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Abstract

Many extended reality (XR) devices present different views to the
left and right eyes. Unwanted colorimetric differences between
these views can cause perceptual artifacts that degrade binocular
image quality. We present an image-computable model designed
to predict the appearance of binocular views with colorimetric
differences in XR displays. The model is fitted to data from a
recent perceptual study in  which people provided
multidimensional responses about the appearance of stimuli
simulating an optical see-through augmented reality device with
interocular intensity differences. This work can be used to create
preliminary assessments of binocular artifact appearance and
inform XR display design.
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1. Introduction

Many extended reality (XR) devices use separate light sources
and optics for the two eyes, so an understanding of their visual
quality requires an understanding of binocular vision. For
example, variations between the two eyes’ light sources and
optics can introduce unintended colorimetric differences in the
luminance, hue, and color saturation between the eyes. Large
interocular differences can lead to annoyance and visual
discomfort during viewing [1], however some differences can be
tolerated without dramatic degradation to the user experience [2].

The human visual system receives information from the two eyes
as separate channels, and combines them to achieve a unified
binocular percept of the world. When the intensity or color differs
between corresponding features in the two eyes’ views, the
binocular percept is often determined by the eye that is receiving
the “higher energy” signal (i.e., higher luminance, contrast or
color saturation) [3,4,5]. Thus, for example, a display defect
present in only one eye may nonetheless create a binocular artifact
if it results in a higher contrast pattern than what is seen by the
other eye. However, the precise contribution of each eye’s view
to the binocular percept depends on various factors, such as the
surrounding context [6]. We refer to this aspect of binocular
appearance as the “binocular summation,” because it can be
modelled as a weighted summation of the two eye’s inputs.

When differences between the two eyes exceed some threshold,
additional perceptual phenomena are elicited that can lead to
uniquely binocular perceptual artifacts [7,8]. For example, it is
known from the vision science literature that people are able to
detect colorimetric differences between the two eyes based on the
appearance of luster (a shimmery, sometimes shiny appearance)
[7,8] and rivalry (an alteration of perceptual appearance over
time) [8]. We refer to these aspects of binocular appearance as the
“binocular difference” because these phenomena tend to increase
with increasing differences between the two eyes’ views.

While computational models of binocular summation and
binocular differencing based on human psychophysical studies
exist, these models are limited in their utility for XR applications
because they are based on data from simple stimuli that do not
capture the complexity of natural vision [3,5,9,10]. For example,
recent work modelling perception of uniform colored patterns
found that the binocular color difference threshold has a range of
30-50 units in the CIELAB space [11,12]. However, with more
natural images, the difference threshold can deviate from this
range [13]. With the complexity of imagery encountered in XR
applications, it is thus challenging to build a simple model that
robustly accounts for perceptual features of interest across a broad
set of potential experiences. In the fields of image compression
and tone mapping, several groups have introduced image-
computable algorithms for binocular summation and/or
differencing that can be applied to arbitrary natural images
[14,15,16,17]. However, these models have not yet been directly
evaluated using human data that characterize binocular
summation and differencing when people view colorimetric
differences between the two eyes. In addition, many of these
algorithms use sRGB values as inputs because the display
properties were not quantified or reported for the dataset that was
used to create the model [15,16,17], and thus cannot be used
directly to address the appearance of colorimetric differences in
XR display design.

We propose a modelling framework that connects basic vision
science models derived from simple stimuli and image-
computable algorithms that can be applied to colorimetric data.
To guide the design of our model, we leveraged a recently
published perceptual dataset that evaluated binocular summation
and differencing with imagery that simulated colorimetric
differences in optical see-through augmented reality (AR)
viewing [18]. This dataset enables us to create an image-
computable framework that is relevant for XR applications.
Because observer responses covered multiple features of the
stimulus appearance, our model can evaluate aspects of binocular
appearance resulting from both summation and differencing. Our
proposed model performs two tasks: 1) it generates a binocular
appearance image given a set of colorimetric differences in a pair
of views (binocular summation), and 2) it computes a prediction
of the likelihood that human observers will detect luster, rivalry,
and related phenomena (binocular difference). While the dataset
simulates AR viewing, we formulate the model with the aim that
it can be used to inform design decisions for virtual reality (VR)
as well. We assess our model performance using a held-out
validation sample from this same dataset and show that the model
predictions have a high correlation and low error with respect to
the ground truth data.
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2. Methods

Dataset: The stimuli used in the perceptual study simulated
optical see-through AR content, in which a semi-transparent
circular AR icon [19] was superimposed on a natural image
background [20] (Figure 1). These stimuli were -created
graphically by compositing each icon with a natural background
image and the brightness of the icons was manipulated by
adjusting the sSRGB values before compositing. The stimuli were
presented on a desk-mounted mirror haploscope with two LCD
displays, such that each eye could receive a different view of the
stimulus.

colorimetric differences

no colorimetric differences

Figure 1. Six example stimuli showing the left (L) and right
(R) eye views of the reference pair, which could contain
colorimetric differences or not. For the stimuli simulating
no colorimetric difference, the icons had the same sRGB
values in the two eyes. Stimuli that simulated colorimetric

difference had icons with different values between two
eyes. Image credits: Freepik and SYNS [19,20].

During each trial, observers (n=31) were asked to perform a
matching task between two stimuli containing a given icon and
background combination. One stimulus contained the reference
icon. The reference icon sometimes had the same appearance in
both eyes, and sometimes it had a colorimetric difference such
that one eye’s icon was higher intensity than the other. At the
same time, observers were shown an adjustable icon. This icon
always had the same sRGB values in both eyes, and participants
could use key presses to adjust the overall intensity of this icon to
try to match it as closely as possible to the appearance of the
reference. Once they found the best possible match, they were
asked to judge whether the match was perfect or not (that is, was
the adjustable icon identical to the reference, or did it contain
some differences such as luster or rivalry). If it was not an exact
match, that serves as an indication that people detected a
binocular difference in the reference. With our model, we aimed
to predict both the average perceived intensity of the best match
across all observers (a measure of binocular summation) and the
proportion of observers who indicated that the match was not
perfect (as a measure of binocular difference).

We included 36 stimuli reported in [18] that had four AR icons
with different intensity levels shown against the same
background. In addition, we included another 18 stimuli with
different backgrounds. In total, there were 54 stimuli with
different icon and background combinations and various
colorimetric differences between the two eyes. We split the
dataset into two subsets, using 81% of the data (44 stimuli) as the
model building set, and 19% (10 stimuli) as a validation set.

Model: Figure 2 shows an overview of the modelling pipeline.
The inputs to the binocular vision model are pixel-wise CIEXYZ
values simulating the imagery seen by each eye. Because we do
not have the full display metrology information for the dataset
that we are using, we implemented a preprocessing stage that
approximates the XYZ values for each eye. First, we recreated the
8-bit sSRGB image bitmaps used in [18]. Next, we simulated the
displayed image by combining these bitmaps with the measured
white points for each of the haploscope LCD displays to
approximate the corresponding XYZ maps for each eye using
Matlab’s rgb2xyz function. The convert these maps into a more
perceptually meaningful color space (CIELAB), we needed to
determine a binocular white point. This white point can be
interpreted as the white that the brain is adapted to given the two
eyes’ inputs. For the model pipeline, we assume that the brain is
adapted to the D65 illuminant (x,y= 0.31272,0.32903) and the
higher luminance of the two displays. Next, we used Matlab’s
xyz2lab function to convert the left and right XYZ maps to
CIELAB (L*a*b*) maps with respect to this binocular white. The
choice of the binocular white point could be switched with
another standard illuminant. For example, we also tested the
model using [lluminant E and did not find it to affect the model’s
performance. Once in the L*a*b* space, the model has two paths
to predict the binocular appearance associated with summation
and differencing, which were hand-tuned to model the average
best match resulting from the adjustment task and the probability
that the match was imperfect, respectively.

input

CIEXYZ maps for left and right views + binocular white pomt

binocular vision model 1

left and right eye L*a*b* maps

summation | difference
1 '
pixel-wise contrastand intensity low-pass filter each

for each map map

pixel-wise left and right image pixel-wise difference

weights between maps
output: output:

binocularL*a*b map from
weighted combination

probability of a detectable
differencing artifact

Figure 2. Overview of model pipeline.

The summation path combines the left and right eyes’ images to
create a prediction of the binocular image percept. This path
comprises a pixel-wise weighted summation of the left and right
eye’s input, in which the weight for each eye depends on the local
contrast and intensity (lightness and color saturation) [3,4,5]. To
determine the local contrast in each eye’s image, we computed
local image gradients with a Prewitt filter, operating on the L*,
a*, and b* channels separately. Gradient magnitudes less than 1
were clipped to O such that color changes less than 1 were
considered to be uniform to reduce small noise. When both eyes’
gradients were 0, the weights for both eyes were set to 0.5. We
then summed across the three channels to obtain a single contrast
value at each pixel. We found that implementing an averaging
filter on the contrast map lead to a small improvement in the
model accuracy. The final chosen size for the filter was 0.5 x 0.5
degrees, which in this case was 30 x 30 pixels. We speculate that
this may be due to local contours modulating the binocular
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balance of their proximal surroundings [5]. Prior work has only
considered luminance in modeling stimulus intensity because the
stimuli were grayscale [5], but empirical work has shown that
color saturation also plays a role in binocular summation [4]. In
our pipeline, we therefore summed the L* channel with the
absolute values of the a* and b* channels as a measure of intensity
since the absolute value of the a* and b* channels can be thought
of as approximating the color saturation. The resulting weights
for the left and right eye inputs at each pixel location are then
determined as follows:

1(i, 5)Ci (13, 5)

L(i, )Ci(3, 5) + L (3, 5)Cr (4, 5)
I,(3,5)Cr (4, 5)

103, )C1(3, ) + 16, )0+ 3, ) )

where [ and C are the image intensity and contrast, the subscripts
[ and r denote left and right eye respectively, and i,j denote the
pixel row and column. The binocular L*a*b* map (Laby) is
determined by applying these weights (w;, w;.) to the left and right
eye’s L*a*b* images (Lab;, Lab,) before summing:

Labb(iz .7) = wl(ia j)Labl(im .7) + wr(i’j)Lalbr(i’j) . (2)
Figure 3 shows a visualization of a left and right image pair, along

with the weight assigned to each pixel and the resulting
binocularly combined image.

wl(i’j) =~

wr('i’!j) =

inputs weights

Figure 3. The left and right input images are shown, along
with the assigned weight for each pixel. On the right is the
resulting binocular image determined through weighted
summation. The computations were done in L*a*b* space
and converted to sRGB here for visualization.

To determine the image selected as the best match to the reference
icon in the perceptual task, the model iterates through all possible
settings for the adjustable stimulus via a grid search method
(using 50 steps from the minimum to the maximum possible icon
intensity), and compares the resulting binocular image with the
binocular image for the reference. The model match is the option
with the smallest mean difference between the reference and
adjustable binocular L*a*b* map as shown in Figure 4.

In parallel, the model uses the difference in the two eye’s views
of'the reference to predict the probability that this best match was
not a perfect match (i.e., the probability that luster, rivalry, or
other binocular differences were detected). Once in the L*a*b*
space, we used the existing standard color difference formula,
dEab, to compute the difference between the two eyes, which is
the Euclidean distance between the left and right eye color
vectors. As in the summation calculation, we found that applying
an averaging filter on the L*a*b* maps prior to computing dEa»
improved model performance. Contrary to traditional color

difference formula that considers each pixel as a sample, this
averaging suggests that a certain spatial area of binocular
difference may be necessary for the visual system to detect the
mismatch between the two eyes’ inputs. The averaging filter used
was 1 x 1 degrees (60 x 60 pixels).

reference pair

adjustable match options

model l
summation
model
\ sumnmation

binocular L*a*b* e @ binocular L*a*b*
prediction prediction

Figure 4. To predict the best perceptual match, both the
reference pair and pairs of the adjustable stimuli were run
through the pipeline separately and the binocular L*a*b*
maps were subtracted to find the pair with the smallest
mean difference.

After obtaining the dEa» map, a binocular difference metric (d)
was defined based on the maximum difference value between the
two eyes. We applied a hand-tuned transformation to dEab to
constrain it to be between 0 and 1 to maximize the fit with the
perceptual data, as follows:

0, maz(dEq.s) < 4.1
d=<¢1, maz(dEq) > 29.9

0.5(In(maxz(dEs)) — 1.4), otherwise 3)

3. Model Performance

Figure 5 shows the human data (x axis) against the model fit (y
axis). For the matching task (top plot), the axes reflect the average
normalized icon brightness value that provided the best match to
the reference stimulus. For the question about whether the match
is exact, the axes reflect the proportion of observers that said they
could not find a match through adjustment, meaning that there
were residual differences in appearance between the reference
and the adjustable stimuli. Table 1 shows the fitting performance
for each subset of the data and for the full dataset in terms of
correlation with the human data (r) and the mean error (ME). The
model shows good performance for the both the model building
and the validation subsets.

Qualitatively, the model is slightly under predicting the values for
the matching task, suggesting that it is performing slightly more
binocular averaging than the human observers. The addition of a
nonlinearity that biases percepts more towards the higher
contrast/intensity image may improve the model fits. For the
exact match judgement, the model is capturing the overall trend
and correlates well with the human data. One potential use of this
model is to estimate the maximum acceptable color difference for
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a given display system by solving Equation 3 for max(dEab). For
example, targeting a proportion (d) of less than 0.1 would mean
that the maximum dE,, should be less than 5. However, it is
possible that more variance could be explained by considering
other features of the binocular difference, in addition to the
maximum difference.
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Figure 5. Data and model fits for the matching task (top)
and the exact match question (bottom). Each symbol
represents a unique stimulus. The dark circles are the

model building stimuli and light triangles symbols are the

validation stimuli. The black dashed line is the identity line.

The error bars represent the 95% confidence intervals for

the human data.

Table 1. Pearson’s correlation coefficient (r) and mean
error (ME) between the model fit and the human data for
the model building subset, validation subset, and all data

4. Conclusion

Binocular appearance models are important tools for developing
XR technologies. Such models should consider the properties of
the XR display and optics, the complexity of the content that
people view of these displays, and the multifaceted nature of
binocular perception. Towards this goal, we leveraged a new
perceptual dataset to develop an initial model that uses display
metrology and a perceptual colorspace to predict perceived
binocular appearance and performance on the detection of
binocular differences. Because the modelling pipeline is highly
modular, alternative implementations could be tested to
potentially improve model performance in the future.
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