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Abstract:

Layered double hydroxide (LDH) is reported to improve the durability of concretes, primarily due
to its ability to exchange anionic species, including chloride, which is implicated in corrosion-
driven durability issues. However, there is no comprehensive study investigating the effect of LDH
on the properties of different cement systems at both early and mature ages. In this study, the early
age and mature age properties of Portland cement (OPC) and calcium sulfoaluminate (CSA)
cement pastes seeded with submicron-sized calcium aluminum-NO3; LDH (CaAl-NOz LDH) were
investigated. The effects of the 1- 5 %mass dosage of LDH on the hydration of both cement systems
were characterized by rheology, isothermal calorimetry, porosimetry, compressive strength tests,
thermogravimetric analysis, and x-ray diffraction. Time-dependent rheology results indicate that
CaAl-NOs; LDH seeding enhanced the buildability of cement pastes, as evidenced by increased
plasticity loss, hardening, and yield stress. While LDH seeding accelerated hydration kinetics for
both CSA and OPC pastes, interestingly, the OPC exhibited reduced heat release, suggesting
potential applications of LDH as heat sink in various areas, including building in hot climates,
reducing heat and crack-propensity in mass concrete placements, and 3D-printed OPC-based
concretes. Although LDH slightly decreased compressive strengths at both 1d and 28d, its primary
role was to expedite the hydration process without enhancing the microstructure or strength of the
final product.

Keywords: Calcium sulfoaluminate cement; Layered double hydroxide; Chemical admixtures;
Rheology; AFm phase; Portland cement.

1. Introduction

Layered double hydroxides (LDHs) are 2D materials, also known as ionic solids with
exchangeable anionic layers sandwiched by a brucite-like double-layer structure [1-3]. A portion
of the divalent cations in the structure are coordinated with oxygens to form the octahedra
structure, and when their edges are shared, they create thin 2D infinite layers. A positive charge is
produced on the layers when trivalent cations are partially and isomorphously substituted for
divalent ones. The positively charged 2D layers are separated by the charge-balancing anions, and
any remaining space in the interlayer area may be taken up by hydrogen-bonded water molecules.
A general formula of LDHs is [M?"1xM>"x(OH)2]*"(A™ )xn-mH20, where the exchangeable anions
are represented by A" (e.g., NOs", CI, COs%), and x is the molar ratio of M** / (M>" + M?") [M?*
= Ca**, Mg**, Zn*" etc., and M*"'= AI**, Fe**, Cr*" etc.] [4,5].
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In recent years, multifunctional LDH materials have gained increasing interest in many
applications. The weak electrostatic force between anions in the interlayer and the cationic layers
makes it easy to exchange the interlayer anions wherein the ability of the anions to replace each
other follow the sequence of (CO3?~ > S04> > OH >NOs") [6]. Due to its ion-exchange capability,
high tunability, and easy methods for synthesis, LDH have been adapted for many significant
applications, including catalysis [7,8], ion-exchange [9], adsorption [10-12], pharmaceutics
[13,14], biochemistry [15], genetic engineering [16], electrochemistry [17-19], corrosion
protection [20-22], polymer materials [23-25], cement and concrete systems [26-32], etc.
Furthermore, the synthesis of LDHs is inexpensive and straightforward in both laboratory and
industrial scales, positioning LDH-based materials as eco-friendly and cost-effective
multifunctional material [33—35]. In the realm of cement and construction materials, the addition
of LDH stands out for their cost-effectiveness and eco-friendliness, as their addition enhances the
durability and performance of cementitious matrices. Also, it may potentially reduce the need for
less benign synthetic additives, and promote the utilization of industrial by-products [36].

Among many other types of LDHs, CaAl-NOs; LDH has some critical benefits. Firstly, as from the
sequence above, the NO3™ can easily be exchanged by anionic polymer (e.g., PCE), and some of
the harmful anions (e.g., ClI,, COs%), thereby facilitating the removal of deleterious ions such as
CI,, COs* and release of nitrate into the pore solution which can make the cement hydration
process smoother and protect steel reinforcement from corrosion in the concrete system [22].
Secondly, unlike some non-native nano and submicron particles (e.g., titania, clay, copper, carbon-
based materials, etc.) [37] that are frequently used to enhance the hydration and properties of
cement-based materials, LDHs (popularly known as AFm phases in cement community) [38—43]
are native to cement system which helps with the additive stability and compatibility in the cement
systems. Hence, the CaAl-NO3z LDH variant was the main focus of the present study to understand
its seeding effects on the early age and mature age properties of both CSA cements and Portland
cement (OPC).

OPC dominates global cement usage, but enhancing its workability remains crucial for specific
applications like 3D printing and oil-well cementing. As cement production contributes ~ 8% of
global CO; emission, there is a rising interest in sustainable alternatives like CSA cement, which
closely competes with OPC in performance and research attention. Inclusion of LDH in the OPC
and CSA cement systems is not new, but the published studies are limited to certain aspects. There
are scarce studies which thoroughly investigated the effect of LDH (e.g., CaAl-NO3; LDH) in both
OPC and CSA cement systems. Investigating the impact of LDH in both OPC and CSA cement
systems holds critical importance, as OPC is the most widely utilized cement, and CSA is emerging
as a highly promising alternative, offering a more sustainable solution. Understanding their
individual interactions with LDH is crucial for optimizing their respective performances and
advancing sustainable construction practices [6,44—48].

In cement systems, most of the available studies are limited to the effectiveness of LDHs in
corrosion protection [20-22], improvement of mechanical strength [49-51,51], and controlled
admixture release [26,28,32,52,53]. Further investigation into the impact of LDH addition on
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cement paste hydration, time-dependent workability, and microstructural-to-bulk properties
development is still crucial. This study provides some of the critical aspects and findings on the
incorporation of LDH in the above two types of cement pastes (OPC and CSA cement), providing
insights on the effectiveness of LDH in cement systems in 1) the presence of different chemical
admixtures; and effects of LDH on the 2) time-dependent static and dynamic rheological behavior,
3) the heat evolution characteristics, 4) thermogravimetric changes, 5) time-dependent evolution
of the hydrated phases, 6) porosity and pore structures, and 7) compressive strength development.

2. Experimental

2.1 Materials

2.1.1 Synthesis of CaAl-NOs LDH

The CaAl-NOs; LDH was successfully synthesized by a pH-controlled coprecipitation technique
following the published methods [28,54,55]. Analytical grade 66.122 g Ca(NO3).4H>0 (calcium
nitrate tetrahydrate, ACROS organics, purity of 98%) and 45.01 g AI(NO3);.9H,O (aluminum
nitrate nanohydrate, Alfa Aesar, purity of 98%) were mixed together at solid state. 320 ml
deionized water (resistivity of 18.2 MQ) was added to the mixed solids maintaining an overall
liquid/solid = 2. This solution was then poured dropwise into another mixed solids of 24 g NaOH
(sodium hydroxide, Fisher chemical) and 34 g NaNOs3 (sodium nitrate, Alfa Aesar, purity of 99%)
with stirring. The final pH of the solution was 9.1. The mixture was heated under insulation at 65
°C for 16 h maintaining a vigorous stirring at 800 rpm. The mixture was then filtered and
thoroughly washed several times with decarbonated water and acetone. Finally, the LDH material
was dried under vacuum (-27 inHg) for ~ 30 h.

The particle size distribution of the LDH sample was measured by a dynamic light scattering
(DLS) instrument (Anton Paar Litesizer 500) as shown in Fig. 1(a), and the average particle size
from three runs was in the submicron range (< 1 pm) with a median size (Dso) of 0.39 um. The
X-ray diffraction (XRD) profile of the LDH acquired with a PANalytical X’Pert Pro diffractometer
utilizing a 20 configuration and CuKa (A = 1.540 A) radiation is presented in Fig. 1(c). The
morphology of the synthesized LDH surfaces was examined using a Hitachi S4700 scanning
electron microscope (SEM) as shown in Fig. 1 (b).

2.1.2 Cement samples and admixtures

A commercial grade OPC (Type I/I) and CSA cement was received from Continental Cement Co.
USA, and Buzzi Unicem USA, respectively. The elemental oxide composition of the cement
samples was analyzed with Rigaku Supermini 200 wavelength dispersive X-ray fluorescence and
presented in Table 1. The XRD profiles of the OPC and CSA cement samples are shown in Fig.
2. The quantitative x-ray powder diffraction (QXRD)-based phase analysis indicates the CSA
cement contains 41% ye’elimite, 29.2% belite, 27 % anhydrite, and 2.8% aluminate. The QXRD
of OPC shows 70.2% alite, 22.5 % belite, 5.6% gypsum, 1.4% aluminate, 0.1% ferrite, and 0.2%
periclase. Rietveld refinement method was utilized for QXRD analysis, with corundum as an
internal standard at 10 wt% [56,57]. The QXRD results were obtained with Rwp of < 5%. The
particle size of the CSA cement and OPC measured with the DLS technique were 2.21 um and 3.4
um, respectively.
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Fig. 1. (a) Average intensity weighted size distribution, (b) SEM image, and (¢) XRD pattern
of the of submicron CaAl-NOs; LDH Particles.
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A fixed dosage of reagent-grade citric acid (CA) monohydrate (CcHsO7-H20, ACROS organics,
purity of 99.5%) was used as a retarder for the CSA cement (CSAC) pastes, while a fixed dosage
of Adva Cast 600 (GCP Applied Technologies, USA), a polycarboxylate ether (PCE)-based
polymer dispersant compliant with ASTM C1017 Type I standards was utilized to enhance
dispersion of particles in both the OPC and CSAC systems. It is often thought that competitive
adsorption of PCE and citric acid, and the nature of the CSA cement systems, will make PCE
ineffective when employed together with smaller citric molecule in CSA pastes[58]. To clarify
these assumptions, some the CSA systems were studied with only citric acid admixture with no
PCE in the formulation for comparison.

Table 1. Elemental composition of cement samples (%omass)-

Species

NaO MgO CaO

Al O3

Si02

P>0s

SO3

K;O TiO2

MnO FeO3

LOI

CSAC

0.29

0.74

48.60 20.44

13.31

0.38

10.01

0.61

0.56

0.10

3.22

1.65
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Fig. 2. XRD pattern of CSA cement (CSAC) and OPC.

2.2 Mixing protocol

For the rheology study, the mix designs for CSAC and OPC pastes were prepared with 1 —5 %omass
of dry cement d0sages of LDH at a constant water/cement (w/c, mass fraction) of 0.5. The 1-5 %mass
LDH was selected in this study to examine its broader impact on OPC and CSA cement systems,
aiming to find an optimal balance that enhances properties without detrimental effects [6,59]. Two
different types of CSA cement pastes were prepared for the rheology study: i) with PCE, and ii)
without PCE. This was done to investigate the influence of PCE in these CSA cement systems. A
set retarder was always used in both CSA mix designs. A dosage of 0.1%mass of cement PCE and 2
Yomass of cement Citric acid (CA) was used in this study, which was the optimum dosage in one of the
previous studies [60]. The OPC pastes contained 0.1%mass of cement PCE. The ratio of the admixtures
in the mixture was maintained constant (on the basis of the cement mass only) in the pastes,
whereas the dosage of the LDH was varied. The cement pastes were prepared using grade 1I
deionized water. In the pastes, the total amount of the water employed was accounted including
the water present in chemical admixtures. The mix proportions of different pastes are listed in
Table 2. In case of the pastes without PCE, no PCE was used in the mix design.

Table 2. Mix proportions of cement pastes (Yomass)-
Cement DI water CegHgO7-H,0 (CA.H20)* PCE (solid polymer basis) LDH (1-5%)
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10 4.98 0.22 0.01 0.1

10 4.98 0.22 0.01 0.2
10 4.98 0.22 0.01 0.3
10 4.98 0.22 0.01 0.4
10 4.98 0.22 0.01 0.5

*The citrate contributes 0.02g of water, making the net water content of 5g per 10g of cement.

For better dispersion of LDH in the cement pastes, the design proportion of LDH, PCE (without
PCE for some of the CSA pastes), and water were mixed and sonicated for five minutes in a 30W
Branson 200 ultrasonic cleaner with an output frequency of 46 KHz. In CSA systems, the desired
blend ratios of the other solid components (CSA cement and citric acid powder) were initially
homogenized manually before blending with the sonicated mixtures. In preparation for OPC
pastes, the sonicated sample was mixed to the OPC cement. For each static rheology study, 10 g
of cement was employed. Always, a 250 mL plastic container was used for preparing the pastes
utilizing a IKA RW 20 Digital four-blade overhead stirrer for one minute of homogeneous mixing
at 1000 rpm. The paste was immediately placed into the rheometer for the rheology measurements.
A consistent mixing procedure was followed for preparing samples for hydrate phase assemblage
tracking, compressive strength test cubes, and isothermal calorimetry tests. For calorimetry tests,
the liquids were then introduced to the mixed solids in a 2 ml glass vial (National C4013-1W 12 x
32mm clear screw thread, Thermo Scientific), and the pastes were manually stirred for an
additional minute. After that, the vial was placed into the micro reaction calorimeter for isothermal
analysis.

2.3 Parallel plate rheometry of cement pastes

For analyzing the rheological behavior of the cement pastes, parallel plate geometries were
preferred [61-65]. This study used a stress-controlled shear rheometer (DHR-2, TA Instruments)
in a parallel plate configuration, utilizing 40 mm-diameter plates on both top and bottom to assess
the evolving yield stress of the cement pastes over time. The top and bottom plate surfaces were
crosshatched to reduce slippage and to keep a uniform distribution of cement particles near the
plates [66]. Prior to each test, the inertia of the instrument, and the inertia and friction of the
geometry were calibrated. For better comparison of the rheology data, the calibration results were
ensured to be consistent with the previous calibration data.

During the run time, a 1000 um gap was maintained between the upper and lower plates.
Throughout the experiments, a constant temperature of 25 °C was maintained using a Peltier plate
attached to the bottom geometry. During the tests, the pastes were covered from drought with the
aid of an environmental chamber and a small amount of deionized (DI) water was placed in a
solvent trap on the top plate to maintain a consistent humidity level surrounding the pastes. The
same experimental set up was applied to assess both the static and dynamic rheological behavior
of the pastes.

The time taken to mix and set up the paste sample on the rheometer was about five minutes from
the moment the cement made contact with the liquid used for mixing (which contained LDH,
water, and PCE). The pastes were sheared for 180 s with a rate of 0.01 s! after being pre-sheared
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for30 s at 0.1 s followed by a 30 s rest. As shown in Fig. 3 (a), the static yield stress was obtained
as the peak shear stress where the paste started to flow. This transition point is where the elastic
deformation changed to plastic flow, measured at a constant shear strain rate of 0.01 s [60]. A
reasonable estimate of the static yield stress is the peak shear stress [67,68]. Fig. 3 (c¢) shows a
representative shear stress vs. shear rate curve, wherein the commonly used Bingham model,
0" = 0, + U,V , [Where 0" indicates the shear stress, gy, is the yield stress, W is the plastic
viscosity, and ¥ is the shear rate (0-200 s')], was applied on the ramp-down to extract the dynamic
yield stress and plastic viscosity.

Fig. 3 (b) shows the representative evolution yield stress as a function of hydration time, where
slopes m4 and m, of the two linear regimes represents the paste’s flowability loss rate and
hardening rate, accordingly. The placement limit, £,, represents the endpoint of the plastic
behavior or flowability regime of the pastes and where the hardening regime starts. In practical
cement work, it is to be noted that before the t,,, the cement mixture should have been be placed,
and then the finishing completed promptly as the cement pastes loses its workability rapidly after
t, [69]. Additionally, the exponential growth model o, = 0, e*t can be applied to the yield stress
data to understand the overall yield stress build-up kinetics, where @, is the yield stress at time t,
yo 18 the initial yield stress first measured after mixing, and k is the yield stress growth rate
constant[60].
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Fig. 3. Representative: (a) stress growth flow curve for determining the static yield stress (oy)
was determined, (b) shear stress-shear rate flow curves showing the ramp-up and ramp-down
between 0-200 s for the determination of dynamic yield stress and plastic viscosity using the
Bingham model on the down ramp, (b) time-dependent yield stress evolution of cement paste,
illustrating the flowability loss rate m4, placement limit t,,, acceleration angle 6,,, and

hardening rate m, workability parameters.

2.4. Isothermal calorimetry

A widely used approach for monitoring cement's hydration is isothermal calorimetry. For all the
OPC and CSA cement pastes utilized for the rheology investigations, isothermal calorimetry was
studied to investigate the seeding effects of the LDH on the hydration kinetics of the cement pastes.
Utilizing a THT pRC single-channel isothermal micro reaction calorimeter with Peltier-based
temperature control, the heat development, and the cumulative heat from the hydration of the
cement systems were observed for 24 hours at a fixed temperature of 25 + 0.001°C and at ambient
pressure. In every test, 0.7 g sample of cement was used and the same mix design proportions,
including w/c of 0.5 and 0.1%mass of cement PCE (plus 2%CA for CSAC pastes) were maintained for
calorimetric measurement. The materials were placed within a 2.0 ml glass vial with a typical
polypyridene cover before being loaded into the microcalorimeter. This research leverages the
capability of the THT micro reaction calorimeter to identify heat evolution with a fairly high
precision, having a resolution of 5 uW and a range between 5 pW and 600 mW. To reduce
interference and undesirable transient effects, a neutral reference sample (equivalent water) vial
with a heat capacity similar to the paste sample was incorporated into the reference cell [70]. All
the isothermal experiments were initiated on stabilization at the set temperature, after 4.5 minutes
of mixing the solid and liquid components.

2.5. Compressive strength tests
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The 1d and 28d compressive strength of 0, 1, and 5% LDH-dosed OPC and CSA cement cubes
were investigated to understand the effect of LDH and evolution of mechanical strength over time.
The 1-inch cubes were prepared maintaining the same mix proportions stated in section 2.

The cubes were prepared and stored in accordance with ASTM C 109, C 305, and C 511-19
standards. A Perfa-Cure concrete curing box at a temperature of 23+2 °C and a relative humidity
of 95% was utilized for curing the cubes. The cubes' compressive strength was determined using
a Tinius Olsen universal compression machine with a 200,000 lb servo-controlled hydraulic
pressure and paired with a computer workstation for data collection. A consistent load rate of 200
Ib/sec was maintained for every test.

2.6. TGA tests

Thermogravimetric analysis (TGA) was conducted using a NETZSCH STA 449 F5 PC system.
The TGA measurements were used to primarily quantify and identify the amount of free water,
bound water, and other volatiles embedded into the blended cement systems. Identifying the
cement phases present at various hydration times was also useful. In every test, the mass loss
(thermogravimetry, TG, %mass) and the differential mass loss rate (DTG, %mass/min) were
measured. The quantity of the bound water present in a sample was used to assess the degree of
hydration as well as the other thermal properties of the samples. At specific ages, small pieces of
the samples were extracted off from the paste specimens and submerged into the isopropanol to
arrest hydration. The samples were dried in a vacuum oven for 15 min to remove any remaining
solvents, ground to powder, and weighted in a consistent manner before they are placed in the
TGA instrument. The loaded mass of the samples for TGA test were around 10 mg. The samples
were enclosed on the alumina pan and heated from room temperature to 1000 °C with a temperature
ramp of 10 °C/min under N> environment.

2.7. MIP tests

To determine the capillary porosity, and pore size distribution of selected 1d and 28d hydrated
pastes a Mercury Intrusion Porosimeter (MIP) was utilized. The chunks of the hydrated pastes
were submerged under isopropanol to arrest the hydration reaction. Before the MIP tests, the
samples were dried at 70 °C for 2 days to remove the loosely attached water molecules. The
temperature of 70 °C was used to effectively remove free water from the pores without
significantly altering the microstructure of the cement [71,72]. However, it is noted that prolong
drying at elevated temperatures of 70 °C can degrade ettringite [72], which may influence the net
porosity. Although, the present porosity investigation focuses on the relative comparison of
samples dried under same condition rather than the absolute porosity values. The samples were
made dust free by blowing air and the dimension was maintained around 5 mm before loading into
the bulb of the penetrometer. The Washburn equation [73] estimates the pore size, and the pressure
needed to force mercury, a non-wetting fluid, into the cylindrical pores of the samples. The surface
tension of mercury and contact angle between mercury and sample were selected as 480 erg/cm?
and 130°. The sample preparation procedure and other testing parameter selection were followed
by the guidelines on mercury intrusion porosimetry in concrete systems [74]. In this study, the
mercury intrusion porosimetry (MIP) test was conducted using a Quantachrome PoreMaster
(automated mercury intrusion porosimeter). First, in the low-pressure test, the mercury was filled
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up into the penetrometer and made contact with the sample. Secondly, in the high-pressure tests,
the mercury penetrated the pores of the samples. The measurable pores are in the range 7 nm - 0.4
mm. The final pressure of 30000 psi was employed in the MIP tests. Though for cement-related
materials, because of the ink-bottle effect, the MIP method is not highly reliable, it is useful for
reasonable analysis, especially for comparison purposes [75,76].

3. Results and discussions

3.1. Effect of LDH on CSA cement rheology and workability

The effect of CaAl-NO; LDH on CSA cement rheology is discussed in this section. To better
understand the flow behavior, the rheology was studied utilizing both the static and dynamic yield
stress evolution (dynamic is presented in section 3.3). Fig. 4a shows the evolution of time-
dependent static yield stress of the LDH-dosed CSA cement pastes containing a fixed 0.1% PCE
and 2 % CA (admixture utilized for dispersion and retardation, respectively), but varying dosage
of LDH seeds from 1-to-5%. As seen in Fig 4a, the flow curve shifts to the left with increasing
dosage of LDH indicating accelerated hydration and hardening with increase in LDH content. The
corresponding workability parameters, obtained from this flow curves as described in section 2.3,
are presented in Fig. 4 (b-f), showing the effect of LDH. The error bars are the standard deviation
of triplicate measurements. From Fig. 4, it is obvious that, overall, LDH increases the flowability
loss rate, , hardening rate, and acceleration angle, whereas LDH decreases the placement limit.
This suggests that LDH somewhat accelerates the setting and hardening of cement. These
occurrences can be because of the accelerated precipitation and development of new hydration
products facilitated by the nucleation sites provided by the LDH particles in the cement paste pore
solution environment. Thus, LDH catalyzes the nucleation and growth of crystals, and this effect
1s amplified with increase in the dosage of LDH (supporting results are discussed in section 3.4).
In addition, it is reported that LDH adsorbs more water which can lead to the improvement of
cement paste hardening and setting rate [77]. Consequently, the buildability of the cement paste is
enhanced with increase in LDH dosage.

It is well known that there is a compatibility issue of PCE in hydrated CSA cement pastes,
especially if the citric acid (CA) is dosed as a set retarder. Apart from the quick reacting hydrated
CSA cement particles, because of the competitive adsorption, CA with higher anionic charge
density become more adsorbed on the surface of the cement particles and makes the PCE less
effective in interacting with the cement particles [78]. Thus, many researchers suggest using PCE
in CSA cement systems is not reasonably effective [60]. Hence, we have examined the CSA system
dosed with only CA as well as CSA system with concurrent dosage of CA and PCE.

10
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Fig. 4. Workability of CSA pastes with LDH, in the presence of 0.1% PCE: (a) evolution of
time-dependent static yield stress in (1-5%) LDH-dosed CSA cement pastes, and (b-f) effect of
LDH on the corresponding rheological parameters, flowability loss rate m,, hardening rate
my, placement limit ¢, yield stress growth rate constant k, and acceleration angle 6,
respectively. All pastes contain a fixed 2%CA retarder.

To elucidate the effect of PCE in the CSA cement pastes, the above-presented mix design (in Fig
4) were studied without the incorporation of PCE, keeping all other parameters same. The results
without PCE are displayed in Fig. 5, which provide more insights on the effect of PCE in CSA
cement rheology. Comparing the results in Fig. 4 and 5, reveal the influence of PCE in the paste’s
rheology. As shown in Fig. 6, PCE decreases the m4, my, k, and 6,, around 2-3 times, whereas
there is almost no impact of PCE on the placement limit, ¢,,. The results obtained for my, my, k,
and @), showing a considerable effect of PCE may seems contrary to the published studies [79-
81], where the findings suggest that due to the competitive adsorption of PCE with retarder, PCE
will have almost no influence in the CSA pastes. However, in this study, the effect of PCE can be
attributed to the slightly different working mechanism due to the presence of NO3-LDH in the
systems. The PCE can easily be intercalated into the anionic layers in the LDHs replacing the NO5”
, and following the control release capability of LDHs [28,53,82], the PCE might be released into
the cement suspension after a certain time, and making a natural impact of PCE to the systems.
Thus, due to the potential intercalation in LDH and modulated release, the PCE may avoid the
competitive adsorption with the higher anionic charged density-contained citrate ions, and can
continue its superplasticizing effect. Using the LDH thus improve the synergistic effect and can
be beneficial for some target applications, where a fixed set time is required but simultaneously
controlling the hydration kinetics is anticipated (e.g., 3D printing of concrete).
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3.2. Effect of LDH on OPC paste rheology.

The effect of (1-5%) dosages of CaAl-NO3; LDH on OPC pastes rheology is also studied to get
more insights of influence of LDH in different cement pastes. In this study, all the OPC pastes
were prepared with 0.1% PCE as dispersant. Similar to CSA cement systems, LDH increases the
flowability loss rate (m,), hardening rate (mj), yield stress growth rate constant (k), and
acceleration angle (8,), and decreases the placement limit (¢,) (Fig. 7). As stated above, LDH can
act as a seeding or stiffening agent in the cement systems, accelerating nucleation kinetics and
growth of the hydrated cement phases, thereby increasing the buildability of the cement pastes.
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Fig. 7. Workability of OPC pastes: (a) evolution of time-dependent static yield stress in (1-

5%) LDH-dosed OPC pastes, and (b-f) effect of LDH on the corresponding rheological
parameters, flowability loss rate m,, hardening rate m,, placement limit ¢,,, yield stress

growth rate constant k, and acceleration angle 6, respectively.

3.3. Effect of LDH on dynamic rheology of cement pastes

In order to gain more insights of the rheological properties, different methods of yield stress
evolution were studied. Both static and dynamic yield stresses hold significance for numerous
practical applications [83]. For instance, understanding the static yield stress of cement pastes can
provide insights into their stability and resistance to deformation from rest. On the other hand, the
dynamic yield stress offers valuable data regarding the flow behavior of cement when it's pumped
and during the extrusion process in 3D printing of concrete. Thus, dynamic yield stress of cement
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pastes under the influence of PCE has frequently been researched in cement field to understand
pumping and bleeding [84]. The dynamic yield stresses of cement pastes is preferred to be small
for pumping, whereas the static yield stresses are preferred high for better stability and lesser
formwork pressure [85,86]. The evolution of dynamic yield stress and plastic viscosity of the
CSAC and OPC cement pastes (CSA + 1-5% LDH+ 0.1 % PCE + 2 % CA [w/c = 0.5]) and (OPC
+1-5% LDH +0.1% PCE [w/c =0.5]), and the corresponding rheological parameters are presented
in Fig. 8 and 9, respectively. In the test method, a conditioning step was always followed by a
ramp-up and ramp-down steps. The ramp-down steps were executed after a 5 s rest following the
ramp-up. The traditional Bingham model was employed to determine the dynamic yield stresses
and plastic viscosities, 6° = 0y, + Y. p;; where 6” (variable) is the dynamic shear stress in a step,
g, is the dynamic yield stress, ¥ is the shear rate ranging from 0 - 200 s, and Hpy is the plastic
viscosity. As stated above, compared to the static yield stresses, dynamic yield stresses are lower,
and simultaneously the placement limits are extended. The static yield stress values and the stress
overshoot magnitude can be significantly impacted by the rest interval between the end of the pre-
shear and the test run [87].

In this section three most important workability parameters, m,, m,, and t,, were analyzed, and
the trends for both cement pastes are similar to the trends obtained utilizing static yield stress,
presented in earlier sections. However, the magnitudes are significantly lower for, my and m; in
the dynamic tests compared to the static tests, because the up-ramp flow and shear history of the
dynamic test methods breaks the structure and bonding in the hydrated cement pastes prior to the
down-ramp used in obtaining the dynamic yield stress and plastic viscosity data. For the same
shear history difference and perturbation of hydration process, the t,, parameter is higher in the
dynamic than in the static yield stress method.
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3.4. Effects of LDH on the evolution of cement hydrate phases

The effect of the LDH on the hydrated phase assemblage was tracked as a function of time, by
examining the XRD pattern of the pastes seeded with 5%LDH in comparison with the control
(0%LDH) at multiple intervals, for up to 28days. Fig. 10 shows the evolution of hydrated cement
phases over time. From Fig. 10 (a) and (b), it is evident that the ettringite peaks grew faster in the
LDH-dosed OPC pastes compared to the control, as can been seen on the 3h diffraction patterns.
Also, the gypsum peaks diminished faster in the LDH-dosed OPC pastes compared to the control.
This observation indicates that the addition of LDH accelerated the precipitation of ettringite and
concurrently led to faster consumption of gypsum compared to the control paste at early age.
Conversely, at the later age of 28days (Fig. 10e), it is difficult to distinguish the phase assemblage
of LDH-seeded OPC paste from the control, indicating that the effect of LDH is more significant
at the early age stages than the later age. Similar trend was obtained with CSAC pastes, where
ettringite grew faster as seen in the 1h data of the LDH-dosed CSAC pastes compared to the control
(Fig. 10 (c) and (d)), and at later age the system equilibrated featuring identical phase assemblage
(Fig. 10f). These results clearly agree with the fresh paste rheology that suggesting that the LDH
seeds provides nucleation sites that encouraged rapid formation and growth of new hydration
products at early age resulting in the accelerated stiffening and hardening of the pastes with LDH
dosage.
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Fig. 10. Evolution of hydrated cement phases over time: (a) OPC+5% LDH, (b) OPC+0%
LDH (control), (¢) CSA+5% LDH, and (d) CSA+0% LDH (control), (e) 28 day OPC pastes,
(f) 28day CSAC pastes.

3.5. Isothermal calorimetry

The results from the isothermal calorimetric analyses of CSA cement and OPC pastes seeded with
0-5%LDH are shown in Fig 11. The aim of the isothermal calorimetry was to (i) identify attributes
that could be linked to the rheological properties of the pastes, (ii) to know their heat evolution
profiles at an early-age, and (iii) the effect of LDH dosage on the calorimetry profiles of the CSA
cement and OPC systems. Fig. 11(a) and (b) presents the heat flow and cumulative heat profiles
of the CSAC pastes over a 24-hour curing time. It is observed that with increase in LDH content,
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heat flow increases at both the induction and acceleration stages, with a noticeable shift of the heat
flow peak to the left (Fig. 10(a)) and rise in the cumulative heat over 24 h (Fig. 10(b)). These
characteristics indicates acceleration of the CSA cement hydration with LDH dosage, in agreement
with the rheology and mineral phase assemblage tracking, all of which supports the postulate that
LDH provides additional surfaces with crystal nuclei in the suspension thereby accelerating
nucleation and growth of hydrates, as has been observed for other type of LDHs [88,89]. The
cumulative heat generation is expectedly higher in 5% LDH-dosed system, compared to the one
with 0% LDH dose. The CSA systems follows the trend of increased heat evolution as the dosing
5% > 4% > 3% > 2% > 1% LDH. This effect observed in isothermal calorimetry is similar to the
rheological studies; more LDH-induced hydrated products increased the loss of flowability (m,),
increased the hardening rate (m;), growth rate constant (k), and decreased the placement limit

(tp).

Compared to CSA systems, OPC pastes show a more noticeable shift of the peak heat flow to the
left which signifies a shrinking of the dormant period and acceleration of hydration (Fig 11(c) and
9(d)), which agrees with the rheology and phase assemblage data. However, the peak heat flow
and 24-hour cumulative heat are observed to decrease with LDH dosage, in contrast with the trend
with CSA pastes. The observed decrease in cumulative heat of the OPC pastes with increase in
LDH dosage, despite the increase in hydration kinetics, is a new finding that can be explained as
follows. First, the LDH seed in the cement systems provides nucleation sites for formation of new
LDH nuclei which subsequently converts almost immediately or slowly to ettringite depending on
the sulfate concentration of the pore solution according to Eq. (1). It is therefore expected that the
conversion of the new nuclei to ettringite is almost instant in CSA cement pastes due to the
supersulfated pore solution at early age leading to a chemical reaction dominated by Eq (2) with
high heat of formation. Hence the heat release is increased for the CSA cement paste containing
LDH seeds. Conversely, in OPC systems with moderate sulfate concentration and high calcium
ion concentration at early age, it is expected that the new LDH nuclei formed will convert to
ettringite more slowly than it is formed leading to a reaction that is dominated by Eqs (3) and (4)
with lesser heat release than Eq 1 pathway, which may be contributory to the lower overall heat
release in the OPC systems with LDH seeding within the first 24 hours of hydration.

C4ASH12(AFm) < > CeAs3Hiao (AFt) (1)

+2(ca?t+50%7); 20H

6Ca?* + 2Al(OH)4™ + 35042 + 40H™ + 26H,0 = CasAlx(S04)3(OH)12-2 6H,0 : AfH® =-17,535 kJ/mol (2)
4Ca* + 2A|(OH)4_ + 5042_ + 40H + 6H,0 > Ca4AI2(SO4)(OH)12-6H20 ¢ AfH® = - 8,758.6 kJ/moI (3)
4Ca? +2 Al(OH)a™ + 2 NO3~ + 40H™ + 4H,0 > CasAl(OH)12(NO3),-4H,0 : AfH® = — 7,719.3 ki/mol  (4)

Additionally, a closer look at the phase assemblage shown in Fig. 10(a) and (b) reveals more
calcite formation in LDH-dosed OPC systems, and calcite formation is an endothermic process
that can lead to lower heat generation.
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Thus, LDH-OPC composites with accelerated hardening but lower heat generation can be
beneficial for certain applications, including 3D printing, where a less heat generation is desired
(for preventing crack formations, maintaining better microstructural stability, and other benefits),
and higher buildability with accelerated hardening is critically expected. The calorimetry data for
OPC agrees with the 1d TGA data presented in the latter section, i.e., addition of LDH contributed
to accelerated reaction (more bound water).
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Fig. 11. Isothermal micro reaction calorimetry revealed the time-dependent: (a) heat flow from
[CSAC+LDH] pastes, (b) cumulative heat from [CSAC+LDH] pastes, (¢) heat flow from
[OPC+LDH] pastes, (d) cumulative heat from [OPC+LDH] pastes. All the pastes were
prepared with 0.1% PCE at w/c = 0.5, additionally 2% CA was used in CSA cement pastes.
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3.7. Thermal analysis

The thermogravimetric analysis (TGA) and differential thermogravimetry (DTG) curves of 0%
and 1% CaAl-NO3z LDH-dosed 1d and 28d OPC and CSA cement samples are shown in Fig. 12.
The mass losses (%) of the samples at different temperature ranges are presented in Table 3.
Typically, the free or evaporable water is eliminated within 0 - 110 °C [92], decomposition and
loss of loosely bound water in gypsum, ettringite, C-S-H and other hydrated phases including LDH
happens in 110 - 170 °C [92-95], decomposition of C-S-H, LDH and loss of the remaining bound
water occurs in 170 - 300 °C [92,96,97], dihydroxylation of portlandites occur within 450 — 550
°C [92,93], and decarbonation and losses of other volatiles happens at > 600 °C [92,98]. It is worth
noting that C-S-H gel decomposes around similar temperature as ettringite making it difficult to
differentiate the mass loses due to C-S-H and ettringite. However, this study mainly focused on
the losses of free water (unbound water), bound water, and other volatiles. Free water losses were
counted to 110 °C, bound water from 110 — 600 °C, and volatiles from 600 — 1000 °C. The bound
water content is related to the degree of hydration of the individual samples and can be
proportionately related to the heat evolution in the calorimetry as well as to compressive strength
development of the samples. For example, the bound water content in 1d LDH-dosed OPC and
CSA samples are higher than the control samples. This is attributable to the accelerated hydration
reaction by LDH as seen in calorimetry results where the heat flow peaks shifted to the left. The
bound water content in LDH-dosed samples at 28d is comparatively lower than their respective
control samples, which can be associated with lower degree of hydration at later ages suggesting
that the effect of LDH is much more beneficial at early age. However, the total mass loss still
shows higher amounts for the LDH-dosed pastes at 28 days, and a close look also reveals
significantly higher mass loss for the LDH-dosed pastes below 110 °C compared to the control
(Table 3). It has been reported that ettringite may begin to decompose and release its water from
temperature as low as 50 °C[94,99,100] which may suggest underestimated bound water,
especially for the CSA system.

Also, the higher mass loss below 110 °C LDH-dosed pastes cured for 28 days compared to the
controls may suggest that the addition of LDH impacts a hygroscopic-like property to the pastes
at later stage, encouraging the entrapment of unreacted or loose water molecules in the metrices,
which lead to lower compressive strength. Figure 13 depicts the structure of LDH with the
interlayer anions. When external anions (e.g., OH") are introduced to the environment, LDH has
the capability to trap these anions, a process that simultaneously involves the displacement and
release of anions initially situated in the interlayer spaces. The nitrate ions (NOj3") present in the
LDH, may easily get exchanged with the OH™ or water molecules. Thus, the entrapped water
molecules in the LDH particles may not actively participate in the hydration reaction, which can
be responsible for more incomplete reaction and or overall higher disposable water content,
leading to less strength development. The possible mechanism of exchanged anions and
encapsulation of water or hydroxyl molecules are presented in Fig. 13.

24



491

492

493

)

=]
s

w
& )
= a 4297
m o ——Mass (%) OPC, ., oy [ 122
731 :.. DTG OPC, 5 1oy 1.50
T o, X
gal 525 Mass (%) OPC ps.; pyy | 1.75
----- DTG OPC 5y oy
65 . . . T -2.00
0 200 400 600 800 1000
Temperature (°C)
(a): 1d
101 2.5
. — Mass (%) OPC.9 101 L 2.0
71 3 —— DTG OPC,,.101 1.5
93 R Mass (%) OPC, o, p | 1.0
o] \ .. DTG OPC, g, o1 Lo.5
s e vf 0.0
& g5 L .05
[}
G 814 L-1.0
= 1 Ul T~ e F-1.5
774 L 20
734 t2s5
6 --3.0
| L-3.5
65 T T T T -4.0
0 200 400 600 800 1000
Temperature (°C)

(c):

28d

—_
)

=

g
o
(=]

Mass (%)

101

89 4

Mass (%)

77 4
73 4
69 4

65

85
81 4

1.0
L0.0
671.3
207.8 10 7
—— Mass (%) CSA 10,101 E
—— DTG CSA, 10,104 20
N Mass (%) CSA,go. 01 E
ey, T DTG CSA,gy-LoH 3.0 E
- 4.0
] 952
T T T : -5.0
0 200 400 600 800 1000
Temperature (°C)
1.0
974 \"
\- ) 0.0
931 6822 8729
(107
£
2.0 52
Mass (%) CSA. 1901 e
——DTGCSAmwon | 40 E
+ e e s Mass (%) CSA,gon | O
--------- --4.0
1077 ' ' : 50
0 200 400 600 800 1000

Temperature (°C)

(d): 28d

Fig. 12: Thermal analysis of 1d and 28d control and 1% LDH-dosed (a, ¢) OPC, and (b, d)
CSA cement samples. All the samples were prepared with the same designed mix proportions.

Table 3. TGA of blended cement samples

Materials (with Mass (%) losses of 1d and 28d OPC samples Total mass
admixtures) <110°C 110 — 600 °C 600 — 1000 °C loss (%)
(free water) (bound water)  (other volatiles)
OPC + 0%LDH- 1d 7.48 8.24 2.36 18.08
OPC + 1%LDH- 1d 7.40 9.02 2.59 19.01
OPC + 0%LDH- 28d 6.59 15.27 3.72 25.58
OPC + 1%LDH -28d 13.28 15.09 1.57 29.94
Mass (%) losses of 1d and 28d CSAC samples
CSA + 0%LDH- 1d 14.99 10.93 1.10 27.02
CSA + 1%LDH- 1d 14.84 12.91 1.16 28.92
CSA + 0%LDH- 28d 11.35 17.2 3.52 32.07
CSA + 1%LDH- 28d 15.74 15.32 2.73 33.79
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3.7. Mercury intrusion porosimetry

The porosity and pore size distribution of 0% and 1% LDH-dosed cement samples obtained by
mercury intrusion porosimetry (MIP) is shown in Fig. 14 and Fig. 15. The overall porosity of the
samples is summarized in Table 4. Figure 14 shows the porosity and pore size distribution of 1d
and 28d OPC samples. The porosity of the 1d OPC samples are nearly the same (Fig. 14(a)).
However, Fig. 14 (¢, d, g, h) shows that there are larger pores in the 1% LDH-dosed sample, which
can be responsible for the slightly reduced compressive strength of 1% LDH-dosed OPC sample.
Fig. 14 (e, f, g) indicates that the LDH-dosed OPC sample cured for 28 days feature higher porosity
and larger pores, which similarly corroborate the reduced compressive strength found for the 28d
LDH-dosed sample, compared to control. An almost similar pattern can be observed for the CSA
cement systems in Fig. 15. LDH-dosed CSA samples displayed nearly the same overall porosity;
however the LDH-dosed samples had more pores with larger volumes. The nature of the porosity
profiles were found similar to the published work [101-104]. Higher porosity and especially larger
pores decreased the mechanical strength of most of the LDH-dosed pastes, albeit the decrease in
strength is very negligible in the CSAC pastes (section 3.8). Thus, the incorporation of CaAl-NO3
LDH in this study showed no improvement in the strength development of the blended cement
samples. Reducing the size of the LDH, for example, submicron-to-nano LDH, and utilizing lower
amount of dosage (e.g., < 1%) and more robust particle dispersion protocol may be suggested for
future investigations. As stated in section 2.7, it is possible for some ettringite to degrade during
the drying which may have affected the absolute porosity, especially for the CSAC samples.
However, since the control samples were dried under the same conditions as the LDH-modified
samples, the comparison of the results relative to each other can still provide useful information
despite any errors potentially arising from the drying protocol.
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Fig. 14. Porosity and pore size distribution analysis of (a, b, ¢, d) 1d, and (e, f, g, h) 28d
control and 1% LDH-dosed OPC cement samples. All the samples were prepared with the
same designed mix proportions.

Table 4. Porosity of blended cement samples

Materials
(with admixtures)

Porosity (%)

1d-OPC+0%LDH
1d-OPC+1%LDH
1d-CSA+0%LDH
1d-CSA+1%LDH

28

35.94
35.71
24.94
25.75
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Fig. 15. Porosity and pore size distribution analysis of (a, b, ¢, d) 1d, and (e, f, g, h) 28d
control and 1% LDH-dosed CSA cement samples. All the samples were prepared with the
same designed mix proportions.
3.8. Compressive strength

The effect of CaAl-LDH on modified OPC and CSA cement paste can also be characterized by its
impact on the compression resistance. Fig. 16 represents the 1d and 28d compressive strength of
OPC and CSA cement pastes with a 0% (control paste), 1% and 5% LDH dosage. The results
indicate that CaAl-NOs; LDH does not improve the mechanical strength in both 1d and 28d OPC
and CSA cement cubes. A slight reduction continued with increase in the LDH content in the
cement systems, which is slightly contrary to the results available in the literature [90]. However,
addition of higher content of LDH (e.g., 1,5 - 10% LDH), and larger particle size of the LDH may
affect the microstructure and results in lower compressive strength [46,90,91]. The reduction of
strength in LDH-dosed OPC systems can be attributed to the calcite formation in the samples
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shown in Fig. 10 (a). The reduction of the compressive strength is also proportionally related to
higher porosity and larger pores in the cement systems. The porosity and pore distributions are
discussed in the previous section. The compressive strength of CSA cubes, shown in Fig. 16 (b)
followed similar trends like OPC. However, the evolution of compressive strength in CSA samples
seems lower than the published results [47,51], though Li and Mg-based LDHs were used in those
studies. One possible reason can be the effect of admixtures, specifically the effect of retarder or
combined negative effect of citric acid, PCE, and the LDH. Both the 1d and 28d porosimetry data
discussed in section 3.7 indicates that larger pores were present in the CSA samples, which could
lead to the reduction in strength. Overall, higher dosage and larger particle sizes of LDH can cause
agglomeration and may lead to decrease the strength, instead of enhancement of strength by LDH.
As mechanical strength is one of the vital parameters for the assessment and acceptability of
construction materials, further investigation is needed on the improvement of compressive
strength. The possible areas of improvement can be the use of nano-LDH, lowering the CaAl-NO3
LDH content (e.g., < 1% dosage), enhancing dispersion, and increasing the w/c ratio to fulfill the
water demand for the completion of hydration reaction.

45 ~ 40
© 37.92 B2 1 day © XY 1 day
% 40 - [ 28 days % 35 [ 28 days
z 35 33.35 ::" 30 29.24 27.78 29.08
5 =)
& 30 € 25
S o
525 =
s n 20
o 20 o
> 2 154

] ®
g 15 0 10
£ 10/ g "
€ 5 E 5
S o
O . o

OPC+0%LDH OPC+1%LDH OPC+5%LDH CSA+0%LDH CSA+1%LDH CSA+5%LDH
(@) (b)

Fig. 16. Compressive strength of 0-5% LDH-dosed: (a) OPC, and (b) CSA cement pastes.
Similar mix design proportions were used to make all the pastes’ cubes.

4. Conclusions

The study examined the impact of submicron CaAl-NO; LDH particles on the properties of OPC
and CSA cement pastes in both their fresh and mature stages, and following conclusions can be
drawn.

(1) Rheology-based protocol was employed to investigate the time-dependent quantitative
workability of cement pastes utilizing both static and dynamic yield stress modes. The
outcomes indicate that LDH as a seeding agent providing crystal nuclei in the suspension
and helps accelerate the hydration process by contributing more surface area for the
nucleation and growth of the hydrated cement phases. Thus, in general, LDH in both cement
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systems increased the flowability loss rate (mq), hardening rate (m,), yield stress growth
rate constant (k), acceleration angle (8),), and reduced the placement limit ().

(2) Over a 28-day tracking of the evolution of hydrated phase assemblage, it was revealed that
the LDH-dosed OPC showed quicker depletion of gypsum and more rapid formation of
ettringite, along with a slight increase in calcite precipitation compared to the control. This
indicates that LDH seeding accelerated the hydration process. In the context of CSA pastes,
LDH peaks were clearly present as early as 0.5 h in the LDH-dosed system, however, there
was no significant impact of the LDH on the CSA's overall mineral phase assemblage.

(3) Isothermal calorimetry findings affirm a more pronounced seeding effect of LDH on OPC
than CSA cement pastes, accelerating the hydration reactions. As anticipated, higher LDH
dosing (1 to 5 %mass) in CSA systems corresponded with increased heat production. In
contrast, addition of LDH to OPC systems resulted in reduced peak heat flow and cumulative
heat generation. The observed endothermic properties of OPC pastes might be slightly
enhanced due to calcite formation, and the dominance of a reaction pathway with lower
enthalpy of formation. This discovery can be advantageous for additive concrete
manufacturing, such as 3D printing, where a balance between rapid setting post-placement,
improved thixotropy, and reduced heat generation is desirable.

(4) LDH addition slightly reduced compressive strengths attributable to increase in porosity,
presence of larger pores, highlighting the negative impact of CaAl-NO; LDH. Nevertheless,
these systems can benefit applications requiring rapid hardening, even if it slightly reduces
concrete’s strength.

Further research is crucial to fully understand the role of CaAIl-NO3; LDH in construction materials.
Recommendations for future work include studying the effect of nano-sized LDH particles,
limiting LDH dosage below 1%, altering admixtures, enhancing dispersion, tracking the
performances for an extended period (e.g., several months), applying these materials in
challenging environments, and employing molecular simulation to uncover detailed interactions
and phase formations.
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