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Abstract
Deep neural networks (DNNs) currently require large

amounts of memory to store weights. Consequently, inference
is less efficient given that weights must be stored off-chip
on DRAM, resulting in costly memory accesses. While com-
pression techniques, including quantization and pruning, can
significantly reduce model size, current memory technologies
are unable to store compressed DNNs on-chip. Prior works
have proposed multi-level cell emerging non-volatile memory
technologies as a solution given their ability to store bits
densely on-chip. While these memory technologies are fault
prone, having higher bit error rates, it has been demonstrated
that DNNs exhibit some fault tolerance. We build on previous
work by examining the fault tolerance of a pruned and
quantized large language model (LLM).

1. Introduction
With the emergence of ChatGPT and Bard, large lan-

guage models have become mainstream and are gaining
prevalence in various domains. The very attribute that
drives their remarkable performance – their size – also
presents a significant limitation: they must be stored and
processed on dedicated servers rather than the system the
end user utilizes. In addition, existing memory technologies
are unable to store the large volume of weights on-chip,
resulting in reads with greater latency and energy consump-
tion [6].

Fortunately, prior work demonstrates that DNN weights
are amenable to pruning (many can be set to zero) and
reduced data precision at little to no loss of accuracy [6].

To address the inefficiency of off-chip weight storage,
prior work has shown that it is possible to use multi-
level cell emerging non-volatile memory (MLC eNVM)
technologies, which are dense and have low read latencies,
to store parameters on chip [6]. However, the main caveat
is that MLC eNVMs are fault prone, with higher bit
error rates during memory accesses [6]. Certain DNNs,
including convolutional neural networks (CNNs) for image
recognition, have shown to be fault tolerant and therefore,
an ideal use case for MLC eNVMs [6, 8]. We build on
this work by examining the fault tolerance of a compressed
large language model.

2. Methodology
We implemented a methodology that built upon prior

work on deep neural network compression and fault in-

jection [6]. After evaluating baseline performance of our
selected model, we applied different compression techniques
to it, analyzing how performance differed from baseline
benchmarks. We then used an existing fault injection
framework to measure fault tolerance of the different
compression techniques [8]. We incorporated an existing
language model evaluation harness to measure performance,
in particular model perplexity and accuracy [3].

2.1. nanoGPT
We tested compression techniques and fault injection on

the “GPT2-large” [7] language model and used the nanoGPT
framework [4] to access and modify weights.

2.2. Model Size Reduction Techniques
2.2.1. Quantization. Rather than using a traditional 32-
bit float to represent each weight, we used a smaller,
less-precise, fixed-point number. We fixed the number of
integer bits at 3 and reduced fractional bits (starting at
29) until model performance degraded. We allowed minor
degradation as a trade-off for reduced storage.

2.2.2. Pruning and Bit Mask Encoding. We applied
magnitude-based weight pruning to set weights below
a certain threshold to zero. We increased the threshold,
and therefore sparsity, until performance degraded. After
weights were pruned, we used bit mask sparse encoding to
store the sparse weights more efficiently. For our achieved
sparsity, we did not consider compressed space row (CSR)
format as a bit mask could store data more efficiently.

2.3. Ares Fault Injection
To simulate bit flip errors, we used the Ares Fault

Injection framework [8]. We injected faults at different bit
error rates into pruned and quantized weights to determine
which combination of compression techniques were fault
tolerant. For bit mask sparse encoded weights, we did not
inject faults into the bit mask (we assumed the bit mask
would be stored on a more reliable memory system). For
our selected compressed model, we completed 100 trials of
fault injection for each bit error rate we tested.

2.4. LAMBADA Evaluation
To measure model performance after pruning, quan-

tization, sparse encoding, and fault injection, we used
the EleutherAI Language Model evaluation harness [3],
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and in particular the LAMBADA dataset (with OpenAI
modifications) [5]. We examined accuracy (how well it
could predict the next word when given a set of text) and
perplexity (a measure of how certain the model is about
predicting the next word).

3. Results
We reduced model size without a significant reduction

in performance, and noted some fault tolerance in the model.
Our compressed model used 3 integer bits and 8 fractional
bits for weights and 35% of weights were pruned.

3.1. Model Size

Figure 1: Size of Model in MB Before and After Compression

We were able to reduce model size from 2950 MB
to 700.8 MB through quantization, pruning and sparse
encoding.

Figure 2: Accuracy of Model Before and After Compression

3.2. Compressed Model Performance
We allowed for a small reduction in accuracy (5%) for

a more compressed model. We chose this quantization (11
bits) and sparsity level (35%) as it maximized sparsity and
fault tolerance. The baseline perplexity was 12.98 while the
compressed perplexity was 24.07.

3.3. Fault Tolerance
The final compressed model did demonstrate fault

tolerance up to 10–7 bit error rate. After that error rate,
performance degraded rapidly. The model was less fault
tolerant than models prior works have explored, with some
models being able to tolerate bit error rates between 10–5

and 10–3 [8].

Figure 3: Fault Tolerance of Compressed Model

4. Conclusion
We were able to reduce model size by over 75%, with

minimal reduction in performance. We also noted fault
tolerance up to a bit error rate of 10–7. Future research could
include considering alternative pruning and quantization
methods, measuring fault tolerance of recent one-shot
pruning [1] and quantization [2] techniques, and finding
more fault tolerant data types to store weights.
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