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Grid-Aware Tradeoft Analysis for Outage Mitigation
Microgrids at Emerging Resilience Hubs

Arnav Gautam

and Amritanshu Pandey

Abstract—Sustained power outages are growing in scale and
number primarily due to i) the increasing number and intensity of
disasters and ii) decarbonization- and electrification-related grid
changes. Outage mitigation technologies (e.g., backup diesel gener-
ators, and solar panels) increasingly provide vital electricity access
during disasters. However, their adoption is inequitable due to
individual- or community-level barriers and historic underinvest-
ment in certain communities. We postulate that community-based
Resilience Hubs (RHs), which are being increasingly deployed
to provide on-site services during disasters, can be expanded to
address this inequity by supplying backup power to vulnerable
communities through islanded operations. To that end, we present
Grid-Aware Tradeoff Analysis (GATA) framework to identify the
best backup power systems for expanded RHs. To include tech-
nical, economic, and social facets in the framework, we will use
three-phase power flow (TPF) and multi-criteria decision analysis
(MCDA). TPF will enforce the electrical feasibility of islanded RH
operation, and MCDA will quantify the economic, environmental,
and equity-weighted outage mitigation performance. As a use case
for GATA, we will evaluate multiple representative RHs in Rich-
mond, California, and highlight the non-dominated systems for the
electrically feasible RHs. We show the value of GATA’s detailed
grid simulation, its ability to quantify tradeoffs across scenarios,
and its possible extensions.

Index Terms—Energy equity, MCDA, multi criteria decision
analysis, outage mitigation, resilience hubs, three-phase power
flow.
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1. INTRODUCTION

HE resilience of the electric grid is decreasing, as shown

by the higher frequency and longer duration of sustained
outages [1]. One reason is that our built infrastructure, includ-
ing the electric grid, is increasingly exposed to natural disas-
ters [2], which are worsening in frequency and magnitude [3].
Another reason is that the grid is rapidly changing due to
decarbonization and electrification, which impact its reliability
and stability [4]. Sustained outages cause billions of dollars in
economic damages and threaten the health and safety of the
public [5], so there is a clear need to mitigate these outages.
Many outage mitigation technologies have been developed to
enable a continued supply of electrical power to consumers in
distribution networks facing a regional outage. However, outage
mitigation technologies are inequitably distributed [6]. Backup
power systems for personal or community use (often diesel gen-
erators or solar panels with battery storage) are often unavailable
to low-income individuals or communities who cannot afford
them. The economic, resilience, and equity implications of
widely deploying backup power systems such as home batteries
are being explored today by utility companies such as Green
Mountain Power [7]. Grid hardening technologies make entire
electrical transmission or distribution systems more robust (such
as underground electrical cables and switching networks), but
utilities have historically underinvested in grid hardening for
certain sociodemographic groups. The historic underinvestment
in resiliency enhancements in vulnerable communities has been
traced back to bureaucratic decisions at utility companies which,
although not shown to have institutional bias, nevertheless result
in outages that are unequal in the racial or sociodemographic
groups they impact [8]. Similarly, the historic underinvestment
in post-outage repairs in vulnerable communities can be traced
back to utility company policies of enacting repairs in locations
based on internal policies which are so-called “colorblind” [9].
This can be seen in the higher rate of power outages faced, for
example, by Hispanic and Latino populations [10]. Due to these
inequities, there is a lack of backup power systems and grid
hardening technologies to help these vulnerable groups during
sustained outages.

One opportunity for addressing this problem is by expanding
upon an emerging class of disaster-resilience projects known
as Resilience Hubs (RHs) [11]. Cities are actively devel-
oping RHs as “community-serving facilities augmented to...

coordinate communication, distribute resources, and reduce car-
bon pollution while enhancing the quality of life” [12], and often
specifically site RHs in disadvantaged communities [13]. Many
RHs plan to include backup power systems for serving their own
critical electrical loads during grid outages [14]. There is some
peer-reviewed literature focused on Resilience Hubs [15], and
other work which mentions RHs as one approach to achieving
equitable resilience [16], but none of this work focuses on the
selection of the power system providing backup power to RHs.
RHs have been set up in US regions as varied as Minneapolis,
Hawai’i Island, Atlanta, and Tallahassee [17]. These settings
include full-sized cities, residential areas, and rural settings with
different electric grid layouts. The local climate and geography
of these settings differ significantly, as do the load profiles and
potential stressors on the grid.

We posit that backup power-equipped RHs can surpass just
serving their own loads to serve electrical load of its neigh-
bors by islanding the sub-system from the main utility during
sustained outages [18]. In doing so, RHs can provide targeted
sub-regional outage mitigation for communities vulnerable to
the consequences of disaster-induced power outages and for
those unable to adopt outage mitigation technologies on their
own. But serving backup power to local communities introduces
new social and technical considerations for RH planning. What
are the societal outcomes of this outage mitigation? Is it elec-
trically feasible — can the distribution grid equipment support
this mode of operation? Would using multiple technologies in
“hybrid-energy systems” mitigate risk and help reliability as
some posit? These questions become central to selecting the RH
backup power system. So we ask: how can RH planners evaluate
the tradeoffs of backup power systems considering these social
facets and technical constraints?

This paper presents a Grid-Aware Tradeoff Analysis frame-
work (GATA) that includes power systems constraints in a deci-
sion analysis to help identify the best backup power systems for
a RH and highlight their tradeoffs. This sociotechnical analysis
is an alternative to the least-cost optimization which is currently
performed by RH planners [14]. GATA incorporates the oper-
ational, financial, environmental, and social goals RH planners
have by combining power systems analysis and decision analysis
in a novel way.

There are many decision analysis tools available for choosing
a configuration for RH backup power systems, with two main
groups of tools being multi-objective optimization and multi-
criteria decision analysis (MCDA). Anderson et al. [19] select
backup power systems for public buildings by optimizing for a
composite objective function incorporating climate and health
impacts alongside economics, but this and other multi-objective
optimization approaches take away the RH planner’s freedom
to decide acceptable tradeoffs between goals. Multi-criteria
decision analysis (MCDA) and multi-objective programming
(MOP) both serve to find solution(s) to a problem with multiple
considerations. MCDA assumes that there is a pre-determined
set of options from which to choose a solution. MOP assumes
that a solution can be constructed and accepted as long as it
adheres to certain constraints as outlined in the MOP itself.
The research question of this paper is a case where options for
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systems will be limited for multiple reasons, including supplier
agreements, available physical space in the Resilience Hub
building, and community members’ comfort with the installation
of particular machines for backup generation purposes. MOP
would not reflect the decision-making paradigm of choosing
between alternatives. MCDA does not have this dependency,
since those constraints are inherently included by selecting the
pre-determined set of options (i.e., alternatives). This rests on
the fact that the goal of MCDA is not to find a global optimal
but rather to allow decisionmakers to uncover their ranking of
non-dominated solutions, which may be either local or global.
Policymakers solve problems where externally imposed con-
straints may lead to a set of limited choices, and they must
weigh many considerations against each other in order to come
to an answer satisfactory to them, which is most suitable for
MCDA. The selection of MCDA over classical optimization is
based in prior literature, most notably Guitouni and Martel [20]
who state that “The perspective of the MCDA may lay in a
new paradigm. In fact, there is more than one unique paradigm
which are different from one ‘school of thought’ to another.
The idea of the optimal solution is abandoned for the notion
of the ‘satisfaction of the decision maker’.” Furthermore, the
decisions being made by RH planners are complex in nature,
and formalizing optimization constraints that fully define their
decision-making approach would require a level of coordination
and effort on their part that would pose a significant burden on the
RH planners. MCDA methods have been used for backup power
system technology selection [21], but prior work lacks a detailed
high-resolution distribution network grid reliability assessment.
We will build on this work by developing an MCDA framework
capable of distribution grid reliability assessment within existing
grid infrastructure.

We use circuit-theoretic current-voltage three-phase power
flow (TPF) [22] to evaluate the reliability of the grid for the
MCDA, because TPF models AC network constraints and in-
forms us of any voltage or line and transformer violations while
supplying backup power. The method we use for evaluating
the grid’s reliability is built upon established methods of dis-
tribution grid analysis [23] and informed by work in circuit
simulation [24]. When developing this methodology, we relied
on the works referenced above, which cover the underlying
concepts and mathematical formulations in great detail. Other
power system analyses also exist and can be used instead of
TPF. For instance, there are methods for distribution grid and
microgrid expansion planning [25] but these don’t consider
the AC power flow constraints. A more detailed time-domain
analysis [26] could also serve as an alternative but these require
granular model data (e.g., gain values and circuit time constants
as in [27]) that will be very difficult for RH planners to procure.
Optimization-based AC optimal power flow (AC-OPF) meth-
ods can also model AC constraints for distributed generation
placement [28], but we use power system analyses to evaluate
system feasibility for various predetermined system configura-
tions, and not to satisfy a certain objective, so the optimization
functionality of AC-OPF is not necessary here. In the case of
Resilience Hubs, electric grid constraints may be determined
by utility company electrical engineers, and passed on to city

planning officials or government employees. Therefore, the
two-step approach of TPF + MCDA is designed to more closely
resemble the organizational structure of the Resilience Hub
development process, in which RH planners may be spread out
across organizations and each operate within their own specialty.
While MOP can in fact be used as a secondary path to obtain
solutions for a problem that is analogous to one formulated in
this paper, we have determined that a TPF + MCDA approach
would be better suited for easier integration with the workflows
of the RH planners, while still providing them with acceptable
results.

By merging decision analysis and power system analysis
methods, we develop the first high-resolution distribution grid
analysis tool which includes social, economic, reliability, and
environmental considerations, to evaluate backup power system
choices for RHs and network resiliency microgrids. It is also the
first tool to include a social impact metric which is an equity-
aware valuation for outage mitigation capturing the differing
value for electricity provided to loads with different needs. This
builds on prior studies in valuing the costs and benefits of outages
and outage mitigation, respectively [29], [30]. This literature
includes prior work on willingness-to-pay (WTP) for outage
mitigation, which is a measure of the monetary value consumers
place on the importance of this service. Baik et al. 2018 find that
consumers have a higher WTP for electricity which serves criti-
cal social services and low-income households in the consumer’s
neighborhood [31]. Although prior studies placed a value on
outage mitigation when quantifying total damages from certain
outages [29], or total benefits from mitigating outages [30], these
studies have not yet made use of the insight from Baik et al. 2018,
that the value placed in electricity differs based on the consumer
it goes to.

We will now present how the GATA framework integrates
TPF and MCDA to determine the preferred set of backup power
systems for RHs. Following this, we describe a case study based
on RH projects underway in the city of Richmond, California,
which is one of the many opportunities for applying GATA
to real-world decision-making situations. We then go over the
results of this case study, including the non-dominated options
that come out of GATA. We finally have our conclusions and
future work.

II. METHODS

An overview of the GATA framework is described in Fig. 1.
GATA is designed to take input on the distribution network,
energy technology options, economic budget, and expected
system performance. It then outputs the best (non-dominated)
viable backup power systems options for RH planners to select
between. GATA mandates the solution’s electrical feasibility
while optimizing for critical social facets.

GATA starts by (see Section II-A) using TPF to evaluate the
reliability constraints for a generic power source P at a RH
location to serve electricity to a predetermined set of nodes £ r i
during outages. The code to run TPF is available publicly at
https://github.com/lucasgodshalk/combined-txds. The next two
steps, discussed in Section II-B, enumerate a set of feasible
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Grid-Aware Tradeoff Analysis (GATA) Framework. Inputs are the distribution network equipment details, load data, and available energy technology

options. Alternative performance across multiple criteria of backup systems determines the non-dominated set.

backup power systems Sy that could serve as P during a sus-
tained outage. The remaining steps, discussed in Section II-C,
calculate each backup power system’s performance along sev-
eral criteria to run an MCDA and find the non-dominated options
Snp € Sy. The code to run these steps is available publicly at
https://github.com/arnavgautam/resilience_hub_MCDA. These
non-dominated options are the output of GATA, and can be used
by RH planners for their own backup power system selection.

A. Imposing Distribution Network Constraints Using TPF

In this section, we describe how GATA uses TPF to deter-
mine the timeseries 7p of hourly power supply needed from
P to power Lry during a sustained outage of duration d. We
also determine whether it is electrically feasible to keep Lrp
energized during a sustained outage to support its outage-time
operations. Section II-B will cover the choice of a mix of energy
technologies which will make up P.

1) Load Selection: The firstinput to the TPF simulation is the
load nodes Ly that “island” through distribution automation
and draw power from P during sustained power outages. Each
L gy includes the load of the RH building itself, and optionally
can include other load nodes connected via distribution grid
equipment to the RH building. RH planners using GATA may
select Ly based on any number of considerations, including
population vulnerability [32], perceived importance of load [33],
and availability of distribution automation to physically island
that subset during an outage [30].

2) Grid Configuration During Outage Mitigation by RHs:
To simulate the islanding of Lry during an outage, GATA
reconfigures distribution network G in the input file, mimicking
actions of distribution automation, to energize only a subnetwork
Gru € G, which is supplied by P. Grp electrically connects

nodes Ly with electrical loads to P through a combination of
graph edges Egy C E.

3) Outage Simulation: The TPF in GATA simulates the
power flow in this sub-network Gry with P, to investigate
the system’s edge currents and power flow, nodal voltages,
and whether the network is feasible [22]. GATA repeatedly
performs this outage TPF simulation over the duration d of
a sustained power outage, by recursively going through and
adjusting load values for £ gy from time-series load values 7}
fort € T =1,....,d]. The resulting power output p; from P
for all timesteps 7' is collected into Tp.

4) Grid Feasibility Check: For each TPF run, GATA checks
to see if any grid physics constraints are violated while supplying
loads 7}, at time ¢ from generic power source P. If the
power flow run didn’t converge and provide a solution, this is
considered a failure. If TPF returns a feasible solution, GATA
does three checks for each timestep t.

First, no current i, through transmission line e € 7, C &
can exceed that line’s maximum current capacity i, per (1):

it <i. YeeT,VteT (1)

Second, no power p,, flowing through any transformere € A’y C
& can exceed that transformer’s maximum power capacity p,,

per (2):
(2)

Third, all voltages v must remain within specified minimum v

and maximum v; bounds for all nodes j € Ngy C N, and all
phases ¢ per (3).

QJ‘ < U;@ Svj {QSZ A,B,C},Vj GNRH7Vt er

Pl <P, Vee Xp,VteT

3

Any failure of these checks for any timestep ¢ would indicate
that it is not feasible for the RH to power Lz for the complete
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timeseries 7', regardless of what specific equipment is installed
at the RH. Therefore, the particular grid configuration G gy with
power source P, load locations Lz, and load profiles Tz is
rejected. The GATA user is asked to provide an alternate set of
Lrp and RH grid configuration Gryy.

B. Finding the Feasible Backup Power System Options

We now discuss how GATA determines a feasible set of
backup power systems (Sy C &) that can serve as the generic
power supply P. S¢ is meant to approximate the range of feasible
possibilities for which GATA performs multi-criteria decision
analysis (MCDA). We begin with all possible backup power
system options, S, given a financial budget, b, set of energy
technologies O, and the unit size P} for each energy technology
o € O. We obtain Sy from S by filtering out infeasible options
based on the steps in the following sections.

1) Backup Power System Technology Options: Each backup
power system s comprises a set of commercially available energy
technologies o € O, with a provided unit capacity P} for each.
In the set of technologies Oy, we consider solar panels, battery
storage, solid-oxide fuel cells (SOFCs), and diesel generators.
These technologies may either be stationary and kept on-site
year-round as is considered in previous work [18], or be mobile
and brought in just for disaster preparation situations, which is
receiving increasing interest [34]. This decision will have an
impact when RH planners consider the year-round implications
of their backup power sources, as we will briefly explore in
Section IV-E. We source information on each technology op-
tion’s electrical generation profiles, fixed and variable costs, and
pollution emission factors from the literature, grey literature, and
various outside sources [35], [36], [37], [38], [39], [40], [41].

2) Enumerating Alternatives for System Configurations:
GATA enumerates all combinations of backup power systems
alternatives S by combining energy technologies listed in Sec-
tion II-B1, limited only by the total financial budget b and unit
capacity of every technology o. GATA therefore deterministi-
cally evaluates every single possible alternative at this step.

3) Filtering Out Infeasible Alternatives: GATA filters the
enumerated alternatives S to the feasible subset Sy by checking
whether the system can supply sufficient power for the duration d
of the simulated outage. For each alternative, s € S, GATA cre-
ates a timeseries 7 of the power it can supply at each timestamp.
To do this, it first calculates the timeseries 7, of each energy tech-
nology for the outage duration d. The calculations assume that
the technology is being used to generate the maximum power
possible starting from the first hour until the point if and when
generation is no longer possible. Each technology’s timeseries
Ts.,0 is dependent on the maximum power output p2*** and the
constraints of that technology o, such as solar radiation patterns,
battery energy constraints, or diesel fuel requirements. GATA
aggregates those 7, , timeseries values to create a timeseries
T of the total power output of the backup power system. 7y is
used to calculate a “customer-not-supplied-probability” (CNSP)
metric. The CNSP is a value from O to 1, which indicates the
proportion of hours in the outage duration that the power output
of the backup power system is insufficient to meet the needs of

the network, and customers don’t have access to their desired
power. GATA evaluates the CNSP of a backup power system in
).

ensp _ IITs <Tpllo
° 17 llo

The set of feasible alternatives Sy is determined by the accept-
able CNSP (CNSP,.) input threshold.

“)

c

C. Evaluating Options to Find the Non-Dominated Set

GATA uses MCDA to evaluate each backup power system in
the feasible set s € Sy. MCDA evaluates the various feasible
systems in Sy based on metrics we describe below, including
economic cost, environmental impact, and equity-weighted out-
age mitigation performance (EWOMP). This analysis focuses on
the outage-only operation of these backup power systems. Based
on the MCDA evaluation GATA outputs the non-dominated set
of systems Sy p, which RH planners should finally consider for
selection. We further describe the feature space for MCDA.

1) Economic Cost Evaluation: GATA evaluates the eco-
nomic production cost per kWh of a backup power system
based on the sum of fixed equipment purchase cost f, and
variable cost v, of the kWh generated, for all of the ng,
units of each energy technology o € O, as per (5). Electricity
generation costs are determined by fuel costs per kWh of energy
consumption, which are diesel and natural gas purchase costs
for generators and SOFCs, respectively. Solar generation and
battery charge/discharge is modeled as having zero variable
costs, as it does not require the purchase of any fuel to produce
electricity. Both solar and battery storage fixed costs include
inverter purchase. The variable costs modeled here are solely
short-term operating costs during the outage duration, since
longer-term costs and revenue depends on many other factors,
as we demonstrate in the results of our case study. Variable costs
also don’t include labor costs of installation or maintenance or
upstream fuel procurement costs.

Cgcon _ Z:OEOS (ns,o X f: + Vo X Zt 7:0) (5)
2T

2) Environmental Impact Evaluation: GATA evaluates the
direct operational environmental impact per kWh of a backup
power system using an air pollution assessment in (6).

Cpol — ZOEO(EF(?OZ X Zt 7?,0)
i ST

where EFP°! is the emissions factor of pollutant pol for energy
technology o. We evaluate two air pollutants: CO2 and PM10.
The emissions per kWh modeled here are only those incurred
during outage-time operations. We note that this is a fraction
of the emissions that will be incurred over the lifetime of the
backup power systems if they are used in normal conditions, but
normal condition analysis is outside the scope of this paper.

3) Equity-Weighted  Outage  Mitigation  Performance
(EWOMP) Evaluation: The equity-weighted outage mitigation
performance (EWOMP) is a metric that quantifies the
equity-weighted value provided by a backup power system.

(6)
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Two key insights that contribute to EWOMP’s formulation are:
1) the first kWh provided to a consumer is valued more than
additional kWh [31], and 2) the value of kWh depends on who is
receiving the electricity. EWOMP is designed to lie in the range
0 to 1. An EWOMP of 1 means that s supplies all requested
electricity to all high-priority and high-vulnerability loads. If s
supplies less than the requested electricity to high-priority and
high-vulnerability loads, the EWOMP moves toward the value
of zero.

The first insight can be captured with a logarithmic relation-
ship based on electricity supplied, as per (7) and (8). Let us
define W,s based on the kWh successfully supplied by system s
to RH load | € Lrp, assuming an equal demand response by
load percentage for all nodes as per (7).

Tt
lﬂltS:'Tlt(st),VlEERH7Vt€T (7
’ Tp
If we sum a log of wf’s across all timestamps and loads, as per
(8), we would obtain a value ; which represents the benefit of
electricity supplied by s to load ! during an outage.

d
xp = ZIOglo(’Y'I/}lt,s +1) ®)

t=1

The hyperparameter v € (0, 1] tunes this value to the appro-
priate logarithmic relationship reflecting the marginal benefit
of additional kWh. A ~ approaching 0O indicates a near-linear
relationship between value and kWh delivered, while a v of 1
gives much more value to earlier kWh. However, this formula-
tion doesn’t reflect the equity considerations inherent in the RH
planning process, so we build further on it.

EWOMP extends this formulation to also capture the second
insight, the distributional outcomes of outage mitigation. Calcu-
lating EWOMP first compares how the value of the electricity
served, as defined in (8), compares to the value of the electricity
7! that would have been provided by the generic power source
‘P with a CNSP of zero. This is then weighted by two weights
described below, v; and pr;. EWOMP assigns more value to kWh
of energy delivered to load nodes in regions of higher Social
Vulnerability index [42], which is an established measure v;
ranging from 0-1 of how vulnerable particular populations are
to external stressors like natural disasters [43], with 1 being
the most vulnerable. EWOMP also assigns more value to kWh
of energy delivered to load nodes of higher priority rank pr;
on a scale of 0-1, with 1 being the highest priority. Priority
values must be provided to GATA; these may come from an
established index such as for voltage stability, as proposed for
utility company load shedding procedures [44], or RH plan-
ners could manually assign priority based on an independent
assessment of how critical certain loads are to the commu-
nity. The hyperparameters « € [0, 1] and 3 = 1 — a reflect how
important v; and pr; are to RH planners. For example, they
may set o = % and 8 = % if they value priority twice as much
as vulnerability, or & = 1 and 5 = 0 if they only care about
vulnerability. This allows RH planners to focus as desired on
pursuing either community- or individual-based justice. GATA
evaluates the EWOMP of a backup power system as per (9) and

(10). The negative sign in (10) allows the sort in Section 1I-C4
to prefer lesser values for all criteria.

S logyo (v} , + 1)
Zf:l logyo(V7," + 1)

x »  EWOMP,

lEERH

EWOMP, = (o + Bpry) 9)

EWOMP _ 1

. _
° ILRrmllo

(10)

The EWOMP metric is dependent on multiple considerations,
which include the priority of the loads, the vulnerability of the
loads, and the amount of electric demand satisfied at each node.
Out of these three considerations, the first two are determined
when selecting which nodes to include in the load node set,
which s an input to the GATA framework. The amount of electric
demand satisfied at each node is a function of the backup power
system selected, which is done within the GATA framework. The
impact of this is that the range of possible values for EWOMP
is determined by the load node selection, with the bounds being
the EWOMP of supplying none of the loads in the load node set,
and fully supplying the loads in the load node set. And the value
of EWOMP within that range will differ for each backup power
system evaluated.

CSNP and EWOMP provide multiple dimensions of assessing
the ability of a distribution grid section to respond to power
outages, which may be useful to grids with different capabilities.
CNSP can be a useful metric to evaluate grids that do not have
demand response capabilities, since it assesses the sum total
of hours for which demand is insufficient. On the other hand,
EWOMP will be useful for assessing the extent to which grids
should exercise any demand response capabilities they have, and
what the equity implications of this action will be.

4) Identifying Non-Dominated Backup Power Systems:
When all backup power systems are evaluated over the MCDA
criteria, GATA identifies syp € Syp, the systems that are
non-dominated (syp < Sqom ) across all criteria as per (11), and
performs a trade-off analysis. The set of non-dominated systems
is found by performing an epsilon-nondominated sort as seen
in [45]. The epsilon-nondominated sort filters out dominated
Systems s 4o, if some dominating system sy p has a vector of cri-
teria performance c which is elementwise less than or equal to the
criteria performance of s4,,,,, and the two are not approximately
equal along all criteria Cy = [cccon, cPol INSP [EWOMP)

ek k k
SND = Sdom if {C5,, —€r <cg, ,c"€C}

and |C,

Sdom

—Cyyp| > (11)

The value of epsilon € can be set arbitrarily small, in order for
this formula to return a close approximation of the true non-
dominated set. This non-dominated set Sy p has the property
that no single system outperforms others in the set along all
criteria simultaneously as per (12).

s1 A 52Vs1,82 € Snp, 51 7 52 (12)

5) Selecting a Backup Power System From the Non-
Dominated Set: The final output of GATA is the set of non-
dominated backup power systems, from which the user should
assess tradeoffs and select the best backup power system for
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Fig. 2. Map of Richmond, California colored by Social Vulnerability Index
(SVI) (light red is less vulnerable, deep red is more vulnerable). The city borders
are outlined, and the four planned Resilience Hub locations are starred.

their needs. If the user knows the relative weights w,, that they
place on each of the criteria c* calculated for each backup power
system, the weighted sum method [46] allows them to calculate a
single metric to compare all backup power systems by following
the formula in (13). We demonstrate the weighted sum method
in the final steps of our case study in Section III to show what
the end-to-end use of the GATA framework would look like if
the RH planners had certain example weights for the criteria.

u(s) = Zwk x ¥ (13)
k

III. CASE STUDY: RICHMOND, CA

In this case study, we apply the GATA framework to a mock-
up of ongoing RH implementation in the city of Richmond, CA,
as shown in Fig. 2. Richmond has historically faced electricity
outages in wildfire season, both when the California utility
Pacific Gas & Electric (PG&E) covering Richmond implements
Public Safety Shut Offs of transmission lines to prevent wild-
fires, and when PG&E regions face extreme weather which dam-
ages electrical equipment. Richmond is actively putting together
4 RHs [47]. This is a town with areas of high SVI ratings, which
corresponds to high levels of vulnerability for the population
in those areas. We will evaluate the outage mitigation potential
of proposed RH locations on an approximate representation of
Richmond’s grid, and the best backup power systems for each.
In the following sections we describe the inputs we provide for
the three sections of the GATA framework.

A. Richmond Case Study Assumptions

In our case study we assume that, during an outage, the RH
backup power system is the only power source in the distribu-
tion network island Gy, because our TPF solver calculates
a single timeseries Tp of required power output at a specific
location on Gy We assume that other than adding a switch
at the backup power system, islanding is done with distribution
automation equipment that already exists on this distribution

network, similarly to other examples [48]. We further assume
that the RH power system can operate outside of the outage du-
ration according to PG&E’s Community Microgrid Enablement
Tariff [49], such that SOFCs do not encounter a ramp-up time
when an outage begins. We limit our analysis of the operational
impacts to the outage duration, although the evaluated equip-
ment could also operate in non-outage situations. Our scenario
is set in the year 2024, when we anticipate Richmond’s RHs
to be operational. We assume the RH planners to be employees
of the City of Richmond interested in the operational, financial,
environmental, and social goals outlined in [14].

B. Richmond Distribution Network Simulation Inputs

‘We model a subsection of the Richmond distribution network
G using one of the Taxonomy Feeders developed by the Pacific
Northwest National Laboratory [50]. These Taxonomy Feeders
are representative of classes of distribution grid layouts found
in the various regions and settings in the United States. We
model the Richmond distribution network using the “R1-12.47-
2” Taxonomy Feeder, which is meant to represent a “moderately
populated suburban and lightly populated rural area” operating
at 12.47 kV on the west coast of the U.S.

The distribution network load timeseries data 7¢ for our case
study comes from the “Randomized Hourly Load Data for use
with Taxonomy Distribution Feeders” dataset developed by the
National Renewable Energy Laboratory [51], [52] for each load
in many of the Taxonomy Feeders in [50]. The loads in this net-
work average out to around 2% of the average electrical load in
the city of Richmond, or around 700 homes, which is comparable
to the load serviced by each of Richmond’s 16 substations [53].
For our case study we set outage duration to 36 hours, based
on the mean duration for weather-related transmission events
from 2015-2019 in North America [1]. Our granularity for both
load values and power output is hourly, and we use hourly power
output and hourly energy output interchangeably in the analysis.

We study four RH locations, independently, to mirror the real-
world RH deployment in Richmond. Each RH j has its own P
power source and load nodes £, ;. The Taxonomy Feeder with
RH locations and Ly sets is shown in Fig. 3.

C. Richmond RH Energy Technology Options Input

The four energy technology options o that we consider in this
study are: solar panels, battery storage, solid-oxide fuel cells
(SOFCs) powered by natural gas, and diesel generators. Natural
gas-powered SOFCs can outperform conventional natural gas
combustion generators in multiple settings [54], and can be
further improved when provided with hydrogen as fuel. For the
fuel-based technologies and storage, which benefit from prior
collection of fuel or of prior charging to full capacity, we assume
that they begin an outage fully prepared, as they would be if the
RH were warned of the outage and recognized that the value of
electricity during the outage will be much higher than any costs
incurred in such preparations. For each backup power system
s, we expect an aggregation of multiple units of these options,
limited by the budget and other considerations as described in
Section II-B. Our test case values for equipment details come
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Fig. 3. RI1-12.47-2 Taxonomy Feeder, highlighting the RH locations and
Ly load node sets for each RH. Nodes are the RH backup power systems,
intermediate nodes power will flow through, and loads that require power. Links
are transformers, , and transmission lines.

TABLE I
ENERGY TECHNOLOGY DETAILS

Tech Nominal Output | Capacity Based On Sources
(kW) (kWh)

Solar 3.8 - Tesla Solar Panel [35]

Battery 5 13.5 Tesla Powerwall [35]

SOFC 10 - Future SOFC unit | [36]-[38]

Diesel 10 Generic generator [39]-[41]

Dashes indicate a parameter has no value for that energy technology option.

TABLE II
ENERGY TECHNOLOGY EMISSIONS FACTORS AND ECONOMIC COSTS

Tech CO2 Intensity | PMI1O Intensity | Fixed Cost | Variable Cost
(Ib / kWh) (Ib / kWh) (USD) (USD / kWh)
Solar 0 0 12900 0
Battery 0 0 11500 0
SOFC 0.772 0 30000 0.06
Diesel 1.555 0.00007 3900 0.39

Costs are point estimates of uncertain values.

from median or representative industry values during RH devel-
opment. Data on each technology option’s electrical generation
profiles, fixed and variable costs, and pollution emission factors
is shown in Tables I and II. We use projected SOFC costs
from [37] since 10 kW units are not yet mass-produced. This
projected cost is within expectations of previous SOFC cost
analyses [55]. For other technologies, we choose costs based
on historical trends. We highlight the direct onsite emissions
generated due to concerns in local communities, while recog-
nizing (but not considering) that emissions are associated with
this equipment’s manufacturing and transportation. The upfront

TABLE III
CRITERIA WEIGHTS UNDER DIFFERENT WEIGHTING SCHEMES

Weighting | Economic | CO2 | PMI0 | CNSP | EWOMP Source
Weq 0.2 0.2 0.2 0.2 0.2 [57]
Wsh 0.29 0.1 0.1 0.23 0.28 [58]
Wee 0.38 0.13 0.1 0.197 0.196 [58], [59]

budget b considered is around $500,000, which is twice the
estimate of currently planned RH backup power systems [11].
In Section IV we allow some margin (£5%) in the value of b
and select the minimal value that includes all technologies in
the non-dominated set. The purpose of a higher value of b is to
evaluate systems with increased investment requirements, but
which provide more outage mitigation potential.

D. Richmond MCDA Values

The Social Vulnerability Index v, of the load nodes in G, are
set to the measured SVI values of census tracts within Richmond
borders. The priority rank of each load node pr; is randomly
assigned from a uniform distribution [0,1] with replacement.
The threshold for acceptable CNSP is set at 10%.

The weights that we use for the demonstration of the Weighted
Sum method as described in Section II-C5 are selected to be
within realistic bounds for RH planners, and to reflect the
situation-specific conditions that may impact the decision mak-
ing process. The weight sets are shown in Table III below. We
begin with considering equal weights w,, for each criteria. It
is most common to assign equal weights to criteria when using
MCDA to make decisions on sustainable energy [56], which
has been defended in specific use cases as producing “results
nearly as good as optimal weighting methods.” [57] We then
construct a representative weight set wgy, based on an expert
survey [58]. We then hand-select a set of weights w,. as done by
Santos et al. 2017 [59] to “observe if any change would occur on
the scenario ranking” when assigning higher weights to criteria
favoring non-preferred scenarios, which are Economic Cost and
CO2 Pollution.

IV. RESULTS

In the results, we use the GATA framework to investigate the
inclusion of RHs in the city of Richmond for outage mitiga-
tion. Starting with 4 RH locations in the Richmond distribution
network, GATA first determines the locations that can reliably
provide outage mitigation to the neighborhood electrical loads.
For electrically feasible options, GATA determines the best
combinations of energy technologies to serve backup power. The
results show how GATA can provide an equivalent comparison
of RH backup power systems along multiple criteria. We further
show how the RH planners can weigh different criteria to choose
a RH energy technology set best suited to their needs.

A. GATA Step 1 - TPF Electrical Feasibility Check

We first investigate the electrical feasibility of each potential
RH location j supplying backup power to potential load nodes
L%, ;; which may have been pre-set to adhere to planning policy,
city-wide decision making processes, or limits in deployed

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 27,2025 at 22:06:12 UTC from IEEE Xplore. Restrictions apply.



194 IEEE TRANSACTIONS ON ENERGY MARKETS, POLICY, AND REGULATION, VOL. 2, NO. 2, JUNE 2024

TABLE IV
THREE PHASE POWER FLOW FEASIBILITY RESULTS PER RESILIENCE HUB AND
LoAD NODE GROUP

Resilience Hub | Load Node Set Status
RHO 40 Load Nodes Success
RHI1 15 Load Nodes Voltage Deviation Failure
RH2 11 Load Nodes Success
RH3 20 Load Nodes | Power Flow Convergence Failure
1.00
=
=
(@)}
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©)
= ¢
&
g 0-961 =
s
o
> f
0.94

RHO RH1 RH2
Fig.4. Voltage deviation during outage mitigation for RH locations and L i1
load node sets which pass the power flow convergence test as part of the grid

feasibility analysis.

distribution automation equipment. Table IV indicates how dif-
ferent RH locations perform in the electrical feasibility analysis
for an outage.

The power flow solver fails to converge to a solution for
RH3. Itis deemed infeasible and excluded from further analysis.
Fig. 4 shows the voltage deviation for the nodes powered by the
remaining three RH locations. We see in Fig. 4 that voltages for
LY, and L%, always remain within 5% of their non-outage
voltages. However, the L‘}{ 77 voltages violate those boundaries,
so RH1 is deemed infeasible. With RHO and RH2 both feasible,
the MCDA can be applied to either location. As an example, we
demonstrate determining the choice of backup power system
technologies for RHO.

B. GATA Step 2 - MCDA Evaluation

We evaluate various backup power options S for RHO during
a spring outage at peak load times. All 202,222 economically
viable backup power system options are first generated as per
Section II-B2 and stored in S, filtered down to 144,274 in Sy
based on CNSP as per Section II-B3, and then to 6 in Syp
based on the epsilon-nondominated sort as per Section II-C.
These results are for a budget b =$510,000, which is the tipping
point at which solar is included in the non-dominated set. This
sensitivity is because to supply Lrmo with budget b requires
technologies with low costs, and the cost of solar is high per kW
of nominal output. In fact, it is noteworthy that 40 load nodes can
be powered during an outage with a budget of $510,000, only
around double of the $250,000 intended as per [11] for the 1 load
node of the RH alone. Fig. 5 shows how the six non-dominated
systems perform against each other.

Notably, SOFCs feature heavily in all six non-dominated
backup power systems, indicating that an SOFC system with

$0.17
Best

0.853 le-05 0% 0.73

Worst
$0.18 0.895
Economic Cco2
Cost Pollution

1le-05 8%
PM Air CNSP
Pollution

0.73
EWOMP

® 0 Solar & 16 SOFC & 2 Diesel & 0 Battery + 1 Solar & 16 SOFC & 3 Diesel & 0 Battery
% 0 Solar & 16 SOFC & 3 Diesel & 0 Battery v 0 Solar & 16 SOFC & 2 Diesel & 1 Battery
A 1 Solar & 16 SOFC & 2 Diesel & 0 Battery ® 0 Solar & 15 SOFC & 2 Diesel & 4 Battery

Fig.5. Non-dominated backup power systems Sy p which can provide outage
mitigation during an outage covering the spring peak load for E%  of RHO.

specifications as defined in Tables I and II could be highly desir-
able for RH backup power. However, the non-dominated options
all include at least two separate technologies. Since spending
the entire upfront budget b on 17 SOFCs would have been under
budget but is not non-dominated, these results indicate that there
are benefits of a hybrid energy system. The lowest-capacity
systems in Fig. 5 (blue circle and green triangle) perform very
well along cost and pollution criteria, but are the worst at CNSP
and EWOMP because they have insufficient supply for the most
outage hours of the six systems. Two non-dominated systems
(blue circle and orange x) have increased production cost but
reduced CO?2 intensity when they add a single unit of solar (as
shown by green triangle and red cross). Adding storage is less
expensive than adding diesel despite the higher upfront cost,
due to the lower subsequent fuel costs. One option even has
a reduction in SOFC to afford significant amounts of battery
storage. Systems all have diesel supplementing the SOFC, and
adding additional diesel brings improved CNSP and EWOMP
by reducing the hours of insufficient power supply, at economic
and environmental cost. The performance along PM air pollution
and EWOMP metrics do not vary much across non-dominated
options; each option has roughly the same amount of diesel
generation, and also roughly the same amount of kWh delivered
to consumers during the outage.

C. Exploring GATA Output - Trade Offs in Performance

Fig. 6 shows the 6 non-dominated systems for RHO in spring-
time, along EWOMP and Economic Cost performance. Each
subplot shades the point corresponding to a system according
to its weighted score when EWOMP performance is given
a preference between O and 1, and the remaining preference
is for economic cost performance. Each arrow points from
the worst-ranked to the best-ranked system under that set of
preference weights. What the figure shows is that the tradeoff
between EWOMP and Economic Cost when going from “best”
to “worst” changes depending on the preferences, because that
changes which systems are considered “best” or “worst” by
the decisionmaker. The progression of the arrows as EWOMP
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Fig.6. Systemsin Sy p along EWOMP (x-axis) and Economic Cost (y-axis)
performance, both normalized across Sy p. Each subplot (a)—(f) shades the
point corresponding to a system according to its weighted score when EWOMP
performance is given a preference between 0 and 1, and the remaining preference
is for economic cost performance. Each arrow points from the worst-ranked to
the best-ranked system under that set of preference weights.

preference increases, from pointing to the top left to pointing
to the bottom right, indicates the trend in how much cost for
equity the stakeholders are willing to incur. When preferences
are at the extremes, it’s acceptable to trade off more of each
criteria to achieve better performance in the other. We see this in
the fact that the slopes of the best-worst arrow for the subplots
(a) and (f) are almost identical, albeit with the arrows going
in opposite directions, which shows the largest change along
both criteria out of these graphs, and the switch in which one
is more highly desired. When preferences are about equal for
the two criteria, between (c) and (d), the difference between
the “best” and “worst” system changes dramatically. In each of
these, the “best” system improves on the “worst” by one criteria
substantially, but only a small change in the other criteria.

Fig. 7 shows the ranking of the non-dominated backup power
systems (Fig. 5), under the varying economic and EWOMP
preference weights (Fig. 6). What we see is that under a wide
range of values, we see a few switchover points. A system
comprised of 16 SOFCs and 2 diesel units (blue circle) is ranked
first for weights less than 0.2, a system with an additional battery
(pink triangle) is ranked first for weights between 0.2 and 0.6,
and a system instead with an additional diesel unit (orange x)
is ranked first for weights greater than 0.6. This indicates the
existence of tipping points in this decision making problem,
where a continuous change in priorities results in a discontinuous
change in what is the most attractive option. We see similar
switchover points in which system is ranked second or third,
although they are much more frequent.

D. Using GATA Output - Example of Weighted Sum Method

Building on this, we test how a RH could provide outage mit-
igation multiple times yearly. Fig. 8 shows how non-dominated

o Iy
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Fig. 7. Weighted sum of normalized scores of systems in Sy p, under the
varying economic and EWOMP preference weights (Fig. 6) where preference
for EWOMP increases from O to 1.

systems perform across different outage scenarios, using the
weighted sum method with three sets of weights in (a)—(c)
of Weq, Wsp, and we,. as described in Table III to calculate a
comprehensive score for each scenario. Fig. 8 depicts the six
non-dominated systems at RHO selected for a spring peak load
outage, and evaluated at peak load outages for each season of the
year. The selection of weights changes which of the RHO options
is considered to perform best throughout the year. According to
the weights from Shaaban et al. 2018, supplementing SOFC and
diesel with battery storage (the pink triangle) is the best choice
across all non-dominated systems. However, using the other
two weight sets, supplementing with solar instead (the green
triangle) is a better choice than it in the spring and summer. This
could be attributed to the longer daylight hours and therefore
higher potential production of a unit of solar in those seasons.
Additionally, we, values the system with minimal SOFC and
diesel (the blue circle) as best in the spring and summer, which
is not seen with either of the other weight sets. Fig. 8 indicates
that stakeholder preferences must play a key role when deciding
on a RH, load node set, and backup power system, since criteria
weights can dramatically change what the best system is. Subplot
(d) focuses on the most competitive technologies across seasons,
and illustrates how the selection of weight set changes what is
most desirable for any particular season.

The seasonal features that drive our results are the generation
of electricity by backup power systems such as solar PV, and
the amount of electric load demanded by load nodes in the
network. Both of these are in turn dictated by seasonal shifts in
e.g. sunlit hours, and weather conditions such as temperature and
precipitation. These changes can be observed in the timeseries
of electricity generation for a solar PV plant we obtain from
PVWatts, and the timeseries of electric loads.

E. Extension - Estimating Non-Outage Operations

The focus of this paper is on outage mitigation. A fruitful
direction for future work would be to investigate how the RH
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systems would be used in non-outage operation. This could
be accomplished by extending the GATA framework to incor-
porate this, perhaps as additional metrics. While we do not
conduct a full analysis of this here, we can approximate the
long-term impacts of a backup power system by determining its
estimated usage to provide grid services in non-outage times.
With Richmond, CA falling under Pacific Gas & Electric’s Net
Billing Tariff beginning in 2023, after which excess electricity
can be sold back to the utility at prices determined by the
Avoided Cost Calculator [60], we estimate that operating a
natural-gas-powered SOFC system would be economical for
around 165 hours in 2024, while operating a diesel system
to sell electricity to the market would not break even at any
hour in the year. In this scenario, a 16-SOFC-unit system for
RHO could bring in revenue of around $2,000 over those 165
hours, with an associated production cost of around $1,500.
The environmental impact of this operation would be around
20,300 Ibs of CO2 being emitted. This is one possible outcome,
and Table V below shows more scenarios for 2024 when SOFC
operating expenses are assumed to vary. These calculations do
not incorporate the ramping requirements of the technology
or other considerations. Incorporating non-outage operations
would require a more detailed analysis of backup power system
operations in non-outage times over the equipment lifetime.

TABLE V
2024 NON-OUTAGE OPERATION ESTIMATES FOR RHO 16-SOFC-UNIT SYSTEM,
USING EXAMPLE HOURS AND REVENUE BASED ON PG&E ACC

Operating Expenses | Hours | Revenue Cost Profit | CO2 (Ibs)
0.05 $/kWh 508 $4,900 $4,000 | $900 62,700
0.0583 $/kWh 165 $2,000 $1,500 | $500 20,300
0.07 $/kWh 78 $1,200 $900 $300 9,600

We perform similar estimates for solar PV, and for battery
storage. We assume that the solar PV system is operating for all
8760 hours of the year, with no curtailed energy. This simplified
calculation does not account for the different behavior during the
36-hour outage duration. For a single solar PV unit, this results in
generating 7.5 mWh over 4293 hours, and bringing in revenue
of $223. For simplicity we assume that the battery storage is
performing arbitrage with limited foresight, where it knows the
average annual price ahead of time, and therefore charges when
prices are below average and discharges when prices are above
average. This arbitrage is limited by the maximum charging rate,
and the maximum capacity of the battery. For a single battery
storage unit, this results in charging and discharging a total
of 14.7mWh each direction over 2224 hours, and bringing in
revenue of $56. So we find that there is justification for allowing
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year-round operations, particularly when assuming no variable
costs of operating these technologies unlike for SOFCs.

V. CONCLUSION

As cities and distribution grid operators combat worsening
electrical outages, the need arises for better methods of eval-
uating outage mitigation possibilities such as Resilience Hubs
(RHs) with backup power systems. In this paper we present
the Grid-Aware Tradeoff Analysis (GATA) framework which
integrates Three-Phase Power Flow (TPF) and Multi-Criteria
Decision Analysis (MCDA) to determine the feasibility of any
particular RH powering a microgrid for outage mitigation, and
to ascertain the tradeoffs between the different backup power
system options. We exercise the GATA framework on a case
study based on the city of Richmond, California, which is in need
of outage mitigation and currently putting multiple RHs in place.

GATA 1identifies the feasible configurations for RH-based
outage mitigation in this case study, as well as which partic-
ular backup power systems may be considered most suitable
depending on the priorities of the stakeholders in Richmond.
Our research demonstrates the benefits of detailed distribution
grid simulation in evaluating outage mitigation potential. Our
results point to SOFCs as playing a large role in future backup
power systems, contingent on their exact specifications once
SOFCs are more widely commercialized. Finally, our tradeoff
analysis indicates that the relative importance of criteria, includ-
ing equitable outage mitigation as represented by our EWOMP
metric, is a key factor when evaluating backup power systems.

The trade-offs between maximizing reliability and cost to
the environment are inherent in any resilience hub discussion
regardless of where the community is located. This stems from
dispatchable technologies used currently in microgrids largely
being fossil fuel based. Looking at the equity and justice impli-
cations of the application of the GATA framework to Resilience
Hub development, we find that a holistic design process for RH
backup power directly enables action towards achieving distri-
butional justice in backup power. Since the expanded concept
of RHs in this paper are designed to provide backup power to
communities already identified as vulnerable by RH planners,
this serves to correct the imbalance of backup power availability
between groups of different socioeconomic status.

Overall, we demonstrate that GATA could serve as a valuable
tool for decision-makers to evaluate RHs, and similar projects
which would benefit from GATA’s sophisticated power systems
analysis paired with holistic evaluation.

REFERENCES

[1] “NERC state of reliability 2021.” [Online]. Available: https://www.nerc.
com/pa/RAPA/PA/Pages/default.aspx

[2] V. Iglesias et al., “Risky development: Increasing exposure to natu-
ral hazards in the United States,” Earth’s Future, vol. 9, no. 7, 2021,
Art. no. e2020EF001795, doi: 10.1029/2020EF001795.

[3] Intergovernmental Panel on Climate Change (IPCC) “Summary for
Policymakers.” in Climate Change 2021: The Physical Science Basis:
Working Group I Contribution to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge: Cambridge
University Press, 2023, pp. 3-32.

[4] K. Schmietendorf et al., “The impact of turbulent renewable energy pro-
duction on power grid stability and quality,” Eur. Phys. J. B, vol. 90, no. 11,
Nov. 2017, Art. no. 222, doi: 10.1140/epjb/e2017-80352-8.

[5] National Academies of Sciences, Engineering, and Medicine, Enhancing
the Resilience of the Nation’s Electricity System. Washington, DC, USA:
Nat. Academies Press, 2017.

[6] A.M. Brockway et al., “Inequitable access to distributed energy resources
due to grid infrastructure limits in california,” Nature Energy, vol. 6,
no. 9, pp. 892-903, Sep. 2021. [Online]. Available: https://www.nature.
com/articles/s41560-021-00887-6

[7] L. Niemasz-Cavanagh, “GMP’s request to expand customer access to
cost-effective home energy storage through popular powerwall and
BYOD battery programs is approved,” Aug. 2023. [Online]. Available:
https://greenmountainpower.com/news/gmps-request-to-expand-
customer-access-to-cost-effective-home-energy- storage-is-approved/

[8] B. D. Darras, “Vulnerability to power outage events by race, ethnicity,
poverty, and environment,” Ph.D dissertation, Washington State Univ.,
Pullman, WA, USA. [Online]. Available: https://www.proquest.com/doc
view/2185939027/abstract/22DE578C8D694698PQ/ 1 ?parentSessionld=
x2XAYhfIifDg5h6PdTN6ev586Md11rGYSVPGck1Z%2FT6g%3D

[9] F. Tormos-Aponte et al., “Energy inequality and clientelism in the wake
of disasters: From colorblind to affirmative power restoration,” Energy
Policy, vol. 158, Nov. 2021, Art. no. 112550. [Online]. Available: https:
/lwww.sciencedirect.com/science/article/pii/S0301421521004201

[10] D.Mitsovaetal., “Socioeconomic vulnerability and electric power restora-
tion timelines in florida: The case of hurricane IRMA,” Natural Hazards,
vol. 94, no. 2, pp. 689-709, Nov. 2018, doi: 10.1007/s11069-018-3413-x.

[11] K. Baja, “Guide to developing resilience hubs,” 2019. [Online]. Available:
http://resilience-hub.org

[12] “What are hubs?,” Jul. 2019. [Online]. Available: http://resilience-hub.
org/what-are-hubs/

[13] L.Athensetal., “Response to climate resilience resolution 20210408-028,”
Tech. Rep. 2021. [Online]. Available: https://www.austintexas.gov/edims/
document.cfm?id=365919

[14] “Powering community resilience: A framework for optimizing resilience
hub power systems.” 2019. [Online]. Available: http://resilience-hub.org/
wp-content/uploads/2019/07/USDN_ResilienceHubTech_Final.pdf

[15] T. G. M. Ciriaco et al.,, “Review of resilience hubs and asso-
ciated transportation needs,” Transp. Res. Interdiscipl. Perspectives,
vol. 16, Dec. 2022, Art. no. 100697. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S2590198222001579

[16] L. Shi, “From progressive cities to resilient cities: Lessons from
history for new debates in equitable adaptation to climate change,”
Urban Affairs Rev., vol. 57, no. 5, pp.1442-1479, Sep. 2021,
doi: 10.1177/1078087419910827.

[17] B. Grunwald et al., “Weathering climate disasters with resilience
hubs,” Oct. 2022. [Online]. Available: https://rmi.org/weathering-climate-
disasters-with-resilience-hubs/

[18] K. Abiodun et al., “The role of microgrids in advancing energy equity
through access and resilience,” in Tutorials in Operations Research:
Emerging and Impactful Topics in Operations (Informs Tutorials in Op-
erations Research Series). Catonsville, MD, USA: INFORMS, Oct. 2022,
pp. 175-190, doi: 10.1287/educ.2022.0244.

[19] K. Anderson etal., “Looking beyond bill savings to equity in renewable en-
ergy microgrid deployment,” Renewable Energy Focus, vol. 41, pp. 15-32,
Jun. 2022. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1755008422000047

[20] A. Guitouni et al., “Tentative guidelines to help choosing an appropri-
ate MCDA method,” Eur. J. Oper. Res., vol. 109, no. 2, pp. 501-521,
Sep. 1998. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0377221798000733

[21] H. Zhao et al., “Economy-environment-energy performance evalua-
tion of CCHP microgrid system: A hybrid multi-criteria decision-
making method,” Energy, vol. 240, Feb. 2022, Art. no. 122830. [On-
line]. Available: https://www.sciencedirect.com/science/article/pii/S0360
544221030796

[22] A. Pandey, M. Jereminov, M. R. Wagner, D. M. Bromberg, G. Hug,
and L. Pileggi, “Robust power flow and three-phase power flow
analyses,” IEEE Trans. Power Syst., vol. 34, no. 1, pp.616-626,
Jan. 2019.

[23] W. H. Kersting, Distribution System Modeling and Analysis, 4th ed. Boca
Raton, FL, USA: CRC Press, 2018.

[24] L. Pileggi, “Large-scale power grid simulation via equivalent circuit for-
mulation,” Feb. 2020. [Online]. Available: https://apps.dtic.mil/sti/pdfs/
AD1092782.pdf

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 27,2025 at 22:06:12 UTC from IEEE Xplore. Restrictions apply.


https://www.nerc.com/pa/RAPA/PA/Pages/default.aspx
https://www.nerc.com/pa/RAPA/PA/Pages/default.aspx
https://dx.doi.org/10.1029/2020EF001795
https://dx.doi.org/10.1140/epjb/e2017-80352-8
https://www.nature.com/articles/s41560-021-00887-6
https://www.nature.com/articles/s41560-021-00887-6
https://greenmountainpower.com/news/gmps-request-to-expand-customer-access-to-cost-effective-home-energy-storage-is-approved/
https://greenmountainpower.com/news/gmps-request-to-expand-customer-access-to-cost-effective-home-energy-storage-is-approved/
https://www.proquest.com/docview/2185939027/abstract/22DE578C8D694698PQ/1?parentSessionId=x2XAYhflfDg5h6PdTN6ev586Md1lrGY5VPGck1Z%2FT6g%3D
https://www.proquest.com/docview/2185939027/abstract/22DE578C8D694698PQ/1?parentSessionId=x2XAYhflfDg5h6PdTN6ev586Md1lrGY5VPGck1Z%2FT6g%3D
https://www.proquest.com/docview/2185939027/abstract/22DE578C8D694698PQ/1?parentSessionId=x2XAYhflfDg5h6PdTN6ev586Md1lrGY5VPGck1Z%2FT6g%3D
https://www.sciencedirect.com/science/article/pii/S0301421521004201
https://www.sciencedirect.com/science/article/pii/S0301421521004201
https://dx.doi.org/10.1007/s11069-018-3413-x
http://resilience-hub.org
http://resilience-hub.org/what-are-hubs/
http://resilience-hub.org/what-are-hubs/
https://www.austintexas.gov/edims/document.cfm{?}id=365919
https://www.austintexas.gov/edims/document.cfm{?}id=365919
http://resilience-hub.org/wp-content/uploads/2019/07/USDN_ResilienceHubTech_Final.pdf
http://resilience-hub.org/wp-content/uploads/2019/07/USDN_ResilienceHubTech_Final.pdf
https://www.sciencedirect.com/science/article/pii/S2590198222001579
https://www.sciencedirect.com/science/article/pii/S2590198222001579
https://dx.doi.org/10.1177/1078087419910827
https://rmi.org/weathering-climate-disasters-with-resilience-hubs/
https://rmi.org/weathering-climate-disasters-with-resilience-hubs/
https://dx.doi.org/10.1287/educ.2022.0244
https://www.sciencedirect.com/science/article/pii/S1755008422000047
https://www.sciencedirect.com/science/article/pii/S1755008422000047
https://www.sciencedirect.com/science/article/pii/S0377221798000733
https://www.sciencedirect.com/science/article/pii/S0377221798000733
https://www.sciencedirect.com/science/article/pii/S0360544221030796
https://www.sciencedirect.com/science/article/pii/S0360544221030796
https://apps.dtic.mil/sti/pdfs/AD1092782.pdf
https://apps.dtic.mil/sti/pdfs/AD1092782.pdf

198

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

IEEE TRANSACTIONS ON ENERGY MARKETS, POLICY, AND REGULATION, VOL. 2, NO. 2, JUNE 2024

M. Jooshaki, A. Abbaspour, M. Fotuhi-Firuzabad, H. Farzin, M. Moeini-
Aghtaie, and M. Lehtonen, “A MILP model for incorporating reliability
indices in distribution system expansion planning,” IEEE Trans. Power
Syst., vol. 34, no. 3, pp. 2453-2456, May 2019.

S. Kamali, T. Amraee, and M. Fotuhi-Firuzabad, “Controlled islanding for
enhancing grid resilience against power system blackout,” IEEE Trans.
Power Del., vol. 36, no. 4, pp. 2386-2396, Aug. 2021.

P. Demetriou et al., “Dynamic IEEE test systems for transient analysis,”
IEEE Syst. J., vol. 11, no. 4, pp. 2108-2117, Dec. 2017.

E. Samani et al., “Tri-level robust investment planning of DERs in distri-
bution networks with AC constraints,” IEEE Trans. Power Syst., vol. 34,
no. 5, pp. 3749-3757, Sep. 2019.

S. Baik et al., “A hybrid approach to estimating the economic value
of enhanced power system resilience,” Lawrence Berkeley Nat. Lab.,
Berkeley, CA, USA, Tech. Rep. 1767986, 2021.

A. Narayanan et al., “Sustaining critical social services during extended
regional power blackouts,” Risk Anal., vol. 32,no. 7, pp. 1183-1193,2012,
doi: 10.1111/5.1539-6924.2011.01726.x.

S. Baik et al., “Assessing the cost of large-scale power outages to
residential customers,” Risk Anal., vol. 38, no. 2, pp. 283-296, 2018,
doi: 10.1111/risa.12842.

E. Boyle et al., “Social vulnerability and power loss mitigation: A case
study of Puerto Rico,” Int. J. Disaster Risk Reduction, vol. 82, Nov. 2022,
Art. no. 103357. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S2212420922005763

V. H. Chalishazar et al., “Power system resilience metrics augmentation
for critical load prioritization,” Pacific Northwest Nat. Lab., Richland,
WA, USA, Tech. Rep. PNNL-30837, Jan. 2021. [Online]. Available: https:
/lwww.osti.gov/biblio/ 1764623

C. Muensuksaeng et al., “Portable solar-powered dual storage integrated
system: A versatile solution for emergency,” Sol. Energy, vol. 247,
pp. 245-254, Nov. 2022. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0038092X22007630

“Design your solar powerwall system.” Accessed: 2022. [Online]. Avail-
able: https://www.tesla.com/energy/design

I. Staffell et al., “Energy and carbon payback times for solid ox-
ide fuel cell based domestic CHP,” Int. J. Hydrogen Energy, vol. 37,
no. 3, pp.2509-2523, Feb. 2012. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0360319911024268

M. Gharibi et al., “Size and power exchange optimization of a grid-
connected diesel generator-photovoltaic-fuel cell hybrid energy system
considering reliability, cost and renewability,” Int. J. Hydrogen Energy,
vol. 44, no. 47, pp. 25428-25441, Oct. 2019. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/S0360319919329209
“Henry hub natural gas spot price (dollars per million btu).” Accessed:
2022. [Online]. Available: https://www.eia.gov/dnav/ng/hist/rngwhhdm.
htm

R. Hledik, “Decarbonized resilience: Assessing alternatives to diesel
backup power,” Jun. 2021. [Online]. Available: https://www.brattle.
com/insights-events/publications/decarbonized-resilience-assessing-
alternatives-to-diesel-backup-power/

“Learn how much it costs to Install A Generator - Compose: SEO.”
2022. [Online]. Available: https://www.homeadvisor.com/cost/electrical/
install-a- generator/

N. Green et al., “An alaska case study: Diesel generator technologies,”
J. Renewable Sustain. Energy, vol. 9, no. 6, Nov. 2017, Art. no. 061701.
[Online]. Available: https://aip.scitation.org/doi/10.1063/1.4986585
“CDC/ATSDR social vulnerability index 2020 database CA.” Accessed:
2022. [Online]. Available: https://www.atsdr.cdc.gov/placeandhealth/svi/
data_documentation_download.html

B. E. Flanagan et al., “Measuring community vulnerability to natural
and anthropogenic hazards: The centers for disease control and preven-
tion’s social vulnerability index,” J. Environ. Health, vol. 80, no. 10,
pp. 34-36, Jun. 2018. [Online]. Available: https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC7179070/

N. M. Sapari et al., “Application of load shedding schemes for distribution
network connected with distributed generation: A review,” Renewable
Sustain. Energy Rev., vol. 82, pp. 858-867, Feb. 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1364032117313370
K. Deb et al., “Evaluating the e-Domination based multi-objective evo-
lutionary algorithm for a quick computation of pareto-optimal solutions,”
Evol. Comput., vol. 13, no. 4, pp. 501-525, 2005.

P. C. Fishburn, “Letter to the Editor—Additive utilities with incomplete
product sets: Application to priorities and assignments,” Operations Res.,
vol. 15, no. 3, pp. 537-542, Jun. 1967, doi: 10.1287/opre.15.3.537.

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

,-&/—/

“Richmond Resilience Roadmap Richmond CA - Official.” 2019.
[Online]. Available: https://www.ci.richmond.ca.us/3907/Richmond-
Resilience-Roadmap

R. Das et al., “Distribution automation strategies: Evolution of tech-
nologies and the business case,” IEEE Trans. Smart Grid, vol. 6, no. 4,
pp. 2166-2175, Jul. 2015.

M. Allen, “Community microgrid enablement tariff,” Oct. 2022.
[Online]. Available: https://www.pge.com/tariffs/assets/pdf/tariffbook/
ELEC_SCHEDS_E-CMET.pdf

K. P. Schneider et al., “Modern grid initiative distribution taxon-
omy final report,” Pacific Northwest Nat. Lab., Richland, WA, USA,
Tech. Rep. PNNL-18035, Nov. 2008. [Online]. Available: http://www.
osti.gov/servlets/purl/ 1040684/

A. Hoke, R. Butler, J. Hambrick, and B. Kroposki, “Steady-state anal-
ysis of maximum photovoltaic penetration levels on typical distribu-
tion feeders,” IEEE Trans. Sustain. Energy, vol. 4, no. 2, pp. 350-357,
Apr. 2013.

“Randomized hourly load data for use with taxonomy distribution feeders.”
2014. [Online]. Available: https://data.openei.org/submissions/401
“California  Electric ~ Substations.” 2017. [Online]. Available:
https://cecgis-caenergy.opendata.arcgis.com/datasets/CAEnergy::
california-electric-substations/about

L. Kistner et al., “Techno-economic and environmental comparison of in-
ternal combustion engines and solid oxide fuel cells for ship applications,”
J. Power Sources, vol. 508, Oct. 2021, Art. no. 230328. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0378775321008417
V. Contini et al., “Final Report - Stationary and Emerging Market Fuel
Cell System Cost Assessment,” Battelle Memorial Inst, United States,
Tech. Rep. 1353409, 2017.

J.-J. Wang et al., “Review on multi-criteria decision analysis aid in
sustainable energy decision-making,” Renewable Sustain. Energy Rev.,
vol. 13, no. 9, pp. 2263-2278, Dec. 2009. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/S1364032109001166

A. Maxim, “Sustainability assessment of electricity generation tech-
nologies using weighted multi-criteria decision analysis,” Energy Pol-
icy, vol. 65, pp. 284-297, Feb. 2014. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S030142151300983X

M. Shaaban et al., “Sustainability assessment of electricity generation
technologies in Egypt using multi-criteria decision analysis,” Energies,
vol. 11, no. 5, May 2018, Art. no. 1117, [Online]. Available: https:
//www.mdpi.com/1996-1073/11/5/1117

M. J. Santos et al., “Scenarios for the future brazilian power sector based
on a multi-criteria assessment,” J. Cleaner Prod., vol. 167, pp. 938-950,
Nov. 2017. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0959652617305966

#2022 distributed energy resources avoided cost calculator documen-
tation,” Jun. 2022. [Online]. Available: https://www.cpuc.ca.gov/-

/media/cpuc-website/divisions/energy-division/documents/demand-
side-management/acc-models- latest- version/2022-acc-documentation-
vla.pdf

- Arnav Gautam (Graduate Student Member, IEEE)
received the B.S. in electrical engineering and com-
puter science and the B.A. degree in cognitive science
from the University of California, Berkeley, Berkeley,
CA, USA. He is currently working toward the Ph.D.
degree from the Department of Engineering and Pub-
lic Policy, Carnegie Mellon University, Pittsburgh,
PA, USA. He is also a NSF Graduate Research Fellow
with the Department of Engineering and Public Pol-
icy, Carnegie Mellon University. He was a Software
Engineer with Clean Power Research, and has applied

a variety of computational and analytical tools to address questions in climate
change and renewable energy. He is working on the optimization and simulation
of microgrids with distributed energy resources, to facilitate natural disaster re-
coveries. His research interests include equitable decarbonization, infrastructure
resilience to climate threats, and improving renewable energy adoption across
the globe. He is a student Fellow for the Macro Energy Systems Organization,
and a volunteer for the IEEE Power and Energy Society Task Force on Equity
and Energy Justice in Power Systems.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 27,2025 at 22:06:12 UTC from IEEE Xplore. Restrictions apply.


https://dx.doi.org/10.1111/j.1539-6924.2011.01726.x
https://dx.doi.org/10.1111/risa.12842
https://www.sciencedirect.com/science/article/pii/S2212420922005763
https://www.sciencedirect.com/science/article/pii/S2212420922005763
https://www.osti.gov/biblio/1764623
https://www.osti.gov/biblio/1764623
https://www.sciencedirect.com/science/article/pii/S0038092X22007630
https://www.sciencedirect.com/science/article/pii/S0038092X22007630
https://www.tesla.com/energy/design
https://www.sciencedirect.com/science/article/pii/S0360319911024268
https://www.sciencedirect.com/science/article/pii/S0360319911024268
https://www.sciencedirect.com/science/article/pii/S0360319919329209
https://www.sciencedirect.com/science/article/pii/S0360319919329209
https://www.eia.gov/dnav/ng/hist/rngwhhdm.htm
https://www.eia.gov/dnav/ng/hist/rngwhhdm.htm
https://www.brattle.com/insights-events/publications/decarbonized-resilience-assessing-alternatives-to-diesel-backup-power/
https://www.brattle.com/insights-events/publications/decarbonized-resilience-assessing-alternatives-to-diesel-backup-power/
https://www.brattle.com/insights-events/publications/decarbonized-resilience-assessing-alternatives-to-diesel-backup-power/
https://www.homeadvisor.com/cost/electrical/install-a-generator/
https://www.homeadvisor.com/cost/electrical/install-a-generator/
https://aip.scitation.org/doi/10.1063/1.4986585
https://www.atsdr.cdc.gov/placeandhealth/svi/data_documentation_download.html
https://www.atsdr.cdc.gov/placeandhealth/svi/data_documentation_download.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179070/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179070/
https://www.sciencedirect.com/science/article/pii/S1364032117313370
https://dx.doi.org/10.1287/opre.15.3.537
https://www.ci.richmond.ca.us/3907/Richmond-Resilience-Roadmap
https://www.ci.richmond.ca.us/3907/Richmond-Resilience-Roadmap
https://www.pge.com/tariffs/assets/pdf/tariffbook/ELEC_SCHEDS_E-CMET.pdf
https://www.pge.com/tariffs/assets/pdf/tariffbook/ELEC_SCHEDS_E-CMET.pdf
http://www.osti.gov/servlets/purl/1040684/
http://www.osti.gov/servlets/purl/1040684/
https://data.openei.org/submissions/401
https://cecgis-caenergy.opendata.arcgis.com/datasets/CAEnergy::california-electric-substations/about
https://cecgis-caenergy.opendata.arcgis.com/datasets/CAEnergy::california-electric-substations/about
https://www.sciencedirect.com/science/article/pii/S0378775321008417
https://www.sciencedirect.com/science/article/pii/S1364032109001166
https://www.sciencedirect.com/science/article/pii/S1364032109001166
https://www.sciencedirect.com/science/article/pii/S030142151300983X
https://www.sciencedirect.com/science/article/pii/S030142151300983X
https://www.mdpi.com/1996-1073/11/5/1117
https://www.mdpi.com/1996-1073/11/5/1117
https://www.sciencedirect.com/science/article/pii/S0959652617305966
https://www.sciencedirect.com/science/article/pii/S0959652617305966
https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/demand-side-management/acc-models-latest-version/2022-acc-documentation-v1a.pdf
https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/demand-side-management/acc-models-latest-version/2022-acc-documentation-v1a.pdf
https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/demand-side-management/acc-models-latest-version/2022-acc-documentation-v1a.pdf
https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/demand-side-management/acc-models-latest-version/2022-acc-documentation-v1a.pdf

GAUTAM et al.: GRID-AWARE TRADEOFF ANALY SIS FOR OUTAGE MITIGATION MICROGRIDS AT EMERGING RESILIENCE HUBS 199

Destenie Nock received the two B.S. degrees in
electrical engineering and applied mathematics from
North Carolina A&T State University, Greensboro,
NC, USA, the M.Sc. degree in leadership for sus-
tainable development from the Queen’s University of
Belfast, Belfast, U.K., and the Ph.D. degree in in-
dustrial engineering and operations research from the
University of Massachusetts Amherst, Amherst, MA,
USA. She is currently an Assistant Professor of civil
and environmental engineering, and engineering and
public policy. She creates optimization and decision
analysis tools which evaluate the sustainability, equity, and reliability of power
systems in the US and Sub-Saharan Africa. She has pioneered the development
of algorithms to identify energy limiting behavior in households and other hidden
forms of energy poverty, which is vital to achieving energy justice. Dr. Nock
was the recipient of six NSF grants on energy, resilience, and energy justice.
Dr. Nock was an NSF Graduate Research Fellow and an Offshore Wind Energy
IGERT Fellow with the University of Massachusetts Amherst.

i

k5

Amritanshu Pandey (Senior Member, IEEE) is cur-
rently an Assistant Professor with the Electrical and
Computer Engineering Program, University of Ver-
mont, Burlington, VT, USA with a courtesy ap-
pointment in the Electric and Computer Engineer-
ing and Engineering and Public Policy Departments,
Carnegie Mellon University, Pittsburgh, PA, USA.
His overarching research goal is to develop electric
energy system technologies to help combat climate
change while modernizing the underlying system. In
particular, he focuses on developing computational
methods that address problems in the space of large-scale grid simulation and
optimization, grid cybersecurity, and energy inequity. In the past, he worked
on a novel circuit-theoretic simulation and optimization framework for power
grids, culminating in a grid analytics tool: Simulation of Unified Grid Analysis
and Renewables. He was the recipient of several best paper awards, including
two best-of-the-best paper awards at the IEEE PES General Meeting in 2017
and 2021. He actively advises Pearl Street Technology, Inc. (PST) and was with
MPR Associates, Inc. and PST.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 27,2025 at 22:06:12 UTC from IEEE Xplore. Restrictions apply.



