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Abstract

Emerging non-volatile memories, specifically FeFET, PCM,
RRAM, and STT-MRAM, promise significant advances in
energy-efficient on-chip storage. Our research evaluates most
recent (2020-2023) publications of such eNVMs against both
optimistic and pessimistic projections sourced from 2016 to
2020 research using NVMExplorer, an open-source eNVMs
simulator. Significant findings include FeFET’s low area,
PCM’s improved energy efficiency and reduced read latency,
and the evident advancements in STI-MRAM and RRAM.
Moreover, we evaluate the potential benefits of recent eNVM
solutions as memory resources for Deep Neural Network (DNN)
accelerators and find that recent advances in RRAM and
FeFET devices offer improved memory power and density for
ResNet26 image processing. Overall, our study presents and
analyzes continued research efforts on eNVM technologies as
promising contenders to augment and replace conventional
memory technologies.

1. Introduction

The exploration of emerging non-volatile memory tech-
nologies like FeFET, PCM, RRAM, and STT-MRAM, over
the last three years offers a glimpse into the continuing
evolution and innovation of memory technologies. This
study dives deep into their performance and their potential
to supplant conventional memories such as SRAM and
DRAM by modeling and evaluating recent advances against
standards from prior work based on 2016-2020 publications.
Using DNN benchmarks, we also assess how these eNVMs
can be optimized to improve the power efficiency of modern
computing tasks.

2. Methodology

We reviewed eNVM-focused papers from ISSCC, IEDM,
and VLSI (2020-2023), extracting cell configuration data.
Based on the obtained data, we used NVMExplorer [10]
to model array-level characteristics. We simulated eNVMs
against six key optimization criteria mainly focused on
energy, density, and power optimization. We then analyzed
key metrics: Read Latency vs. Read Energy, Write Latency vs.
Write Energy, and Area vs. Area Efficiency. Key findings on
standout eNVMs are discussed in Section 3.1. We validated
our simulations by comparing them against published values

of fabricated test chips (see Section 3.3). Additionally, we
evaluted applicability to DNN use cases using ResNet26,
each storing either weights only or both weights and
activations, at a 2 MB memory size; detailed results are
presented in Section 3.2.

3. Results

3.1. Memory Array Characterization

We evaluated key metrics across technologies at iso-
capacity (1IMB) using published cell characteristics as inputs
to NVMExplorer. We compared these results from 2020-2023
publications to NVMExplorer’s provided optimistic and
pessimistic projections per technology based on 2016-2020
publications. Our analysis highlights the top-performing
technologies across several optimization criteria. Our data
shows that recent examples of FeFET outperforms pre-
existing pessimistic cell assumptions in area, generally
achieving array characteristics close to prior optimistic
assumptions, as depicted in Figure 1 (a). As per Figure
1 (b), recent advances in PCM surpass even optimistic
prior characteristics, demonstrating reduced read latency
and lower energy consumption. Meanwhile, Figure 1 (c)
underscores the recent progress in STT-MRAM, showing
examples of increased energy efficiency and quicker write
times, consistently aligning with optimistic expectations.

3.2. DNN Inference Simulation

To evaluate recent eNVM configurations as potential
replacements to SRAM in the deep learning accelerator
architecture studied in [10], we evaluate 2MB capacity
eNVM arrays under memory traffic patterns corresponding
to a variety of ResNet26 image processing tasks.

Figure 2 presents the results of DNN inference simula-
tions in which only weights are stored in eNVM array (2020-
2023), leading to a read-only traffic during inference. We
excluded those points that failed to meet software require-
ments (completing 60 frames-per-second image processing).

Table 1 compares the optimal eNVMs choices for three
other DNN benchmarks based on DNN inference simulation
results from 2016-2020 and 2020-2023 publications. It is
noteworthy that FeFET has become the optimal choice
for all benchmarks in terms of area. PCM, on the other
hand, still performs the best for weights-only benchmarks,
while RRAM has become the top performer for weights-
and-activation benchmarks, surpassing STT.
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Figure 1: Example Array Characteristics for 1IMB eNVMs using cell characteristics derived from 2020-2023 publications
compared to existing optimistic / pessimistic example configurations from [10]
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Figure 2: Total Power of eNVM-based weights memory for
ResNet26 single-task image classification (2020-2023 data)

TABLE 1: OpTiMAL ENVMS FOR EACH BENCHMARK

Operating Mode Priority | 2016-2020 | 2020-2023
Single (Weights only) Power PCM PCM
Single (Weights only) Area FeFET FeFET

Single (Weights & Acts) Power PCM RRAM
Single (Weights & Acts) Area FeFET FeFET
Multiple (Weights only) Power PCM PCM
Multiple (Weights only) Area STT FeFET
Multiple (Weights & Acts) Power STT RRAM
Multiple (Weights & Acts) Area STT FeFET

4. Validation

We conducted a validation study on PCM [5] and STT-
MRAM [1] memory chips, using available data from the lit-
erature at both device and array levels. We simulated array-
level performance, based on provided cell parameters with
NVMExplorer. The reported values consistently fell within
our simulated range as depicted in Figure 3, validating that
NVMExplorer’s modeling capabilities effectively capture
behaviors akin to those of fabricated memory arrays.

5. Conclusion

Our study advocates eNVMs as potential successors to
conventional memory systems. Simulations reveal FeFET’s
superiority in area, power efficiency, and DNN application,
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Figure 3: Simulated and Reported Results (Validation)
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while PCM, STT-MRAM, and RRAM show improved energy,
latency, and reduced DNN inference power respectively.
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