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Abstract 
Many extended reality (XR) devices present different views to the 
left and right eyes. Unwanted colorimetric differences between 
these views can cause perceptual artifacts that degrade binocular 
image quality. We present an image-computable model designed 
to predict the appearance of binocular views with colorimetric 
differences in XR displays. The model is fitted to data from a 
recent perceptual study in which people provided 
multidimensional responses about the appearance of stimuli 
simulating an optical see-through augmented reality device with 
interocular intensity differences. This work can be used to create 
preliminary assessments of binocular artifact appearance and 
inform XR display design. 
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1. Introduction 
Many extended reality (XR) devices use separate light sources 
and optics for the two eyes, so an understanding of their visual 
quality requires an understanding of binocular vision. For 
example, variations between the two eyes’ light sources and 
optics can introduce unintended colorimetric differences in the 
luminance, hue, and color saturation between the eyes. Large 
interocular differences can lead to annoyance and visual 
discomfort during viewing [1], however some differences can be 
tolerated without dramatic degradation to the user experience [2].  
The human visual system receives information from the two eyes 
as separate channels, and combines them to achieve a unified 
binocular percept of the world. When the intensity or color differs 
between corresponding features in the two eyes’ views, the 
binocular percept is often determined by the eye that is receiving 
the “higher energy” signal (i.e., higher luminance, contrast or 
color saturation) [3,4,5]. Thus, for example, a display defect 
present in only one eye may nonetheless create a binocular artifact 
if it results in a higher contrast pattern than what is seen by the 
other eye. However, the precise contribution of each eye’s view 
to the binocular percept depends on various factors, such as the 
surrounding context [6]. We refer to this aspect of binocular 
appearance as the “binocular summation,” because it can be 
modelled as a weighted summation of the two eye’s inputs. 
When differences between the two eyes exceed some threshold, 
additional perceptual phenomena are elicited that can lead to 
uniquely binocular perceptual artifacts [7,8]. For example, it is 
known from the vision science literature that people are able to 
detect colorimetric differences between the two eyes based on the 
appearance of luster (a shimmery, sometimes shiny appearance) 
[7,8] and rivalry (an alteration of perceptual appearance over 
time) [8]. We refer to these aspects of binocular appearance as the 
“binocular difference” because these phenomena tend to increase 
with increasing differences between the two eyes’ views.  

While computational models of binocular summation and 
binocular differencing based on human psychophysical studies 
exist, these models are limited in their utility for XR applications 
because they are based on data from simple stimuli that do not 
capture the complexity of natural vision [3,5,9,10]. For example, 
recent work modelling perception of uniform colored patterns 
found that the binocular color difference threshold has a range of 
30-50 units in the CIELAB space [11,12]. However, with more 
natural images, the difference threshold can deviate from this 
range [13]. With the complexity of imagery encountered in XR 
applications, it is thus challenging to build a simple model that 
robustly accounts for perceptual features of interest across a broad 
set of potential experiences. In the fields of image compression 
and tone mapping, several groups have introduced image-
computable algorithms for binocular summation and/or 
differencing that can be applied to arbitrary natural images 
[14,15,16,17]. However, these models have not yet been directly 
evaluated using human data that characterize binocular 
summation and differencing when people view colorimetric 
differences between the two eyes. In addition, many of these 
algorithms use sRGB values as inputs because the display 
properties were not quantified or reported for the dataset that was 
used to create the model [15,16,17], and thus cannot be used 
directly to address the appearance of colorimetric differences in 
XR display design.   
We propose a modelling framework that connects basic vision 
science models derived from simple stimuli and image-
computable algorithms that can be applied to colorimetric data. 
To guide the design of our model, we leveraged a recently 
published perceptual dataset that evaluated binocular summation 
and differencing with imagery that simulated colorimetric 
differences in optical see-through augmented reality (AR) 
viewing [18]. This dataset enables us to create an image-
computable framework that is relevant for XR applications. 
Because observer responses covered multiple features of the 
stimulus appearance, our model can evaluate aspects of binocular 
appearance resulting from both summation and differencing. Our 
proposed model performs two tasks: 1) it generates a binocular 
appearance image given a set of colorimetric differences in a pair 
of views (binocular summation), and 2) it computes a prediction 
of the likelihood that human observers will detect luster, rivalry, 
and related phenomena (binocular difference). While the dataset 
simulates AR viewing, we formulate the model with the aim that 
it can be used to inform design decisions for virtual reality (VR) 
as well. We assess our model performance using a held-out 
validation sample from this same dataset and show that the model 
predictions have a high correlation and low error with respect to 
the ground truth data.  
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2. Methods 
Dataset: The stimuli used in the perceptual study simulated 
optical see-through AR content, in which a semi-transparent 
circular AR icon [19] was superimposed on a natural image 
background [20] (Figure 1). These stimuli were created 
graphically by compositing each icon with a natural background 
image and the brightness of the icons was manipulated by 
adjusting the sRGB values before compositing. The stimuli were 
presented on a desk-mounted mirror haploscope with two LCD 
displays, such that each eye could receive a different view of the 
stimulus.  

 
Figure 1. Six example stimuli showing the left (L) and right 

(R) eye views of the reference pair, which could contain 
colorimetric differences or not. For the stimuli simulating 
no colorimetric difference, the icons had the same sRGB 
values in the two eyes. Stimuli that simulated colorimetric 

difference had icons with different values between two 
eyes. Image credits: Freepik and SYNS [19,20]. 

During each trial, observers (n=31) were asked to perform a 
matching task between two stimuli containing a given icon and 
background combination. One stimulus contained the reference 
icon. The reference icon sometimes had the same appearance in 
both eyes, and sometimes it had a colorimetric difference such 
that one eye’s icon was higher intensity than the other. At the 
same time, observers were shown an adjustable icon. This icon 
always had the same sRGB values in both eyes, and participants 
could use key presses to adjust the overall intensity of this icon to 
try to match it as closely as possible to the appearance of the 
reference. Once they found the best possible match, they were 
asked to judge whether the match was perfect or not (that is, was 
the adjustable icon identical to the reference, or did it contain 
some differences such as luster or rivalry). If it was not an exact 
match, that serves as an indication that people detected a 
binocular difference in the reference. With our model, we aimed 
to predict both the average perceived intensity of the best match 
across all observers (a measure of binocular summation) and the 
proportion of observers who indicated that the match was not 
perfect (as a measure of binocular difference).  
We included 36 stimuli reported in [18] that had four AR icons 
with different intensity levels shown against the same 
background. In addition, we included another 18 stimuli with 
different backgrounds. In total, there were 54 stimuli with 
different icon and background combinations and various 
colorimetric differences between the two eyes. We split the 
dataset into two subsets, using 81% of the data (44 stimuli) as the 
model building set, and 19% (10 stimuli) as a validation set.  

Model: Figure 2 shows an overview of the modelling pipeline. 
The inputs to the binocular vision model are pixel-wise CIEXYZ 
values simulating the imagery seen by each eye. Because we do 
not have the full display metrology information for the dataset 
that we are using, we implemented a preprocessing stage that 
approximates the XYZ values for each eye. First, we recreated the 
8-bit sRGB image bitmaps used in [18]. Next, we simulated the 
displayed image by combining these bitmaps with the measured 
white points for each of the haploscope LCD displays to 
approximate the corresponding XYZ maps for each eye using 
Matlab’s rgb2xyz function. The convert these maps into a more 
perceptually meaningful color space (CIELAB), we needed to 
determine a binocular white point. This white point can be 
interpreted as the white that the brain is adapted to given the two 
eyes’ inputs. For the model pipeline, we assume that the brain is 
adapted to the D65 illuminant (x,y= 0.31272,0.32903) and the 
higher luminance of the two displays. Next, we used Matlab’s 
xyz2lab function to convert the left and right XYZ maps to 
CIELAB (L*a*b*) maps with respect to this binocular white. The 
choice of the binocular white point could be switched with 
another standard illuminant. For example, we also tested the 
model using Illuminant E and did not find it to affect the model’s 
performance. Once in the L*a*b* space, the model has two paths 
to predict the binocular appearance associated with summation 
and differencing, which were hand-tuned to model the average 
best match resulting from the adjustment task and the probability 
that the match was imperfect, respectively.  

Figure 2. Overview of model pipeline.  
The summation path combines the left and right eyes’ images to 
create a prediction of the binocular image percept. This path 
comprises a pixel-wise weighted summation of the left and right 
eye’s input, in which the weight for each eye depends on the local 
contrast and intensity (lightness and color saturation) [3,4,5]. To 
determine the local contrast in each eye’s image, we computed 
local image gradients with a Prewitt filter, operating on the L*, 
a*, and b* channels separately. Gradient magnitudes less than 1 
were clipped to 0 such that color changes less than 1 were 
considered to be uniform to reduce small noise. When both eyes’ 
gradients were 0, the weights for both eyes were set to 0.5. We 
then summed across the three channels to obtain a single contrast 
value at each pixel. We found that implementing an averaging 
filter on the contrast map lead to a small improvement in the 
model accuracy. The final chosen size for the filter was 0.5 x 0.5 
degrees, which in this case was 30 x 30 pixels. We speculate that 
this may be due to local contours modulating the binocular 
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balance of their proximal surroundings [5]. Prior work has only 
considered luminance in modeling stimulus intensity because the 
stimuli were grayscale [5], but empirical work has shown that 
color saturation also plays a role in binocular summation [4]. In 
our pipeline, we therefore summed the L* channel with the 
absolute values of the a* and b* channels as a measure of intensity 
since the absolute value of the a* and b* channels can be thought 
of as approximating the color saturation. The resulting weights 
for the left and right eye inputs at each pixel location are then 
determined as follows: 

 

 
(1) 

where 𝐼 and 𝐶 are the image intensity and contrast, the subscripts 
l and r denote left and right eye respectively, and i,j denote the 
pixel row and column. The binocular L*a*b* map (𝐿𝑎𝑏𝑏) is 
determined by applying these weights (𝑤𝑙 , 𝑤𝑟) to the left and right 
eye’s L*a*b* images (𝐿𝑎𝑏𝑙 , 𝐿𝑎𝑏𝑟) before summing: 

    (2) 
Figure 3 shows a visualization of a left and right image pair, along 
with the weight assigned to each pixel and the resulting 
binocularly combined image.  

 

Figure 3. The left and right input images are shown, along 
with the assigned weight for each pixel. On the right is the 

resulting binocular image determined through weighted 
summation. The computations were done in L*a*b* space 

and converted to sRGB here for visualization. 
To determine the image selected as the best match to the reference 
icon in the perceptual task, the model iterates through all possible 
settings for the adjustable stimulus via a grid search method 
(using 50 steps from the minimum to the maximum possible icon 
intensity), and compares the resulting binocular image with the 
binocular image for the reference. The model match is the option 
with the smallest mean difference between the reference and 
adjustable binocular L*a*b* map as shown in Figure 4. 
In parallel, the model uses the difference in the two eye’s views 
of the reference to predict the probability that this best match was 
not a perfect match (i.e., the probability that luster, rivalry, or 
other binocular differences were detected). Once in the L*a*b* 
space, we used the existing standard color difference formula, 
dEab, to compute the difference between the two eyes, which is 
the Euclidean distance between the left and right eye color 
vectors. As in the summation calculation, we found that applying 
an averaging filter on the L*a*b* maps prior to computing dEab 
improved model performance. Contrary to traditional color 

difference formula that considers each pixel as a sample, this 
averaging suggests that a certain spatial area of binocular 
difference may be necessary for the visual system to detect the 
mismatch between the two eyes’ inputs. The averaging filter used 
was 1 x 1 degrees (60 x 60 pixels).  
 

 

Figure 4. To predict the best perceptual match, both the 
reference pair and pairs of the adjustable stimuli were run 
through the pipeline separately and the binocular L*a*b* 
maps were subtracted to find the pair with the smallest 

mean difference. 
After obtaining the dEab map, a binocular difference metric (𝑑) 
was defined based on the maximum difference value between the 
two eyes. We applied a hand-tuned transformation to dEab to 
constrain it to be between 0 and 1 to maximize the fit with the 
perceptual data, as follows:  

 

 
(3) 

3. Model Performance 
Figure 5 shows the human data (x axis) against the model fit (y 
axis). For the matching task (top plot), the axes reflect the average 
normalized icon brightness value that provided the best match to 
the reference stimulus. For the question about whether the match 
is exact, the axes reflect the proportion of observers that said they 
could not find a match through adjustment, meaning that there 
were residual differences in appearance between the reference 
and the adjustable stimuli. Table 1 shows the fitting performance 
for each subset of the data and for the full dataset in terms of 
correlation with the human data (r) and the mean error (ME). The 
model shows good performance for the both the model building 
and the validation subsets.  

Qualitatively, the model is slightly under predicting the values for 
the matching task, suggesting that it is performing slightly more 
binocular averaging than the human observers. The addition of a 
nonlinearity that biases percepts more towards the higher 
contrast/intensity image may improve the model fits. For the 
exact match judgement, the model is capturing the overall trend 
and correlates well with the human data. One potential use of this 
model is to estimate the maximum acceptable color difference for 
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a given display system by solving Equation 3 for max(dEab). For 
example, targeting a proportion (d) of less than 0.1 would mean 
that the maximum dEab should be less than 5. However, it is 
possible that more variance could be explained by considering 
other features of the binocular difference, in addition to the 
maximum difference.  

 

Figure 5. Data and model fits for the matching task (top) 
and the exact match question (bottom). Each symbol 
represents a unique stimulus. The dark circles are the 

model building stimuli and light triangles symbols are the 
validation stimuli. The black dashed line is the identity line. 
The error bars represent the 95% confidence intervals for 

the human data. 

Table 1. Pearson’s correlation coefficient (r) and mean 
error (ME) between the model fit and the human data for 
the model building subset, validation subset, and all data 

combined. 
Matching Task 

 Model building Validation  Combined 
r 0.98 0.98 0.98 
ME 0.04 0.05 0.05 

Exact Match Question 
 Model building Validation  Combined 
r 0.92 0.90 0.91 
ME 0.09 0.09 0.09 

4. Conclusion 
Binocular appearance models are important tools for developing 
XR technologies. Such models should consider the properties of 
the XR display and optics, the complexity of the content that 
people view of these displays, and the multifaceted nature of 
binocular perception. Towards this goal, we leveraged a new 
perceptual dataset to develop an initial model that uses display 
metrology and a perceptual colorspace to predict perceived 
binocular appearance and performance on the detection of 
binocular differences. Because the modelling pipeline is highly 
modular, alternative implementations could be tested to 
potentially improve model performance in the future.  
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