD 
and Fmix (low freq) control the signal. Upper signal deviations from both 
the radon and inverted salinity envelopes reflect only statistical (i.e., 
white) noise, whereas lower deviations reflect the combined effects of 
white noise and Fatm, if occurring only for the volatile radon tracer, and 
Fmix (high freq), if occurring for both tracers, radon and inverted salinity. 
The key assumptions of our method are: (1) groundwater discharging as 
SGD exhibits a uniform radon and salinity chemistry, (2) monitoring 
signals are synchronized; i.e., corrected for statistical or instrument- 
specific response lags, (3) FSGD and Fmix (low freq) cause mirror-inverted 

radon and salinity envelope patterns, (4) the capture zone of the SGD 
monitoring system extends throughout the entire water column, (5) 
changes in water level are monotonic throughout a tidal segment, thus 
removing the effect of changing inventory due simply to error in the 
water level measurements, and (6) the SNRs of monitoring data are 
maximized; i.e., the FSGD and Fmix (low freq). controlled radon and salinity 
trends are also monotonic for a given tidal segment. Accordingly, the 
modeled radon envelope inventory (Ienvelope) in the monitored radon 
time series can be used to quantify FSGD as: 

dIenvelope

dt
= Fnet = Fmix (low frequency) + FSGD (4) 

where Fmix (low freq) is considered a loss only when dIenvelope
dt is negative. This 

FSGD can be converted to FSGDgw following equation (1). Importantly, 
however, this FSGD reflects the SGD component distinguished from 
seawater by concurrently measured radon and salinity data. It, there
fore, cannot be further “subdivided” into fresh or saline SGD compo

nents, so the 
(

1 − Smon
Sref

)

term in equation (1) should be set to one. The 

Cgw term in equation (1) can be estimated as the zero-salinity intercept of 
the modeled radon and salinity envelope data. The key assumption here 
is that the radon contribution from saline SGD is negligible and that the 
fresh groundwater salinity is orders of magnitude lower than the 
seawater salinity.

2.2.1. Quantile regression
Unlike least squares regression, which estimates the conditional 

mean of the response variable across values of the predictor variables, 
quantile regression estimates the conditional median (or other quan
tiles) of the response variable distribution (Allen et al., 2009; Cade and 
Noon, 2003; Carling et al., 2021; Koenker, 2017; Lê Cook and Manning, 
2013). In situations where there is a weak relationship between the 
mean of the response variable distribution and the explanatory vari
ables, envelopes (defined as quantile regressions against upper or lower 
extremes of the response variable distribution) may indicate more useful 
relationships of how different factors or variables affect different parts of 
the data (Bergherr, 2018; Cade, 2017).

What makes quantile regression particularly useful for hydro
geologic research is that it extends to non-linear longitudinal data (Chen 
et al., 2016; Cleophas and Zwinderman, 2021; Geraci, 2019; Hao and 
Naiman, 2007; Koenker and Park, 1996). This allows it to capture the 
non-linear, but monotonic head loss vs. discharge relationship of un
confined sloping aquifers (see: Rupp and Selker, 2006 and references 
therein) and associated tracer concentration changes in seawater 
affected by groundwater discharge during a falling or rising tide. 
Another advantage of quantile regression is that it can be used to address 
the signal noise and associated regression uncertainty of the dependent 
variable as an exceedance probability through the quantile. This can be 
determined for different tracers and their detection systems from simple 
calibration experiments. Similarly, a filter for the explanatory variable 
(here: water depth) can be applied to minimize the effect of water level 
signal oscillations from low SNRs on Fnet. Finally, optimization towards 
matched envelope data of independent tracers − radon and inverted 
salinity − allows for an objective determination of the appropriate 
quantiles, filter parameters, tracer signal lags and Cgw.

3. Materials and methods

3.1. Study site and datasets

This study focuses on a total of 7 subtidal SGD surveys carried out on 
the island of Mo’orea, French Polynesia, in August 2021 and March 
2022 (Fig. 4). Like other tropical volcanic islands, Mo’orea exhibits a 
complex hydrogeologic regime with (1) pronounced spatial recharge 
gradients and (2) transitions from fractured basaltic rock aquifers in the 
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island’s interior to a coastal sedimentary wedge of alluvial volcanic 
sediments, calcareous paleo-reef deposits, and organic debris. This 
aquifer heterogeneity highlights the challenge of identifying the 
appropriate Cgw value for the FSGDgw calculation (Eq. (1)).

The selection of monitoring sites for this study was based on recent 
investigations along the western and northern shores of Mo’orea that 
have revealed low salinities in nearshore waters, indicating potential 
fresh SGD into the reef (Becker et al., 2023; Hagedorn et al., 2020; 
Haßler et al., 2019; Knee et al., 2016). The fringing reef along these 
shorelines is dominated by coral aggregations several meters in diam
eter, separated by unconsolidated calcareous sand. There is no clear 
explanation for the documented uneven distribution of fresh SGD on 
Mo’orea, but results from previous research at other sites (e.g., Cardenas 
et al., 2010; Correa et al., 2021; Null et al., 2014; Pain et al., 2020) 
suggest submarine karst-like features, generated by CO2-rich acidic 
groundwater, as possible pathways for localized fresh groundwater 
seepage.

Radon activities and conductivity, temperature and depth (CTD) 
data were measured at two separate subtidal monitoring sites (hereafter 
referred to as the Varari and Cabral sites; Fig. 4) over several tidal cycles. 
Each monitoring dataset captures peak high and peak low tide 
changepoints, except for one Cabral falling tide dataset, where technical 
issues prevented capturing peak low tide. Radon was measured with the 
RAD7/Aqua monitor (Durridge Company, Inc., Billerica, MA) and CTD 
was logged concurrently with In Situ Aqua Troll 600 (In-Situ Inc., Fort 
Collins, CO) and HOBO U24 (Onset Computer Corporation, Bourne, MA) 
sensors. The detection system was connected to a bilge pump that ran at 
~ 5 L/min with its inlet always located about > 10 cm above the 
mapped SGD seep. This was done to prevent suspended sediment clog
ging of the pump inlet and the RAD Aqua spray chamber nozzles and to 
minimize the effect of water stratification that is commonly observed 
away from the SGD discharge point. As a compromise between allowing 
high temporal resolution and keeping the RAD7 counting error at a 
reasonable level, we followed Petermann and Schubert’s (2015)
approach and selected a 5 min counting cycle for the radon data. CTD 
readings were aggregated over the same 5 min window. All records were 
subsequently allocated to the midpoint of each measurement cycle/ag
gregation window and transformed to a 1 min time-series based on a 
linear interpolation (see Fig. 5 as an example for a preprocessed dataset). 
All collected monitoring data of this study are listed in Appendix A.

3.2. Optimization algorithm

An algorithm was coded in R to model the FSGD flux as the upper 
envelope in radon vs water level regressions combining non-linear 
quantile regression (nlqr), signal filtering and multi objective optimi
zation. The goal of the algorithm is to find a combination of signal 
processing parameters that (1) maximizes the correlation between the 
upper envelopes of the radon vs. water level- and inverted salinity vs. 
water level regressions and (2) minimizes the effect of error in the water 
depth signal on Fnet. Envelope data are then processed according to 
equations (4) and (1) to quantify FSGDgw for the tidal segment. A flow
chart detailing the individual processing steps of the algorithm is shown 
in Fig. 6. The code can be found in Appendix B.

As the first step of the algorithm, we correct the measured radon-in- 
air data from the RAD7 for the system-specific response delay using the 
lag function of R’s xts (eXtensible Time Series) package. To account for 
run- and setup-specific variability, lag is set as one adjustable decision 
variable in the optimization with bounds of ± 60 min. The lagged radon 
measurements are subsequently converted to radon-in-water activities 
using water/air partitioning coefficients adapted from Schubert et al 
(2012), and excess values are calculated by subtracting the dissolved 
oceanic 226Ra activity (~100 ± 12 dpm/m3, n = 4). We measured this 
oceanic activity near our monitoring sites following the methods out
lined by Kim et al. (2001) and Wang et al. (2017).

Next, we subdivide monitoring data into either low to high tide (lh)- 

or high to low tide (hl) segments to ensure monotonic tracer vs. water 
level trends for the envelope analysis. This step is necessary because of 
the hysteretic behavior of water level vs. salinity and water level vs. 
radon- activity regressions (Fig. 7). Interestingly, there is a contrasting 
behavior in our monitored data from 2022 (Fig. 7a, b) and 2021 (Fig. 7c, 
d). Salinity defines an anticlockwise loop from peak high- to peak low 
tide for the 2022 data and a clockwise sigmoidal loop for the 2021 data. 
We relate the 2022 trend to a delayed but sudden salinity dilution from 
freshwater during the falling tide at depths < 0.7 m. The salinity mini
mum (~31 psu) occurs shortly before peak low tide and values plateau 
at that minimum well into the rising tide. Then, at depths > 0.7 m, 
values sharply increase back to the maximum of ~ 37 psu. The 2021 
salinity data is different in that there is a much more “immediate” 
decrease and increase after peak low- and peak high tide, respectively. 
For radon, all these trends are reversed, i.e., maximum values occur 
around peak low tide, and vice versa. Similar hysteresis loops have been 

Fig. 5. Unprocessed monitoring data of water level (a), salinity (b) and radon 
activities (c) collected at the Varari site from 2022/03/20 to 2022/03/21. Note 
the constant amplitude in the error related signal oscillations in the water depth 
data and the changing amplitudes in the radon and salinity signals. High am
plitudes in the radon and salinity signal oscillations at low tide reflect complex 
mixing processes between buoyant freshwater and seawater at the SGD moni
toring point. Segmented regression line (blue), change points (red dashed 
vertical lines) and adjustable change point (CP) trim periods for the optimiza
tion algorithm are shown in (a). (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.)
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documented in tracer vs. discharge studies of streams (e.g., Arora et al., 
2020; Cartwright et al., 2014; Lloyd et al., 2016; Wymore et al., 2019) 
and more recently in tidally influenced coastal groundwater (Grande 
et al., 2023) and signify clearly the complex transitions in the form of the 
SGD vs hydraulic gradient relationship. Tidal segments for our SGD 
analysis are defined based on change points (CPs) in the water level time 
series. The segmented R package (Muggeo, 2016), that is used for this 
task, identifies CPs iteratively through linearization, maximizing the 
difference in slope between linear regression lines at the optimized CP 
(see Fig. 5a as an example). To account for uncertainty in the water level 
data and to allow for a better nlqr model convergence per tidal segment, 
we apply a trimming decision variable, derived through optimization, at 

the starting (trimstart) and the ending (trimend) CP of each segment as: 

CPhigh/low tide = CPsegmented ± trim (5) 

Optimization bounds for the trim variable are set to ± 10 min.
In the third step, we change the sign on the salinity dataset (multi

plied by negative one) so that all the signals were the same shape. We 
then range-scale all salinity, radon and water level data as: 

x, yscaled =
(x, ymeasured − x, ymin)

(x, ymax − x, ymin)
(6) 

In the fourth step, we model tracer envelopes via nlqr using the 
quantreg R package (Koenker, 2017). These envelopes reflect the FSGD 

Fig. 6. Flowchart showing the coding steps and application of the SGD quantification algorithm.
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and Fmix (low freq) signals over a tidal segment and are expressed as the 
upper extremes of the radon and inverted salinity distribution against 
filtered water level data. We define these extremes or “non exceedance 
probabilities” using quantiles (τRn as the radon quantile and τS as the 
inverted salinity quantile) that we determine via optimization. Bounds 
for τS, are 0.9–0.99 based on CTD sensor calibration experiments that 
indicate a salinity precision error of < 10 %. Bounds for τRn are more 
difficult to assign because of Poisson statistics of radioactive decay and 
the associated signal resolution dependence on signal strength and 
counting cycle length (Justus, 2019). Theoretically, τRn should change 
throughout a tidal segment from a low precision (low τRn) signal during 
high tide to a higher precision (high τRn) signal during low tide, when 
the groundwater input of radon is strongest. Noting this uncertainty, we 
set τRn to a broader range of 0.01–0.99.

To maximize the SNR of the water depth data, we apply the Whit
taker Henderson (WH) filter, programmed after Eilers (2003) and Wei
nert (2007), based on a recent filter performance assessment by Schmid 
et al. (2022). Optimization bounds for the WH filter parameter (λ) are set 
to 10,000–1,000,000 based on preliminary sample runs that indicate 
best optimization performance in this parameter range.

For the nlqr function of the envelopes, we select a logistic (sigmoid) 
curve based on a preliminary analysis of tracer vs. water level hysteresis 
loop segment shape (see Fig. 7). This curve can be parameterized as: 

y = ymax +
ymin − ymax

1 +
(

x
c

)b (7) 

where x and y are the explanatory and dependent variable, respec
tively, ymax and ymin are the maximum and minimum asymptotes, c is the 
point of inflection half-way between ymax and ymin and b is Hill’s slope of 
the curve at point c. Equation (7) represents a symmetric 4-parameter 
logistic (4pl) correlation where the asymptotes are defined. This can 
be simplified to a 3-parameter logistic (3pl) correlation wherein one of 
the asymptotes is fixed to better handle truncated data (Archontoulis 
and Miguez, 2015; deAyala, 2021). Both options are considered in this 
study and the one that provided the best optimization results is used for 

further processing. To embed the nlqr model in the optimization algo
rithm, it is programmed to (1) use both the SSlogis or SSfpl self-starting 
functions to compute initial estimates of the 3pl and 4pl curve fitting 
parameters, respectively, (2) apply the non-linear least squares (nls) R 
function to converge on a best fit regression and (3) wrap the code in R’s 
try statement to prevent premature model “choking” and ensure 
continued optimization iterations after nls non-convergences (see lines 
173 to 183 of the code in Appendix B).

In the fifth step, the two nlqr models per tidal segment are embedded 
in a multi objective optimization. In this study, we use the Mixed Integer 
Distributed Ant Colony Optimization (MIDACO) solver (Schlueter et al., 
2013; Schlüter et al., 2009) because of its ability to handle both discrete 
integer- and continuous decision variables and because of its demon
strated success in other computationally expensive applications (e.g., 
Hagedorn, 2020; Schlueter, 2014; Zobaa, 2019). The first optimization 
objective, F1, minimizes the mean absolute error (MAE; Eq. (8)) be
tween fitted radon and inverted salinity envelope data as: 

F1 = MAE =

∑n
i=1|Rni − Si|

n
(8) 

with |Rni – Si| as the absolute difference between the radon and 
inverted salinity envelope data. The second objective, F2, minimizes the 
effect of random error in the water depth signal on Fnet by ensuring a 
monotonic water depth trend over a specific tidal segment. We accom
plish this by maximizing the Spearman ρ correlation (Eq. (9)) between 
water depth and time for each rising or falling tidal segment as: 

F2 = 1 −

⃒
⃒
⃒
⃒
⃒
1 −

6
∑

d2
i

n(n2 − 1)

⃒
⃒
⃒
⃒
⃒

(9) 

where d is the difference between the two ranks of each observation 
and n is the total number of observations.

In the sixth step, the best fit output for the radon and inverted salinity 
envelopes are de-normalized and processed according to equation (4) to 
calculate mean values of Fnet, Fmix (low freq) and FSGD. The latter is then 

converted in step 7 to the freshwater flux, FSGDgw, by setting 
(

1 − Smon
Sref

)

Fig. 7. Hysteresis loops in unprocessed salinity (upper panel) and radon (lower panel) vs water depth regressions from continuous surveys at Varari on 3/21/2022 
(a, b) and Cabral on 08/09/2021 (c, d). Arrows indicate loop segment pathways from high to low tide and vice versa. Note the opposing pathway directions for 
different tracers and different sampling campaigns.
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to one and by determining Cgw for each tidal segment via linear 
regression (i.e., zero-salinity intercept) of the envelope data.

4. Results and discussion

4.1. Quantile regression envelopes

Modeled results for the 7 tidal segments considered in this study are 
listed in Table 1 and 2. Very low MAE values for objective F1 (mean 
value: 0.052) indicate a very good match between inverted salinity and 
radon envelopes. That each model converged on a perfect Spearman ρ of 
1 (F2 = 0) renders the second objective as an effective constraint, 
ensuring a minimized objective 1 at a monotonic water depth. The 3pl 
model outperformed the 4pl for all but two of the tidal segments; an 
observation in line with most of the data not being asymptotic with 
either 0, 0 or 1, 1 (Fig. 8). There is a broad range in the optimized filter 
parameter λ (34,615 – 832,534; mean value: 251,094) that reflects the 
different degrees of noise in the different water level and tracer datasets 
and, consequently, the different degrees of filtering required to limit F2 
to zero. The encountered λ, τRn and τS ranges confirm the importance of a 
campaign-specific signal filtering procedure for a reliable SGD analysis.

Five of the 7 tidal segments revealed lower τRn than τS values 
(Table 1) which suggests an overall lower SNR and thus more positive 
outliers in the radon signal. The discrepancy between τRn than τS is 
particularly high for the Varari 03/28/22 lh segment (Table 1). While 
the low τRn for this segment (0.699) could be attributed to radon 
detection outliers related to the often-reported “tailing” or “memory 
effect” when the radon signal drops (Adyasari et al., 2023; Petermann 
and Schubert, 2015), it is not clear why the discrepancy is so particularly 
pronounced in the Varari 03/28/22 lh segment, as compared to the other 
low-to high tide segments. Rather, positive excursions in the inverted 
salinity signal at low tide (see Fig. 8a, right panel) could be responsible 
for an exceptionally high τS value, and, consequently, a pronounced τRn 
and τS discrepancy. The high modeled τRn for the Varari 08/04/2021 lh 
and Varari 08/05/2021 hl segments (0.941 – 0.988) likely reflects the 
extreme degassing loss of radon as these datasets were collected during a 
period of water turbulence with pronounced wave white caps. It appears 
that the algorithm counteracts the degassing loss by shifting the radon 
envelope towards a higher quantile. Interestingly, this turbulent water 
period is not reflected in the wind speed data from nearby (i.e., 2 km 
north) Hotel Tipaniers weather station which yields a lower mean 
windspeed value for the 08/04/21 and 08/05/21 tidal segments (2.88 
m/s) than that for the entire dataset of (4.64 m/s; data from windguru 
online portal). This finding underscores the limitation of indirect 
degassing loss estimates from wind speed measurements collected at 
“nearby” weather stations (Schubert et al., 2022, 2019).

The optimization for 3 of the 7 datasets yielded a negative lag (i.e., a 
backward shift) for the radon time series (Table 1). This is surprising 

because the response delay from radon detectors typically requires a 
forward shift. However, it is important to point out here that the lag 
parameter is optimized for a match between radon and salinity enve
lope- and not raw regression data (Fig. 9). In situations where the 
variance in the radon signal is low relative to that of the salinity signal 
(e.g., Fig. 8a and c), the upper salinity envelope will span a higher water 
depth range which, because water depth is proportional to time, will 
cause the salinity envelope to “lag” the radon envelope. The situation for 
the Varari 08/04/21 lh segment is different because the variance in the 
salinity signal is relatively low (compare mid and right panels of 
Fig. 8g). In this case, however, the radon signal appears to be signifi
cantly affected by the aforementioned “tailing” effect and the negative 
radon lag is simply required to match the steep 3pl pattern of the salinity 
envelope.

4.2. Optimized Cgw estimates

Regressions of modeled envelopes define strong linear correlations 
that differ from those of the unprocessed input data (Fig. 9). The dif
ference is particularly drastic for the high-water turbulence datasets, 
Varari 08/05/21 hl and Varari 08/04/21 lh (Fig. 9f and g), where 
extensive radon degassing is evident. Zero-salinity intercepts of all the 
envelope data reveal a vast radon activity range (Table 2) with mean 
(441,593 dpm/m3) and standard deviation (466,965 dpm/m3) values 
that are still lower than what we encountered for 4 groundwater and two 
spring samples from Mo’orea (mean value: 1,104,056 dpm/m3, standard 
deviation: 610,089 dpm/m3; Table 3). The groundwater sample 
collected closest to our study area (Coastal Spring, which is located near 
the Cabral site) was pumped from a limestone aquifer, whereas all other 
groundwater samples were collected from basaltic fractured rock aqui
fers. Importantly, the radon range in groundwater samples not only 
reflects compositional differences of the aquifers, but also textural fac
tors such as grain shape and size and pore material density (Barillon 
et al., 2005). These parameters are difficult to account for at a scale that 
integrates the groundwater flow path form the recharge entry point in 
the mountainous interior to the SGD exit point along the coast.

The encountered range of envelope zero salinity intercepts reflect 
these factors. Interestingly, the radon endmembers determined from 
consecutive segments at the Varari site (03/21/222 hl and lh) reveal a 
decrease from 235,095 dpm/m3 to 168,310 dpm/m3, that may indicate 
(1) a changing groundwater radon signal from, e.g., recharge dilution by 
an antecedent rain event, and/or (2) saline SGD of tidally recirculated 
seawater affecting the signal of one tidal segment to a greater degree. 
The similarity of the envelope patterns for radon and inverted salinity 
for both segments indicates mechanism (1) as the more likely explana
tion, as a shift towards more saline SGD should coincide with a flattening 
of the salinity envelope amplitude. Longer-term radon, salinity and 
groundwater level monitoring are necessary to confirm this. The more 

Table 1 
nlqr results for high to low tide (hl) and low to high tide (lh) segments.

Parameter Varari 2022/03/ 
28 lh

Varari 2022/03/ 
21 hl

Varari 2022/03/ 
21 lh

Varari 2021/08/ 
09 lh

Varari 2021/08/ 
09 hl

Varari 2021/08/ 
05 hl

Varari 2021/08/ 
04 lh

Best-fit nlqr 
function

3pl 3pl 4pl 4pl 3pl 3pl 3pl

Objective Functions ​ ​ ​ ​ ​ ​ ​
Objective function 

F1
0.026 0.003 0.048 0.058 0.189 0.022 0.021

Objective function 
F2

0 0 0 0 0 0 0

Decision Variables ​ ​ ​ ​ ​ ​ ​
τRn (− ) 0.699 0.960 0.931 0.917 0.628 0.941 0.988
τSal (− ) 0.925 0.909 0.992 0.989 0.999 0.999 0.904
lag (min) − 31 0 − 8 37 1 59 − 25
trimstart (min) − 10 10 − 10 1 − 10 − 10 6
trimend (min) 10 − 10 1 − 9 1 3 1
λ (− ) 457,117 832,534 34,615 97,684 45,266 244,016 46,426
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pronounced endmember decrease modeled for the Cabral 08/09/2021 
lh to hl segments (1,355,500 dpm/m3 to 481,616 dpm/m3), however, 
likely reflects the shortened hl dataset, as we were not able to extend our 
monitoring to peak low tide at < 0.3 m water depth (compare Fig. 8d 
and e).

Considering all these observations, and the documented ground
water radon variability reported in SGD studies from other apparently 
monolithologic regimes (e.g., Colbert et al., 2008a; Hagedorn and 
Tsuda, 2022; Santos et al., 2010; Tait et al., 2013, etc.), we strongly 
caution against the use of radon data from groundwater well samples as 
proxies for Cgw in Equation (1). Even if the groundwater radon is 
determined from beach piezometers near an SGD exit point, this 
groundwater may not be representative for confined groundwater 
flowing through karstic conduits and discharging as SGD further 
offshore. As a more reliable approach, we recommend using the zero- 
salinity intercept of the envelope radon vs. salinity regression as a 
proxy for Cgw.

4.3. Optimized FSGD estimates

Comparing our modeled FSGD time series to those derived from the 
processed optimization data subjected to the traditional mass balance 
(Fig. 10) reveals the low pass filter characteristic of the optimization 
algorithm, where high frequency noise in both the raw tracer and water 
level time series are clearly suppressed. The mean FSGD estimates for the 
two successive tidal segment datasets considered in this study (i.e., 
~32,809 dpm/m2/d for Varari 03/21/2022 and 28,161 dpm/m2/d for 
Cabral 08/09/2021) fall within the documented range reported for 
other tropical high-level volcanic islands (Moosdorf et al., 2015).

However, any accuracy assessment for our modeled FSGD rates is 
complicated by the lack of any measured FSGD calibration data from, e.g., 
seepage meters and the traditional mass balance’s dependence on hard- 
or even impossible-to-measure input parameters. Fig. 11a-c compares 
our modeled Fnet, Fmix and FSGD values to those derived from the tradi
tional radon mass balance. In this case, we apply the mass balance to the 
unprocessed input data (i.e., no lag or response delay correlation) 
without any Fnet minima interpolation (i.e., Fmix = Fnet if Fnet < 0). We 
account for uncertainty only by using both 30- and 60- minute aggre
gation intervals, but it should be noted that the lowering of the mean 
Fmix through the typically applied Fnet minima interpolation/extrapola
tion would increase this uncertainty greatly (Fig. 2). Nevertheless, there 
are significant positive correlations in each of the regressions (r2 >

0.571, p < 0.05) and there is also a tendency for the traditional mass 
balance, particularly at the shorter aggregation interval, to overpredict 
Fnet, Fmix and FSGD. The overpredictions are most pronounced for the two 
successive Cabral 08/09/2021 lh and hl segments for which the tradi
tional mass balance appears to overpredict Fatm due to the high wind 
speeds at the nearby Hotel Tipaniers weather station (Fig. 12). This 
suggests that these wind speed data are not representative for local 
conditions during monitoring. Importantly, we were able to match our 
modeled Fnet, Fmix and FSGD values with the respective mass balance 
values for all segments through manual adjustments of Ftide and Fatm. 

However, we were not able to accomplish this match for scenarios in 
which (1) data were aggregated to < 30-minute intervals, and (2) Fmix 
was parameterized through an interpolation of Fnet minima. Our findings 
thus indicate a tendency of the traditional mass balance to overpredict 
SGD rates. A subjective Fnet minima interpolation greatly exacerbates 
this issue.

4.4. Application of method to other sites

Our method can be applied to any other radon, salinity and water 
level monitoring dataset. However, only very few studies in the SGD 
literature publish the raw radon and CTD monitoring datasets needed 
for such an analysis. An even bigger issue is that processed radon, 
salinity and depth time series are typically given at a very low temporal 
resolution (i.e., 30 to 60-minute aggregation intervals). This will cause 
statistical lag for the different datasets and a low sample size per tidal 
segment (6 – 12 data points). It will, furthermore, complicate the defi
nition of an envelope line from monitoring segments for which the 
combined effects of Fmix (high freq) and Fatm are, in fact, muted. Collec
tively, these factors will cause FSGD estimates from quantile regression of 
low temporal resolution data to be biased low. We thus urge future SGD 
monitoring studies to report raw radon and CTD monitoring data at 
aggregation windows of < 10 min.

Nevertheless, simple example applications of our method to 30-min
ute aggregation interval data from Maui, Hawaii and Dor Beach, Israel 
(data from Bishop et al., 2017; Weinstein et al., 2007b, 2007a) highlight 
our method’s ability to define quantile regression envelopes to coarser 
aggregation interval monitoring data. Fig. 13 shows the fluxes for those 
example datasets calculated with our models. Interestingly, the Honolua 
(Maui) dataset yields a very consistent envelope zero salinity intercept 
for the four consecutive tidal segments (Cgw = 123,928 ± 6413 dpm/m3) 
which suggests a temporally consistent fresh groundwater Cgw. While 
this observation supports the value of our method to determine the 
groundwater radon endmember and fresh SGD rates for a specific sur
vey, the benefits of the method relative to the traditional mass balance 
are still difficult to quantify due to a lack of calibration data for that site. 
Such a calibration is difficult because of methodological limitations. 
Numerical groundwater flow models, which are often used for SGD 
calibrations (e.g., Savatier and Rocha, 2021; Schubert et al., 2019), are 
uncertain at the local scale (i.e., SGD exit point) because they require 
accurate input of the difficult-to-estimate parameters recharge and hy
draulic conductivity, the latter commonly varying over several orders of 
magnitudes on volcanic islands (e.g., Rotzoll et al., 2007). Flow esti
mates from seepage meters from mapped SGD exit points may be more 
useful, but those exit points typically occur as clusters of karstic conduits 
and there may always be diffuse seepage from non-instrumented exit 
points that contribute to the radon-enriched buoyant plume (e.g., Glenn 
et al., 2013; Swarzenski et al., 2012). This causes uncertainty that should 
be carefully considered in the calibration of our SGD quantification 
method.

For the 11 tidal segments of the Dor Beach dataset (Fig. 13b), our 
method produced a much more variable Cgw (mean value: 620,167 dpm/ 

Table 2 
Flux estimates from nlqr-optimized envelope data.

Parameter Varari 2022/03/ 
28 lh

Varari 2022/03/ 
21 hl

Varari 2022/03/ 
21 lh

Varari 2021/08/ 
09 lh

Varari 2021/08/ 
09 hl

Varari 2021/08/ 
05 hl

Varari 2021/08/ 
04 lh

Optimized Results ​ ​ ​ ​ ​ ​ ​
mean Fnet (dpm/m2/ 

d)
− 67,524 91,946 − 61,392 12,550 19,307 147,640 − 13,015

mean Fmix (dpm/ 
m2/d)

− 71,274 − 2398 − 90,238 − 24,223 − 243 0 − 14,734

mean FSGD (dpm/ 
m2/d)

3750 94,344 28,846 36,773 19,550 147,640 1719

CGW (dpm/m3) 709,109 235,095 168,310 1,355,500 481,616 132,340 9180
mean FSGDw (m/d) 0.005 0.401 0.171 0.030 0.041 1.12 0.187

B. Hagedorn et al.                                                                                                                                                                                                                              Journal of Hydrology 645 (2024) 132145 

11 



Fig. 8. Water level time series (left column) and optimized signal envelopes for radon (mid column) and salinity (right column) for different high to low tide (hl) and 
low to high tide (lh) segments for Varari 03/28/2022 lh (a), Varari 03/21/2022 hl (b), Varari 03/21/2022 lh (c), Cabral 08/09/2021 lh (d), Cabral 08/09/2021 hl 
(e), Varari 08/05/2021 hl (f) and Varari 08/04/2021 lh (g).
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m3, one standard deviation: 361,023 dpm/m3) that is higher than 
groundwater sampled in beach sand and an underlying sandstone 
aquifer (168,000 dpm/m3 and 390,000 dpm/m3, respectively; Wein
stein et al., 2007a). As mentioned before, the Cgw variability can be 
related to a time variant radon and salinity signature of SGD. Impor
tantly, the Dor Beach dataset has calibration data from seepage meter 
measurements available. Using the reported groundwater Cgw of 
242,000 dpm/m3, our mean modeled advection rate of 1.04 cm/d (one 
standard deviation: 1.72 cm/d) aligns much closer to the mean values 
from seepage meter measurements (0.2–2.4 cm/d; Weinstein et al., 
2007b) than the average estimate from the traditional radon mass bal
ance reported in that study (~8.1 cm/d; Weinstein et al., 2007b). This 
comparison indicates superior performance of our new method relative 
to the traditional radon mass balance. However, more concurrently 

collected SGD tracer and seepage meter datasets are necessary to further 
validate our method’s performance.

5. Conclusions and considerations for method applications

This study demonstrates the value of nlqr, signal filtering and multi 
objective optimization to quantify SGD rates. Our method considers two 
independent tracers (radon and salinity), has a physical basis (i.e., it 
assumes a non-linear head loss vs discharge relationship of a sloping 
unconfined aquifer) and does not rely on subjective/uncertain estimates 
of various radon sources and sinks (e.g., Ftide, Fmix and Fatm). If similar 
envelope patterns for radon and inverted salinity vs. water level re
gressions can be defined, our method can quantify the fresh ground
water flux at any site according to the procedure outlined in section 2.2.

In situations where saline SGD dominates and where a monotonic 
regression envelope can only be defined for the radon tracer within a 
tidal segment, our method can still be used to estimate the saline SGD 
flux by (1) only modeling the radon envelope at a zero lag and high 
quantile (i.e., τRn > 0.5), (2) assigning Cgw to the maximum envelope 

radon value and (3) keeping the 
(

1 − Smon
Sref

)

term at a value of one (Eq. 

(1)). However, this flux should be considered a cursory estimate because 
of the lack of salinity data for a cross check. Appropriate radon lag, τRn 
and Cgw cannot be objectively determined without envelope data of 

Fig. 9. Plot of correlation between measured- and denormalized envelope salinity and radon activities at Varari 03/28/2022 lh (a), Varari 03/21/2022 hl (b), Varari 
03/21/2022 lh (c), Cabral 08/09/2021 lh (d), Cabral 08/09/2021 hl (e), Varari 08/05/2021 hl (f) and Varari 08/04/2021 lh (g).

Table 3 
Radon and salinity data for Mo’orea groundwater samples.

Sample ID Aquifer type 222Rn (dpm/m3) Salinity (psu)

Coastal Spring Carbonate 830,000 0.44
FPWD #1 Silicate 958,320 0.16
FPWD #4 Silicate 886,486 0.18
FPWD Spring #2 Silicate 395,050 0.06
FPWD #6 Silicate 1,384,614 0.13
Juice Factory Well #7 Silicate 2,169,869 0.33
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other SGD tracers.
The situation becomes more complicated in cases where the signal 

shifts from a fresh to saline SGD dominance within a tidal segment. Even 
though our algorithm may be able to define monotonic envelopes for 
radon and inverted salinity in such cases, it may struggle matching them 
according to F1 (Eq. (8)). This is because fresh and saline SGD should 
exhibit different end-member chemistries (i.e., high radon, low salinity 
for fresh SGD and low-intermediate radon and high salinity for saline 
SGD) which will ultimately result in different envelope shapes. There
fore, in situations where the MAE of equation (8) cannot be minimized 
to an acceptable level (e.g., <20 %), we also recommend only modeling 
a radon envelope at a high (>0.5) τRn for FSGD estimation. Here, quan
titative SGD assessments should only focus on the FSGD radon flux (Eq. 
(4)) because the uniform radon and salinity chemistry assumption for 
SGD and zero-salinity intercept assumptions for Cgw in equation (1) do 
not apply. However, a comparison of the temporal envelope patterns of 

radon and inverted salinity may provide further insight on the temporal 
variability in radon sources from fresh and saline SGD. Still, more data- 
driven studies utilizing concurrent and high frequency SGD tracer- and 
seepage meter datasets are needed for a better differentiation between 
fresh SGD and saline SGD components. Given their respective differ
ences in fluxes and geochemical characteristics, their effects on coral 
reef (and other) ecosystems may differ drastically.

There are some other methodological limitations that must be 
considered for applications to other sites. One key requirement is the 
availability of high-resolution monitoring data to define the envelope 
lines attributed to Fmix (low freq) and FSGD. If, for example, the degassing 
loss Fatm from turbulent (e.g., wave white cap) water is significant 
throughout the tidal segment, the algorithm may struggle to converge 
because radon and inverted salinity envelope shapes will differ drasti
cally. Another important aspect to consider for future research is the 
dependance of the results on the type of regression function. While the 

Fig. 10. Trends of FSGD and Fmix modeled in this study and derived from the traditional mass balance applied on processed (i.e., lag corrected) monitoring data for 
Varari 03/28/2022 lh (a), Varari 03/21/2022 hl (b), Varari 03/21/2022 lh (c), Cabral 08/09/2021 lh (d), Cabral 08/09/2021 hl (e), Varari 08/05/2021 hl (f) and 
Varari 08/04/2021 lh (g).
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herein applied 3pl and 4pl functions yielded better fits than other (e.g., 
Gompertz) sigmoidal curves, they may not be applicable to other data
sets or settings. There is clearly some subjectivity in the choice of non- 
linear regression function (Archontoulis and Miguez, 2015) and we 
recommend following our approach of considering at least two to ac
count for some degree of the associated uncertainty. We also recom
mend more research on the seasonal and tidal dynamics of oceanic 226Ra 
to provide more reliable definitions of excess radon in water activities 
for the regression function (see “Step 1” in Fig. 6).

Contrary to the traditional mass balance, our new method can ac
count for the occurrences of a non-homogenous tracer inventory (i.e., 
stratified water column) as a mixing loss (Fmix (high freq)). This will be 
indicated by measured radon and salinity signal deviations from their 
respective envelope lines. However, if stratification persists throughout 
the monitoring, such as expected if monitoring occurs at some distance 
away from the SGD exit point (and the water extraction system captures 
only the shallowest part of a buoyant freshwater plume), our model will 
yield an overestimate of FSGD. In this case, it is possible that the water 

extraction system captures some “legacy” radon and salinity signals 
from previous low tides. These signals can greatly distort the expected 
water level vs. radon and inverted salinity regressions per tidal segment. 
In these situations, chemical tracers should − if at all − only be used for 
a qualitative assessment of SGD.
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