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Figure 1. Selected samples generated by class-conditional DIFFUSSM trained on ImageNet 256 × 256 and 512 × 512 resolutions.

Abstract

In recent advancements in high-fidelity image generation,

Denoising Diffusion Probabilistic Models (DDPMs) have

emerged as a key player. However, their application at high

resolutions presents significant computational challenges.

Current methods, such as patchifying, expedite processes in

UNet and Transformer architectures but at the expense of rep-

resentational capacity. Addressing this, we introduce the Dif-

fusion State Space Model (DIFFUSSM), an architecture that

supplants attention mechanisms with a more scalable state

space model backbone. This approach effectively handles

higher resolutions without resorting to global compression,

thus preserving detailed image representation throughout

the diffusion process. Our focus on FLOP-efficient architec-

tures in diffusion training marks a significant step forward.

Comprehensive evaluations on both ImageNet and LSUN

*Equal contribution.

datasets at two resolutions demonstrate that DiffuSSMs are

on par or even outperform existing diffusion models with

attention modules in FID and Inception Score metrics while

significantly reducing total FLOP usage.

1. Introduction

Rapid progress in image generation has been driven by de-

noising diffusion probabilistic models (DDPMs) [7, 20, 37].

DDPMs pose the generative process as iteratively denoising

latent variables, yielding high-fidelity samples when enough

denoising steps are taken. Their ability to capture complex

visual distributions makes DDPMs promising for advancing

high-resolution, photorealistic synthesis.

However, significant computational challenges remain

in scaling DDPMs to higher resolutions. A major bottle-

neck is the reliance on self-attention [62] for high-fidelity

generation. In U-Nets architectures, this bottleneck comes
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Figure 2. Architecture of DIFFUSSM. DIFFUSSM takes a noised image representation which can be a noised latent from a variational

encoder, flattens it to a sequence, and applies repeated layers alternating long-range SSM cores with hour-glass feed-forward networks.

Unlike with U-Nets or Transformers, there is no application of patchification or scaling for the long-range block.

from combining ResNet [17] with attention layers [48, 61].

DDPMs surpass generative adversarial networks (GANs) but

require multi-head attention layers [7, 37]. In Transformer

architectures [62], attention is the central component, and is

therefore critical for achieving recent state-of-the-art image

synthesis results [1, 38]. In both these architectures, the com-

plexity of attention, quadratic in length, becomes prohibitive

when working with high-resolution images.

Computational costs have motivated the use of repre-

sentation compression methods. High-resolution architec-

tures generally employ patchifying [1, 38], or multi-scale

resolution[20, 22, 37]. Patchifying creates coarse-grained

representations which reduces computation at the cost of

degraded critical high-frequency spatial information and

structural integrity [1, 38, 51]. Multi-scale resolution, while

alleviating computation at attention layers, can diminish spa-

tial details through downsampling [68] and can introduce

artifacts [65] while applying up-sampling.

The Diffusion State Space Model (DIFFUSSM), is an

attention-free diffusion architecture, shown in Figure 2, that

aims to circumvent the issues of applying attention for high-

resolution image synthesis. DIFFUSSM utilizes a gated

state space model (SSM) backbone in the diffusion process.

Previous work has shown that sequence models based on

SSMs are an effective and efficient general-purpose neural

sequence model [14]. By using this architecture, we can

enable the SSM core to process finer-grained image repre-

sentations by removing global patchification or multi-scale

layers. To further improve efficiency, DIFFUSSM employs

an hourglass architecture for the dense components of the

network. Together these approaches target the asymptotic

complexity of length as well as the practical efficiency in the

position-wise portion of the network.

We validate DIFFUSSM’s across different resolutions.

Experiments on ImageNet demonstrate consistent improve-

ments in FID, sFID, and Inception Score over existing ap-

proaches in various resolutions with fewer total Gflops.

2. Related Work

Diffusion Models Denoising Diffusion Probabilistic Mod-

els (DDPMs) [20, 22, 37, 54] are an advancement in the

diffusion models family. Previously, Generative Adversarial

Networks (GANs) [12] were preferred for generation tasks.

Diffusion and score-based generative models [24, 56–59]

have shown considerable improvements, especially in image

generation tasks [44–46]. Key enhancements in DDPMs

have been largely driven by improved sampling methodolo-

gies [20, 28, 37], and the incorporation of classifier-free

guidance [19]. Additionally, Song et al. [55] has proposed

a faster sampling procedure known as Denoising Diffusion

Implicit Model(DDIM). Latent space modeling is another

core technique in deep generative models. Variational au-

toencoders (VAEs) [30] pioneered learning latent spaces

with encoder-decoder architectures for reconstruction. A

similar compression idea was applied in diffusion models

as the recent Latent Diffusion Models (LDMs) [45] held

state-of-the-art sample quality by training deep generative

models to invert a noise corruption process in a latent space
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when it was first proposed. Additionally, recent approaches

also developed masked training procedures, augmenting the

denoising training objectives with masked token reconstruc-

tion [10, 69]. Our work is fundamentally built upon existing

DDPMs, particularly the classifier-free guidance paradigm.

Architectures for Diffusion Models Early diffusion mod-

els utilized U-Net style architectures[7, 20]. Subsequent

works enhanced U-Nets with techniques like more layers of

attention layers at multi-scale resolution level [7, 37], resid-

ual connections [2], and normalization [40, 66]. However,

U-Nets face challenges in scaling to high resolutions due

to the growing computational costs of the attention mech-

anism [52]. Recently, vision transformers (ViT) [8] have

emerged as an alternate architecture given their strong scal-

ing properties and long-range modeling capabilities prov-

ing that convolution inductive bias is not always necessary.

Diffusion transformers [1, 38] demonstrated promising re-

sults. Other hybrid CNN-transformer architectures were

proposed [32] to improve training stability. Our work aligns

with the exploration of sequence models and related design

choices to generate high-quality images but focuses on a

complete attention-free architecture.

Efficient Long Range Sequence Architectures The stan-

dard transformer architecture employs attention to com-

prehend the interaction of each individual token within a

sequence. However, it encounters challenges when mod-

eling extensive sequences due to the quadratic computa-

tional requirement. Several attention approximation meth-

ods [23, 33, 53, 60, 64] have been introduced to approximate

self-attention within sub-quadratic space. Mega[34] com-

bines exponential moving average with a simplified attention

unit, surpassing the performance of transformer baselines.

Venturing beyond the traditional transformer architectures,

researchers are also exploring alternate models adept at han-

dling elongated sequences. State space models (SSM)-based

architectures[14–16] have yielded significant advancements

over contemporary state-of-the-art methods on the LRA and

audio benchmark[11]. Furthermore, Dao et al. [5], Peng

et al. [39], Poli et al. [42], Qin et al. [43] have substanti-

ated the potential of non-attention architectures in attaining

commendable performance in language modeling. Our work

draws inspiration from this evolving trend of diverting from

attention-centric designs and predominantly utilizes the back-

bone of SSM.

3. Preliminaries

3.1. Diffusion Models

Denoising Diffusion Probabilistic Model (DDPM) [20] is a

type of generative models that samples images by iteratively

denoising a noise input. It starts from a stochastic process

where an initial image x0 is gradually corrupted by noise,

transforming it into a simpler, noise-dominated state. This

forward noising process can be represented as follows:

q(x1:T |x0) =

T∏

t=1

q(xt|xt−1), (1)

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (2)

where x1:T denotes a sequence of noised images from time

t = 1 to t = T . Then, DDPM learns the reverse process that

recovers the original image utilizing learned µθ and Σθ:

pθ(xt−1|xt) = N(xt−1;µθ(xt),Σθ(xt)), (3)

where θ the parameters of the denoiser, and are trained

to maximize the variational lower bound [54] on the log-

likelihood of the observed data x0: maxθ − log pθ(x0|x1)+∑
t DKL(q

∗(xt−1|xt, x0) || pθ(xt−1|xt)). To simplify the

training process, researchers reparameterize µθ as a func-

tion of the predicted noise εθ and minimize the mean

squared error between εθ(xt) and the true Gaussian noise εt:
minθ ||εθ(xt) − εt||22. However, to train a diffusion model

that can learn a variable reverse process covariance Σθ, we

need to optimize the full L. In this work, we follow DiT [38]

to train the network where we use the simple objective to

train the noise prediction network εθ and use the full objec-

tive to train the covariance prediction network Σθ. After

training is done, we follow the stochastic sampling process

to generate images from the learned εθ and Σθ.

3.2. Architectures for Diffusion Models

We review methods for parameterizing µθ which maps

R
H×W×C → R

H×W×C where H,W,C are the height,

width, and size of the data. For image generation tasks,

they can either raw pixels, or some latent space representa-

tions extracted from a pre-trained VAE encoder [45]. When

generating high-resolution images, even in the latent space,

H and W are large, and require specialized architectures for

this function to be tractable.

U-Nets with Self-attention U-Net architectures [20, 22,

37] uses convolutions and sub-sampling at multiple reso-

lutions to handle high-resolution inputs, where additional

self-attention layers are used at each low-resolution blocks.

To the best of our knowledge, no U-Net-based diffusion mod-

els are achieving state-of-the-art performance without using

self-attention. Let t1, . . . tT be a series of lower-resolution

feature maps created by down-sampling the image.1 At

each scale a ResNet [17] is applied to R
Ht×Wt×Ct . These

are then upsampled and combined into the final output. To

enhance the performance of U-Net in image generation, at-

tention layers are integrated at the lowest-resolutions. The

feature map is flattened to a sequence of HtWt vectors. For

1Note that choices of up- and down-scale include learned parameters

and non-parameterized ones such as average pooling and upscale [4, 22].
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instance, when considering H = 256×W = 256 down to

attention layers of 16×16 and 32×32, leading to sequences

of length 256 and 1024 respectively. Applying attention

earlier improves accuracy at a larger computational cost.

More recently, [22, 41] have shown that using more self-

attention layers in the low-resolution is the key of scaling

high-resolution U-Net-based diffusion models.

Transformers with Patchification As mentioned above,

the global contextualization using self-attention is the key

for diffusion models to perform well. Therefore, it is also

natrual to consider architecture fully based on self-attention.

Transformer architectures utilize attention throughout, but

handle high-resolution images through patchification [8].

Given a patch size P , the transformer partitions the image

into P × P patches yielding a new R
H/P×W/P×C′

repre-

sentation. This patch size P directly influences the effective

granularity of the image and downstream computational de-

mands. To feed patches into a Transformer, the image is

flattened and a linear embedding layer is applied to obtain a

sequence of (HW )/P 2 hidden vectors [1, 8, 22, 38]. Due

to this embedding step, which projects from C ′ to the model

size, large patches risk loss of spatial details and ineffectively

model local relationships due to reduced overlap. However,

patchification has the benefit of reducing the quadratic cost

of attention as well as the feed-forward networks in the

Transformer.

4. DIFFUSSM

Our goal is to design a diffusion architecture that learns

long-range interactions at high-resolution without requiring

“length reduction” like patchification. Similar to DiT, the

approach works by flattening the image and treating it like a

sequence modeling problem. However, unlike Transformers,

this approach uses sub-quadratic computation in the length

of this sequence.

4.1. State Space Models (SSMs)

SSMs are a class of architectures for processing discrete-

time sequences [14]. The models behave like a linear recur-

rent neural network (RNN) processing an input sequence

of scalars u1, . . . uL to output y1, . . . yL with the following

equation,

xk = Axk−1 +Buk, yk = Cxk.

Where A ∈ R
N×N ,B ∈ R

N×1,C ∈ R
1×N . The main

benefit of this approach, compared to alternative architec-

tures such as Transformers and standard RNNs, is that the

linear structure allows it to be implemented using a long con-

volution as opposed to a recurrence. Specifically, y can be

computed from u with an FFT yielding O(L logL) complex-

ity, allowing it to be applied to significantly longer sequences.

When handling vector inputs, we can stack D different SSMs

and apply a D batched FFTs.

However a linear RNN, by itself, is not an effective se-

quence model. The key insight from past work is that if

the discrete-time values A,B,C are derived from appro-

priate continuous-time state-space models, the linear RNN

approach can be made stable and effective [13]. We therefore

learn a continuous-time SSM parameterization A,B,C as

well as a discretization rate ∆, which is used to produce the

necessary discrete-time parameters. Original versions of this

conversion were challenging to implement, however recently

researchers [15, 16] have introduced simplified diagonalized

versions of SSM neural networks that achieve comparable

results with a simple approximation of the continuous-time

parameterization. We use one of these, S4D [15], as our

backbone model.

Just as with standard RNNs, SSMs can be made bidirec-

tional by concatenating the outputs of two SSM layers and

passing them through an MLP to yield a L× 2D output. In

addition, past work shows that this layer can be combined

with multiplicative gating to produce an improved Bidirec-

tional SSM layer [35, 63] as part of the encoder, which is

the motivation for our architecture.

4.2. DIFFUSSM Block

The central component of our DIFFUSSM is a gated bidi-

rectional SSM, aimed at optimizing the handling of long

sequences. To enhance efficiency, we incorporate hour-

glss architectures within MLP layers. This design alter-

nates between expanding and contracting sequence lengths

around the Bidirectional SSMs, while specifically reducing

sequence length in MLPs. The complete model architecture

is shown in Figure 2.

Specifically, each hourglass layer receives a shortened,

flattened input sequence I ∈ R
J×D where M = L/J is the

downscale and upscale ratio. At the same time, the entire

block including the bidirectional SSMs is computed in the

original length to fully leverage the global contexts. We use

σ to denote activation functions. We compute the following

for l ∈ {1 . . . L} with j = ⌊l/M⌋,m = l mod M,Dm =
2D/M .

Ul = σ(W↑

kσ(W
0Ij) ∈ R

L×D

Y = Bidirectional-SSM(U) ∈ R
L×2D

I′j,Dmk:Dm(k+1) = σ(W↓

kYl) ∈ R
J×2D

Oj = W3(σ(W2I′j)⊙ σ(W1Ij)) ∈ R
J×D

We integrate this Gated SSM block in each layer with a skip

connection. Additionally, following past work we integrate

a combination of the class label y ∈ R
L×1 and timestep

t ∈ R
L×1 at each position, as illustrated in Figure 2.
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Figure 3. Comparison of Gflops of DiT and DIFFUSSM under

various model architecture. DiT with patching (P=2) scales well

to longer sequences, however when patching is removed it scales

poorly even with hourglass (M=2). DIFFUSSM scales well, and

hourglass (M=2) can be used to reduce absolute Gflops.

Parameters The number of parameters in the DIFFUSSM

block is dominated by the linear transforms, W , these con-

tain 9D2 + 2MD2 parameters. With M = 2 this yields

13D2 parameters. The DiT transformer block has 12D2

parameters in its core transformer layer; however, the DiT

architecture has more parameters in other layer components

(adaptive layer norm). We match parameters in experiments

by using an additional DIFFUSSM layer.

FLOPs Figure 3 compares the Gflops between DiT and

DIFFUSSM. The total Flops in one layer of DIFFUSSM is

13 L
MD2+LD2+α2L logLD where α represents a constant

for the FFT implementation. With M = 2 and noting that

the linear layers dominate computation, this yields roughly

7.5LD2 Gflops. In comparison, if instead of using SSM,

we had used self-attention at full length with this hourglass

architecture, we would have 2DL2 additional Flops.

Considering our two experimental scenarios: 1) D ≈
L = 1024 which would have given 2LD2 extra Flops, 2)

4D ≈ L = 4096 which would give 8LD2 Flops and signifi-

cantly increase cost. As the core cost at Bidirectional SSM is

small compared to that using attention, and as a result using

hourglass architecture will not work for attention-based mod-

els. DiT avoids these issues by using patching as discussed

earlier, at the cost of representational compression.

5. Experimental Studies

5.1. Experimental Setup

Datasets Our primary experiments are conducted on

ImageNet[6]2 and LSUN[67]3. Specifically, we used the

2https://image-net.org/download.php
3https://www.yf.io/p/lsun

ImageNet-1k dataset where there are 1.28 million images

and 1000 classes of objects. For the LSUN-dataset, we

choose two categories: Church (126k images) and Bed (3M

images), and train separate unconditional models for them.

Our experiments are conducted with the ImageNet dataset at

256×256 and 512×512 resolution, and LSUN at 256×256
resolution. We use latent space encoding[45] which gives

effective sizes 32 × 32 and 64 × 64 with L = 1024 and

L = 4096 respectively. We also include pixel-space Ima-

geNet at 128×128 resolution in our supplementary materials

where L = 16, 384.

Linear Decoding and Weight Initialization After the

final block of the Gated SSM, the model decodes the sequen-

tial image representation to the original spatial dimensions

to output noise prediction and diagonal covariance predic-

tion. Similar to Gao et al. [10], Peebles and Xie [38], we use

a linear decoder and then rearrange the representations to

obtain the original dimensionality. We follow DiT to use the

standard layer initializations approach from ViT [8].

Training Configuration We followed the same training

recipe from DiT [38] to maintain an identical setting across

all models. We also chose to follow existing literature to keep

an exponential moving average (EMA) of model weights

with a constant decay. Off-the-shelf VAE encoders from 4

were used, with parameters fixed during training. Our DIF-

FUSSM-XL possesses approximately 673M parameters and

encompasses 29 layers of Bidirectional Gated SSM blocks

with a model size D = 1152. This value is similar to DiT-

XL. trained our model using a mixed-precision training ap-

proach to mitigate computational costs. We adhere to the

identical configuration of diffusion as outlined in ADM [7],

including their linear variance scheduling, time and class

label embeddings, as well as their parameterization of co-

variance Σθ. More details can be found in the Appendix.

For unconditional image generation, DiT does not report

results and we were unable to compare with DiT in the same

training setting. Our objective instead compares DIFFUSSM,

with a training regimen comparable to taht of LDM[45] that

can generate high-quality images for categories in the LSUN

dataset. To adapt the model to an unconditional context, we

have removed the class label embedding.

Metrics To quantify the performance of image generation

of our model, we used Frechet Inception Distance(FID) [18],

a common metric measuring the quality of generated im-

ages. We followed convention when comparing against prior

works and reported FID-50K using 250 DDPM sampling

steps. We also reported sFID score [36], which is designed

to be more robust to spatial distortions in the generated im-

ages. For a more comprehensive insight, we also presented

4https://github.com/CompVis/stable-diffusion
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Figure 4. Uncurated samples from the DIFFUSSM models trained from various datasets.

the Inception Score [47] and Precision/Recall [31] as supple-

mentary metrics. Note that do not incorporate classifier-free

guidance unless explicitly mentioned(we used −G for the

usage of classifier-free guidance or explicitly state the CFG).

Implementation and Hardware We implemented all

models in Pytorch and trained them using NVIDIA A100.

DIFFUSSM-XL, our most compute-intensive model trains

on 8 A100 GPUs 80GB with a global batch size of 256.

More computation details and speed can be found in the

supplementary materials.

5.2. Baselines

We compare to a set of previous best models, these include:

GAN-style approaches that previously achieved state-of-the-

art results, UNet-architectures trained with pixel space rep-

resentations, and Transformers operating in the latent space.

More details can be found in Table 5.3. Our aim is to com-

pare, through a similar denoising process, the performance of

our model with respect to other baselines. Some recent stud-

ies [10, 69] focusing on image generation at the 256× 256
resolution level have combined masked token prediction with

existing DDPM training objectives to advance the state of

the art. However, these works are orthogonal to our primary

comparison, so we have not included them in Table 1. For

LSUN datasets, we found existing DDPM-based methods

are not surpassing GAN-based methods. Our goal is to com-

pare within the DDPM framework instead of competing with

state-of-the-art methods.

5.3. Experimental Results

Class-Conditional Image Generation We compare DIF-

FUSSM with state-of-the-art class-conditional generative

models, as depicted in Table 1. When classifier-free guid-

ance is not employed, DIFFUSSM outperforms other diffu-

sion models in both FID and sFID, reducing the best score

from the previous non-classifier-free latent diffusion mod-

els from 9.62 to 9.07, while utilizing ∼ 3× fewer training

steps. In terms of Total Gflops of training, our uncompressed

model yields a 20% reduction of the total Gflops compared

with DiT. When classifier-free guidance is incorporated, our

models attain the best sFID score among all DDPM-based

models, exceeding other state-of-the-art strategies, demon-

strating the images generated by DIFFUSSM are more ro-

bust to spatial distortion. As for FID score, DIFFUSSM

surpasses all models when using classifier-free guidance,

and maintains a pretty small gap (0.01) against DiT. Note

that DIFFUSSM trained with 30% fewer total Gflops already

surpasses DiT when no classifier-free guidance is applied.

U-ViT [1] is another transformer-based architecture but uses

a UNet-based architecture with long-skip connections be-

tween blocks. U-ViT used fewer FLOPs and yielded better

6



ImageNet 256×256 Benchmark

Models Total Total FID ↓ sFID ↓ IS ↑ P ↑ R ↑
Images(M) Gflops

BigGAN-deep [2] - - 6.95 7.36 171.40 0.87 0.28

MaskGIT [3] 355 - 6.18 - 182.1 0.80 0.51

StyleGAN-XL [50] - - 2.30 4.02 265.12 0.78 0.53

ADM [7] 507 5.68× 1012 10.94 6.02 100.98 0.69 0.63

ADM-U [7] 507 3.76× 1011 7.49 5.13 127.49 0.72 0.63

CDM [21] - - 4.88 - 158.71 - -

LDM-8 [45] 307 1.75× 1010 15.51 - 79.03 0.65 0.63

LDM-4 [45] 213 2.22× 1010 10.56 - 103.49 0.71 0.62

DiT-XL/2 [38] 1792 2.13× 1011 9.62 6.85 121.50 0.67 0.67

DIFFUSSM-XL 660 1.85× 1011 9.07 5.52 118.32 0.69 0.64

Classifier-free Guidance

ADM-G 507 5.68× 1011 4.59 5.25 186.70 0.82 0.52

ADM-G, ADM-U 507 3.76× 1012 3.60 - 247.67 0.87 0.48

LDM-8-G 307 1.75× 1010 7.76 - 209.52 0.84 0.35

LDM-4-G 213 2.22× 1010 3.95 - 178.2 2 0.81 0.55

U-ViT-H/2-G [1] 512 6.81× 1010 2.29 - 247.67 0.87 0.48

DiT-XL/2-G 1792 2.13× 1011 2.27 4.60 278.24 0.83 0.57

DIFFUSSM-XL-G 660 1.85× 1011 2.28 4.49 259.13 0.86 0.56

ImageNet 512×512 Benchmark

ADM 1385 5.97× 1011 23.24 10.19 58.06 0.73 0.60

ADM-U 1385 3.9× 1012 9.96 5.62 121.78 0.75 0.64

ADM-G 1385 5.97× 1011 7.72 6.57 172.71 0.87 0.42

ADM-G, ADM-U 1385 4.5× 1012 3.85 5.86 221.72 0.84 0.53

U-ViT/2-G 512 6.81× 1010 4.05 8.44 261.13 0.84 0.48

DiT-XL/2-G 768 4.03× 1011 3.04 5.02 240.82 0.84 0.54

DIFFUSSM-XL-G 302 3.22× 1011 3.41 5.84 255.06 0.85 0.49

Table 1. Class conditional image generation quality evaluation of DIFFUSSM and existing approaches on ImageNet 256× 256. Reported

results from other cited papers with their # trained images. Total images by training steps × batch size as reported, and total Gflops by Total

Images × GFlops/Image. P refers to Precision and R refers to Recall. −G denotes the results with classifier-free guidance.

performance at a 256×256 resolution, but this is not the

case for the 512×512 dataset. As our major comparison is

against DiT, we do not adopt this long-skip connection for

a fair comparison. We acknowledge that adapting U-Vit’s

idea might benefit both DiT and DIFFUSSM. We leave this

consideration for future work.

We further compare on a higher-resolution benchmark

using classifier-free guidance. Results from DIFFUSSM here

are relatively strong and near some of the state-of-the-art

high-resolution models, beating all models but DiT on sFID

and achieving comparable FID scores. The DIFFUSSM was

trained on 302M images, seeing 40% as many images and

using 25% fewer Gflops as DiT.

Unconditional Image Generation We compare the un-

conditional image generation ability of our model against ex-

isting baselines. Results are shown in Table 2. Our findings

indicate that DIFFUSSM achieves comparable FID scores

obtained by LDM (with −0.08 and 0.07 gap) with a compa-

rable training budget. This result highlights the applicability

of DIFFUSSM across different benchmarks and different

tasks. Similar to LDM, our approach doesn’t outperform

ADM for LSUN-Bedrooms as we are only using 25% of the

total training budget as ADM. For this task, the best GAN

models outperform diffusion as a model class.

6. Analysis

Additional Images Additional images generated by DIF-

FUSSM are included from Figure 7 to Figure 14.
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Figure 5. Qualititative studies of patching and down/up scale of DIFFUSSM. P refers to the patchfication, M refers to the down/up scale

ratio. P = 1 is the case where there is not patchfication and M = 1 is the case where there is no down/up scale.

Models LSUN-Church LSUN-Bedroom

FID↓ P ↑ FID↓ P ↑
ImageBART [9] 7.32 5.51 -

PGGAN [25] 6.42 - - -

StyleGAN [26] 4.21 - 2.35 0.59

StyleGAN2 [27] 3.93 0.39 - -

ProjGAN [49] 1.59 0.61 1.52 0.61

DDPM [20] 7.89 - 4.90 -

UDM [29] - - 4.57 -

ADM [7] - - 1.90 0.66

LDM [45] 4.02 0.64 2.95 0.66

DIFFUSSM 3.94 0.64 3.02 0.62

Table 2. Unconditional image generation evaluation of DIFFUSSM

and exsiting approaches on LSUN-Church and LSUN-Bedroom at

256× 256.

Model Scaling We trained three different DIFFUSSM

sizes to calibrate the performance yielded by scaling up

the model. We calculate the FID-50k for their checkpoints

of the first 400k steps. Results are shown in Figure 6 (Left).

We find that similar to DiT models, large models use FLOPs

more efficient and scaling the DIFFUSSM will improve the

FID at all stages of training.

Impact of Hourglass We trained our model with different

sampling settings to assess the impact of compression in

latent space: using a downsampling ratio M = 2 (our regular

model), and another with P = 2 applying a patch size equal

to 2, similar to what DiT has done. We calculated their

FID-50k for the first 400k steps and plotted it on a log scale.

Results are shown in Figure 6 (Right). We find that our

model yields a better FID score compared to when patching

is applied, and the gap between the two also widens as the

Figure 6. Ablation studies. Left: DIFFUSSM with different hidden

dimension sizes D(−S/D = 384,−L/D = 786,−XL/D =

1152). Right: FID score of DIFFUSSM with different patch size

(P = 2) and downsample ratio (M = 1).

number of training steps increases. This suggests that the

compression of information might hurt the model’s ability

of generating high-quality images.

Qualitative Analysis The objective of DIFFUSSM is to

avoid compressing hidden representations. To test whether

this is beneficial we compare three variants of DIFFUSSM

with different downscale ratio M and patch size P . We train

all three model variants for 400K steps with the same batch

size and other hyperparameters. When generating images,

we use identical initial noise and noise schedules across class

labels. Results are presented in Figure 5. Notably, eliminat-

ing patching enhances robustness in spatial reconstruction

at the same training stages. This results in improved vi-

sual quality, comparable to uncompressed models, but with

reduced computation.
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7. Conclusion

We introduce DIFFUSSM, an architecture for diffusion mod-

els that does not require the use of Attention. This approach

can handle long-ranged hidden states without requiring rep-

resentation compression. Results show that this architecture

can achieve better performance than DiT models utilizing

less Gflops at 256x256 and competitive results at higher-

resolution even with less training. The work has a few re-

maining limitations. First, it focuses on (un)conditional im-

age generation as opposed to full text-to-image approaches.

Additionally, there are some recent approaches such as

masked image training that may improve the model. Still

this model provides an alternative approach for learning ef-

fective diffusion models at large scale. We believe removing

the attention bottleneck should open up the possibility of

applications in other areas that requires long-range diffusion,

for example high-fidelity audio, video, or 3D modeling.
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Figure 8. Samples from the DIFFUSSM models on ImageNet 256 × 256.
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Figure 12. Samples from the DIFFUSSM models on ImageNet 512 × 512.
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Figure 13. Samples from the DIFFUSSM models on ImageNet 512 × 512.
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Figure 14. Samples from the DIFFUSSM models on ImageNet 512 × 512.
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