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ABSTRACT

Federated learning (FL) is a promising approach for solving multi-
lingual tasks, potentially enabling clients with their own language-
specific data to collaboratively construct a high-quality neural
machine translation (NMT) model. However, communication con-
straints in practical network systems present challenges for ex-
changing large-scale NMT engines between FL parties. In this paper,
we propose a meta-learning-based adaptive parameter selection
methodology, MetaSend, that improves the communication effi-
ciency of model transmissions from clients during FL-based multi-
lingual NMT training. Our approach learns a dynamic threshold for
filtering parameters prior to transmission without compromising
the NMT model quality, based on the tensor deviations of clients
between different FL rounds. Through experiments on two NMT
datasets with different language distributions, we demonstrate that
MetaSend obtains substantial improvements over baselines in trans-
lation quality in the presence of a limited communication budget.
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1 INTRODUCTION

Federated Learning (FL) has emerged as a popular distributed ma-
chine learning paradigm. FL enables collaborative model training
among a set of clients via periodic aggregations of local models by
a server [9, 15]. The FL property of keeping data local to clients
has important privacy advantages that have made it attractive for
many learning applications.

Natural language processing (NLP) is one domain standing to
benefit from FL since user-generated text may contain sensitive
information. Among the applications of FL in NLP, relatively few
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Figure 1: Sample histograms of the difference (absolute-value
norms) between tensors of NMT engines computed for clients
across consecutive communication rounds in FL training,.
The traditional method (red thresholds) fails to accurately
capture the boundary between clusters during sending, while
our MetaSend (blue thresholds) provides a dynamic threshold
that adapts to the varying distribution across FL rounds.

works have considered multilingual NLP and the impact of different
languages on FL [14]. In recent years, neural machine translation
(NMT) has shown substantial progress in this domain with the
advent of large-scale language models such as BERT [2], GPT [22],
and their extensions. NMT has a further natural alignment with
FL given its setting of non-IID local data distributions [32]: each
client (user) typically has a specific language direction they are in-
terested in for translation, which their local dataset will be skewed
towards, motivating them to collaborate with each other via FL to
construct the general NMT model. This alignment between NMT
and FL is particularly significant in the context of the web. With
the vast array of languages and diverse translation needs encoun-
tered on the web, an NMT model trained via FL can better adapt to
the unique language preferences and translation requirements of
individual users or communities. By leveraging FL, users can collec-
tively contribute their language-specific data to train a shared NMT


https://doi.org/10.1145/3589335.3651931
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3589335.3651931
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589335.3651931&domain=pdf&date_stamp=2024-05-13

The Web Conference "24, May 13-17, 2024, Singapore

model, which, in turn, can provide more contextually appropriate
translations for a wide range of content encountered on the web.

On the other hand, resource utilization is often a concern in
deploying large-scale NMT models due to demands imposed on
computational and memory resources [4, 6]. While FL will distribute
the processing load, every client must exchange its model param-
eters with a central server during the FL communication phases.
Communication efficiency is a known bottleneck in traditional FL
applications [15] and becomes an even more critical challenge with
large-scale NMT models.

In this paper, we are interested in optimizing multilingual NMT
performance over an FL system with a limited communication bud-
get. A premise for our work is that exchanging complete NMT
engines in FL might not be necessary, similar to the argument in
Passban et al. [19]. We can develop some intuition around this
through a small FL experiment using the well-known FedAVG algo-
rithm [15]. In Figure 1, we perform FL on the UN Corpus dataset
(see Section 4 for details) distributed across three clients (each con-
taining one language translation direction), and plot the differences
in NMT model tensors between a few consecutive training rounds
for one of the clients. These differences are computed and visu-
alized tensor-by-tensor, indicating the deviation of each tensor.
We observe that the majority of deviation in the NMT model ten-
sors cluster within small norms, while a small subset of tensors
exhibit significant deviations. This observation is consistent across
all clients, datasets, and data distribution combinations considered
in this study.

Recently, Passban et al. [19] proposed a strategy of focusing on
either highly fluctuating or less active tensors during FL. communi-
cation to reduce computation load. Their approach involves sending
only a fixed portion of NMT parameters — namely, by sending either
the top 50% or the bottom 50% of tensors based on their deviation,
which is computed using the previous round’s engine. The result
of this is illustrated by the red threshold for the cases in Figure 1.
However, sending a fixed portion of the parameters does not ac-
count for the fact that the deviation distribution will likely vary
dynamically across rounds (as also observed in Figure 1). As a result,
this approach is not sensitive to NMT quality, potentially resulting
in the transmission of either too many parameters, i.e., extra com-
munication burden without any significant change in translation
quality, or too few parameters, i.e., leading to an undesirable model
that negatively impacts translation quality.

Contributions. Motivated by this, our objective is to explore
dynamic thresholding techniques for multilingual federated NMT.
The central challenge involved is how to adaptively determine a
threshold that selectively filters out parameters from transmission
until we expect that the translation quality will start to be compro-
mised. To address this, our methodology, MetaSend, incorporates a
meta-learning approach that generates a dynamic sending thresh-
old adapting to the varying deviation distribution across training
rounds. The result is depicted by the blue thresholds for the cases
in Figure 1. In doing so, MetaSend considers translation quality
and communication efficiency as important objectives in multilin-
gual NMT training. In developing MetaSend, we make three major
contributions:

e We conduct the first research on the communication effi-
ciency of FL in multilingual NMT, and study the relationship
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between translation quality and the volume of transmitted
parameters in multilingual NMT engines.

We propose a novel meta-learning-based adaptive parameter
selection method to partition the tensors at a client into those
which have vs. have not evolved significantly since the last
FL transmission, balancing between translation quality and
communication burden.

Through extensive experiments on two benchmark NMT
datasets with different language distributions, we demon-
strate that our MetaSend methodology consistently enhances
translation quality compared to baselines while operating
within a fixed FL communication budget.

2 RELATED WORK
2.1 Efficient NLP

Previous research has explored efficiency enhancements for large
NLP models from a computational perspective, i.e., achieving com-
parable results with fewer resources [31]. Some studies have fo-
cused on the data side, e.g., showing how smart downsampling of
available datasets can result in equal or improved performance com-
pared to using the entire dataset [11, 34]. On the other hand, efforts
to enhance efficiency through model designs include questioning
the necessity of full attention heads in large language models and
demonstrating that removing certain attention heads does not sig-
nificantly impact test performance [10, 23, 30]. Compared to these
works, motivated by the recent demand for FL in NLP, we specifi-
cally focus on communication efficiency in federated multilingual
NMT and design a strategy that selectively transmits only the es-
sential parameters of NMT engines for learning.

2.2 FLin NLP

Recent research has begun exploring FL methods for NLP appli-
cations requiring privacy preservation [5, 13, 21, 29]. During the
FL communication phase, large NLP models are exchanged, intro-
ducing a significant communication cost associated with model
updates. To address this, Melas-Kyriazi and Wang [16] proposed a
gradient compression methodology for language modeling, while
Ro et al. [25] leveraged similarities between smaller and larger
models in cross-device FL. The parameter selection method pro-
posed in Passban et al. [19] targeting mixed-domain NMT is most
relevant to our work. As discussed in Section 1, they analyze how
much deviation each client has from its previous round and send a
fixed-portion of model’s tensors during FL communication. How-
ever, sending a fixed amount of tensors without considering the
varying deviation distribution can lead to lower translation quality
by potentially removing meaningful parameters. To handle these
challenges, we design a meta-learning-based parameter selection
method that sends the client’s parameters with dynamic thresh-
olds to capture the tradeoff between communication efficiency and
translation quality.

3 METASEND FOR FEDERATED NMT

3.1 Problem Setup: Federated NMT

When training the NMT model over multiple clients, we follow the
general cross-silo FL setting introduced by Li et al. [12]. Algorithm 1
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Algorithm 1 Cross-Silo Federated Learning

1: Server S, Client Cg, total number of clients K
2: for Eachroundr =1,2,...,Rdo
3 Each client Receive(S™1)
C]Z « Local Iterations
Send(C]:) to server
8" « Aggregation(C{,C}, ....Cf)
end for

summarizes the overall training procedure. Each client first runs
stochastic gradient descent (SGD) on its local data and then Sends
the learned NMT model to the server. The server then executes
a global aggregation after receiving all the trained models. We
assume the standard FedAVG algorithm [15] as the aggregation
method. Using FedAVG as opposed to other aggregation procedures
allow us to focus on the communication efficiency of NMT in the
FL scenario.
The FedAVG aggregation is defined as:

K
nk
wi=Y W 6]
=

where K is the total number of clients, ny. is the number of samples
in the k-th client’s dataset, n is the total number of all training
data points, and W{" and W] are the model parameters at the r-th
communication round for server 8" and the k-th client C]:, respec-
tively. The system has finished one FL communication round once
the server has completed the aggregation. For the next round, the
clients will Receive the server’s weights for initialization. The
overall process is repeated for r = 1,2,..., R FL communication
rounds.

3.2 Overview of MetaSend

During FL communication, a large amount of NMT model weights
have to be uploaded to the server during the Send action (in Algo-
rithm 1) for aggregation. This communication can be quite costly for
a large NMT model, which is a key bottleneck for FL. To tackle this
challenge, we propose MetaSend, which adapts the NMT tensors
sent based on a customized sending threshold for each communica-
tion round. The key idea of MetaSend is to build Model-Agnostic
Meta-Learning (MAML) [27] into the FL rounds to balance commu-
nication efficiency and translation quality.

Figure 2 and Algorithm 2 summarize the overall procedure. In
each round r, after completing the local iterations using their local
training data, each client C]Z will retain its learned model weight
Wkr and training loss L. In each round r, MetaSend operates ac-
cording to the following steps: (i) After every client has finished
training their local models, the training losses L7, L;, e L% ofall K
clients are inputted into our MAML module, which is implemented
as a multi-layer perceptron (MLP) network. The MAML module
serves as a server-side component that leverages the clients’ losses
to learn a threshold, which is subsequently shared with all clients.
The purpose of this module is to generate a customized threshold 6"
based on the extracted losses (line 5 in Algorithm 2), which should
consider the anticipated impact on learning performance. (ii) Based
on the threshold 07, each client C]: selects which model tensors to
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send based on a deviation comparison with its previous version
C]: =1 (line 6 in Algorithm 2). (iii) After receiving the transmissions,
the server S” executes the aggregation by taking the resulting
models’ weights from all clients (line 8 in Algorithm 2). (iv) Subse-
quently, the MAML module is updated through meta-learning (line
9 in Algorithm 2), taking into account the translation quality of the
global model at the server S”.

There are two key challenges in designing MetaSend: (a) How to
design the sending criterion for NMT models in Step (ii)? (Answered
in Section 3.3); (b) How can the MAML module effectively learn
to produce a customized threshold for each FL round in Step (iv)?
(Answered in Section 3.4)

3.3 MetaSend: Customized Sending and
Aggregation

In this subsection, we answer the first question mentioned above.
Our intuition is that the extent of model parameter deviation rela-
tive to the original norm provides an indication of whether infor-
mation is worth sending. Our observation in Section 1 shows that
the tensors of the NMT model responsible for learning exhibit a
clustered pattern in the deviation distribution.

Compared with the clients in the previous round, MetaSend will
first compute the deviation (dev) for each tensor, with dev defined
as:

W0 -wr ol

W=t oll

where ¢ € L denotes a particular tensor of the model, and || - ||
is the absolute-value norm that measures the difference between
clients’ weights in different rounds. Based on dev and the learned
threshold 6" (line 6 in Algorithm 2), MetaSend may select each ten-
sor to be sent based on one of two criteria: whether its dev is greater
(g) or less (I) than the threshold 6". Each of these has potential ad-
vantages: deviations above the threshold (g) will promote sending
tensors that have experienced the largest changes, which could po-
tentially be an informative or noisy update, while deviations below
the threshold (/) will encourage more gradual tensor refinements
that are not susceptible to sudden large fluctuations. As a result,
MetaSend generates two sending methods, namely MetaSend, and
MetaSend;:

{MetaSendg W/ () = {W[(£);dev = 0"},

@)

MetaSend; : W,"(¢) = {W/ (£);dev < 6"}, @)
where Wlér represents the selected model’s weights for the k-th
client in round r.

Given the resulting weights Wk’r of every client, the server then
executes aggregation via FedAVG (line 8 in Algorithm 2). Formally,
Equation 1 is:

©)

o~
—

3.4 MetaSend: MAML Module Update

To address the second question, we aim for our MAML module
to generate an adaptive sending threshold based on translation
quality. Figure 3 shows the learning process and the optimization
flow of this module. ¢" represents the hyperparameter set of our
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Figure 2: Overview of MetaSend for federated NMT. MetaSend enables clients to adaptively select important parameters of NMT
models based on a learned threshold for each communication round. Each client sends only a subset of model tensors to the
server for aggregation, enhancing efficiency within a limited communication budget.

Algorithm 2 FL with MetaSend

1: Model Parameter: W; for server S, Wy for each client Cy , ¢
for MAML module (MLP)

2: for Eachroundr =1,2,...., R do

Initialize all K clients by W/ ™!

Wkr, Ltmin(Wkr) «— Local Iterations

0" < MLP(Ltrqin (er)’ «s Ltrain (WIQ))

W’} < MetaSend(W/, 0")

Send resulting local model W’z to server

WY « Aggregation(W’], ..., W'%)

9 ¢" «— MetaUpdate(L,,; (W)

10: end for

MAML module in communication round r, and 67 (¢") is the gen-
erated threshold from the module. After the parameter selection
process and aggregation (Equations 3 and 4), the parameters of the
k-th resulting client model and the global model can be expressed
as W/ (¢") and W{ (4"), respectively. To assess the quality of the
global model W/ (¢"), we randomly select b batches of samples from
the validation dataset and evaluate the global model using these
samples. Subsequently, we employ the validation loss Ly, (W] (¢"))
as the optimization objective for the MAML module, which encour-
ages the module to adapt in the direction of superior translation
quality. Thus, our MAML module update can be written as:

¢ =" = B VLo (WY (¢7)), ()

where f is the learning rate for the meta update. By optimizing the
MAML module with consideration of the translation quality of the
global NMT model, our MAML module can generate a customized
threshold 0" for each round that considers both the deviation distri-
bution and the translation quality. We will see in Section 5 how this
process of learning what parameters to send results in substantial
translation quality and communication efficiency improvements.
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Figure 3: Optimization of our MAML module in an FL setup.
The module aims to adapt the sending threshold based on
NMT model quality.

4 EXPERIMENTAL DESIGN

4.1 Datasets and Client Partitioning

We utilize two NMT datasets: MINT [17] and UN Corpus [36]. The
MTNT dataset comprises English to French (En — Fr) and English to
Japanese (En — Ja) translations, while the UNMT dataset includes
three official UN language directions: English to French (En —
Fr), Arabic to Spanish (Ar — Es), and Russian to Chinese (Ru —
Zh). Three training settings are considered: (i) centralized training
without FL, (ii) FL with IID data, where the data for each client
is sampled randomly from all data, and (iii) FL with non-IID data,
where each client only sees data for one language direction. See
Appendix A for more details on the datasets.

4.2 Base Model and Evaluation Metrics

Following the multilingual FL experimental settings in Weller et al.
[32], we use the M2M-100 model [3] to conduct machine translation.
The M2M-100 model is a sequence-to-sequence model with 418M
parameters, and it can translate between any pair of 100 languages.
We measure the quality of translation by using sacreBLEU [20] and
COMET [24]. SacreBLEU is a commonly used metric for evaluat-
ing NMT quality, while COMET is a more advanced metric that
shows some degree of correlation with human judgement. This
is particularly relevant as some NLP studies [7, 8, 26, 28, 35] have
highlighted the limitations of traditional BLEU-based metrics in
capturing human preferences accurately. See Appendix A for more
details on these translation metrics.
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Training Method MINT UNMT
En—Fr En—Ja Avg En—>Fr Ar—Es Ru—Zh Avg
Centralized w/ pre-trained 33.4 21.7 27.6 44.5 44.5 45.0 44.7
IID FL PMFL 323 17.9 25.1 43.7 39.2 42.1 41.7
Non-IID FL PMFL 20.6 13.9 17.2 30.1 30.8 29.4 30.1
RandSend 29.7 11.4 20.6 35.2 33.7 36.9 353
DPg 31.1 14.6 229 37.9 38.5 38.7 38.4
IID FL Dp; 31.9 15.5 23.7 38.4 38.7 39.2 38.8
MetaSendg (ours) 32.0 16.8 24.4 42.0 39.1 41.9 41.0
MetaSend; (ours) 32.7 17.3 25.0 42.3 39.3 41.6 41.1
RandSend 16.1 10.0 13.1 22.6 243 16.8 21.2
DP, 19.0 12.6 15.8 29.8 283 26.5 28.2
Non-IID FL Dp; 18.3 13.1 15.7 30.5 29.9 26.1 28.8
MetaSendg (ours) 19.7 13.9 16.8 31.2 30.1 29.7 30.3
MetaSend; (ours) 20.1 13.6 16.9 32.8 313 29.7 313

Table 1: SacreBLEU scores obtained with centralized and FL (IID and Non-IID) methods for various strategies on the MINT and
UNMT datasets. The bold scores indicate that MetaSend outperforms other methods in all cases.

Besides translation quality, we consider two metrics for FL effi-
ciency: tensor saving and processing time. Tensor saving is defined
as the ratio of tensors that are not exchanged between the server
and clients during the Sending step in Algorithm 1 (or line 7 in
Algorithm 2). For efficiency evaluation, we will report the aver-
age tensor savings and the exact processing time over all training
rounds.

4.3 FL Training and MAML Module

We build our FL experiments using the Flower framework [1] for
training and evaluation. For centralized experiments, we train mod-
els for 50 epochs and discuss the effect of pre-trained knowledge
for NMT. For every FL experiment, we train each method for 25
communication rounds (epochs) and initialize the clients using a
pre-trained M2M-100 model from Hugging Face’s transformers
library [33]. As a reference, we also conduct FL experiments by ini-
tializing the clients’ model with random weights; the corresponding
results can be found in Section 5.3.4.

For our MAML module, we use a multi-layer perceptron (MLP)
network with one hidden layer containing 100 neurons as the de-
fault setting. The ablation study in Section 5.3 presents the results of
MetaSend considering different numbers of neurons in the MAML
module. To randomly sample a small portion of the validation set
for the MAML update, we use 16 batches (ie., b = 16). In Sec-
tion 5.3, we also present an ablation study on b to see the effect of
MAML optimization for NMT quality. See Appendix B for detailed
hyperparameters and compute settings.

4.4 Baselines

We use several competitive baseline approaches and parameter
selection strategies to evaluate federated NMT. PMFL [32] is the
basic FL framework that uses a pre-trained model for federated
NMT without any decision-making mechanism. DP4 and DP; are
the recent methods from [19] that select which tensors to send by
comparing the norm difference between the previous and current
client models. Their thresholding mechanism sorts based on the
norm difference and either send the top 50% (DPy) or bottom 50%
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(DP;) of tensors during the aggregation process. We also include the
results from a random configuration, RandSend, which randomly
sends 50% of the tensors during FL aggregation.

5 EXPERIMENTAL RESULTS

5.1 Translation Performance Evaluation

Table 1 and 2 present the SacreBLEU and COMET results of the
translation task for both datasets. In the first section, we observe
that the centralized method outperforms PMFL methods, as we
would expect; on the other hand, it compromises data privacy by
not preserving individual client data confidentiality. Further, the
performance decrease of PMFL from IID to non-IID FL training
reveals the challenges in the practical NMT scenario of clients
having only single language directions.

By randomly sending the model parameters, RandSend achieves
the lowest performance among all methods for both IID and non-
IID FL. The significant performance improvements of MetaSend
over DP show the advantage of modeling an adaptive sending
threshold based on the norm difference distribution. Moreover, our
MAML-learned threshold learns what to send during communica-
tion to better optimize the NMT task. Note that this threshold is
dynamic and can adapt to different norm difference distributions
in each round. Specifically, our MetaSend method achieves average
sacreBLEU improvements of 3.9 and 3.4 points over DP on IID and
non-IID data, respectively. Among all the parameter selection meth-
ods, MetaSend; achieves the highest scores in both sacreBLEU and
COMET metrics. It demonstrates comparable translation quality to
PMFL, indicating its ability to preserve communication resources
without compromising translation quality. Translation examples
generated by our method are provided in Appendix C, where it is
evident that our method shows better alignment with the ground
truth regarding sentiment and accurate word usage.

5.2 Communication Efficiency Evaluation

In Figure 4, we present the average sacreBLEU score and tensor
savings for each method across 25 communication rounds on the
MTNT (a and b) and UNMT (c and d) datasets. The RandSend and
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Training Method MINT UNMT
En—Fr En—Ja Avg En—Fr Ar—Es Ru—Zh Avg
Centralized w/ pre-trained 0.778 0.759 0.769 0.875 0.863 0.855 0.864
IID FL PMFL 0.758 0.734 0.746 0.853 0.839 0.830 0.841
Non-IID FL PMFL 0.666 0.659 0.663 0.737 0.742 0.709 0.729
RandSend 0.726 0.715 0.721 0.811 0.773 0.811 0.798
Dp, 0.729 0.721 0.725 0.825 0.801 0.823 0.816
IID FL DP; 0.737 0.730 0.734 0.830 0.805 0.829 0.821
MetaSendy; (ours) 0.755 0.733 0.744 0.846 0.829 0.833 0.836
MetaSend; (ours) 0.755 0.736 0.746 0.849 0.827 0.831 0.836
RandSend 0.639 0.623 0.631 0.651 0.663 0.659 0.658
DPg, 0.651 0.650 0.651 0.709 0.720 0.684 0.704
Non-IID FL Dp; 0.659 0.648 0.6534 0.713 0.729 0.692 0.711
MetaSendy; (ours) 0.668 0.653 0.661 0.744 0.739 0.713 0.732
MetaSend; (ours) 0.666 0.659 0.663 0.749 0.744 0.721 0.738

Table 2: COMET scores obtained with centralized and different FL. methods on MTNT and UNMT datasets.

. 170
» ‘(41 9, 25.0) ‘(42 7,16.9) *
(61.5, 24.4) . (62.3, 16.8)
o 160 \(50 1, 15.8)
w
4 (49.9, 23.7)
o (49.9, 15.7)
S i
S (50.1, 22.9) 150
»
g‘; 1
z=
Method: 14.0 Method:
@ RandSend @ Randsend
A 0P, s A 0P
21 DP; ’ DP;
W MetaSend, K MetaSend,
@ MetaSend; @ (501, 20.6) 50 @ Mewsas | @ (50.1, 13.1)
125

1 ’(44 5,41.1) @ (130,313
(592, 41.0
50 (8.3, 30.3) K
0 (49.9, 28.8)
50.1, 28.2
30 (49.9, 38.8) = A )
A (501, 38.4)
. '
a7 o
Method Method
@ RandSend @ Randsend
36{ A OPy A op,
oP; 2 O
K MetaSend, K MetaSend,
@ Vewsend, @ (50.1,35.3) @ MetaSend; @ (501, 21.2)

150 475 500 525 550 575 60.0 125 450 4T5 500 525 550 575 60.0

Avg. Tensor Saving (%) Avg. Tensor Saving (%)

(a) MTNT Dataset (IID FL)

625

(b) MTNT Dataset (Non-IID FL)

R e A
Avg. Tensor Saving (%)
(c) UNMT Dataset (IID FL)

14 16

Avg. Tensor Saving (%)
(d) UNMT Dataset (Non-IID FL)

18 50 52 51 56 58

Figure 4: The average sacreBLEU score and the amount of tensor savings for each method. We see that MetaSend; and MetaSend,
exhibit different tradeoffs between tensor savings and translation quality. Across all settings, MetaSend; consistently demon-
strates improvement over baselines in terms of translation performance and resource savings.

Threshold of MetaSend,: d random W05 ¥ learned Threshold of MetaSend;: $§ random 05 4 learned
o ® (19, 250) T o & 07 109) (623 168)% |« ® s a2 0240k 2 ® @031y (683,303
o k| 13 0 . (417,298) 4
Q (613,297 | 100 (391,159) 0 (404,302) (504,303 | (563285
o ws v
8 o (396, 231) 155 (619, 15.7) ® "
O s 621 | i
2w (553, 147)4 g 546, 35.5) :
< ;] o) " 1.102) NI £ ) % G724 #531,219)

3 i 15 50 5 [ ] [ % 30

Avg. Tensor Saving (%) Avg. Tensor Saving (%)

(a) MTNT Dataset (IID FL)

0

(b) MTNT Dataset (Non-IID FL)

£ 10 r 50 5 0 0 %5 50

Avg. Tensor Saving (%)
(d) UNMT Dataset (Non-IID FL)
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Figure 5: Average sacreBLEU score and tensor savings of MetaSend with different sending thresholds.

DP methods can save around 50% of tensors during FL commu-
nication due to their designs. By sending the tensors based on
a specific learned threshold, MetaSend methods obtain substan-
tial improvements in translation quality compared to DP methods,
while also obtaining varying degrees of tensor savings. Among
our two MetaSend methods, MetaSend; outperforms in translation
quality, indicating that sending the majority of tensors for update
ensures significant performance improvement. On the other hand,
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MetaSend, demonstrates higher tensor savings, with an average of
10.3% more tensors saved compared to DP methods.

In addition to evaluating tensor savings, Table 3 provides the
specific training time for each method. During local iterations, all
methods require a similar amount of time to process the entire local
training dataset and update all parameters in the model. Although
PMFL does not spend time on the parameter selection process, it
consumes the most time in client communication and aggregation
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Method Local Compare Layers MAML Send Aggregation Total Time
Training & Select Module Clients (w/0 Local Training)
PMFL v - - 32.712 18.224 50.936
Dp, v 5.492 — 22.359 11.195 39.046
Dp; v 5.510 - 23.107 12.371 40.988
MetaSendg v 3.547 0.878 21.395 10.795 36.615
MetaSend; v 3.485 0.893 23.519 12.914 40.811

Table 3: The average training time (in seconds) spent over 25 training rounds for each method on our machine.

Operation Time (sec)

Forward MLP (size:100) & Ouput 87  7.275 x10~*
Meta Evaluation (16 batches) 8.754 x107!
Meta Optimization 1.137 x1073

Table 4: Detailed time spent within our MAML module.

due to the necessity of transmitting and aggregating every tensor
in the model. Both DP and MetaSend require computation time
for calculating deviations between a client’s current tensors and
its tensors from the previous round. However, DP carries out its
operation by selecting either the top or bottom 50% of tensors,
which occurs after all deviations have been calculated and sorted.
In contrast, MetaSend immediately decides whether to send a tensor
based on the learned threshold after calculating a single deviation
and without any sorting calculation. As a result, MetaSend requires
less time for parameter selection compared to DP.

Both MetaSend; and MetaSend, involve additional computation
for the MAML module, and they spend a similar amount of time on
this module as it is independent of the operator. The breakdown
of the time spent on the MAML module for MetaSend methods is
provided in Table 4. We observe that the most time-consuming con-
figuration is the meta-evaluation, which requires forward-passing
a few batches to the global model and obtaining the validation loss.
Therefore, we conduct an ablation study in Section 5.3 to examine
the impact of the number of sampled batches. In sum, MetaSend
significantly enhances translation quality while achieving greater
resource savings compared to both PMFL and DP methods.

5.3 Ablation Studies

5.3.1 Effectiveness of learned threshold. To isolate the impact of
the sending threshold, we compare MetaSend with different thresh-
olds, including our learned threshold, a fixed threshold (6" = 0.5),
and a random threshold selected from 0 to 1. The red arrows in
Figure 5 show the improvements in MetaSend when using differ-
ent thresholds within a single operator (I or g). Compared with
other thresholds, our learned threshold significantly increases both
translation quality and the amount of tensor savings. By comparing
Figures 5 and 4, MetaSend with a fixed threshold sometimes outper-
forms DP methods, suggesting that sending based on the deviation
distribution should be considered instead of sending approximately
half of the model’s tensors.

5.3.2  Parameters used in MAML module. To explore the impact
of the number of neurons on performance, we keep the learning
parameters consistent while varying the number of neurons in the
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Figure 6: Average sacreBLEU scores and tensor savings for
MetaSend with varying numbers of neurons in the MAML
module on the UNMT dataset in Non-IID FL.

hidden layer of the MAML module. In Figure 6, we see that using
more neurons in the MAML module generally leads to improved
results in terms of sacreBLEU score and tensor savings. The perfor-
mance gain from using more neurons is intuitive since it provides
additional degrees of freedom for learning optimization. However,
it is important to note that using more neurons also incurs higher
resource requirements during system construction.

5.3.3  Meta evaluation for MAML module. To examine the influence
of the number of batches used to optimize our MAML module, Fig-
ure 7 shows the performance of our method with different numbers
of batches used for optimization. We see that increasing the num-
ber of samples used for MAML optimization generally results in
improved translation quality and efficiency. Naturally, using more
batches will increase the exact time spent on our MAML module.
However, the time taken by clients to send parameters for aggre-
gation may be more critical than this optimization time, as the
optimization process is performed only once in each round.

5.3.4 The use of pre-trained model. Tables 5 shows the sacreBLEU
scores of each method without utilizing pre-trained knowledge
for the M2M-100 model in each client. Specifically, each method
was trained from scratch, utilizing randomly initialized weights. Al-
though the results of MetaSend; do not exhibit complete superiority
over MetaSendy as discussed in Section 5.1, our MetaSend methods
display higher average scores overall in most cases compared with
baseline approaches. However, the overall results are relatively
poor and unstable compared to the results shown in Table 1 when
pre-training is utilized. This discrepancy can be attributed to the
fact that large neural MT systems typically demand a substantial
amount of data and prior knowledge to perform effectively.

5.3.5 Insufficient data sample. To mirror the limited data scenario
of each client in practical FL, we performed experiments by ran-
domly sampling a small portion of data from MTNT and UNMT
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Training Method MTNT UNMT
En—Fr En—Ja Avg En—>Fr Ar—Es Ru—Zh Avg
Centralized  w/o pre-trained 18.1 11.0 14.6 27.9 25.5 27.2 26.9
Non-IID FL PMFL 14.9 7.0 10.9 18.9 16.6 18.0 17.8
RandSend 11.4 5.5 8.5 13.6 10.3 12.0 11.9
Dp, 14.6 6.6 10.6 16.3 14.9 15.0 15.4
Non-IID FL Dp; 14.9 6.8 10.9 16.6 15.4 15.3 15.8
MetaSend,; (ours) 14.9 6.9 10.9 18.5 16.6 16.3 17.1
MetaSend; (ours) 15.1 7.3 11.2 17.7 18.2 16.0 17.3

Table 5: SacreBleu scores obtained with each method without using pre-trained weights as initialization. We observe that our

method shows superiority over baselines even with limited prior knowledge.

Training Method MINT UNMT
En—Fr En—Ja Avg En—Fr Ar—Es Ru—Zh Avg
Centralized  w/o pre-trained 10.7 6.1 8.4 13.9 11.8 12.5 12.7
Centralized w/ pre-trained 28.4 14.3 214 34.6 33.8 34.8 34.4
Non-IID FL PMFL 16.6 8.8 12.7 19.4 19.6 17.7 18.9
RandSend 14.9 74 11.1 18.2 17.4 16.4 17.3
Dp, 15.3 7.9 11.6 18.4 19.5 16.1 18.0
Non-IID FL DP; 15.0 7.3 11.2 18.9 19.0 16.4 18.1
MetaSend,; (ours) 15.8 7.9 11.9 19.5 19.5 17.5 18.8
MetaSend; (ours) 16.0 7.8 11.9 19.4 19.7 17.7 18.9

Table 6: SacreBleu scores obtained with each method with the reduced number of training samples. We observe that our method
shows improved translation quality over baselines even with limited data resources in each client.
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Figure 7: Average sacreBLEU scores and tensor savings for
MetaSend with different MAML module batch numbers on
the UNMT dataset in Non-1ID FL.

datasets as training data. Specifically, we randomly selected 20% of
samples from each dataset, resulting in 1k and 10k training sam-
ples in each language direction for MTNT and UNMT datasets,
respectively, while keeping the validation and test sets at the same
size. All other hyperparameters, such as batch size for the NMT
engine or MAML optimization, neurons in the MAML module, and
learning rate, remain the same as in Section 5. Table 6 presents
the translation quality of each method when trained with limited
data. Even in scenarios with limited resources, it is evident that our
MetaSend methods consistently outperform other baselines and, in
some cases, achieve comparable or even slightly better performance
compared to PMFL.

6 CONCLUSION

This work has pioneered an in-depth exploration into the efficiency
challenges of federated multilingual NMT, unveiling the intricacies
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Meta Evaluation  Time (sec)
4 batches 2.621 x107 !
8 batches 5.012 x107!
16 batches (default)  8.754 x107!
32 batches 1.731
64 batches 3.682

Table 7: Time spent for passing different numbers of batch
samples to the NMT engine for meta-evaluation.

that hinder seamless communication. To address the practical chal-
lenges that arise in this setup, we proposed MetaSend, which selects
tensors for transmission that are most critical to the NMT. By adap-
tively learning the sending threshold in each FL round based on
meta-learning, we saw that MetaSend not only improves commu-
nication efficiency, but also effectively captures the NMT threshold
for sending. Our extensive experiments across two diverse NMT
datasets underscored the prowess of MetaSend, encompassing a
range of scenarios and in-depth ablation studies. Not only did it
outperform existing baselines in terms of machine translation qual-
ity, but it also showcased a remarkable reduction in communication
costs within the federated learning framework. These results solid-
ify the practical applicability and superiority of MetaSend.
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Output (Zh): EF R KEETFESIBAEINERXREXEENESENS,

As of late, the United Nations Millennium Declaration listed solidarity as a fundamental
nal relations.

EfR X RERBRIEAMNE.

DP

Output (Zh): R BKAE

MetaSend

Recently, the United Nations Millennium Declaration listed solidarity as a fundamental
value of fundamental importance in international relations.

Output (Zh): R, (KEETFES) BABEINERAREXEENESMEZ—.

Recently, the United Nations Millennium Declaration identified solidarity as one of the
fundamental values essential to international relations.

Figure 8: Translation examples (Ru — Zh) of DP;, MetaSend,,
and ground truth. Our method aligns better with ground
truth, and DP; generates redundant tokens (“Z= T and “¥[”).

Output (Zh): 2007 FFRE X LTI ELMRTIEER (BFEIR T IXLTIBLAOFFIRATIEL.

DP The 2007 budget included funds for these offices, but there was a delay in their
opening.
Output (Zh): 2007 FFREE X LD FARFIE 8 (BREIR TiX LD ELAIFFR.
MetaSend

The 2007 budget included funds for these offices but delayed their opening.

G J Output (Zh): 2007 FFRECEMRmF T IXLLIERAVE 2R (BHEIR T FRRATE.

roun
Truth Funding for these offices was included in the 2007 budget, but the opening was

delayed.

Figure 9: Translation examples (Ru — Zh) of DP;, MetaSend;,
and ground truth. Our method generates the same sentiment-
meaning word (“£1R”) as ground truth, while DP; generates
similar but different sentiment-meaning words (“1£i%”).

A DETAILS FOR DATASETS AND EVALUATION
METRICS

This paper considers two widely used NMT datasets: MTNT [17]
and UN Corpus [36]. The Machine Translation of Noisy (MTNT)
dataset [17] was gathered from user comments on Reddit discussion
threads. The dataset contains two language directions: English to
French (En — Fr) and English to Japanese (En — Ja). The dataset
contains 5,605 instances in each direction for training and approx-
imately 1k each for validation and test set. The UN Corpus [36]
consists of manually translated UN documents over the years 1990
to 2014, and we consider three official UN language directions: Eng-
lish to French (En — Fr), Arabic to Spanish (Ar — Es), and Russian
to Chinese (Ru — Zh). The dataset contains 80k instances in each
direction for training and approximately 10k each for validation
and test set.

The evaluation metric sacreBLEU is widely used in the machine
translation community and is built upon BLEU [18]. Our study
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uses the standard sacreBLEU settings, including nrefs:1, mixed case,
eff:no, tok:13a, smooth:exp, and version 2.0.0. For, Japanese (Ja) and
Chinese (Zh), we use their respective tokenizers to ensure accurate
evaluation. We utilize the default COMET model as suggested by
the authors, which employs a reference-based regression approach
and is developed based on XLM-R. This model has been trained
on direct assessments from WMT17 to WMT20 and assigns scores
ranging from 0 to 1, where 1 indicates a perfect translation. The
COMET metric has been found to exhibit segment-level correla-
tion with human evaluations and has demonstrated its potential to
distinguish between high-performing systems more effectively.

B HYPERPARAMETERS AND COMPUTE
SETTINGS

For all the experiments, the MT engine (M2M-100 model) is opti-
mized using the Adam optimizer. We search the learning rates from
[1e-2, 5e-3, 1e-3, 5e-4, 1e-4] and select 5e-3 as the optimal learning
rate for the MT engine. The batch size for the MT engine is set to
2 for both client training and updating the MAML module. The
MAML module is optimized via Adam optimizer with a learning
rate le-3, which is also searched from [1e-2, 5e-3, 1e-3, 5e-4, le-4].

We run all experiments on a 3-GPU cluster of Tesla V100 GPUs,
with each GPU having 32GB of memory. Centralized experiments
will be conducted on one of our 3 Tesla V100 GPUs, while FL exper-
iments will utilize K GPUs, where K is the total number of clients.
Each centralized experiment ran for approximately four hours and
two days for the NTMT and UNMT datasets, respectively, when
run on a single GPU. For FL experiments on the NTMT dataset,
each simulation was completed in about 2 hours by distributing
clients’ data on 2 GPUs. For FL experiments on the UNMT dataset,
each simulation was run for approximately 14 hours by distributing
clients’ data on 3 GPUs.

C CASE STUDY

This section provides some translation examples to Section 5.1.
Figure 8 illustrates that our method generates translations that
closely align with the ground truth by utilizing similar words. In
contrast, the baseline method produces translations with redundant

tokens, leading to potential confusion within the sentence. Figure 9
shows that our method employs the same words as the ground

truth, conveying a neutral sentiment. In comparison, the baseline
method generates similar words but with a negative sentiment.
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