smashGP: Large-scale Spatial Modeling via
Matrix-free Gaussian Processes

Lucas Erlandson
School of Computational Science and Engineering
Georgia Institute of Technology

Ana Maria Estrada Gémez
School of Industrial Engineering
Purdue University

Edmond Chow
School of Computational Science and Engineering
Georgia Institute of Technology

Kamran Paynabar
School of Industrial and Systems Engineering
Georgia Institute of Technology

Abstract

Gaussian processes are essential for spatial data analysis. Not only do they allow the
prediction of unknown values, but they also allow for uncertainty quantification. However,
in the era of big data, directly using Gaussian processes has become computationally infea-
sible as cubic run times are required for dense matrix decomposition and inversion. Various
alternatives have been proposed to reduce the computational burden of directly fitting Gaus-
sian processes. These alternatives rely on assumptions on the underlying structure of the
covariance or precision matrices, such as sparsity or low-rank. In contrast, this article uses
hierarchical matrices and matrix-free methods to enable the computation of Gaussian pro-
cesses for large spatial datasets by exploiting the underlying kernel properties. The proposed
framework, smashGP, represents the covariance matrix as an H? matrix in O(n) time and
is able to estimate the unknown parameters of the model and predict the values of spatial
observations at unobserved locations in O(nlogn) time thanks to fast matrix-vector prod-
ucts. Additionally, it can be parallelized to take full advantage of shared-memory computing
environments. With simulations and case studies, we illustrate the advantage of smashGP
to model large-scale spatial datasets. Supplementary materials are provided online.

Keywords: Gaussian processes, hierarchical matrices, matrix-free methods, spatial data analysis

1 Introduction

Gaussian processes (GPs) are a powerful machine learning tool (Rasmussen and Williams 2005)
and have a dominant role in spatial statistics (Stein 2012; Banerjee et al. 2014; Cressie 2015)
where they provide insights into many geophysical and environmental problems. For example,
they enable the study of greenhouse gas concentrations for climate change (Fang et al. 2018),
of soil properties for precision agriculture (Andugula et al. 2017), and of different atmospheric
states for weather forecasting (Heaton et al. 2019). Three main features explain the usefulness
of GPs in the analysis of spatial data. (1) Unknown parameters of the model can be estimated;
(2) GPs predict the values of spatial responses at unobserved locations; and (3) GPs quantify the
uncertainty in the predictions and parameters (Cressie 2015).

A spatial process Y (s) for s € D C R? is said to follow a GP if any realization Y =
(Y(s1),...,Y(s,))" at the finite number of locations sy, ..., s, follows an n-variate Gaussian dis-
tribution. More specifically, let u(s) : D — R denote the mean function and X(sy, 8s) : D? — R
denote the positive-definite covariance function. Then, Y is distributed as N (u,3), where
po= (u(s1),...,pu(sn))" is the mean vector and X = {X(s;, s;)},_; is the n x n covariance
matrix. The Gaussian structure of the spatial process allows for a large degree of analytical ca-
pability, enabling out-of-sample predictions and uncertainty quantification. In this paper, we use
GPs for large-scale spatial modeling. However, notice that GPs are not restricted to R2.

Even though GPs are a great tool for modeling spatial processes, and allow the prediction
and uncertainty quantification of out-of-sample data points, they have one big limitation. When
the number of spatial locations, n, in the training dataset is large, they become computationally
intractable. The prediction and uncertainty quantification for an out-of-sample data point require
solving a linear system, typically done by inverting (i.e., Cholesky factorization and triangular
solves) the covariance matrix 3 which involves O(n?) operations and O(n?) memory. Furthermore,
in order to estimate the model’s optimal parameters, the inversion computations need to be carried
out many times. Therefore, direct GPs, with Cholesky factorization and triangular solves, cannot
be used when n is larger than around twenty thousand data points (Hensman et al. 2013), which is
a common setting in modern spatial datasets. The development of advanced sensing technologies,

mounted on satellites and aircraft, collecting massive amounts of spatial data, limits the use of

direct GPs in many applications (Katzfuss 2017; Heaton et al. 2019).

Various alternatives have been proposed to overcome the computational limitations of direct
GPs for the analysis of spatial datasets. The vast majority of these methods rely on simplifying
assumptions or approximations and can be grouped into four categories. (1) Low-rank methods
aim at reducing the rank of the covariance matrix 3, examples of such methods include fixed rank
kriging (Cressie and Johannesson 2008; Zammit-Mangion et al. 2018) and predictive processes
(Finley et al. 2009)). (2) Sparse covariance methods introduce zeros into the covariance matrix 3
to allow for sparse computations, examples of such methods include spatial partitioning (Knorr-
Held and Rasser 2000; Kim et al. 2005; Sang et al. 2011; Anderson et al. 2014; Heaton et al. 2017)
and covariance tapering (Furrer et al. 2006; Furrer and Sain 2010). (3) Sparse precision methods
introduce zeros into the precision matrix 3! to speed up the computations required, examples of
such methods include stochastic partial differential equations (Lindgren et al. 2011), latticeKrig
(Nychka et al. 2015), multiresolution approximations (Katzfuss 2017; Jurek and Katzfuss 2021),
nearest neighbor processes (Datta et al. 2016; Finley et al. 2019), and periodic embedding (Guin-
ness 2019). (4) Algorithmic methods with new fitting schemes have been developed to reduce
the computational cost, examples of such methods include 1aGP (Gramacy 2016), metakriging
(Guhaniyogi and Banerjee 2018), and gapfill (Gerber et al. 2018). For a comprehensive overview
of these methods, see the work by Heaton et al. (2019). The main drawback of these alternatives
is that, if the assumptions on the structure of the covariance/precision matrix are not satisfied,
the approximations can hinder the out-of-sample predictions and the uncertainty quantification.

Recently, there has been a push, led mostly by applied mathematicians and computer scien-
tists, to relax these assumptions. Abdulah et al. (2018) and Salvana et al. (2021) proposed to
use state-of-the-art high-performance dense linear algebra libraries associated with edge parallel
architectures to directly solve GPs. Others represent the covariance matrix ¥ as a hierarchical
matrix (Hackbusch 2015), where the relationships between different low-rank blocks and nested
bases are exploited. The structure of the hierarchical matrix allows for efficient computations and
reduces the storage requirements. In 2007, Borm and Garcke used hierarchical matrices to repre-
sent the GP covariance matrix for the first time. They were able to estimate the matrix using only

O(nm) units of storage, where m is a parameter controlling the accuracy of the approximation.

The computation of the hierarchical matrix scales with O(nmlogn), which allows the evaluation
of matrix-vector products in O(nmlogn) operations. Other operations like multiplication or in-
version can be accomplished in almost linear complexity. The proposed representation was used
for prediction and uncertainty quantification. However, the authors did not provide a solution
for learning the GP and thus estimating the optimal model parameters. Since then, others have
exploited the structure of hierarchical matrices to fit GPs.

On the one hand, some authors propose to exploit a particular representation of the covariance
matrix to reduce the computational complexity of estimating a GP (Anitescu et al. 2012; Minden
et al. 2017; Geoga et al. 2020; Keshavarzzadeh et al. 2021; Majumder et al. 2022). For example,
Minden et al. (2017) propose to use recursive skeletonization factorization to represent the co-
variance matrix, and use an adaptation of the matrix peeling algorithm to learn GPs in O(n?/?)
time under certain conditions. Geoga et al. (2020) exploit hierarchical off-diagonal low-rank ma-
trices to represent the covariance matrix, and use the Hutchinson stochastic trace estimator to
learn GPs in quasilinear O(n log®n) time. Majumder et al. (2022) exploit Krylov subspaces, using
Golub-Kahan bidiagonalization for the solution of linear systems, and use the Krylov subspace to
estimate the objective function and its gradients in O(nlogn) time. This method uses Fast Fourier
Transforms for the matrix-vector products, which requires the spatial data to be on a grid, which
requires additional approximations for use on ungridded spatial datasets. On the other hand, some
works focus on reducing the number of operations required to tune a GP given any hierarchical
representation of the covariance matrix. In particular, Gardner et al. (2018) propose a blackbox
matrix-matrix multiplication framework to estimate the optimal parameters of a given GP. The
proposed framework uses a modified batched version of the conjugate gradient algorithm, reducing
the asymptotic complexity of GP inference from O(n?) to O(n?). However, none of the existing
frameworks propose a hierarchical matrix representation of the covariance matrix, which allows
for customized matrix-free operations to efficiently learn a GP. By “matrix-free” operations, we
mean that no dense matrices of size n x n are formed when learning a GP. By exploiting both the
hierarchical representation of the covariance matrix and the matrix-free operations, the computa-
tional complexity of fitting a GP can be further reduced to O(nlogn) without requiring the data

to be on a grid.

The goal of this paper is to develop a framework to learn GPs without assuming a specific
structure of the covariance matrix in quasilinear time, to improve the out-of-sample predictions
and uncertainty quantification. Instead of making strong assumptions about the structure of the
covariance matrix, we capitalize on the properties of the underlying covariance function and ap-
proximate the covariance matrix, where the accuracy of the approximation can be controlled. We
use Structured Matrix Approximation by Separation and Hierarchy (SMASH, Cai et al. (2018))
to represent the covariance matrix. We exploit the special structure of this approximation to effi-
ciently estimate the model parameters in a matrix-free manner (i.e., without using dense matrices
of size n x n). Specifically, given the spatial points sy,. .., s,, a tree structure is first constructed
based on an adaptive partitioning of the domain D to facilitate approximation procedures of the
covariance matrix 3. A rank-revealing factorization is applied to an initial analytic approximation
so that a special structure is incorporated into the nested bases. As a consequence, the storage is
significantly reduced, and a hierarchy of the spatial points is constructed. Operations associated
with each level can be performed in parallel, which greatly reduces the computational time. Us-
ing SMASH to represent the covariance matrix and perform its associated matrix-free operations
allows us to develop an efficient framework to find the optimal modeling parameters of a GP and
perform out-of-sample predictions. The framework exploits the use of preconditioners to mini-
mize the number of iterations required in the matrix-free operations and considers the numerical
instability often encountered when dealing with GPs.

The main contributions of the paper are: (1) we develop a framework, smashGP, for matrix-
free GP optimization via SMASH, which allows us to represent the covariance matrix 3 as an H?
matrix in O(n) time; (2) smashGP is able to estimate the unknown parameters of the model and
predict the values of spatial observations at unobserved locations in O(nlogn) time thanks to fast
matrix-vector products; (3) smashGP is able to overcome the numerical instability that often arises
when dealing with GPs ; (4) smashGP is able to perform prediction and uncertainty quantification
for a dataset with a million data points. Finally, as far as the authors are aware, we are the
first to present a rigorous comparison between GPs methods imposing a special structure to the
covariance matrix and GPs methods relying on hierarchical matrices and matrix-free operations.

Methods developed to learn GPs using hierarchical matrices have been evaluated on their ability to

estimate the model parameters accurately. However, the out-of-sample predictions and uncertainty
quantification capabilities have not been fully studied. Comparing these two approaches is critical
as practitioners need guidelines to decide which framework should be preferred when learning GPs
for spatial data.

The rest of the article is organized as follows. Section 2 provides a review on GPs for spatial
data. Section 3 introduces SMASH and its matrix-free operations. In Section 4, we present the
proposed methodology: smashGP. Simulation studies and real data analysis are conducted in
Sections 5 and 6, respectively. Finally, we conclude in Section 7. The codes written for this paper
can be found at https://gitlab.com/libsmash_public/smashgp. We provide supplementary

materials with additional details on smashGP.

2 GPs for Spatial Data

As defined in the introduction, a spatial process Y (s) for s € D C R? is said to follow a GP if
any realization Y = (Y (s;),...,Y(s,))" at the finite number of locations si,..., s, follows an
n-variate Gaussian distribution, i.e., Y ~ N (@, X). In what follows, without loss of generality,
we assume that the mean function of the spatial process Y (s) is constant. Therefore, p = 1,
(derivations for a non-constant mean can be found in the supplementary materials). Additionally,
we assume that 3 = 0”R, where ¢° is the process variance and R = {R(s;, s;)}};_, is the n x n
correlation matrix. The correlation function R(sy, s3) : D? — [—1,1] is a positive-definite kernel
function. Popular kernel choices include the Gaussian kernel, the power exponential family of
kernels, and the Matérn family of kernels (Roustant et al. 2012). All of these kernels depend on
characteristic length-scale parameters 6 (Rasmussen and Williams 2005).

In almost all geophysical and environmental situations, sensors collecting spatial data only
provide noisy observations. Therefore, instead of observing a realization Y of the spatial process
Y(s), we observe Y; = Y (s;) + ¢, for i = 1,...,n, where ¢ ~ N(0,72) is a realization of a
noise random variable. If we assume the spatial process Y (s) follows a GP and is stochastically
independent from the Gaussian measurement errors ¢;, we have that the observed vector Y =

. \T
<Y1, . ,Yn> follows an n-variate Gaussian distribution with mean g = pl,, and covariance

matrix ¥ = 2R + 72I,, where I, is the n x n identity matrix. The likelihood of Y is

L(u,02,72,9;l~/) =
1
(2m)/2 o2 R + 721 ,,|(1/2)

exp (—%(Y —yL) (PR 4LV - u]ln)) (1)

Training a GP means finding the optimal values for the parameters, i, 02, 72, 8, given the vector
of noisy observations Y. These parameters are commonly learned by minimizing the negative log-
likelihood of the observed data. To reduce the optimization dimensionality, we define v = o2 + 72,
the total variance, and a = 0?/(¢? + 72), the proportion of variance explained by Y(s). We
rewrite ¥ = vR,, with R, = aR + (1 — a)I,, note that R, is also symmetric positive-definite
since a € [0,1]. When minimizing the negative log-likelihood, the first-order conditions provide
analytical solutions for p and v:

1 R'Y 1

6= —(¥ - iL,) "R, (Y — i) (2)

,LL:]]_IR;l]]_n n «

Thus, the concentrated log-likelihood depends only on @ and 6:
—2log L(fi, 0, c, 8;Y) = nlog(2m) + nlog v + log |Ra| + 1 (3)

The fact that o is bounded is convenient for optimization. Let ¢ = (a, 8)7, then the kth partial
derivative of the log-likelihood is given by:

dlog L(f1, 0, a, 6; f/) ¥ N T 10Ra 1 ¢ N . (—1aRa)
-2 =—(Y—-41,) R, —R_ (Y —ul,)/o+Tr | R, 4
9, (Y —4l,) 90, (Y —4l,)/ 9o (4)

Under this scenario, L-BFGS-B (Zhu et al. 1997), an optimization algorithm in the family of quasi-

Newton methods, is used to find the optimal parameters, qAb, given the observed data. Once the
model is trained and the optimal parameters are estimated, inference and prediction of a spatial
process are made by utilizing the conditional distribution, p (Y(s)]f’). The predictive mean and

the predictive variance, for s € D, are given by:

m(s) = i+ ai(s) R, (Y — L) (5)
$(s) = 6%(1 — ar(s) R, #(s)) + (1 — ai(s) R, 1,)°/(1] (0R.) "1, (6)

where R, is the estimated correlation matrix and #(s) = (R(s, 8;))i—1....n is the vector of estimated

77777

correlations between Y (s) and Y.

3 SMASH and Matrix-free Operations

As already mentioned, the main limitation to directly learn GPs from large-scale spatial data is
the inversion of the correlation matrix, R,, which requires O(n?) operations and O(n?) memory.
To overcome this limitation, hierarchical matrices and matrix-free solves can be used. Hierarchical
matrices are data-sparse representations of dense kernel matrices that exploit the block low-rank
properties arising from the underlying kernel functions. In the case of GPs, recall that R, =
{Ra(8i,85)}1=1 where R, (s;,85) is a positive-definite kernel function.

In this paper, we use SMASH #H? matrices, which can be constructed in linear time, and
provide linear scaling matrix-vector products (Cai et al. 2018; Erlandson et al. 2020). We provide
a brief overview here for completeness purposes. Without loss of generality, we describe how the
dense correlation matrix R, is represented as a SMASH H? matrix. This is done by constructing
a SMASH H? representation of R, and then using the identity R, = aR + (1 — a)I,. We
also explain how the matrix-vector products are carried out by exploiting the structure of the
hierarchical matrix.

To construct the SMASH H? matrix representation of R, we start by recursively splitting
the domain D into subdomains, creating a tree structure 7. The basic idea of this partitioning
algorithm is to recursively divide the domain into several subdomains until the number of points
included in each resulting subdomain is less than a prescribed constant § (usually much smaller
than the number of points in the domain). Specifically, at level 1 of the tree, we begin with a root
node corresponding to the entire domain. Then, from level [(I > 2), each subdomain obtained
at level [— 1 that contains more than ¢ points is bisected along the dimension with the largest
range. Let L be the maximum level where the recursion stops. Then the information about the
partitioning can be represented by a tree 7 with L levels. Such a splitting can be seen in Figure
1 for a 1D example. The adaptive partitioning guarantees that each subdomain corresponding to
a leaf node contains a small number of points less than the prescribed constant 6. The choice of §
depends on the tolerance specified for the matrix approximation. Details on how ¢ is determined
are provided in the supplementary materials.

Consider the node pair (7,7) in 7. Let S; be the set of data points in node 7 and Sj' be the set

of points in node j. The key idea is that if S; and Sj' are far away, their correlation, denoted by

51 Sy S3 S4 S5 Sg S7 Sg

I i level 1
ar

I o . A i level 2

I . o - e i level 3

} . . . i level 4
a9 as

Figure 1: Illustration of an adaptive partitioning (adapted from (Cai et al. 2018)). Left: the
domain D is recursively bisected until the number of points in each subdomain D; centered at a;
is less than § = 4 (circled dots represent the data points s;). Right: the corresponding tree 7T

with indices of points stored at each node.

RJ;y;, can be represented as a low-rank matrix. Two questions need to be answered. (1) How is
far away defined? (2) How to represent R|«; as a low-rank matrix?

To define far away, we establish an admissibility condition (see Definitions S1 and S2 in the
supplementary materials). If S; and Sj' are well-separated in the sense of Definition S1, the
submatrix Rl|; is called a farfield block, otherwise, it is called a nearfield block. The major
difference between farfield and nearfield blocks is that each farfield block can be approximated by
a low-rank matrix. In other words, if S; and Sj' are well-separated, the farfield block R|ix; admits

a low-rank approximation of the form
Ry ~ UiAi,jVjT7 (7)

where U is the basis associated with points in \Sj, V'; is the basis associated with points in S’j' , and
A, ; is the coupling matrix between S; and Sj/ . To define the bases, we use Lagrange polynomials
(see the supplementary materials). Let n; be the number of points in S;, n; be the number of
points in Sj/ , and r be the rank of the approximation. Then, the matrices U;, A; ;, and V'; have
dimensions n; X7, r X r, and n; X r, respectively. The choice of r depends on the tolerance specified
for the matrix approximation. Details on how r is determined are provided in the supplementary
materials.

To represent R|iy; as a low-rank matrix, we use the rank-revealing QR algorithm (see the

supplementary materials). When U, and V; have more rows than columns, applying the rank-

revealing QR algorithm to U, and VjT yields:

i’

1 1
U= P; U, V;=@Q; Vil; (8)
i H;
where P; and Q; are permutation matrices, G; and H; are dense matrices, U;|; is a matrix made
up of selected rows of U;, and Vj|j is a matrix made up of selected rows of V;. i and j represent
subsets of i and j, respectively. Substituting the above equation in Equation (7) leads to another
low-rank approximation for R|;;:

T T

I . I I I
R|ix; = P; o Uil Ai;(Vil5) | Q, ~ P; Rl | Q; (9)

J
i H; i H;

A major advantage of this approximation is a storage reduction. Now, only four index sets
{P;, Qj,i,j} and two smaller dense matrices {G;, H;} need to be stored rather than two dense
matrices {U;, V;}.

Recall that our goal is to represent the correlation matrix R as a SMASH H? matrix (see
Definition S4 in the supplementary materials). A key property of H? matrices is that the bases
at one level of the tree T can be expressed using the bases of the children. For example, assume
parent node p has children nodes cy,...,c;. We can get the basis U, for the parent node from
the children’s basis {U,,,...,U,,} and some transfer matrices {B.,, ..., B,,}. For more details,
please refer to the supplementary materials. A similar process can be applied to obtain the row-

basis V. Therefore, we can write:

Uu.,B, V.C.
U, = : , V,= : : (10)
UCkBCk VCkCCk

Hence, only the matrices U; and V; for all leaf nodes must be stored. Matrices U, and V, for a
non-leaf node p can be obtained via transfer matrices which require much less storage.

In summary, the construction of SMASH #H? matrices involves creating a tree 7 using adaptive
partitioning, computing the basis matrices U, V at the leaf nodes, along with the transfer matrices
B, C, and the coupling matrices A. In particular, each leaf node i is assigned four matrices

{U,;,V;, B;,C;} and each non-leaf node i is assigned two matrices {B;, C;}. For the leaf nodes,

10

U, and V; are obtained by using the rank-revealing QR algorithm. One of the advantages of using
the SMASH H? representation of the correlation matrix R is that the user can specify the level of
approximation by using a tolerance parameter tol. The tol parameter controls the L2 norm of the
reconstruction error, i.e., ||[R — R||§ < tol. Throughout the paper, we used tol = 1077 to ensure
an accurate covariance matrix reconstruction.

A schematic representation of the construction of a SMASH H? matrix is presented in Figure
2. Figure 2a represents the tree 7 for a 1D domain. Figure 2b represents the nearfield (black)
and farfield (gray) blocks from the tree structure. Figure 2¢ shows the compression for leaf and
parent nodes. Thanks to the nested basis structure of the SMASH H? representation, parallel
computing, and shared memory can be used to approximate the correlation matrix R.

Once the SMASH H? representation of the kernel matrix is constructed, the matrix-vector
products can be performed matrix-free. Rather than performing a large matrix-vector product
of size n resulting in a cost of O(n?), multiplications by small low-rank matrices are performed
and aggregated hierarchically. More details on the matrix-vector products are presented in the
supplementary materials. As seen in (Erlandson et al. 2020), the time taken by matrix-free matrix-
vector products scales linearly with the number of points. It is worth noting that the time for a
matrix-free matrix-vector product depends on the approximation tolerance specified by the user.
However, a 10° decrease in the L2 norm of the approximation can be achieved with just eight
times more computational time.

In the next section, we describe how we use the SMASH H? representation of R, and the

corresponding matrix-free operations to learn the optimal parameters of a GP model.

4 Large-scale Spatial Modeling via smashGP

In this section, we present the smashGP framework for large-scale spatial modeling. Then, we
introduce practical considerations to speed up the computations and avoid numerical instability.

We start by specifying the kernels implemented in the current version of smashGP. Recall
that SMASH H? matrices exploit the block low-rank properties arising from positive-definite
kernel functions. One convenient way of getting positive definite kernel functions for two or

more dimensions is to take tensor products of 1-dimensional positive definite kernel functions.

11

T T T T T T

.

Corresponding nearfield (black) and farfield

(b)

(a) Hierarchical partitioning of a 1D domain.

correlations.

(gray)

| R A B
T A o

Frrrrrrrrrrrererrrrrrrrrr T

Leaf nodes

¥

Non-leaf node

Leaf node and non-leaf node compression associated with the

(¢)

farfield blocks.

Figure 2: Construction of SMASH H? matrices.

12

Such kernels, called separable kernels, are the most commonly used in the computer experiments

literature (Roustant et al. 2012). For the spatial setting, these kernels have the form:
R(s;,85) = g(h1;0)g(ha; 0) (11)

where s;,8; € D C R?, hy = sig — Sja, for d = 1,2, g is a 1-dimensional positive definite kernel,
and 6 > 0 is the length-scale parameter of the kernel. The current version of smashGP allows the

user to select between three of the most commonly used kernels (Roustant et al. 2012):

Gaussian: g(h;0) = e%, (12)
2 —/5
Matérn v =5/2: g(h;0) = | 1+ M + on e#, (13)
0 362
Matérn v = 3/2: g(h;0) = (1 + \/Z‘h‘> e (14)

The above kernels will result in different levels of smoothness. With the Gaussian kernel, the
sample paths of the associated GP have derivatives of all orders and, therefore, are very smooth.
With the Matérn kernel with parameter v, the GP is differentiable at order k if and only if v > k.
Thus, with v = 5/2, the process is twice differentiable and, with v = 3/2, only once. When
v — o0, the Matérn kernel coincides with the Gaussian kernel. The general Matérn covariance
depends on the modified Bessel function and has not been implemented yet. We only consider
at least one-time differentiable kernels as differentiability is needed for the smashGP framework.
The three kernels considered correspond to commonly needed levels of smoothness encountered in

practice (Roustant et al. 2012).

4.1 smashGP Framework

Learning a GP for large-scale spatial modeling involves estimating the unknown parameters of the
model, p,v,a, and 0, (Eq. 2, 3, and 4, Sec. 2), predicting the values of spatial observations at
unobserved locations (Eq. 5, Sec. 2), and quantifying the uncertainty of the predictions (Eq. 6,
Sec. 2).

In what follows, we first assume that the model parameters are known and propose a predic-

tion and uncertainty quantification framework using matrix-free linear solvers and matrix-vector

13

products. Then, we present the framework to estimate the optimal model parameters, which
involves computing a matrix-free log-likelihood with its partial derivatives, which rely upon log-

determinants, traces, and matrix-vector products.

4.1.1 smashGP prediction and uncertainty quantification framework

For a sample s € D, the predictive mean, m(s), and the predictive variance, s*(s), are defined in
Equations 5 and 6, in Section 2. Here, we assume that the values for u,v,a, and 6 are known.
Our goal is to calculate m(s) and s?(s) without forming the dense correlation matrix, R,,, which

appears in three instances:

ez, = R(Y — il,) (Eq. 5, Sec. 2)

e ©, = R 'r(s) — (Eq. 6, Sec. 2)
e x3=R'1, (Eq. 6, Sec. 2).

Notice that calculating x;, x5, and x3 is equivalent to solving the following systems of linear

equations:

e R.xy =(Y —[1,)
e R,xs=1(s)
e Rx;=1, .

The Preconditioned Conjugate Gradient (PCG) algorithm is an iterative method, able to solve
such systems without requiring direct access to entries of R, (Saad 2003). This algorithm is one
of the best methods for this purpose for symmetric positive-definite matrices. Thus, we use the
SMASH H? representation of R,,, and its matrix-free operations, presented in Section 3, together
with the PCG algorithm to solve the systems of linear equations and compute xi, s, and x3.
Algorithm 1 presents the computations of the predictive mean, m(s), and the predictive variance,

s?(s), using smashGP.

14

Algorithm 1 smashGP prediction and uncertainty quantification framework.
INPUT: s, Y, p,v,a,0

OUTPUT: predictive mean m(s), predictive variance s*(s)
Step 1: Using the SMASH H? representation of R,, its matrix-free operations, and the PCG
algorithm compute:
o z;=R'(Y — jil,)
e x, = R 'r(s)
o T3 = R;lln
Step 2: Using Equation 5, in Section 2, compute the predictive mean.
e m(s)=pu+ar(s) x;
Step 3: Using Equation 6, in Section 2, compute the predictive variance.
2

® 0 = QU

o s3(s) = (1 —ar(s) xy) +v(l —ar(s) =3)?/ (1, x3)

4.1.2 smashGP parameter estimation framework

Training a GP means finding the optimal values for the parameters p, v, a, and 6. This is achieved

by minimizing the negative log-likelihood of the vector of observations Y, i.e.,

5 1 1 - -
(fi,0,&,0) = arg min L log 27 + g logv + 3 log |R.| + 2—(Y —pl)"RNY —pl,). (15)
v

,LL,'U,CM,@

Next, we explain how to estimate each one of these parameters.

e Process mean, u, and total variance, v
Writing the first order conditions in terms of p and v results in the following analytical

expressions: R
1,R'Y
1,R.'1,
Therefore, to estimate p and v, we need to compute R;lf", R'1,, and R;l(ff — al,),

1 - -
= and 0 = —(Y — al,)"RY (Y — al,).
n

without forming the dense correlation matrix R,. We achieve this by using the SMASH #?
representation of R, its matrix-free operations, and the PCG algorithm in a similar fashion

as we did in the smashGP prediction and uncertainty quantification framework.

15

e Proportion of variance explained by Y (s), a, and length scale, 0
With the estimates for ¢ and v, we estimate a and 6 by minimizing the concentrated negative

log-likelihood, i.e.,
(&,0) = arg mi@nnlogf) +log |R,| = arg mienl(oz, 9). (16)

Recall that a is bounded between [0, 1], therefore, to solve the optimization problem, we can
use the L-BFGS-B algorithm (Zhu et al. 1997). To use this algorithm, we need to compute

the partial derivatives of the optimization function with respect to o and 6, i.e,

dl(a,0) _ ¥ N T 10Ra 1 ¢ N - ~19R,

dav - _(Y - /,L]]_n) Ra Do Roz (Y - /L-‘“'TL>/'U + Tr Ra Oav) (17>
8[(0[, 9) o -~ ~ T -1 aRa —1/%7 ~ N 716Ra

ae - <Y M]]'n) Ra ae Ra (Y lj’]]'n)/v + Tr Ra 80 : (18)

First, notice that to compute the derivatives, we need to calculate x; = R;l(f’ — al,).
We achieve this by using the SMASH H? representation of R,, its matrix-free operations,
and the PCG algorithm as we have explained before. Additionally, to compute [(c, @)

TOR, —10R,
Ty, Tq 00 L, Tr(Ra o)7 and

T ORq
1 da

and its derivatives, we need to calculate log|R,|,

Tr(R,'%E=). Next, we explain how to compute these.

— log |R,|
From linear algebra, we have that log|R,| = Tr(log(R,)) = > ., log(\;), where \;,
1 =1,...,n, are the eigenvalues of R,. As the correlation matrix R, is symmetric and
positive-definite, one method for computing log|R,| is using the Stochastic Lanczos
Quadrature (SLQ) (Ubaru et al. 2017). This method utilizes the matrix-free Lanczos
algorithm to provide eigenvalue estimates, which can then be used to estimate the trace
of matrix functions of a symmetric and positive-definite matrix. In this case, we have
that log |Rs| = Y27, log(\;), where A;, i = 1,...,n, are the eigenvalue estimates by

the SLQ algorithm without directly computing R,,.

- T(R;)
Recall that R, = aR + (1 — a)I,. Therefore, 28« = R — I,,. In consequence,
Tr(R,"%E>) = Tr((aR + (1 — a)I,)"'(R — I,))). Denote by ~;, i = 1,...,n, the

16

eigenvalues of R. Since R is symmetric and positive-definite, we can use the matrix-
free SLQ algorithm to provide estimates for these eigenvalues, i.e., 4, i = 1,...,n.

Therefore, Tr(R,'28) = 3" (a%; + (1 — a)) (% — 1).

TORy

T e

1A

We have that a:lTa;Zaml =z/(R-1I,)r, = z{ Rx; — ¢, x;. We can calculate Rz,

without directly computing R by using its SMASH #H? representation and its matrix-

free operations.

TOR,
1 90

Notice that the computations of Tr(R, %) and x x; depend on the kernel used. Here,
without loss of generality, we present the details for the computations when the kernel is

Gaussian. These can be easily adapted for the Matérn v = 5/2 and Matérn v = 3/2 kernels.

—10R,
— TI'(Ra W)
We have that 2B = Z o R where E;; = ||s; — 5,3 is the squared euclidean distance

between two training data points, s; and s; in D, and o is the elementwise product

OR,
o0

between the two matrices. To compute Tr(R_*2Ba) we need to introduce the Hutchin-

son estimator. For a matrix A € R™", we have that Tr(A) ~ ~ Zszl z] Azy, for a

sufficiently large K, where the n entries of each z;, k = 1,..., K, are chosen between
-1 and 1 with probability 0.5 (Hutchinson 1989). Let A = R_'%%« = R_' (Z o R).
For each k = 1,..., K, we first compute 2z, = (9% o R) zp, by using the SMASH #H?
representation of (QES o R) and its matrix-free operations. Then, we compute R, 'Z; by
using the SMASH H? representation of R,, its matrix-free operations, and the PCG
algorithm.

TORy

We have that wf%ml = :11:1T (9% o R) x,. Once again, to compute (923 o R) xr] we use

the SMASH H? representation of (‘923 o R) and its matrix-free operations.

We now have all of the building blocks required for calculating the log-likelihood, the par-
tial derivatives of the log-likelihood, and the predictive mean and variance for a new sample.
These are the components of the proposed smashGP framework. Next, we present some practical

considerations that allow to speed up the computations and avoid numerical instability.

17

4.2 Practical Considerations

4.2.1 Blocked Calculations

First, we incorporate blocked computations to the smashGP framework to further reduce the
computation time. Let us define blocking with a simple example. Suppose we want to perform
a series of dot products. We want to calculate wy, = ug v, for vectors uy, k = 1,..., K, and v.
This could be achieved with the following lines of code:

for k=1,...,K do

wy, < Ul v.

end for
Alternatively, one could use the following blocked line of code:

w=U"v,
where w = [wy, ws, ... ,wK]T and U = [ug,ug, ..., uk|. Blocking can result in more efficient use
of the hardware and increased parallelism, thus reducing the computation time (Dongarra et al.
1990).

In smashGP, blocking is implemented in three different instances: (1) computation of the pre-

dictive mean and variance, (2) use of the Hutchinson estimator, and (3) use of the SLQ algorithm.

Next, we explain how blocking is achieved in each one of these instances.

e Predictive mean and variance
Instead of predicting the mean and variance separately for unobserved locations, s}, s5, ..., 8% €
D, blocking can be used to consider multiple predictions at once. The blocked version of the

predictive mean computation (Eq. 5, Sec. 2) is:

A . a > N
m(8) = ilk +ar(S)(R, (Y — ily,)), (19)
where S = [s],s),...,s%] and #(S) is a K x n matrix such that the kth row is equal to

7(s},). Observe that we replace K dot products with a K x n matrix-vector product, which

reduces to the setting we described earlier.

18

Similarly, the blocked version of the predictive variance computation (Eq. 6, Sec. 2) is:

A —1 02
(1K —air(S)R,,]ln>
17 (0R.)"'1,

$2(S) = 62 <1K - (dILJTV (ff(S)T o (R;lf(S)T)))T) n . (20)

where °2 denotes an elementwise square. Algorithm 2 summarizes the block computations

of the predictive mean and variance using smashGP.

Algorithm 2 smashGP block prediction and uncertainty quantification framework.
INPUT: S =[s),s},....8], Y, j,0,4,0
OUTPUT: predictive mean m(S) € R¥ predictive variance s*(S) € R

Step 1: Using the SMASH H? representation of fla, its-matrix-free operations, and the PCG
algorithm compute:

~ @ =R, (Y —ji1,)

— =R, #S)T

— X3 = R;l]ln
Step 2: Using Equation 19, compute the predictive mean.

— m(S) = ol + ar(S)x;

Step 3: Using Equation 20, compute the predictive variance.

= 52(8) = 0*(1x — (GAN(P(S)T o @2)) ") + 0(1x — af(S)a3)*?/ (1, 3)

e Hutchinson estimator
Recall that we use the Hutchinson estimator to estimate the trace of A = R;l%. We
have that Tr(A) ~ + SK | 2] Az, for a sufficiently large K, where the n entries of each
zp, k=1,..., K, are chosen between -1 and 1 with probability 0.5 (Hutchinson 1989). To
accelerate the computations, we use a block operation. Let us construct the n x K matrix
Z = [z1,%2,...,2k). To estimate Tr(A), we first compute the matrix-matrix product
AZ ¢ R™E by using the SMASH #H? representation of A and its matrix-free operations.
Then, we compute Tr(A) = S.r | 2] (AZ), where (AZ); € R™ is the kth column of the

matrix AZ.

19

e SLQ algorithm
We also use a blocked version of the Lanczos algorithm proposed by Gardner et al. (2018)
for their batched PCG method. For our problem setting, the block version presents com-

putational improvements in comparison with using the original Lanczos algorithm for SLQ

presented by Ubaru et al. (2017).

4.2.2 Preconditioning

When solving linear systems with smashGP, we use the PCG algorithm, which is an iterative
method. To solve the system to a desired accuracy, the number of iterations required depends on
the length scale 6. To reduce the number of iterations and the amount of computational time,
the Nystrom preconditioner is used. The hope is to reduce the number of iterations to a constant
number so that the number of iterations does not depend on the length scale.

Let us consider a system Ax = b, where we want to solve for &. A naive left preconditioner
would be M = A™' because MAx = x = Mb. Thus, we could calculate & with a single
application of the preconditioner. In general, we do not have an exact inverse to A, but perhaps
some approximation to the inverse of A that is easy to solve with.

In smashGP, we need to solve linear systems with R,. Thus, as a preconditioner, we would
like an approximation of R,'. Based on the eigenspectrum of kernel matrices, we assume that
R,, can be approximated by a low-rank matrix plus a diagonal shift as R, ~ UV " 4+ AT, where
R, c R U € R,V € R™" and A > 0. If we have the factors U,V and A, then R_' can
then be approximated as

1

(UV' +AIL)" = AT = UL, + viu)“'vT (21)

(Woodbury 1950).

We estimate the factors U and V' by using the Nystrom approximation (Williams and Seeger
2000). With the Nystrom approximation, a subset of m sample points sm) — {81),---+8m)} C
{s1,...,8,} is selected. In smashGP, we use m = 4y/n with the points randomly sampled,
following the recommendations provided in (Cutajar et al. 2016). Selecting too small of an m
results in the preconditioner not being as effective as desired, but this should only result in more

iterations being required compared to the ideal preconditioner. Selecting too large of an m will

20

result in an increase in the computation time required for forming the preconditioner. Let us
define R"™ = {R(s, 8(j)) ti=1 € R™™ as the correlation matrix evaluated pairwise over the

samples in S, The eigendecomposition of R™ is U mAmU;L. We can then approximate R as

where 7(S™) is an m x n matrix such that the ith row is equal to 7(s(;)), A = A, U =
(T(S(m))TUm\/?A;I). In Equation 21, let us set U = U,V = Af]T, and A = (1 — «). This
yields

(UVT 4 AL) " = (OAT +(1—a)L) " = —— (T, — U((1 —)L, + (AU T) AT).

1 -«
Thus, we can use this Nystrom preconditioner to approximately solve R,x = b. By using this

preconditioner, the number of iterations required for a solve is drastically reduced.

4.2.3 Numerical Issues

An additional challenge when modeling large-scale spatial data is that there is no guarantee
that the approximation of the correlation matrix R, will be positive definite. Samples that
are close together can artificially reduce the numerical rank of the matrix resulting in negative
eigenvalues, breaking the positive definiteness of R,. However, PCG only has a convergence
guarantee for positive definite matrices. Additionally, the log-determinant, log |R,|, in the log-
likelihood function, depends largely on the approximation of the smallest eigenvalues. If these are
negative, they can cause the log-determinant and log-likelihood to be undefined. To guarantee
estimating a positive definite correlation matrix, we build the SMASH #H? representation such that
the eigenvalues are accurate up to the approximation error tol defined by the user. Additionally,
to control for the effect of small eigenvalues, we use a threshold. In the computation of the log-
determinant, if we have eigenvalue estimates that are smaller than the estimated noise 72, we
replace them by this value, as we know the true eigenvalues would never be lower than the noise.

With this, we have explained the smashGP framework. Next, we evaluate its performance

with simulation experiments and case studies.

21

5 Performance Evaluation via Simulations

In this section, we evaluate the performance of smashGP with a range of synthetic data. First,
we compare smashGP, which uses hierarchical matrix-free operations, and DiceKriging (Roustant
et al. 2012), which uses dense matrix decomposition and inversion. DiceKriging is presently the
fastest R package to directly learn a GP using CPUs, but still requires O(n?®) operations and
O(n?) memory. Then, we empirically study the computational complexity of smashGP. Finally,
we compare the predictive accuracy and computational time of smashGP with state-of-art methods

for large-scale spatial modeling.

5.1 Data Generation and Evaluation Metrics

The data is generated by overlapping different layers of Perlin noise (Perlin 1985). Each layer is
generated with a different frequency, which controls the smoothness of the data, as can be seen
in Figure 3a. The smaller the frequency, the smoother the data. This procedural generation
of noise allows creating natural appearing spatial data, while controlling for smoothness. In the
experiments, we considered varying layers of Perlin noise. After the spatial data is created, we add
a random noise to each data point with mean 0 and variance 72, to account for the measurement
noise that one could encounter in real-life settings. Examples of the data generated are presented
in Figures 3b and 3c.

To evaluate the performance of each method, we split the spatial data into training and test
datasets. To define the test dataset we considered two scenarios. In the first one, the test dataset is
generated by randomly sampling a percentage of the data. This scenario is denoted by “random”.
In the second one, an additional Perlin noise layer is generated and the locations associated with
the largest magnitudes are used as the test dataset. When collecting spatial datasets, it is common
to have large sections of missing data. For example, when using satellite images, one could not
have access to data due to cloud or tree coverage. The second scenario is denoted by “Perlin”, and
attempts to emulate the large sections of missing data. An example of the different test datasets

is provided in Figure 4.

22

(b) Three layers of Perlin noise and random noise. (c) Five layers of Perlin noise and random noise.

Figure 3: Data generation using Perlin noise.

(a) Perlin test data, 20% (left), 50% (right). (b) Random test data, 20% (left), 50% (right).

Figure 4: Examples of training and test datasets using Perlin noise. The training data is observed

in the image while the test data appears in solid black.

Our goal is to compare smashGP with other state-of-the-art methods on the ability to predict
accurately as well as to quantify the uncertainty associated with the predictions. We do this by
varying the smoothness and noise levels, as well as the amount and shape of test data, to ensure a
wide coverage of scenarios. We compare smashGP with other methods for spatial modeling with
GPs in terms of mean absolute error (MAE), root-mean-squared-error (RMSE), interval score
(INT; see Gneiting and Raftery (2007)), and prediction interval coverage (CVG; the percent of
intervals containing the true value). The definition for each of these metrics can be found in the

supplementary materials.

23

(a) 25 x 25 (625) data points. (b) 140 x 140 (19,600) data points.

Figure 5: Example of the data used to compare smashGP and DiceKriging.

5.2 Comparison with DiceKriging

We start by comparing smashGP with DiceKriging (Roustant et al. 2012), which uses dense matrix
decomposition and inversion. Both smashGP and DiceKriging are configured to use a Gaussian
kernel. We compare the two methods for different sample sizes ranging from a 25 x 25 grid (625
points) up to a 140 x 140 grid (19600 points), as can be seen in Figure 5. For larger datasets,
the use of DiceKriging becomes restrictive. We will test smashGP performance for larger datasets
in the following sections. For these tests, we withhold 20% of the data as testing data using a
“Perlin” filter, and use a global noise standard deviation 7 of 0.01, and three layers of Perlin
noise for the dataset. The results are presented in Table 1. We see that the results obtained with
smashGP are very close to those obtained when using the dense computations of DiceKriging.
However, as can be seen in Figure 6, tuning smashGP by using hierarchical matrices and matrix-
free operations presents considerable computational time savings for large datasets. DiceKriging
scales with O(n?®) while smashGP scales with O(nlogn), achieving quasilinear computational
time. Above 6,400 points, a small size problem for today’s spatial datasets, smashGP outperforms
DiceKriging in terms of computational time, while maintaining the same performance in terms of
accuracy and uncertainty quantification. In next section, we investigate the computational time

of the different operations required to fit a GP using smashGP.

24

Table 1: Performance comparison between smashGP and DiceKriging.

MAE RMSE INT CVG
Points | smashGP Dice smashGP Dice smashGP Dice smashGP Dice
625 0.0892 0.0886 0.1132 0.1127 0.5203 0.5235 0.9040 0.9040
900 0.0817 0.0812 0.1015 0.1006 0.4947 0.4496 0.8722 0.8944
1600 0.0568 0.0573 0.0740 0.0743 0.3382 0.3550 0.9375 0.9125
2500 0.0331 0.0331 0.0433 0.0433 0.1930 0.1930 0.9360 0.9360
3600 0.0263 0.0264 0.0373 0.0374 0.1612 0.1620 0.9264 0.9347
4900 0.0231 0.0231 0.0322 0.0321 0.1286 0.1282 0.9143 0.9153
6400 0.0186 0.0186 0.0251 0.0251 0.1105 0.1107 0.9383 0.9352
8100 0.0166 0.0166 0.0220 0.0220 0.1027 0.1028 0.9420 0.9414
10000 0.0178 0.0178 0.0233 0.0232 0.1006 0.1008 0.9260 0.9245
14400 0.0165 0.0165 0.0217 0.0217 0.0966 0.0966 0.9201 0.9201
19600 0.0143 0.0143 0.0188 0.0188 0.0884 0.0880 0.9227 0.9242
10,000,000
1,000,000 =7
P d
100,000 -
N ’
Q 10,000 1
&)) 7 A 9
2 -4 -
= 1,000 {{A o ¢
= % 1l
100 - _;—,2
10 & o A~
A,
1 A&~
500 5,000 50,000
Number of points
® smashGP A Dice == - O(nlog(n)) = = 0O(n"3)

Figure 6: Comparison of the tuning time for smashGP and DiceKriging.

5.3 Empirical study on the computational complexity of smashGP

In this section, we study the computational complexity of smashGP for large spatial datasets.
Without loss of generality, we consider the case when the kernel used is Gaussian. In the sup-
plementary materials, we present the computational complexity of constructing the SMASH H?

matrix representation of the correlation matrix R,, for different sample sizes. We also present the

25

computational complexity of SMASH matrix-free matrix-vector products. Here, we summarize
the results by evaluating the computational time of calculating log |R,| and the gradient of the
log-likelihood function as these operations are critical for fitting a GP model using smashGP. For
this purpose, we generate data using three layers of Perlin noise for different sample sizes ranging
from 10,000 to 100,000, with a global noise standard deviation 7 of 0.01, and use 80% of the data
to train a GP using smashGP. The cumulative results over the required iterations to learn a GP
are presented in Figure 7. We observe that the computation of the log-determinant scales with
O(n) and the computation of the gradient scales with O(nlogn). The logn term in the gradient
computation occurs because of the trace operations needed to compute the partial derivatives of
the log-likelihood (See Section 4.1.2). Empirically, we can conclude that by using smashGP we

are able to learn a GP in quasilinear time.

10,000
L
- 1,000 - —
8 ’— ‘.— * ———“—-
\UL - - __——’—__
) <] _——‘-_—
= _ B - =
£ 100 g-= =
10
10,000 100,000

Number of Points

B smashGP logdet & smashGP gradient====0(n)= - =0O(nlog(n))

Figure 7: Comparison of the computational time for the different operations required to tune

smashGP for different problem sizes.

5.4 Comparison with state-of-art methods for large datasets

In this section, we compare the predictive accuracy of smashGP with the predictive accuracy
of state-of-art methods for large-scale spatial modeling with GPs. We consider four methods:

spatial partitioning (SP; Heaton et al. (2017)), lattice Kriging (latticeKrig; Nychka et al. (2015)),

26

stochastic partial differential equations (SPDE; Lindgren et al. (2011)), and GPyTorch (Gardner
et al. 2018).

SP, latticeKrig, and SPDE are GP methods that assume a particular structure of the covari-
ance matrix to overcome the computational limitations of directly fitting a GP. SP is a sparse
covariance method based on spatial partitioning of the domain. It assumes independence between
observations across subregions, and therefore allows for parallel computations. LatticeKrig is a
sparse precision method based on multiresolution radial basis functions. The main assumption
is that the spatial process can be approximated by a linear combination of the basis functions.
Finally, SPDE is a sparse precision method based on the equivalence between Matérn covariance
fields and stochastic partial differential equations. The main assumption is that the spatial process
can be approximated by using basis functions chosen to be piecewise linear on a triangulation of the
domain. The sparse matrix coefficients are determined solely by the choice of triangulation. These
three methods were chosen as benchmarks because in the case study competition paper by Heaton
et al. (2019), they showed the best performance. Their codes are provided as part of the afore-
mentioned paper and can be found at https://github.com/finnlindgren/heatoncomparison.
For the competition, SP, latticeKrig, and SPDE considered a constant mean and approximated an
exponential kernel function. The exponential kernel corresponds with the Matérn v = 1/2 kernel
and, in one dimension, is defined as g(h) = exp(—|h|/0).

GPyTorch is a popular package for GP regression. We selected this package as a benchmark
because it is based on covariance matrix approximation and has open source code that allows
to fit a GP and generate predictions for large data sets. The code for GPyTorch is available at
https://gpytorch.ai/. GPyTorch has different settings that need to be specified by the user:
the covariance representation, the method for log-likelihood calculation, and the optimization
method. The settings used in this paper were set following the authors’ recommendations: the
Grid Kernel was used for the covariance matrix, the default black-box matrix-matrix multiplica-
tions (fast_computations) were used for log-likelihood calculation, and ADAM was used as the
optimizer. The version of GPyTorch used is 1.3.1.

We tested sixteen scenarios, on a 316 x 316 grid (i.e., the grid has 99, 856 points), by modifying

the different parameters introduced in Section 5.1 with the goal of understanding the limitations

27

and benefits of the different methods. We considered “high” and “low” levels of smoothness
when generating the data using Perlin noise, which corresponds to three and four layers of noise,
respectively. We changed the random noise added to each data point by setting 7 = 0.005 or
7 = 0.01. We considered different percentages of testing data, with t = 20% or ¢ = 50%, as well as
different shapes of testing data by using a “random” mask or a “Perlin” mask. The results over
50 simulation replicates can be found in Tables 2 - 5. Boxplots comparing smashGP with the best
benchmark identified, SPDE are presented in the supplementary materials.

When the data is smoother, we observe that smashGP with the three implemented kernels
(i.e., Gaussian, Matérn v = 5/2, Matérn v = 3/2) outperforms the benchmarks in terms of
prediction (MAE, RMSE) and uncertainty quantification (INT, CVG). In general, the Gaussian
kernel provides the best results, followed by the Matérn v = 5/2 kernel. This is reasonable as with
the Gaussian kernel, the sample paths are assumed to have derivatives of all orders and thus to be
very smooth. When the data becomes less smooth, the prediction performance of smashGP with
Gaussian kernel decreases, as is to be expected. In these scenarios, smashGP with the Matérn
v = 5/2 kernel is, in general, the best-performing method in terms of prediction (MAE, RMSE)
and uncertainty quantification (INT, CVG). Following the smashGP methods, SPDE has the best
performance in terms of MAE, RMSE, and INT, while latticeKrig has the best performance in
terms of CVG.

For GPyTorch, the prediction intervals are wide, limiting the uncertainty quantification capa-
bilities of the method. Based on our experiments, this occurs because GPyTorch uses a different
matrix approximation (i.e. Grid Kernel). With this approximation, the estimated parameters dif-
fer significantly from the parameters found by smashGP, affecting the prediction and uncertainty
quantification capabilities.

Based on these results, we recommend using smashGP over state-of-art methods as it provides
the smallest prediction error with the best uncertainty quantification. Depending on the smooth-
ness of the underlying process, practitioners can choose the best kernel to be used. The Gaussian
kernel is recommended for smooth processes, and Matérn kernels are recommended for less smooth
scenarios. Furthermore, smashGP does not make strong assumptions about the structure of the

covariance/precision matrix and allows the user to control the accuracy of the GP approximation.

28

(61000)6€20°0 | (L200°0)00£0°0 | (2€00°0)65€0°0 | (8800°0)2190°0 | (LT00°0)8T20°0 | (ST00°0)¥610°0 | (LT00°0)T6T0°0x | WP e
(0000°0)£800°0 | (T000°0)6800°0 | (T000°0)8800°0 | (€100°0)89¢0°0 | (0000°0)€800°0 | (0000°0)¥800°0x | (0000°0)¥800 0% | IOPULY .
(2000°0)8%10°0 | (1100°0)8L10°0 | (¥100°0)6020°0 | (F700°0)£890°0 | (9000°0)¥€10°0 | (S000°0)TZT00 | (¥000°0)0ZT0°0sx | UL o 1o
(¥000°0)9800°0 | (1000°0)£800°0 | (1000°0)¢800°0 | (L100°0)2950°0 | (T000°0)€800°0 | (T1000°0)€800°0 | (T000°0)Z800 05 | WOpPUERY , .
(61000)9020°0 | (£200°0)0220°0 | (7€00°0)9€€0°0 | (8800°0)TT90°0 | (4T00°0)98T0°0 | (ST00°0)9ST0°0 | (9T00°0)PSTO 0% | WD e
(0000°0)£700°0 | (0000°0)4700°0 | (0000°0)9700°0 | (€100°0)79€0°0 | (0000°0)¥%00°0 | (0000°0)€£¥00°0 | (0000°0)ZF00 0% | TOPURY .
(2000°0)6010°0 | (€100°0)eF10°0 | (ST00°0)GLT0°0 | (F00°0)1890°0 | (2000°0)8600°0 | (S000°0)2800°0 | (F000°0)SL00 04 | U] o o
(0000°0)5700°0 | (0000°0)S¥00°0 | (0000°0)¥¥00°0 | (L100°0)7950°0 | (0000°0)€700°0 | (0000°0)TF00 04 | (0000°0)TFO0 0x | WOpPUERY
(2200°0)0%£0°0 | (5500°0)65€0°0 | (0£00°0)¥2H0°0 | (9800°0)2290°0 | (€200°0)LEECO 05 | ($200°0)6££0°0 | (2€00°0)61F0°0 LEER| oo
(1000°0)7600°0 | (T000°0)€600°0 | (T000°0)2600°0 | (L100°0)0TF70°0 | (T000°0)1600°0 | (0000°0)6800°0x | (T000°0)6800°0 | wOpUERY 00
(FT00°0)£20°0 | (FT00°0)8620°0 | (6T00°0)¢820°0 | (6£00°0)9690°0 | (F100°0)9220°0 | (¥100°0)02Z0°0x | (C100°0)¥¥50°0 LUEER | e
(1000°0)0600°0 | (T000°0)6800°0 | (T000°0)2600°0 | (2100°0)8850°0 | (T000°0)2£800°0 | (T000°0)9800°0x | (T000°0)L800°0 | wWopuURY ot
(£200°0)ST€0°0 | (6200°0)T€€0°0 | (0£00°0)€6€0°0 | (9800°0)S290°0 | (F200°0)21€0°0 | (F200°0)TTE0 04 | (8800°0)0TF00 w0 oo
(0000°0)1500°0 | (0000°0)0500°0 | (T000°0)£S00°0 | (£L100°0)5070°0 | (0000°0)8%00°0 | (0000°0)4¥00°0x | (T000°0)6¥00°0 | wOpUEY , 000
(§T00°0)2020°0 | (FT00°0)6020°0 | (9T00°0)8¥20°0 | (8€00°0)¥690°0 | (F100°0)¥610°0 | (¥T00°0)¥8T0°0x | (1200°0)8150°0 o] e
(0000°0)000°0 | (0000°0)2700°0 | (1000°0)8F00°0 | (8100°0)98¢0°0 | (0000°0)9%00°0 | (0000°0)SF00°0+ | (0000°0)9%00°0 | wWoOpUEY
2/ € uisyen 2/g uwisyeN uerssnex)
aads Strypeoniye] ds YIOLAdD qsew 3897, | % ISA], | 9SION | ‘Yjoowg
dOyseuws dHyseuws dHyseuws
HVIN

"SYIRWDUS(9} WI0FIdIN0 ey} SPOIOW JHYSLUS 9} POUSP[O(2ARY 9A\ "Poyjew Sururiojiod

-1S9q o[} SofljuapI * VvV .Agoﬁudﬁ\/@@ @H@@Qﬁ@mv ueal JO ULIOJ 9U) UL od® S)MNSoY .w@w@USQ@.H uorjemnuiis ()¢ IoA0 HVIN ¢ 298l

29

(2£00°0) 6££0°0 | (PP00°0) 8700 | (2500°0) L0S0°0 | (TTT0°0) €8£0°0 | (6200°0) TTE0°0 | (LZ00°0) 82%0°0x | (9800°0) #8200 LHRCK| e
(1000°0) 6010°0 | (1000°0) 2TT0°0 | (T000°0) OTTO'0 | (9100°0) $¢¥0°0 | (0000°0) 90T0°0 | (0000°0) SOTO0x | (0000°0) SOTO0x | WOPURY 00
(2100°0) 8610°0 | (6100°0) 87200 | (¢00°0) L8T00 | (9500°0) 668070 | (TT00°0) 08T0°0 | (8000°0) 0910 0« | (6000°0) 09100 ur[ao .
(6000°0) 8010°0 | (1000°0) 80T0O°0 | (T000°0) L0100 | (2200°0) G0L0°0 | (T000°0) €0T0°0 | (T000°0) €0TO°0x | (T000°0) €0TO 0% | WOPULY .
(£200°0) 2£0€0°0 | (FF00°0) 00700 | (F€00°0) 98F0°0 | (TT10°0) 2820°0 | (0£00°0) 1820°0 | (6200°0) T¥Z0 04 | (LE00°0) £5T0°0 W e
(1000°0) 66000 | (0000°0) 6500°0 | (0000°0) 6500°0 | (9100°0) 0¢70°0 | (0000°0) €200°0 | (0000°0) ¥S00°0 | (0000°0) £G00°0x | WOPUERY 000
(€100°0) 28100 | (0200°0) €T20°0 | (¥200°0) £520°0 | (9500°0) 2¢80°0 | (2100°0) TF10°0 | (6000°0) 9TT0°0 | (0T00°0) 60TO°0x | W] -
(1000°0) 95000 | (0000°0) 26000 | (0000°0) ¢500°0 | (1200°0) 70L0°0 | (T000°0) ¥S00°0 | (0000°0) €200°0 | (0000°0) 2SO0 0% | WOPUEY
(7600°0) 8970°0 | (8€00°0) 86¥0°0 | (G700°0) 82¢0°0 | (9010°0) 0080°0 | (9€00°0) L9¥0°0x | (6£00°0) 8LF00 (€200°0) 21900 U] oo
(1000°0) L1100 | (1000°0) 2TT0°0 | (2000°0) 2&T0°0 | (1200°0) 0150°0 | (1000°0) ¥TT00 | (1000°0) ZITO0« | (1000°0) ZTTO'0 | wopuey .
(2200°0) 02£0°0 | (200°0) T€€0°0 | (L00°0) ¥8€0°0 | (0600°0) T280°0 | (€200°0) €1€0°0 | (£200°0) 60€0°0x | (6200°0) 09£0°0 urIed ot o
(1000°0) €110°0 | (T000°0) TTTO0 | (T000°0) 9TTO'0 | (T200°0) 4€20°0 | (T000°0) 60T0°0 | (T000°0) 8OTO0% | (1000°0) 60TO°0 | wWoOpURY ol
(9600°0) SPPO°0x | (8€00°0) €2F0°0 | (G700°0) 67500 | (90T0°0) L6L0°0 | (L£00°0) LFFO0 (0700°0) 8G70°0 (£900°0) 7£90°0 LHRCK| e
(0000°0) 79000 | (1000°0) €900°0 | (1000°0) 8900°0 | (€200°0) ¥0%0°0 | (T000°0) T900°0 | (0000°0) 6S00°0x | (T000°0) T900°0 | UIOPURY 000
(£200°0) 06200 | (£200°0) 6620°0 | (F200°0) 9¥£0°0 | (6700°0) 0280°0 | (¥200°0) €820°0 | (SZ00°0) SLTO 0« | (0F00°0) FGEO0 urfiod .
(1000°0) €900°0 | (1000°0) 6500°0 | (T000°0) 0900°0 | (2200°0) £€L0°0 | (T000°0) 2500°0 | (0000°0) 900°0x | (0000°0) LS00°0 | wWOpUEY
z/€ uIeyen 7/q uIeyeIn uerssnex)
qaads SrI3790139e] ds YPIOTAID S[Sew 189, | % 1S, | 9SION | ‘roourg
dOysews dOHysews dOHysews
ASINY

oY} SOYIUAPT , Y

"SYIRWIYPOUO(9} ULIOJIodINO JR1) SPOYIOUL JE)SRUIS O} POUDP[O(OARY 9A\ “POTIoW Sururiojrod-1soq

‘(UOTyRIAGD pIRpUR)S) URSUWL JO ULIOJ S} Ul IR SHMSIY

‘soyeor[der woryeWIS ()G I10A0 SINY € 9[qRI

30

(T2e0'0) PPLT0 | (6270°0) G252°0 | (LLL0°0) 83670 | (€779°0) 060L°T | (0610°0) 6SFI°0 | (2€10°0) TOTT'0 | (STT0°0) EFIT 0% | W[e
(€000°0) 2150°0 | (€000°0) §5S0°0 | (L100°0) G090°0 | (99€1°0) 86571 | (2000°0) 86%0°0 | (2000°0) T6¥0°0x | (3000°0) T6V0"0x | WOPURY 00
(91T0°0) T#60°0 | (F210°0) 69110 | (1L20°0) 0L6T°0 | (S8%0°0) SOTT'E | (§S00°0) T080°0 | (2€00°0) ¥0LO 0x | (0£00°0) 90L0°0 | W] -
(L¥00°0) 2150°0 | (7000°0) 80¢0°0 | (0T00°0) 2950°0 | (0270°0) OLIT'E | (€000°0) 68%0°0 | (€000°0) ¥870°0 | (£000°0) €870 0x | WOPUEY .-
(9620°0) 2¥61°0 | (L670°0) 07LZ°0 | (2280°0) €59¢°0 | (0229°0) €689°T | (4620°0) L8ST°0 | (6510°0) 9¥0T°0 | (FTI0°0) LEGO 0% | U] Joe
(000°0) 1620°0 | (2000°0) 0820°0 | (8100°0) ¥¥€0°0 | (0IET°0) 0SFF'T | (2000°0) 6520°0 | (1000°0) €520°0 | (T000°0) LFZO 04 | WOPURY 000
(6600°0) GLL0°0 | (€5T0°0) 890T°0 | (£2£0°0) 69020 | (9L70°0) ¥80T°¢ | (9200°0) T#90°0 | (2£00°0) ¥870°0 | (0€00°0) €FF0'0x | U] -
(5000°0) 6,200 | (€000°0) <920°0 | (5100°0) 8%€0°0 | (02F0°0) L80T'E | (2000°0) €520°0 | (2000°0) 8%20°0 | (2000°0) €FT0O 0x | WOPURY
(6220°0) G9€2°0 | (€1£0°0) 91L8°0 | (6290°0) 635¢°0 | (0585°0) 86£6°T | (2220°0) TL1Z0 | (6210°0) 000Z 0% | (6020°0) 6¥¥50 LURRK| e
(G000°0) 24%0°0 | (¥000°0) 87S0°0 | (€200°0) 0890°0 | (€021°0) LEFI'T | (¥000°0) €£S0°0 | (£000°0) ¥ZSO 0% | (£000°0) TS0 04 | WOPURY 00
(0L10°0) L¥ST'O | (2610°0) L96T°0 | (8G€0°0) 1€62°0 | (1670°0) €702°€ | (€F10°0) 90¥1°0 | (€0T0°0) 08ZT'0x | (€600°0) TTYI'0 | WI[WRJ ot
(9000°0) 6250°0 | (000°0) 2S0°0 | (6100°0) LF90°0 | (S0F0°0) 6L02°¢ | (¥000°0) 1S0°0 | (¥000°0) 90500 | (¥000°0) 60S0°0 | wopuey oy
(12€0°0) 06820 | (22€0°0) 7262°0 | (8990°0) 2€8S°0 | (6.85°0) 05¢6'T | (L1€0°0) 08%¥Z°0 | (0920°0) 6L0Z 0x | (66€0°0) L0LZ°0 | WI[PLJ Joe
(2000°0) 70€0°0 | (€000°0) 8620°0 | (0200°0) 0GF0°0 | (9€21°0) 65€9'T | (£000°0) 4820°0 | (2000°0) 9220°0x | (FO00°0) 9820°0 | wopuey 000
(6220°0) 60L1°0 | (8810°0) S#ST°0 | (T¥£0°0) $00£°0 | (FSF0°0) 2961°¢ | (F6T0°0) 8FFT0 | (9FT0°0) 9STT 0% | (PLI0'0) €TET'0 | U] ot
(7000°0) T1€0°0 | (€000°0) 9220°0 | (S100°0) ¢9€0°0 | (6070°0) 9002°€¢ | (2000°0) 6920°0 | (2000°0) 2920 0% | (2000°0) 89200 | WopURY
2/ € uIagen 7/G uILyen ueIssnex)
qads Strypeonyye] ds PIOLALD
dOHyseuws dOyseuws dOyseuws
INI

“SYIRWPUO(9} WLIOLAINO0 JRI) SPOYOUW JE)SRUWS O} POUSP[O(AR 9A\ “POYjomt Sururiojrod

-)s0 O} SOYIIULPI , Yy *(UOIJRIASD pIepUR)S) URSUI JO ULIOJ oY) Ul oIk sjnsey] ‘sejesrider uorjenuis ()G 100 NI :F 9[qeL

31

(2120°0) 66280 | (GL10°0) €680 | (L020°0) 1889°0 | (0000°0) 0000°T | (8%10°0) 9006°0 | (02T0°0) OF€6°0 | (¥900°0) TOF6 0 | UIIO] e
(9100°0) €2¥6°0 | (¥100°0) €060« | (8700°0) $266°0 | (0000°0) 0000°T | (6100°0) €€96°0 | (6100°0) L&G6'0 (€100°0) 9096°0 wopuey 00
(8620°0) 99€6°0 | (L010°0) $926°0 | (€810°0) 9¥28°0 | (0000°0) 0000°T | (S200°0) L6€6°0 | (S500°0) TTS6°0% | (SS00°0) 0ZF6°0 | U] ot
(9020°0) 89€6°0 | (8100°0) 6676 0% | (0200°0) 0686°0 | (0000°0) 0000'T | (8700°0) LES6°0 | (0200°0) 92S6°0 (1200°0) S0<6°0 wopuey .
(7L10°0) 95080 | (6610°0) 8808°0 | (0120°0) $9T9°0 | (0000°0) 0000°T | (69T0°0) 0€¥8°0 | (LZT0°0) ¥806°0 | (9800°0) 8EE6'0x | W] o
(1900°0) 8€06°0 | (ST00°0) 80%6'0x | (ST00°0) 9866°0 | (0000°0) 0000'T | (L100°0) 9246°0 | (¥100°0) T¢56°0 (9100°0) 6156°0 wopuey 000
(6210°0) 9068°0 | (6610°0) 9706°0 | (L120°0) 8€LL°0 | (0000°0) 0000°T | (Z€10°0) 20Z6°0 | (0800°0) 6¥¥6°0x | (F900°0) TFF6°0 | U] Jor
(7€00°0) ¢706°0 | (8T00°0) 86760« | (8000°0) 8266°0 | (0000°0) 0000°T | (T200°0) T4¢6'0 | (F200°0) €60 (6100°0) F156°0 wopuey
(2010°0) G298°0 | (1210°0) 0658°0 | (LST0°0) 9%L9°0 | (0000°0) 0000°T | (€210°0) 6168°0 | (¥800°0) 6826°0 | (L800°0) LEF6 0% | Ul oo
(8100°0) ¢€¥6°0 | (F100°0) G096'0« | (€T00°0) ££66°0 | (0000°0) 0000°T | (9200°0) 8460 | (S100°0) 9560 (100°0) 6876°0 wopuey 00
(6510°0) 8888°0 | (2010°0) ¥906°0 | (€9T0°0) 929.°0 | (0000°0) 0000°T | (60T0°0) 8606°0 | (6,00°0) T9€6°0 | (2900°0) 69¥6'0x | U] ot
(7200°0) 8T¥6°0 | (6100°0) L6¥6 0% | (2100°0) 6666°0 | (0000°0) 0000°T | (6100°0) 87460 | (6T00°0) ¥2S6°0 (¢200°0) 6876°0 wopuey oy
(1€10°0) 662L°0 | (L£10°0) L6180 | (LGT0°0) €829°0 | (0000°0) 0000°T | (8€T0°0) 8TE8'0 | (FIT0°0) 0888°0 | (L9T0°0) £S06°0% | W] o
(7900°0) 7056°0x | (§T00°0) L1¢6°0 | (€000°0) ¥866°0 | (0000°0) 0000'T | (9100°0) FTI6'0 | (S100°0) T8G6'0 (0£00°0) 0256°0 wopuey 000
(6710°0) 26180 | (L&T0°0) 780 | (83T0°0) L02L°0 | (0000°0) 0000'T | (LET0°0) 6298°0 | (9TT0°0) 9TT6°0 | (6600°0) ¥IE6 0% | U] ot
(0200°0) 9906°0 | (6100°0) 2060« | (8000°0) 2L66°0 | (0000°0) 0000°T | (8T00°0) 6096'0 | (LT00°0) 99560 (9200°0) 61560 wopuey
2/€ uIejen 2/g uIayen uerssner)
qAads E189S CRILEN| ds YRIOLAID
dHysews dHysews dOHysews
DAD

“SYIRWPUO(9} WLIOLLAINO0 JRI) SPOYIOUW JE)SRUWS O} POUSP[O(AR dA\ “POYjomt Sururiojrod

-159q 91} SOYIULPI 4, y (UWOIIRIASD PIRPUR])S) URSWIL JO WLIOJ S} Ul oIk SYNSaY "sojedl[dal uorjenuirs ()G I0A0 HAD :G S[qr],

32

Next, we compare the computational time of smashGP and SPDE, as these were identified
as the two best methods in terms of accuracy and uncertainty quantification. The results for
learning the GP in each of the sixteen scenarios are presented in Table 6. We observe that
in two scenarios, when the smoothness is low, the noise is 0.005, and the test percentage is 20%,
SPDE outperforms smashGP. For the remaining fourteen scenarios, smashGP has a smaller tuning
time. It is worth highlighting that, in general, smashGP with the Matérn v = 3/2 kernel is the
fastest. With this kernel, when solving the systems of linear equations using the PCG algorithm,
fewer iterations are needed, potentially due to the fact that the kernel is less smooth, making
the problem better conditioned. Once the GP is learned, estimations need to be made for out-
of-sample observations. Figures 8 and 9 present the computational times to predict mean and
variance, respectively, for different sizes of the test dataset. For these figures, we withheld 50% of
the data as testing data using a “Perlin” filter and used a global noise standard deviation 7 of 0.01
and three layers of Perlin noise. We observe that the computational time to estimate the predicted
mean is always smaller when using smashGP. However, the computational time to estimate the
predicted variance is higher. Additionally, we observe that the computational time for SPDE is
mostly constant while the computational time for smashGP increases with the number of out-
of-sample observations. This behavior is expected. SPDE computes the correlation matrix once
when estimating the predicted mean and then uses it to compute the predicted variance. The
matrix computation does not increase with the number of out-of-sample observations. On the
other hand, smashGP needs to solve systems of linear equations that increase with the number
of out-of-sample observations to compute the predicted mean and variance (See Algorithm 2 in
Section 4.2.1). The trade-off between accuracy, uncertainty quantification, and computational
time is something that practitioners need to consider when deciding which method to use.

In the supplementary materials, we present an analysis of the parameter estimation perfor-

mance of smashGP.

33

Table 6: Computational time in minutes for smashGP and SPDE. Results are in the form of mean

(standard deviation). A * identifies the best-performing method. We have boldened the smashGP

methods that outperform the benchmark.

Time (minutes)
Smooth. | Noise | Test % | Test mask smashGP smashGP smashGP SPDE
Gaussian Matern 5/2 | Matern 3/2
0% Random 166.4 (47.2) | 156.8 (44.6) | 128.4 (34.0) | *99.0 (22.0)
Perlin 154.7 (36.5) 151.0 (33.5) 112.7 (30.1) *04.3 (23.2)
0009 Random 88.9 (14.6) | *82.4 (16.2) | 85.4 (12.7) | 115.3 (11.1)
- 0% Perlin 102.0 (18.7) | 95.1 (22.8) | *81.9 (17.7) | 104.7 (19.5)
Random | 113.1 (32.2) | 82.1 (23.6) | *79.2 (23.5) | 148.8 (25.0)
20% Perlin 98.2 (20.3) 80.2 (19.1) *73.4 (14.1) | 144.7 (36.1)
oot Random 62.4 (11.3) | 50.9 (16.2) | *47.9 (12.4) | 121.5 (29.4)
o0 Perlin 70.7 (15.1) | 59.0 (13.9) | *56.3 (14.2) | 134.7 (21.8)
20% Random 153.9 (39.4) 105.3 (22.5) | *99.3 (23.0) | 138.2 (30.7)
Perlin 147.0 (38.0) | 97.8 (17.5) | *95.0 (19.9) | 139.6 (27.5)
0009 Random 89.6 (19.1) | 62.2 (11.4) | *55.3 (8.0) | 109.2 (41.1)
High 0% Perlin 96.1 (16.6) | 66.2 (13.8) | *60.4 (9.3) | 129.3 (26.3)
Random 75.9 (21.3) | 71.7 (17.6) | *65.0 (14.9) | 168.7 (69.4)
0.01 0% Perlin 75.7 (23.6) 69.1 (19.3) *62.3 (16.0) | 179.9 (85.7)
- Random 47.2 (12.8) 44.2 (8.7) *42.2 (6.4) | 127.0 (28.1)
Perlin 55.9 (18.1) | 54.4 (11.9) | *52.5 (12.8) | 160.4 (57.7)
1.00000
g2
0.10000 =+ &« 2 -8—8—8 85 & 4 2-8-B—W
E 0.01000
()
£ 0.00100
'_
0.00010
0.00001

Figure 8: Computational times to estimate the predictive mean for out-of-sample observations for

smashGP and SPDE.

—@— smashGP

16

64

256

Number of Test Points

34

-8 SPDE

1024 4096 16384 49928

1,000

100
<
S
g 10
©
£
|_
1
—
0 - - 8 - —-E—- A -
1 4 16 64 256 1,024 4,096 16,384 49,928

Number of Test Points

—@®— smashGP —=—m= SPDE

Figure 9: Computational times to estimate the predictive variance for out-of-sample observations

for smashGP and SPDE.

6 Case Studies

In this section, smashGP and SPDE are applied to datasets from two sources. The first source
contains daytime land surface temperatures and was used in the case study competition by Heaton
et al. (2019). The second source contains elevation information for a 2D road network in North
Jutland, Denmark (Kaul et al. 2013). In the supplementary materials, we present a third case

study where smashGP is applied to a very large dataset of a million data points.

6.1 Daytime land surface temperatures

As a first case study, we use two datasets, one real and one simulated, provided by Heaton et al.
(2019) to compare methods for modelling large spatial data. Both datasets contain observations
on a 500 x 300 grid, with the longitude ranging from -95.91153 to -91.28381, and the latitude
ranging from 34.29519 to 37.06811.

The real dataset consists of daytime land surface temperatures as measured by the Terra

instrument onboard of the MODIS satellite on August 4, 2016. The longitude and latitude ranges,

35

(@)

37

36

Lat

35

(c)

37

36

Lat

35

Figure 10: Borrowed from (Heaton et al. 2019). (a) Satellite data on August 4, 2016. (b) Training
satellite dataset. (c) Simulated dataset. (d) Training simulated dataset.

as well as the date, were chosen because of the small area covered by clouds. Only 1.1% of the
MODIS data was corrupted by cloud cover, leaving 148,309 of the 150,000 possible observed values.

To generate the simulated dataset, a random sample of 2,500 observations from the MODIS
data on August 4, 2016 was considered. A GP with constant mean and exponential kernel was
fitted to the sampled data. The resulting parameter estimates were 4/3, 16.40, 0.05, and 44.49
for the length scale, process variance, noise variance, and constant mean, respectively. These
parameters were then used to simulate 150,000 observations on the same grid as the MODIS data.

To define the training and test datasets, the missing data pattern from the August 6, 2016
MODIS satellite data product was used. The training dataset consisted of 105,569 observations,
leaving 42,740 observations in the test set. Figure 10 displays the datasets, along with the training
datasets.

We compare smashGP with the most competitive benchmark of Section 5, SPDE, in terms of

prediction and uncertainty quantification. The results are presented in Table 7.

36

Table 7: Comparison for simulated and satellite datasets. A * identifies the best-performing

method. We have boldened the smashGP methods that outperform the benchmark.

MAE INT
smashGP smashGP smashGP smashGP smashGP smashGP
SPDE SPDE
Gaussian | Matern 5/2 | Matern 3/2 Gaussian | Matern 5/2 | Matern 3/2
Simulated data 0.91 0.75 0.69 *0.62 5.39 4.48 *4.26 7.81
Satellite data 2.61 2.17 1.89 *1.10 13.72 10.36 9.35 *8.85
RMSE CVG
smashGP smashGP smashGP smashGP smashGP smashGP
SPDE SPDE
Gaussian | Matern 5/2 | Matern 3/2 Gaussian | Matern 5/2 | Matern 3/2
Simulated data 1.26 1.03 0.94 *0.86 *0.95 0.97 0.97 1.00
Satellite data 3.32 2.88 2.56 *1.53 0.85 0.93 *0.94 0.97

SPDE is the best method in terms of prediction accuracy (MAE and RMSE) for both the
simulated and the satellite data. In terms of uncertainty quantification, for the simulated data,
smashGP with the Matérn v = 3/2 kernel has the smallest INT, and smashGP with Gaussian
kernel has the best CVG. SPDE has the smallest INT for the satellite data, and smashGP with
the Matérn v = 3/2 kernel has the best CVG. For this case study, smashGP performs worse
because the underlying process is not smooth, and the exponential kernel approximated by SPDE
provides better results. It is worth noticing that from the three smashGP methods, the one with
the Matérn v = 3/2 kernel performs better as this kernel is only one-time differentiable. These
results are not surprising since SPDE was already known to work well on these datasets. Next,

we present a case study where smashGP outperforms the benchmark.

6.2 Elevation for 2D road network

As a second case study, we use a dataset containing elevation information for a 2D road network
in North Jutland, Denmark. The network covers a region of 185 x 135 km?. Elevation values
were extracted from a publicly available massive Laser Scan Point Cloud for Denmark (Kaul et al.
2013). The data can be accessed from: https://archive.ics.uci.edu/ml/datasets/3D+Road+
Network+\%28North+Jutland\%2C+Denmark\’%29#. The data is presented in Figure 11.

We randomly select 80,000 points as training data and 20,000 points as test data. We compare

smashGP with SPDE in terms of prediction accuracy and uncertainty quantification. The results

37

Figure 11: Laser Scan Point Cloud for 2D road network in North Jutland, Denmark. Borrowed
from (Kaul et al. 2013).

are presented in Table 8. We observe that for this dataset, smashGP outperforms the benchmark
in terms of predictive accuracy (MAE and RMSE) and uncertainty quantification (INT and CVG).
smashGP with the Matérn v = 3/2 kernel is the best performing method. It is hard to assert
exactly why SPDE performs poorly. We have two hypotheses for this behavior. (1) It is possible
that the precision matrix, in this case, is far from being sparse (this is hard to verify in practice).
(2) It is possible that we misspecified some of the hyperparameters required for SPDE; although
we chose the best parameters we could find. In this case study, we can see the advantage of using
smashGP over SPDE. smashGP does not make an assumption on the structure of the covari-
ance matrix and thus will perform better in general settings. Additionally, no hyperparameters
need to be specified by the user. The only information needed is the desired tolerance for the

approximation.

Table 8: Prediction and uncertainty quantification comparison for 2D road network dataset. A *
identifies the best-performing method. We have boldened the smashGP methods that outperform
the benchmark.

MAE INT
smashGP smashGP smashGP smashGP smashGP smashGP
SPDE SPDE
Gaussian | Matern 5/2 | Matern 3/2 Gaussian | Matern 5/2 | Matern 3/2
1.49 1.16 *1.04 14.46 14.42 11.75 *10.61 97.27
RMSE CVG
smashGP smashGP smashGP smashGP smashGP smashGP
SPDE SPDE
Gaussian | Matern 5/2 | Matern 3/2 Gaussian | Matern 5/2 | Matern 3/2
2.75 2.20 *1.98 18.35 *0.95 0.96 0.96 0.95

38

7 Conclusion

GPs are essential for spatial data analysis as they allow to predict unknown values and quantify
uncertainty. However, with advanced sensing technologies, the use of direct GPs is restricted as
the sample size n is large and naively estimating a GP requires O(n®) computations and O(n?)
memory. In this paper, we propose smashGP, a framework to estimate GPs for large-scale spatial
modeling. smashGP represents the GP covariance matrix as an H? hierarchical matrix and uses
matrix-free operations for training and prediction. With smashGP, the asymptotic computational
time is reduced to O(nlogn).

We compared smashGP with state-of-art methods for large-scale spacial modeling in terms
of prediction accuracy, uncertainty quantification, and computational time. As illustrated by
the simulations and case studies, no one method dominates the others. In general, we saw that
smashGP and SPDE are the best methods overall. If there is no domain knowledge on the sparsity
of the precision matrix, which is hard to verify in practice, we recommend using smashGP. The
proposed framework can handle different levels of smoothness thanks to the different kernels
implemented (Gaussian, Matérn v = 5/2, Matérn v = 3/2). Additionally, no hyperparameters
need to be specified by the user, and the level of approximation can be easily controlled. If enough
resources are available, we suggest running both smashGP and SPDE and using the one that
provides the best results over a validation data set.

smashGP was developed to model spatial data in two dimensions. As is, it can be used for GPs
in higher than two dimensions. However, it is expected to suffer from the curse of dimensionality.
Its performance for high-dimensional GPs is of interest for future research. Additionally, in the
future, we will consider extending smashGP to work with non-differentiable kernel functions such
as the exponential kernel approximated by SPDE. Finally, we will extend smashGP to learn a GP

in cases when the effect of covariates needs to be accounted for in the mean of the process.

Supplementary Materials

Code: Code used to run smashGP can be found at https://gitlab.com/libsmash_public/

smashgp. See the Readme file for detailed instructions.

Supplementary Materials: Document containing: (A) derivations for GPs with non-constant

39

mean; (B) additional details on SMASH and its matrix-free operations; (C) definitions of
the evaluation metrics used in the simulations and case studies; (D) additional details on the
computational complexity of smashGP; (E) parameter estimation evaluation via simulations;
(F) comparison with state-of-art methods for large datasets; and (G) case study for a million

data points. (.pdf file)

References

Abdulah, S., Ltaief, H., Sun, Y., Genton, M. G., and Keyes, D. E. (2018), “ExaGeoStat: A High
Performance Unified Software for Geostatistics on Manycore Systems,” IEEFE Transactions on

Parallel and Distributed Systems, 29, 2771-2784.

Anderson, C., Lee, D., and Dean, N. (2014), “Identifying Clusters in Bayesian Disease Mapping,”
Biostatistics, 15, 457-469.

Andugula, P., Durbha, S. S., Lokhande, A., and Suradhaniwar, S. (2017), “Gaussian Process
based Spatial Modeling of Soil Moisture for Dense Soil Moisture Sensing Network,” in 2017 6th

International Conference on Agro-Geoinformatics, pp. 1-5.

Anitescu, M., Chen, J., and Wang, L. (2012), “A Matrix-free Approach for Solving the Parametric
Gaussian Process Maximum Likelihood Problem,” SIAM Journal on Scientific Computing, 34,
A240-A262.

Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2014), Hierarchical Modeling and Analysis for
Spatial Data, CRC press.

Borm, S. and Garcke, J. (2007), “Approximating Gaussian Processes with H2 Matrices,” in Fu-
ropean Conferenceon Machine Learning, Springer, pp. 42-53.

Cai, D., Chow, E., Erlandson, L., Saad, Y., and Xi, Y. (2018), “SMASH: Structured Matrix
Approximation by Separation and Hierarchy,” Numerical Linear Algebra with Applications, 25,

e2204.
Cressie, N. (2015), Statistics for Spatial Data, John Wiley & Sons.

40

Cressie, N. and Johannesson, G. (2008), “Fixed Rank Kriging for Very Large Spatial Data Sets,”
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70, 209-226.

Cutajar, K., Osborne, M., Cunningham, J., and Filippone, M. (2016), “Preconditioning Kernel

Matrices,” in International Conference on Machine Learning, pp. 2529-2538.

Datta, A., Banerjee, S., Finley, A. O., and Gelfand, A. E. (2016), “Hierarchical Nearest-Neighbor
Gaussian Process Models for Large Geostatistical Datasets,” Journal of the American Statistical

Association, 111, 800-812.

Dongarra, J., Croz, J. D., Hammarling, S., and Duff, I. (1990), “A Set of Level 3 Basic Linear
Algebra Subprograms,” ACM Transactions on Mathematical Software, 16, 1-17.

Erlandson, L., Cai, D., Xi, Y., and Chow, E. (2020), “Accelerating Parallel Hierarchical Matrix-
Vector Products via Data-Driven Sampling,” in 2020 IEEFE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 749-758.

Fang, D., Zhang, X., Yu, Q., Jin, T. C., and Tian, L. (2018), “A Novel Method for Carbon

2

Dioxide Emission Forecasting Based on Improved Gaussian Processes Regression,” Journal of

Cleaner Production, 173, 143-150.

Finley, A. O., Datta, A., Cook, B. D., Morton, D. C., Andersen, H. E., and Banerjee, S. (2019),
“Efficient Algorithms for Bayesian Nearest Neighbor Gaussian Processes,” Journal of Computa-

tional and Graphical Statistics, 28, 401-414.

Finley, A. O., Sang, H., Banerjee, S., and Gelfand, A. E. (2009), “Improving the Performance of
Predictive Process Modeling for Large Datasets,” Computational statistics & data analysis, 53,

2873-2884.

Furrer, R., Genton, M. G., and Nychka, D. (2006), “Covariance Tapering for Interpolation of
Large Spatial Datasets,” Journal of Computational and Graphical Statistics, 15, 502-523.

Furrer, R. and Sain, S. (2010), “spam: A Sparse Matrix R Package with Emphasis on MCMC
Methods for Gaussian Markov Random Fields,” Journal of Statistical Software, 36, 1-25.

41

Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel, D., and Wilson, A. G. (2018), “GPyTorch:
Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration,” in Advances in
Neural Information Processing Systems, eds. Bengio, S., Wallach, H., Larochelle, H., Grauman,

K., Cesa-Bianchi, N., and Garnett, R., Curran Associates, Inc., vol. 31.

Geoga, C. J., Anitescu, M., and Stein, M. L. (2020), “Scalable Gaussian Process Computations
Using Hierarchical Matrices,” Journal of Computational and Graphical Statistics, 29, 227-237.

Gerber, F., de Jong, R., Schaecpman, M. E., Schaepman-Strub, G., and Furrer, R. (2018), “Predict-
ing Missing Values in Spatio-Temporal Remote Sensing Data,” IEEE Transactions on Geoscience

and Remote Sensing, 56, 2841-2853.

Gneiting, T. and Raftery, A. E. (2007), “Strictly Proper Scoring Rules, Prediction, and Estima-
tion,” Journal of the American Statistical Association, 102, 359-378.

Gramacy, R. (2016), “laGP: Large-Scale Spatial Modeling via Local Approximate Gaussian Pro-
cesses in R,” Journal of Statistical Software, Articles, 72, 1-46.

Guhaniyogi, R. and Banerjee, S. (2018), “Meta-Kriging: Scalable Bayesian Modeling and Inference
for Massive Spatial Datasets,” Technometrics, 60, 430-444.

Guinness, J. (2019), “Spectral Density Estimation for Random Fields via Periodic Embeddings,”
Biometrika, 106, 267-286.

Hackbusch, W. (2015), Hierarchical Matrices: Algorithms and Analysis, vol. 49, Springer.

Heaton, M. J., Christensen, W. F., and Terres, M. A. (2017), “Nonstationary Gaussian Process

Models Using Spatial Hierarchical Clustering from Finite Differences,” Technometrics, 59, 93-101.

Heaton, M. J., Datta, A., Finley, A. O., Furrer, R., Guinness, J., Guhaniyogi, R., Gerber, F.
Gramacy, R. B., Hammerling, D., Katzfuss, M., Lindgren, F., Nychka, D. W., Sun, F., and
Zammit-Mangion, A. (2019), “A Case Study Competition Among Methods for Analyzing Large
Spatial Data,” Journal of Agricultural, Biological and Environmental Statistics, 24, 398-425.

42

Hensman, J., Fusi, N., and Lawrence, N. D. (2013), “Gaussian Processes for Big Data,” in Proceed-
ings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, Arlington, Virginia,
USA: AUAI Press, UAT’13, p. 282-290.

Hutchinson, M. (1989), “A Stochastic Estimator of the Trace of the Influence Matrix for Laplacian

Smoothing Splines,” Communication in Statistics- Simulation and Computation, 18, 1059-1076.

Jurek, M. and Katzfuss, M. (2021), “Multi-resolution Filters for Massive Spatio-temporal Data,”
Journal of Computational and Graphical Statistics, 30, 1095-1110.

Katzfuss, M. (2017), “A Multi-Resolution Approximation for Massive Spatial Datasets,” Journal
of the American Statistical Association, 112, 201-214.

Kaul, M., Yang, B., and Jensen, C. S. (2013), “Building Accurate 3D Spatial Networks to Enable
Next Generation Intelligent Transportation Systems,” in 2013 IEEFE 14th International Conference
on Mobile Data Management, vol. 1, pp. 137-146.

Keshavarzzadeh, V., Zhe, S., Kirby, R. M., and Narayan, A. (2021), “GP-HMAT: Scal-
able, ${O}(n\log(n))$ Gaussian Process Regression with Hierarchical Low-Rank Matrices,”
ArXiv:2201.00888 [cs, math)].

Kim, H.-M., Mallick, B. K., and Holmes, C. C. (2005), “Analyzing Nonstationary Spatial Data
Using Piecewise Gaussian Processes,” Journal of the American Statistical Association, 100, 653~

668.

Knorr-Held, L. and Rasser, G. (2000), “Bayesian Detection of Clusters and Discontinuities in
Disease Maps,” Biometrics, 56, 13-21.

Lindgren, F., Rue, H., and Lindstrom, J. (2011), “An Explicit Link Between Gaussian Fields
and Gaussian Markov Random Fields: the Stochastic Partial Differential Equation Approach,”
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73, 423-498.

Majumder, S., Guan, Y., Reich, B. J., and Saibaba, A. K. (2022), “Kryging: Geostatistical
Analysis of Large-Scale Datasets Using Krylov Subspace Methods,” Statistics and Computing, 32,
74.

43

Minden, V., Damle, A., Ho, K. L., and Ying, L. (2017), “Fast Spatial Gaussian Process Maximum
Likelihood Estimation via Skeletonization Factorizations,” Multiscale Modeling € Simulation, 15,

1584-1611.

Nychka, D., Bandyopadhyay, S., Hammerling, D., Lindgren, F., and Sain, S. (2015), “A Multires-
olution Gaussian Process Model for the Analysis of Large Spatial Datasets,” Journal of Compu-

tational and Graphical Statistics, 24, 579-599.
Perlin, K. (1985), “An Image Synthesizer,” ACM SIGGRAPH Computer Graphics, 19, 287-296.

Rasmussen, C. E. and Williams, C. K. I. (2005), Gaussian Processes for Machine Learning (Adap-
tive Computation and Machine Learning), The MIT Press.

Roustant, O., Ginsbourger, D., and Deville, Y. (2012), “DiceKriging, DiceOptim: Two R Packages
for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization,”
Journal of Statistical Software, 51, 1-55.

Saad, Y. (2003), Iterative Methods for Sparse Linear Systems, STAM.

Salvana, M. L. O., Abdulah, S., Huang, H., Ltaief, H., Sun, Y., Genton, M. G., and Keyes,
D. E. (2021), “High Performance Multivariate Geospatial Statistics on Manycore Systems,” I[EEE
Transactions on Parallel and Distributed Systems, 32, 2719-2733.

Sang, H., Jun, M., and Huang, J. Z. (2011), “Covariance Approximation for Large Multivariate
Spatial Data Sets with an Application to Multiple Climate Model Errors,” Annals of Applied
Statistics, 5, 2519-2548.

Stein, M. L. (2012), Interpolation of Spatial Data: Some Theory for Kriging, Springer Science &

Business Media.

Ubaru, S., Chen, J., and Saad, Y. (2017), “Fast Estimation of Tr(f(A)) via Stochastic Lanczos
Quadrature,” SIAM Journal on Matrixz Analysis and Applications, 38, 1075-1099.

Williams, C. and Seeger, M. (2000), “Using the Nystrom Method to Speed Up Kernel Machines,”
in Advances in Neural Information Processing Systems, eds. Leen, T., Dietterich, T., and Tresp,

V., MIT Press, vol. 13.

44

Woodbury, M. A. (1950), Inverting Modified Matrices, Statistical Research Group.

Zammit-Mangion, A., Cressie, N., and Shumack, C. (2018), “On Statistical Approaches to Gen-

erate Level 3 Products from Satellite Remote Sensing Retrievals,” Remote Sensing, 10, 155.

Zhu, C.; Byrd, R. H., Lu, P., and Nocedal, J. (1997), “Algorithm 778: L-BFGS-B: Fortran Sub-
routines for Large-Scale Bound-Constrained Optimization,” ACM Transactions on mathematical

software (TOMS), 23, 550-560.

45

