
A Privacy Preserving and Byzantine Robust
Collaborative Federated Learning Method Design

Nuocheng Yang→, Sihua Wang→†, Mingzhe Chen‡, Changchuan Yin→, and Christopher G. Brinton§

→Beijing Laboratory of Advanced Information Network, Beijing University of Posts and Telecommunications,
Beijing, China, Emails: {YangNuoCheng, sihuawang, ccyin}@bupt.edu.cn†State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China.‡Department of Electrical and Computer Engineering and the Institute for Data Science and Computing, University of Miami,

Coral Gables, FL USA, Email: mingzhe.chen@miami.edu.§ School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA, Email: cgb@purdue.edu.

Abstract—Collaborative federated learning (CFL) enables de-
vice cooperation in training shared machine learning models
without reliance on a parameter server. However, the absence of
a parameter server also impacts vulnerabilities associated with
adversarial attacks, including privacy inference and Byzantine
attacks. In this context, this paper introduces a novel CFL
framework that enables each device to individually determine
the subset of devices to transmit FL parameters to over the
wireless network, based on its neighboring devices’ location,
current loss, and connection information, to achieve privacy
protection and robust aggregation. This is formulated as an
optimization problem whose goal is to minimize CFL training
loss while satisfying the privacy preservation, robust aggregation,
and transmission delay requirements. To solve this problem, a
proximal policy optimization (PPO)-based reinforcement learning
(RL) algorithm integrated with a graph neural network (GNN)
is proposed. Compared to traditional algorithms that use global
information with high computational complexity, the proposed
GNN-RL method can be deployed on devices based on neighbor-
ing information with lower computational overhead. Simulation
results show that the proposed algorithm can protect data privacy
and increase identification accuracy by 15% compared to an
algorithm in which devices are partially clustered for model
aggregation.

Keywords—Collaborative federated learning, data privacy,
graph neural network, reinforcement learning.

I. INTRODUCTION

Federated learning (FL) [1], [2] enables devices to coop-
eratively train a machine learning (ML) model without data
exchange, thus improving data privacy. However, standard FL
requires devices to transmit their FL models to a parameter
server, which is not always feasible due to limited wireless
resources (i.e., energy and bandwidth resources) in practical
networks. To address this problem, a novel FL framework that
combines the principles of collaborative learning with feder-
ated learning, called collaborative federated learning (CFL),
has been proposed [3], [4]. In particular, CFL enables devices
to collaboratively train an ML model via exchanging their
local FL model parameters with their neighboring devices,
without the reliance on a parameter server. However, compared
with centralized FL, CFL introduces new data leakage and
Byzantine attack vulerabilities [5] since a single dishonest
device can affect the entire network and final results.

This work was supported in part by Beijing Natural Science Foundation
under Grant L223027, in part by the National Natural Science Foundation
of China under Grants 61629101 and 61671086, in part by the China 973
Program under Grant 2012CB315801, and in part by the U.S. National Science
Foundation under grant CNS-2146171 and CPS-2313109.

Recently, a number of works such as [6]–[8] studied the
use of differential privacy (DP) and encryption gradient algo-
rithms, such as Homomorphic encryption and secure multi-
party computation (MPC), to address data leakage issues. The
authors in [6] introduced proxy and DP schemes into CFL
to safeguard privacy guarantees. The authors in [7] designed a
privacy-preserving and reliable decentralized FL scheme based
on local DP and dynamic encryption. The authors in [8] in-
troduce Gaussian noise into the signal of model parameters to
satisfy DP requirements. However, incorporating DP schemes
into traditional neural networks introduces noise, thus reducing
CFL performance. To overcome this, we consider a Bayesian
Neural Network (BNNs) approach to treat parameters as
random variables, inherently incorporating sampling bias into
CFL model parameters. Thus, BNNs effectively safeguard both
the model and its gradients. Additionally, BNNs have been
shown to outperform traditional neural networks in certain
instances by mitigating overfitting, especially in situations with
limited datasets that are susceptible to data leakage.

A number of works such as [5], [9], [10] focused on
resisting Byzantine attacks in distributed learning. The authors
in [5] proposed a Byzantine-resilient aggregation rule that
compares the Euclidean distance of the estimate of each
neighbor device with its own estimate to defeat Byzantine
adversaries in CFL. The authors in [9] designed a decentralized
approach that enables all participating nodes to collaboratively
identify malicious entities through an innovative cross-check
mechanism. The authors in [10] designed a decentralized
blockchain-based FL architecture by using a secure global ag-
gregation algorithm to resist malicious devices. However, these
approaches require frequent communication among devices
and depend on device cooperation or additional computations
to defend against malicious attacks.

The authors in [11], [12] have explored solutions for both
privacy leakage and Byzantine attacks. The authors in [11]
designed a Byzantine-resilient secure aggregation framework
based on integrated stochastic quantization, verifiable outlier
detection, and a secure model aggregation approach. The
authors in [12] proposed a hierarchical CFL framework to
identify harmful devices within a group and regularly share
model information with surrounding groups. However, in
these studies, frequent and additional communication and
computation are necessary to defend against Byzantine attacks,
which will bring significant computational and communication
overhead. Therefore, they are not well-suited for large-scale

2024 IEEE International Conference on Communications (ICC): Mobile and Wireless Networks Symposium

978-1-7281-9054-9/24/$31.00 ©2024 IEEE 3598

IC
C

 2
0

2
4

 -
 I

E
E

E
 I

n
t
e

r
n

a
t
io

n
a

l
C

o
n

fe
r
e

n
c
e

 o
n

 C
o

m
m

u
n

ic
a

t
io

n
s
 |

 9
7

8
-1

-7
2

8
1

-9
0

5
4

-9
/
2

4
/
$

3
1

.0
0

 ©
2

0
2

4
 I

E
E

E
 |

 D
O

I:
 1

0
.1

1
0

9
/
IC

C
5

1
1

6
6

.2
0

2
4

.1
0

6
2

2
6

2
6

Authorized licensed use limited to: Purdue University. Downloaded on January 27,2025 at 22:40:13 UTC from IEEE Xplore. Restrictions apply.

Device M

Private data

Arbitrary
model

𝜃𝑖,𝑡+1
′ 𝜃𝑖,𝑡+1

Byzantine
attacker B

DLG
attacker D

Fig. 1. Illustration of the considered CFL model.

CFL scenarios.
In this paper, we develop a novel, fully distributed CFL

framework that enables distributed devices to train an ML
model in a privacy-preserving and Byzantine-robust manner.
Our key contributions are as follows:

• We propose a novel CFL framework in which mobile
devices collaboratively train an ML model via exchang-
ing their FL parameters with their neighboring devices,
under the attacks of Byzantine and deep leakage from
gradient (DLG) adversaries. In the considered model,
due to the limited resources and privacy requirements,
each device must select a subset of devices per FL
iteration to exchange their FL parameters with, aiming to
minimize CFL training loss. This problem is formulated
as an optimization problem aiming to minimize the loss
function of CFL training while satisfying the privacy
and transmission delay requirements, by determining the
devices that each device transmits its FL parameters to.

• To solve the formulated problem, we proposed an efficient
graph neural network (GNN) reinforcement learning (RL)
method where we model devices and connections as the
set of nodes and edges in the graph. We search for the
adaptive model transmission policy based on the proximal
policy optimization (PPO) algorithm. Compared to the
traditional solutions for both privacy leakage and Byzan-
tine attacks, the proposed GNN RL method can achieve
privacy requirements without the need for encryption or
the introduction of noise.

Simulation results show that, compared to a clustered CFL
baseline, the proposed PPO-based algorithm can protect data
privacy and increase identification accuracy by 15%.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a wireless network that consists of a set M of
M mobile devices for collaboratively training an ML model,
and a set B of B Byzantine attackers aiming to disrupt the
CFL learning process by transmitting entirely arbitrary model
parameters. Additionally, within this network, a subset of
D devices, known as honest but curious deep leakage from
gradient attackers, are hidden in M. These DLG attackers aim

to reconstruct the private data of neighboring devices from the
updates of model parameters. This is summarized in Fig. 1.

We assume that each device i in M has a dataset Di,

containing Ni training data samples with N =
M∑
i=1

Ni being

the total number of training data samples across devices. Each
training data sample n consists of an input feature vector
xi,n → RNI→1 and a corresponding label vector yi,n → RNO→1.
In the considered model, the objective of devices in M is to
solve the following optimization problem overall data samples
against Byzantine adversaries while safeguarding data privacy:

min
w1,t,...,wM,t

1

M

M∑

i=1

F (wi,t) , (1)

s.t. wi,t = wj,t, ↑i, j → M, (1a)

where wi,t → RV→1 is a vector to capture the local FL model
on device i at iteration t. F (wi,t) of device i is given by

F (wi,t) =
1

Ni

Ni∑

i=1

f (wi,t;ω (wi,t,xi,n) ,yi,n) , (2)

where ω (·) denotes the neural network function and
f (wi,t;ω (wi,t,xi,n) ,yi,n) is the loss function that measures
the difference between the output ω (wi,xi,n) and label yi,n.

In contrast to the optimization-based approaches that treat
model weights as unknown parameters, Bayesian learning
estimates the model weights by a maximum posterior prob-
ability (MAP) estimator given the distribution of the weights
conditional on the training dataset. Specifically, the local
objective function of device i is expressed as

min
wi,t

F (wi,t) = ↓min
wi,t

logP (wi,t;Di) , (3)

where P (wi,t;Di) is the local joint distribution of wi,t and
Di, which is

P (wi,t;Di) = Pl(Di|wi,t)Pi,0(wi,t), (4)

where Pi,0 (wi) is the local prior and Pl(Di|wi) is the local
likelihood. For each data sample (xi,n,yi,n) → Di, the
data likelihood can be given by a parameterized Gaussian
distribution:

Pl(Di|wi,t) =
Ni∏

n=1

Pl (yi,n|ω (wi,xi,n)) . (5)

The data likelihood, related to the cross-entropy loss in classifi-
cation problems, can be modeled by a categorical distribution:

Pl (yi,n|ω (wi,xi,n)) = exp (↓CE (yi,n;ω (wi,xi,n))), (6)

where CE (·) is the cross-entropy function.

A. CFL Local Training Process

The main task for training Bayesian Neural Networks
(BNNs) on device i at iteration t is inferring the posterior
distribution P (wi,t|Di) given the dataset Di at iteration t,
which is given by

P (wi,t|Di) =
Pl(Di|wi,t)Pi,0(wi,t)∫

Pl(Di|wi,t)Pi,0(wi,t)dwi,t
↔P (wi,t;Di) .

(7)

2024 IEEE International Conference on Communications (ICC): Mobile and Wireless Networks Symposium

3599
Authorized licensed use limited to: Purdue University. Downloaded on January 27,2025 at 22:40:13 UTC from IEEE Xplore. Restrictions apply.

Since the denominator of (7) does not have a general closed-
form expression, it is infeasible to calculate P (wi,t|Di)
directly. Hence, we use Variational Inference (VI) to estimate
P (wi,t|Di) by q (wi,t), which can be represented as

q (wi,t) = N
(
wi,t;mi,t, diag(s

2
i,t)

)
, (8)

where mi,t is the mean of the approximation, si,t is the
standard deviation, and diag is the diagonal matrix. Com-
pared to traditional neural networks that treat wi,t as a fixed
constant, we sample wi,t from the distribution q (wi,t) for
the training and inferencing. By initializing Pi,0 (wi) = 1,
each device in set M at the t-th iteration first approximates
Pi,t (wi)P (wi;Di) by q (wi,t), which is given by

q (wi,t) = arg min
q(wi,t)

D (q (wi,t) ||Pi,t (wi)P (wi;Di)) , (9)

where D (·) denotes the Kullback-Leibler (KL) divergence.
On the other hand, the Byzantine devices in set B generate
parameters randomly at each iteration. In the next subsection,
we will introduce a CFL aggregation method to update the
prior distribution Pi,t in each iteration.

B. CFL Model Aggregation Process

Given the updated local estimation Pj,t (wj,t), each device i
exchanges q (wi,t) with its neighboring devices. Then, devices
in set M update their local prior distribution Pi,t (wi,t) as
follows:

Pi,t (wi,t) ↔ exp




∑

j↑R

ui,j,t

||ui,t||
logPj,t (wj,t)



 , (10)

where ut = [u1,t, ...,uM,t] is the model transmission matrix,
ui,t = [ui,1,t, ..., ui,M,t] being a vector of FL transmission
indices of device i. Here, ui,j,t = 1 implies that device i
will exchange its local FL model with device j at iteration t,
and ui,j,t = 0 otherwise. ||ui,t|| =

∑
j↑R

ui,j,t is the number

of devices that will transmit FL parameters to device i. Set
R = M ↗ B contains total R devices from both M and B.
After T iterations, each device estimates the model weights
according to its estimated marginal distribution:

w↓
i,T = argmax

wi,T

q (wi,T) . (11)

C. CFL Model Transmission Process

We adopt an orthogonal frequency division multiple access
(OFDMA) transmission scheme. Let W be the bandwidth that
the device can use for model parameter transmission and pi,j,t
be the transmit power of device i. The data transmission delay
of device i transmitting FL parameters to device j is

li,j,t(ui,t,ωt,W, pi,j,t) =
A

W
||ui,t|| log

(
1 + pi,j,thi,j,t(ωt)

ω2
N

) ,

(12)
where hi,j,t = εi,j,td

↔2
i,j,t is the channel gain between device

i and j with εi,j,t being the Rayleigh fading parameters, and
di,j,t is the distance between device i and j. The location
of each device i at time t is captured by a vector ωi,t =

[ωi,t,1,ωi,t,2], with ωt = [ω1,t, ...,ωM,t] being the location
matrix across users at iteration t. ϑ2

N
represents the variance of

additive white Gaussian noise. A is the size of the transmitted
prior distribution Pj,t (wj,t), which is assumed to be equal for
each device.

D. DLG adversaries

The DLG attackers aim to reconstruct the private data from a
device i using the received parameters w↗

i,t↔1 and the gradients
↘w↗

i,t = 1
εt

(
w↗

i,t ↓w↗
i,t↔1

)
. To reconstruct the private data

from ↘w↗
i,t, the DLG attacker first initializes dummy input

x↗ and dummy labels y↗. Then, the attacker minimizes the
distance between ↘w↗

i,t and dummy gradients ↘wi,t, which
is calculated from x↗, y↗, and w↗

i,t↔1 via minimizing the
following objective function using the BP algorithm:

x↓,y↓ = argmin
x→,y→

(
||↘w↗

i,t ↓↘wi,t||
)

= argmin
x→,y→

(
||
ϖf

(
w↗

i,t↔1,x,y
)

ϖwi,t↔1
↓↘w↗

i,t||
)
.

(13)

Given the optimal reconstruction data x↓ that satisfies (13),
we define the Euclidean distance between x and x↓ as

ϱ2 (x,x
↓) =

√
A∑

a=1

(xa ↓ x↓
a)

2, (14)

where A denotes total number of elements in x. Then, the
data leakage risk of device i among a batch of data is given
by

ςi,t =
1

S

S∑

s=1

ϱ2
(
xi,s,t,x

↓
i,s,t

)
, (15)

where S is the batch size. The device can only ensure that
the output does not contain information from (15), as it is
impossible to detect deep gradient leakage attacks relying
solely on the behavior.

E. Problem Formulation

Our goal is to minimize the FL training loss and total
energy consumption while ensuring constraints of privacy
preservation, robust aggregation, and transmission delay in
each iteration. Minimizing the FL training loss is employed
as a strategy to counteract Byzantine attackers when the con-
vergence of devices’ loss values is hindered by such attacks.
The optimization problem is formulated as

min
U ,P

1

R

R∑

i=1

F (wi,T) , (16)

s.t. li,j,t (ui,t,ωt, B, pi,j,t) ↭ φ, ↑i, j → R, ↑t → T , (16a)
ςi,t ↫ ς↓, ↑i → R, ↑t → T , (16b)
R∑

j=1

pi,j,t ↭ pmax, ↑i → R, ↑t → T , (16c)

where U = [u1, ...,uT]↘ is the FL model transmission matrix,
and P = [p1, ...,pt, ...,pT]↘ is the transmit power matrix.
pmax is the transmit power constraint. φ is the maximum FL
model transmission delay per iteration allowed by the network

2024 IEEE International Conference on Communications (ICC): Mobile and Wireless Networks Symposium

3600
Authorized licensed use limited to: Purdue University. Downloaded on January 27,2025 at 22:40:13 UTC from IEEE Xplore. Restrictions apply.

operator. (16a) is a constraint on the FL model transmission
delay per iteration, (16b) is the privacy-preserving require-
ment, and (16c) is the transmit power constraint. Here, we
assume that each device i → B has a constant loss since
the model parameters in device i are generated randomly and
remain unchanged.

Since current algorithms often require extensive device
interaction to detect Byzantine attacks or extensive encryption
operations to resist data leakage, which may increase com-
munication overhead and complexity, (16) is challenging to
solve through current algorithms. To overcome this challenge,
we propose a fully distributed algorithm based on GNNs that
enables each device to determine the FL model transmis-
sion matrix U only with its neighboring devices’ location
information, current loss, and connection information. In the
following, we will explain the details of the GNN and RL
agents within our approach.

III. GNN-BASED RL FOR CFL TRANSMISSION
OPTIMIZATION

We now introduce a GNN based proximal policy optimiza-
tion (PPO) algorithm to solve problem (16). Compared to
standard PPO algorithms [13], our proposed PPO approach
uses GNNs to extract network topological features including
both wireless channel and edge device features for device
connection probability prediction. Here, the use of PPO instead
of value-based deep reinforcement learning (RL) approaches
follows from the output (i.e., connection probability of each
device) of a GNN being continuous, since PPO can process
continuous data (particularly continuous actions).

We first introduce the use of the GNNs in the PPO algorithm
to calculate the connection probability of each device. Here,
the connection probability of GNNs will be optimized by the
PPO algorithm. Then, we explain the components of the PPO
algorithm. Finally, we show the entire procedure of using
our GNN-based PPO algorithm to optimize the connection
probabilities for each device.

A. Graph Neural Network

In the proposed PPO method, GNNs will be used for policy
and critic functions. Hence, the input of GNNs will be the state
of the PPO algorithm. To determine the input of the GNN
in the PPO algorithm, we first construct a k nearest neighbor
graph [14]. Here, we use a k nearest neighbor graph instead of
a fully connected graph for the input of the GNN. Let L1 (i, k)
be the set of the first hop devices that can directly connect to
device i and L2 (i, k) be the set of the second hop devices that
can connect to device i via L1 (i, k). Let L (i, k) = L1 (i, k)↗
L2 (i, k)↗ {i}, with |L (i, k) | being the number of devices in
L (i, k). The input to the GNN model for device i comprises
a vector that includes concatenated locations and loss values
for the devices in L2 (i, k) at iteration t, which is represented
as

εi,t =
(
ω1,t, ...,ω|L(i,k)|,t


,

F (w1,t) , ..., F

(
w|L(i,k)|,t

))↘
,

(17)
where εi,t =


↼i,1,t, ..., ↼i,|L(i,k)|,t


→ R|L(i,k)|→3, and (·, ·) is

the operation of concatenating two vectors into a new vector
by stacking them vertically. Here, εi,t will be used as the

input of both the policy and critic functions. The hidden layer
of each GNN consists of two graph convolutional network
layers (GCNs). The output of the GNN based policy function
is a probability distribution µi,t =


µi,1,t, ..., µi,|L1(i,k)|,t


of

device i connecting to its first hop devices. The output of the
GNN based critic function is an estimate of the value function
corresponding to the current policy µi,t for a given state εi,t.

B. Components of RL Method

The proposed PPO algorithm consists of six components:
a) agent, b) action, c) state, d) policy, e) critic, and f) reward,
which are specified as follows:

• Agent: The agents are mobile devices in set R.
• Action: The continuous action of device i at time slot

t is µi,t which is the output of the GNN based policy
function. The action jointly considers the FL performance
optimization, privacy-preserving, and robust aggregation
requirements. Given µi,t, the next step is to determine the
FL model transmission matrix ui of each device i. Then,
each device i will exchange their local prior distribution
based on ui. We first use a set Si =


µi,1, ..., µi,|L1(i,k)|



to represent the set of elements in µi. We denote µ
→

i as
the ≃k

2 ⇐-th largest element in Si. The symbol ≃x⇐ repre-
sents the floor function, which gives the largest integer
that is less than or equal to the real number x. Then
we can define set S →

i =

j|µi,j ↫ µ

→

i, j, z → L1 (i, k)


.
Hence, element ui,j in FL model transmission matrix is
determined by

ui,j =


1, if j → S →

i and i → S →

j ,

0, otherwise.
(18)

The FL model transmission matrix ut is completed based
on each device executing its action.

• State: The state, defined as εi,t, consists of: 1) the
devices’ position


ω1,t, ...,ω|L(i,k)|,t


and 2) the loss

value of each device

F (w1,t) , ..., F

(
w|L(i,k)|,t

)
.

• Policy: The policy is the probability of the agent choosing
each action given the state εi,t. The PPO algorithm uses
a GNN parameterized by ϑt to build the relationship
between the input state εi,t and the output policy that
can achieve the maximum total reward, which is also
called the actor. Then, the policy can be expressed as
ϖεt (εi,t,µi,t) = P (µi,t|εi,t).

• Critic: The critic Vε
→
t
(st) in the proposed method is

a function to estimate the value-function of the current
policy for a given state, which is a GNN parameterized
by ϑ

→

t.
• Reward: The reward of choosing action µi,t based on

state εi,t is

r (µi,t|εi,t)=↓F (wi,t)↓↽i

M∑

j=1

{li,j,t(ui,t,ωt,B,pi,j,t)↔ϑ}

↓⇀i {
M∑
j=1

ϖi,j,t↔ϖ↑

}↓⇁i {
M∑
j=1

pi,j,t↔pmax

},

(19)

2024 IEEE International Conference on Communications (ICC): Mobile and Wireless Networks Symposium

3601
Authorized licensed use limited to: Purdue University. Downloaded on January 27,2025 at 22:40:13 UTC from IEEE Xplore. Restrictions apply.

... ...

Critic

Value function Policy

... ...

State

Reward

State

Agent

Actor

Environment Action

Fig. 2. Illustration of our proposed GNN-based algorithm.

where {x} = x if x > 0, {x} = 0, otherwise.
r (µi,t|εi,t) is the loss of device i resulting from action
µi,t at state εi,t.

C. PPO Algorithm for Total Reward Maximization

Next, we introduce the entire procedure of training the
proposed PPO algorithm for solving problem (16). In the
proposed PPO algorithm, the objective function of the actor is

L (εi,t,µi,t|ϑt) = E [pεtA (εi,t,µi,t)] , (20)

where

A (εi,t,µi,t) = r (εi,t,µi,t) + γVε
→
t
(εi,t+1)↓ Vε

→
t
(εi,t) ,

(21)
and pεt = ϖεt/ϖεt↓1 is the advantage function and the
probability ratio of the current policy and the old policy
function, respectively. To satisfy the trust region constraint in
PPO, the proposed PPO-based approach maximizes a clipping
surrogate objective function, which is expressed as

Lc (εi,t,µi,t|ϑt)
=E[min{pεtA (εi,t,µi,t),ζ (pεt ,1↓ ▷,1 + ▷)A (εi,t,µi,t)}] ,

(22)
where ▷ is a hyper-parameter that adjusts the clipping fraction
of the clipping range, and ζ (·) is the clip function. Then,
we can update the actor model ϑt by mini-batch stochastic
gradient descent (SGD) method which can be represented as

ϑt = ϑt↔1 ↓
1

B

∑

(st,at,rt,st+1)

↘εt↓1L
c (st, at|ϑt↔1) . (23)

After conducting n iterations of policy function optimization,
we utilize regression on the mean-squared error to adjust the
value function Vε→ based on the actual rewards, which is given
by

ϑ
→

t = ϑ
→

t↔1↓
1

B

∑

(ϑi,t,µi,t,ri,t+1,ϑi,t+1)

↘ε
→
t↓1

(
Vε

→
t↓1

(εi,t)↓ ri,t
)2

.

(24)
By iteratively running the policy updating step (23) and the
state-value updating step (24), the parameters ϑt and ϑ↗

t of the
policy and state-value can find the relation between the device
connections and the total reward, jointly considering the CFL

Algorithm 1 GNN based PPO Algorithm for FL model
transmission optimization

1: Initialize policy parameters ϑt, initial state-value function
parameters ϑ

→

t.
2: for t = 1, 2, . . . , T do
3: Collect (st, at, rt, st+1) by running policy ϖεt in the

environment;
4: Compute advantage estimates, A (st,at) based on the

current state-value function Vε
→
t
;

5: Update the policy by maximizing the (22);
6: Fit state-value function by regression on mean-squared

error based on (24);
7: end for

performance, privacy protection and robust aggregation. The
specific training process of the proposed PPO algorithm is
summarized in Algorithm 1.

D. Optimization of Transmit Power Vector with Fixed FL

Model Transmission Matrix

Once the FL model transmission matrix U has been deter-
mined, the minimal transmit power vector pi,t of each device
can be obtained through the following lemma, similar to [15].

Lemma 1. The optimal transmit power pi,j,t of each device
i transmitting its model to device j is given by

p↓i,j,t =
ui,j,tϑ2

N

hi,j,t (ωt)

(
2

A||ui||
Bω ↓ 1

)
. (25)

IV. SIMULATION RESULTS

For our simulations, we consider a network with a circular
area having a radius r = 1000 m, comprising 8 devices
in set M and 4 devices in set B. The other parameters
used in simulations are the same as in [15]. We consider
the use of FL for handwritten digit identifications based on
the MNIST dataset [16]. For comparison, we evaluate the
proposed algorithm by comparing it with a clustered CFL
baseline [12] that does not involve encryption. Within the
clustered CFL, clusters are formed by grouping together k
nearest neighboring devices. During each iteration of the

2024 IEEE International Conference on Communications (ICC): Mobile and Wireless Networks Symposium

3602
Authorized licensed use limited to: Purdue University. Downloaded on January 27,2025 at 22:40:13 UTC from IEEE Xplore. Restrictions apply.

(a) Clustered CFL.

(b) Proposed method.

Fig. 3. Reconstruction results of the DLG attack.

0 50 100 150

 Number of iterations

10

20

30

40

50

60

70

80

90

 I
d
en

ti
fi

ca
ti

o
n
 a

cc
u
ra

cy

 Proposed method

 Clustered CFL

Fig. 4. Test accuracy vs. the number of iterations.

clustered CFL, one device within the cluster is chosen for
model aggregation and detecting potential Byzantine attackers.

In Fig. 3, we show how the reconstructed image changes
as the number of DLG attack iterations varies. From Fig.
3(a), we observe that with the clustered CFL baseline, the
DLG attackers can recover the raw data of edge devices.
This is due to the fact that a device in a cluster knows the
parameters of other devices in the same cluster at each training
iteration, which may lead to data leakage. In contrast, in Fig.
3(b), the proposed algorithm prevents data leakage, and the
DLG attackers cannot recover raw data of the devices. This
is due to the fact that the proposed method aggregates the
prior information from different neighboring devices in each
iteration, and the model update is composed of the likelihood
from local data and the KL divergence with the aggregated
prior and local likelihood.

In Fig. 4, we show how the average identification accuracy
of both considered algorithms changes as the number of
iterations varies. In particular, in Fig. 4, compared to clustered
CFL, the proposed method can improve the identification
accuracy by up to 15% over time. This improvement stems
from the fact that the proposed method detects Byzantine at-
tackers, thereby reducing the probability of exchanging model
parameters to minimize Byzantine attackers’ impact.

V. CONCLUSION

In this paper, we proposed a novel CFL framework in
which mobile devices collaboratively train an ML model

via exchanging their FL parameters with their neighboring
devices, in the presence of Byzantine and DLG adversaries.
We combined PPO with GNN to capture the connections
between neighboring devices’ information and the probability
of device connections. The proposed method enables each
device to individually determine its FL parameter transmission
matrix using its neighboring devices’ location information,
current loss, and connection information. Simulation results
demonstrated that the proposed algorithm can achieve robust
aggregation compared to clustered CFL, while ensuring data
privacy without any encryption or additional noise.

REFERENCES

[1] M. Chen, D. Gündüz, K. Huang, W. Saad, M. Bennis, A. V. Feljan,
and H. V. Poor, “Guest editorial special issue on distributed learning
over wireless edge networks-part II,” IEEE Journal on Selected Areas

in Communications, vol. 40, no. 2, pp. 445–448, Jan. 2022.
[2] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint

learning and communications framework for federated learning over
wireless networks,” IEEE Transactions on Wireless Communications,
vol. 20, no. 1, pp. 269–283, Oct., 2021.

[3] M. Chen, H. V. Poor, W. Saad, and S. Cui, “Wireless communications
for collaborative federated learning,” IEEE Communications Magazine,
vol. 58, no. 12, pp. 48–54, Dec. 2020.

[4] S. Wang, S. Hosseinalipour, V. B. Aggarwal, C. G. Brinton, D. J. Love,
W. Su, and M. Chiang, “Towards cooperative federated learning over
heterogeneous edge/fog networks,” IEEE Communications Magazine,
vol. 61, no. 12, pp. 54–60, May 2023.

[5] S. Guo, T. Zhang, H. Yu, X. Xie, L. Ma, T. Xiang, and Y. Liu,
“Byzantine-resilient decentralized stochastic gradient descent,” IEEE

Transactions on Circuits and Systems for Video Technology, vol. 32, no.
6, pp. 4096–4106, Oct. 2022.

[6] S. Kalra, J. Wen, J. C. Cresswell, M. Volkovs, and H. R. Tizhoosh,
“Decentralized federated learning through proxy model sharing,” Nature

Communications, vol. 14, pp. 2899, Mar. 2023.
[7] Y. Gao, L. Zhang, L. Wang, K-K Choo, and R. Zhang, “Privacy-

preserving and reliable decentralized federated learning,” IEEE Trans-

actions on Services Computing, vol. 16, no. 4, pp. 2879–2891, March
2023.

[8] S. Chen, D. Yu, Y. Zou, J. Yu, and X. Cheng, “Decentralized wireless
federated learning with differential privacy,” IEEE Transactions on

Industrial Informatics, vol. 18, no. 9, pp. 6273–6282, Jan. 2022.
[9] A. Gouissem, K. Abualsaud, E. Yaacoub, T. Khattab, and M. Guizani,

“Collaborative byzantine resilient federated learning,” IEEE Internet of

Things Journal, vol. 10, no. 18, pp. 15887–15899, Apr. 2023.
[10] Z. Yang, Y. Shi, Y. Zhou, Z. Wang, and K. Yang, “Trustworthy federated

learning via blockchain,” IEEE Internet of Things Journal, vol. 10, no.
1, pp. 92–109, Aug. 2023.

[11] J. So, B. Güler, and A. S. Avestimehr, “Byzantine-resilient secure
federated learning,” IEEE Journal on Selected Areas in Communications,
vol. 39, no. 7, pp. 2168–2181, Dec. 2021.

[12] Y. Li, X. Wang, R. Sun, X. Xie, S. Ying, and S. Ren, “Trustiness-
based hierarchical decentralized federated learning,” Knowledge-Based

Systems, vol. 276, pp. 110763, Sept. 2023.
[13] Y. Wang, M. Chen, T. Luo, W. Saad, D. Niyato, H. V. Poor, and S. Cui,

“Performance optimization for semantic communications: An attention-
based reinforcement learning approach,” IEEE Journal on Selected

Areas in Communications, vol. 40, no. 9, pp. 2598–2613, July. 2022.
[14] M. Lee, G. Yu, and G. Y. Li, “Graph embedding-based wireless link

scheduling with few training samples,” IEEE Transactions on Wireless

Communications, vol. 20, no. 4, pp. 2282–2294, Dec. 2021.
[15] N. Yang, S. Wang, M. Chen, C.G. Brinton, and C. Yin, “Energy

efficient collaborative federated learning design: A graph neural network
based approach,” in 2023 IEEE Global Communications Conference

(Globecom), Kuala Lumpur, Malaysia, Dec. 2023.
[16] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no.
11, pp. 2278–2324, Nov. 1998.

2024 IEEE International Conference on Communications (ICC): Mobile and Wireless Networks Symposium

3603
Authorized licensed use limited to: Purdue University. Downloaded on January 27,2025 at 22:40:13 UTC from IEEE Xplore. Restrictions apply.

