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School of Industrial Engineering

Purdue University

Edmond Chow
School of Computational Science and Engineering

Georgia Institute of Technology

Kamran Paynabar
School of Industrial and Systems Engineering

Georgia Institute of Technology

Abstract
Gaussian processes are essential for spatial data analysis. Not only do they allow the

prediction of unknown values, but they also allow for uncertainty quantification. However,

in the era of big data, directly using Gaussian processes has become computationally infea-

sible as cubic run times are required for dense matrix decomposition and inversion. Various

alternatives have been proposed to reduce the computational burden of directly fitting Gaus-

sian processes. These alternatives rely on assumptions on the underlying structure of the

covariance or precision matrices, such as sparsity or low-rank. In contrast, this article uses

hierarchical matrices and matrix-free methods to enable the computation of Gaussian pro-

cesses for large spatial datasets by exploiting the underlying kernel properties. The proposed

framework, smashGP, represents the covariance matrix as an H2
matrix in O(n) time and

is able to estimate the unknown parameters of the model and predict the values of spatial

observations at unobserved locations in O(n log n) time thanks to fast matrix-vector prod-

ucts. Additionally, it can be parallelized to take full advantage of shared-memory computing

environments. With simulations and case studies, we illustrate the advantage of smashGP

to model large-scale spatial datasets. Supplementary materials are provided online.
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1 Introduction

Gaussian processes (GPs) are a powerful machine learning tool (Rasmussen and Williams 2005)

and have a dominant role in spatial statistics (Stein 2012; Banerjee et al. 2014; Cressie 2015)

where they provide insights into many geophysical and environmental problems. For example,

they enable the study of greenhouse gas concentrations for climate change (Fang et al. 2018),

of soil properties for precision agriculture (Andugula et al. 2017), and of di↵erent atmospheric

states for weather forecasting (Heaton et al. 2019). Three main features explain the usefulness

of GPs in the analysis of spatial data. (1) Unknown parameters of the model can be estimated;

(2) GPs predict the values of spatial responses at unobserved locations; and (3) GPs quantify the

uncertainty in the predictions and parameters (Cressie 2015).

A spatial process Y (s) for s 2 D ⇢ R2 is said to follow a GP if any realization Y =

(Y (s1), . . . , Y (sn))> at the finite number of locations s1, . . . , sn follows an n-variate Gaussian dis-

tribution. More specifically, let µ(s) : D ! R denote the mean function and ⌃(s1, s2) : D2 ! R

denote the positive-definite covariance function. Then, Y is distributed as N (µ,⌃), where

µ = (µ(s1), . . . , µ(sn))> is the mean vector and ⌃ = {⌃(si, sj)}ni,j=1
is the n ⇥ n covariance

matrix. The Gaussian structure of the spatial process allows for a large degree of analytical ca-

pability, enabling out-of-sample predictions and uncertainty quantification. In this paper, we use

GPs for large-scale spatial modeling. However, notice that GPs are not restricted to R2.

Even though GPs are a great tool for modeling spatial processes, and allow the prediction

and uncertainty quantification of out-of-sample data points, they have one big limitation. When

the number of spatial locations, n, in the training dataset is large, they become computationally

intractable. The prediction and uncertainty quantification for an out-of-sample data point require

solving a linear system, typically done by inverting (i.e., Cholesky factorization and triangular

solves) the covariance matrix⌃ which involvesO(n3) operations and O(n2) memory. Furthermore,

in order to estimate the model’s optimal parameters, the inversion computations need to be carried

out many times. Therefore, direct GPs, with Cholesky factorization and triangular solves, cannot

be used when n is larger than around twenty thousand data points (Hensman et al. 2013), which is

a common setting in modern spatial datasets. The development of advanced sensing technologies,

mounted on satellites and aircraft, collecting massive amounts of spatial data, limits the use of
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direct GPs in many applications (Katzfuss 2017; Heaton et al. 2019).

Various alternatives have been proposed to overcome the computational limitations of direct

GPs for the analysis of spatial datasets. The vast majority of these methods rely on simplifying

assumptions or approximations and can be grouped into four categories. (1) Low-rank methods

aim at reducing the rank of the covariance matrix ⌃, examples of such methods include fixed rank

kriging (Cressie and Johannesson 2008; Zammit-Mangion et al. 2018) and predictive processes

(Finley et al. 2009)). (2) Sparse covariance methods introduce zeros into the covariance matrix ⌃

to allow for sparse computations, examples of such methods include spatial partitioning (Knorr-

Held and Rasser 2000; Kim et al. 2005; Sang et al. 2011; Anderson et al. 2014; Heaton et al. 2017)

and covariance tapering (Furrer et al. 2006; Furrer and Sain 2010). (3) Sparse precision methods

introduce zeros into the precision matrix ⌃�1 to speed up the computations required, examples of

such methods include stochastic partial di↵erential equations (Lindgren et al. 2011), latticeKrig

(Nychka et al. 2015), multiresolution approximations (Katzfuss 2017; Jurek and Katzfuss 2021),

nearest neighbor processes (Datta et al. 2016; Finley et al. 2019), and periodic embedding (Guin-

ness 2019). (4) Algorithmic methods with new fitting schemes have been developed to reduce

the computational cost, examples of such methods include laGP (Gramacy 2016), metakriging

(Guhaniyogi and Banerjee 2018), and gapfill (Gerber et al. 2018). For a comprehensive overview

of these methods, see the work by Heaton et al. (2019). The main drawback of these alternatives

is that, if the assumptions on the structure of the covariance/precision matrix are not satisfied,

the approximations can hinder the out-of-sample predictions and the uncertainty quantification.

Recently, there has been a push, led mostly by applied mathematicians and computer scien-

tists, to relax these assumptions. Abdulah et al. (2018) and Salvaña et al. (2021) proposed to

use state-of-the-art high-performance dense linear algebra libraries associated with edge parallel

architectures to directly solve GPs. Others represent the covariance matrix ⌃ as a hierarchical

matrix (Hackbusch 2015), where the relationships between di↵erent low-rank blocks and nested

bases are exploited. The structure of the hierarchical matrix allows for e�cient computations and

reduces the storage requirements. In 2007, Börm and Garcke used hierarchical matrices to repre-

sent the GP covariance matrix for the first time. They were able to estimate the matrix using only

O(nm) units of storage, where m is a parameter controlling the accuracy of the approximation.
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The computation of the hierarchical matrix scales with O(nm log n), which allows the evaluation

of matrix-vector products in O(nm log n) operations. Other operations like multiplication or in-

version can be accomplished in almost linear complexity. The proposed representation was used

for prediction and uncertainty quantification. However, the authors did not provide a solution

for learning the GP and thus estimating the optimal model parameters. Since then, others have

exploited the structure of hierarchical matrices to fit GPs.

On the one hand, some authors propose to exploit a particular representation of the covariance

matrix to reduce the computational complexity of estimating a GP (Anitescu et al. 2012; Minden

et al. 2017; Geoga et al. 2020; Keshavarzzadeh et al. 2021; Majumder et al. 2022). For example,

Minden et al. (2017) propose to use recursive skeletonization factorization to represent the co-

variance matrix, and use an adaptation of the matrix peeling algorithm to learn GPs in O(n3/2)

time under certain conditions. Geoga et al. (2020) exploit hierarchical o↵-diagonal low-rank ma-

trices to represent the covariance matrix, and use the Hutchinson stochastic trace estimator to

learn GPs in quasilinear O(n log2 n) time. Majumder et al. (2022) exploit Krylov subspaces, using

Golub-Kahan bidiagonalization for the solution of linear systems, and use the Krylov subspace to

estimate the objective function and its gradients in O(n log n) time. This method uses Fast Fourier

Transforms for the matrix-vector products, which requires the spatial data to be on a grid, which

requires additional approximations for use on ungridded spatial datasets. On the other hand, some

works focus on reducing the number of operations required to tune a GP given any hierarchical

representation of the covariance matrix. In particular, Gardner et al. (2018) propose a blackbox

matrix-matrix multiplication framework to estimate the optimal parameters of a given GP. The

proposed framework uses a modified batched version of the conjugate gradient algorithm, reducing

the asymptotic complexity of GP inference from O(n3) to O(n2). However, none of the existing

frameworks propose a hierarchical matrix representation of the covariance matrix, which allows

for customized matrix-free operations to e�ciently learn a GP. By “matrix-free” operations, we

mean that no dense matrices of size n⇥n are formed when learning a GP. By exploiting both the

hierarchical representation of the covariance matrix and the matrix-free operations, the computa-

tional complexity of fitting a GP can be further reduced to O(n log n) without requiring the data

to be on a grid.
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The goal of this paper is to develop a framework to learn GPs without assuming a specific

structure of the covariance matrix in quasilinear time, to improve the out-of-sample predictions

and uncertainty quantification. Instead of making strong assumptions about the structure of the

covariance matrix, we capitalize on the properties of the underlying covariance function and ap-

proximate the covariance matrix, where the accuracy of the approximation can be controlled. We

use Structured Matrix Approximation by Separation and Hierarchy (SMASH, Cai et al. (2018))

to represent the covariance matrix. We exploit the special structure of this approximation to e�-

ciently estimate the model parameters in a matrix-free manner (i.e., without using dense matrices

of size n⇥ n). Specifically, given the spatial points s1, . . . , sn, a tree structure is first constructed

based on an adaptive partitioning of the domain D to facilitate approximation procedures of the

covariance matrix ⌃. A rank-revealing factorization is applied to an initial analytic approximation

so that a special structure is incorporated into the nested bases. As a consequence, the storage is

significantly reduced, and a hierarchy of the spatial points is constructed. Operations associated

with each level can be performed in parallel, which greatly reduces the computational time. Us-

ing SMASH to represent the covariance matrix and perform its associated matrix-free operations

allows us to develop an e�cient framework to find the optimal modeling parameters of a GP and

perform out-of-sample predictions. The framework exploits the use of preconditioners to mini-

mize the number of iterations required in the matrix-free operations and considers the numerical

instability often encountered when dealing with GPs.

The main contributions of the paper are: (1) we develop a framework, smashGP, for matrix-

free GP optimization via SMASH, which allows us to represent the covariance matrix ⌃ as an H2

matrix in O(n) time; (2) smashGP is able to estimate the unknown parameters of the model and

predict the values of spatial observations at unobserved locations in O(n log n) time thanks to fast

matrix-vector products; (3) smashGP is able to overcome the numerical instability that often arises

when dealing with GPs ; (4) smashGP is able to perform prediction and uncertainty quantification

for a dataset with a million data points. Finally, as far as the authors are aware, we are the

first to present a rigorous comparison between GPs methods imposing a special structure to the

covariance matrix and GPs methods relying on hierarchical matrices and matrix-free operations.

Methods developed to learn GPs using hierarchical matrices have been evaluated on their ability to
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estimate the model parameters accurately. However, the out-of-sample predictions and uncertainty

quantification capabilities have not been fully studied. Comparing these two approaches is critical

as practitioners need guidelines to decide which framework should be preferred when learning GPs

for spatial data.

The rest of the article is organized as follows. Section 2 provides a review on GPs for spatial

data. Section 3 introduces SMASH and its matrix-free operations. In Section 4, we present the

proposed methodology: smashGP. Simulation studies and real data analysis are conducted in

Sections 5 and 6, respectively. Finally, we conclude in Section 7. The codes written for this paper

can be found at https://gitlab.com/libsmash_public/smashgp. We provide supplementary

materials with additional details on smashGP.

2 GPs for Spatial Data

As defined in the introduction, a spatial process Y (s) for s 2 D ⇢ R2 is said to follow a GP if

any realization Y = (Y (s1), . . . , Y (sn))> at the finite number of locations s1, . . . , sn follows an

n-variate Gaussian distribution, i.e., Y ⇠ N (µ,⌃). In what follows, without loss of generality,

we assume that the mean function of the spatial process Y (s) is constant. Therefore, µ = µ n

(derivations for a non-constant mean can be found in the supplementary materials). Additionally,

we assume that ⌃ = �2
R, where �2 is the process variance and R = {R(si, sj)}ni,j=1

is the n⇥ n

correlation matrix. The correlation function R(s1, s2) : D2 ! [�1, 1] is a positive-definite kernel

function. Popular kernel choices include the Gaussian kernel, the power exponential family of

kernels, and the Matérn family of kernels (Roustant et al. 2012). All of these kernels depend on

characteristic length-scale parameters ✓ (Rasmussen and Williams 2005).

In almost all geophysical and environmental situations, sensors collecting spatial data only

provide noisy observations. Therefore, instead of observing a realization Y of the spatial process

Y (s), we observe Ỹi = Y (si) + ✏i, for i = 1, . . . , n, where ✏i ⇠ N(0, ⌧ 2) is a realization of a

noise random variable. If we assume the spatial process Y (s) follows a GP and is stochastically

independent from the Gaussian measurement errors ✏i, we have that the observed vector Ỹ =
⇣
Ỹ1, . . . , Ỹn

⌘>
follows an n-variate Gaussian distribution with mean µ = µ n and covariance
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matrix ⌃̃ = �2
R+ ⌧ 2In, where In is the n⇥ n identity matrix. The likelihood of Ỹ is

L(µ, �2, ⌧ 2,✓; Ỹ ) =

1

(2⇡)(n/2)|�2R+ ⌧ 2In|(1/2)
exp

✓
�1

2
(Ỹ � µ n)

>(�2
R+ ⌧ 2In)

�1(Ỹ � µ n)

◆
(1)

Training a GP means finding the optimal values for the parameters, µ, �2, ⌧ 2,✓, given the vector

of noisy observations Ỹ . These parameters are commonly learned by minimizing the negative log-

likelihood of the observed data. To reduce the optimization dimensionality, we define v = �2+ ⌧ 2,

the total variance, and ↵ = �2/(�2 + ⌧ 2), the proportion of variance explained by Y (s). We

rewrite ⌃̃ = vR↵ with R↵ = ↵R + (1 � ↵)In, note that R↵ is also symmetric positive-definite

since ↵ 2 [0, 1]. When minimizing the negative log-likelihood, the first-order conditions provide

analytical solutions for µ and v:

µ̂ =
>
nR

�1

↵ Ỹ

>
nR

�1

↵ n

v̂ =
1

n
(Ỹ � µ̂ n)

>
R

�1

↵ (Ỹ � µ̂ n) (2)

Thus, the concentrated log-likelihood depends only on ↵ and ✓:

�2 logL(µ̂, v̂,↵,✓; Ỹ ) = n log(2⇡) + n log v̂ + log |R↵|+ n (3)

The fact that ↵ is bounded is convenient for optimization. Let � = (↵,✓)>, then the kth partial

derivative of the log-likelihood is given by:

�2@ logL(µ̂, v̂,↵,✓; Ỹ )

@�k
= �(Ỹ � µ̂ n)

>
R

�1

↵

@R↵

@�k
R

�1

↵ (Ỹ � µ̂ n)/v̂ + Tr

✓
R

�1

↵

@R↵

@�k

◆
(4)

Under this scenario, L-BFGS-B (Zhu et al. 1997), an optimization algorithm in the family of quasi-

Newton methods, is used to find the optimal parameters, �̂, given the observed data. Once the

model is trained and the optimal parameters are estimated, inference and prediction of a spatial

process are made by utilizing the conditional distribution, p
⇣
Y (s)|Ỹ

⌘
. The predictive mean and

the predictive variance, for s 2 D, are given by:

m(s) = µ̂+ ↵̂r̂(s)>R̂
�1

↵ (Ỹ � µ̂ n) (5)

s2(s) = �̂2(1� ↵̂r̂(s)>R̂
�1

↵ r̂(s)) + (1� ↵̂r̂(s)>R̂
�1

↵ n)
2/( >

n (v̂R̂↵)
�1

n) (6)

where R̂↵ is the estimated correlation matrix and r̂(s) = (R̂(s, si))i=1,...,n is the vector of estimated

correlations between Y (s) and Ỹ .
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3 SMASH and Matrix-free Operations

As already mentioned, the main limitation to directly learn GPs from large-scale spatial data is

the inversion of the correlation matrix, R↵, which requires O(n3) operations and O(n2) memory.

To overcome this limitation, hierarchical matrices and matrix-free solves can be used. Hierarchical

matrices are data-sparse representations of dense kernel matrices that exploit the block low-rank

properties arising from the underlying kernel functions. In the case of GPs, recall that R↵ =

{R↵(si, sj)}ni,j=1
where R↵(si, sj) is a positive-definite kernel function.

In this paper, we use SMASH H2 matrices, which can be constructed in linear time, and

provide linear scaling matrix-vector products (Cai et al. 2018; Erlandson et al. 2020). We provide

a brief overview here for completeness purposes. Without loss of generality, we describe how the

dense correlation matrix R↵ is represented as a SMASH H2 matrix. This is done by constructing

a SMASH H2 representation of R, and then using the identity R↵ = ↵R + (1 � ↵)In. We

also explain how the matrix-vector products are carried out by exploiting the structure of the

hierarchical matrix.

To construct the SMASH H2 matrix representation of R, we start by recursively splitting

the domain D into subdomains, creating a tree structure T . The basic idea of this partitioning

algorithm is to recursively divide the domain into several subdomains until the number of points

included in each resulting subdomain is less than a prescribed constant � (usually much smaller

than the number of points in the domain). Specifically, at level 1 of the tree, we begin with a root

node corresponding to the entire domain. Then, from level l (l � 2), each subdomain obtained

at level l � 1 that contains more than � points is bisected along the dimension with the largest

range. Let L be the maximum level where the recursion stops. Then the information about the

partitioning can be represented by a tree T with L levels. Such a splitting can be seen in Figure

1 for a 1D example. The adaptive partitioning guarantees that each subdomain corresponding to

a leaf node contains a small number of points less than the prescribed constant �. The choice of �

depends on the tolerance specified for the matrix approximation. Details on how � is determined

are provided in the supplementary materials.

Consider the node pair (i, j) in T . Let Si be the set of data points in node i and S
0
j
be the set

of points in node j. The key idea is that if Si and S
0
j
are far away, their correlation, denoted by

8



Figure 1: Illustration of an adaptive partitioning (adapted from (Cai et al. 2018)). Left: the

domain D is recursively bisected until the number of points in each subdomain Di centered at ai

is less than � = 4 (circled dots represent the data points si). Right: the corresponding tree T

with indices of points stored at each node.

R|i⇥j, can be represented as a low-rank matrix. Two questions need to be answered. (1) How is

far away defined? (2) How to represent R|i⇥j as a low-rank matrix?

To define far away, we establish an admissibility condition (see Definitions S1 and S2 in the

supplementary materials). If Si and S
0
j
are well-separated in the sense of Definition S1, the

submatrix R|i⇥j is called a farfield block, otherwise, it is called a nearfield block. The major

di↵erence between farfield and nearfield blocks is that each farfield block can be approximated by

a low-rank matrix. In other words, if Si and S
0
j
are well-separated, the farfield block R|i⇥j admits

a low-rank approximation of the form

R|i⇥j ⇡ U iAi,jV
>
j , (7)

where U i is the basis associated with points in Si, V j is the basis associated with points in S
0
j
, and

Ai,j is the coupling matrix between Si and S
0
j
. To define the bases, we use Lagrange polynomials

(see the supplementary materials). Let ni be the number of points in Si, nj be the number of

points in S
0
j
, and r be the rank of the approximation. Then, the matrices U i,Ai,j, and V j have

dimensions ni⇥r, r⇥r, and nj⇥r, respectively. The choice of r depends on the tolerance specified

for the matrix approximation. Details on how r is determined are provided in the supplementary

materials.

To represent R|i⇥j as a low-rank matrix, we use the rank-revealing QR algorithm (see the

supplementary materials). When U i and V j have more rows than columns, applying the rank-
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revealing QR algorithm to U
>
i and V

>
j yields:

U i = P i

2

4 I

Gi

3

5U i |̂i, V j = Qj

2

4 I

Hj

3

5V j |̂j (8)

where P i and Qj are permutation matrices, Gi and Hj are dense matrices, U i |̂i is a matrix made

up of selected rows of U i, and V j |̂j is a matrix made up of selected rows of V j. î and ĵ represent

subsets of i and j, respectively. Substituting the above equation in Equation (7) leads to another

low-rank approximation for R|i⇥j:

R|i⇥j ⇡ P i

2

4 I

Gi

3

5U i |̂iAi,j(V j |̂j)>
0

@Qj

2

4 I

Hj

3

5

1

A
>

⇡ P i

2

4 I

Gi

3

5R|̂
i⇥ĵ

0

@Qj

2

4 I

Hj

3

5

1

A
>

(9)

A major advantage of this approximation is a storage reduction. Now, only four index sets

{P i,Qj, î, ĵ} and two smaller dense matrices {Gi,Hj} need to be stored rather than two dense

matrices {U i,V j}.

Recall that our goal is to represent the correlation matrix R as a SMASH H2 matrix (see

Definition S4 in the supplementary materials). A key property of H2 matrices is that the bases

at one level of the tree T can be expressed using the bases of the children. For example, assume

parent node p has children nodes c1, . . . , ck. We can get the basis U p for the parent node from

the children’s basis {U c1 , . . . ,U ck} and some transfer matrices {Bc1 , . . . ,Bck}. For more details,

please refer to the supplementary materials. A similar process can be applied to obtain the row-

basis V p. Therefore, we can write:

U p =

2

6664

U c1Bc1

...

U ckBck

3

7775
, V p =

2

6664

V c1Cc1

...

V ckCck

3

7775
. (10)

Hence, only the matrices U i and V i for all leaf nodes must be stored. Matrices U p and V p for a

non-leaf node p can be obtained via transfer matrices which require much less storage.

In summary, the construction of SMASH H2 matrices involves creating a tree T using adaptive

partitioning, computing the basis matricesU , V at the leaf nodes, along with the transfer matrices

B, C, and the coupling matrices A. In particular, each leaf node i is assigned four matrices

{U i,Vi,Bi,Ci} and each non-leaf node i is assigned two matrices {Bi,Ci}. For the leaf nodes,
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U i and V i are obtained by using the rank-revealing QR algorithm. One of the advantages of using

the SMASH H2 representation of the correlation matrix R is that the user can specify the level of

approximation by using a tolerance parameter tol. The tol parameter controls the L2 norm of the

reconstruction error, i.e., ||R � R̂||2
2
 tol. Throughout the paper, we used tol = 10�7 to ensure

an accurate covariance matrix reconstruction.

A schematic representation of the construction of a SMASH H2 matrix is presented in Figure

2. Figure 2a represents the tree T for a 1D domain. Figure 2b represents the nearfield (black)

and farfield (gray) blocks from the tree structure. Figure 2c shows the compression for leaf and

parent nodes. Thanks to the nested basis structure of the SMASH H2 representation, parallel

computing, and shared memory can be used to approximate the correlation matrix R.

Once the SMASH H2 representation of the kernel matrix is constructed, the matrix-vector

products can be performed matrix-free. Rather than performing a large matrix-vector product

of size n resulting in a cost of O(n2), multiplications by small low-rank matrices are performed

and aggregated hierarchically. More details on the matrix-vector products are presented in the

supplementary materials. As seen in (Erlandson et al. 2020), the time taken by matrix-free matrix-

vector products scales linearly with the number of points. It is worth noting that the time for a

matrix-free matrix-vector product depends on the approximation tolerance specified by the user.

However, a 106 decrease in the L2 norm of the approximation can be achieved with just eight

times more computational time.

In the next section, we describe how we use the SMASH H2 representation of R↵ and the

corresponding matrix-free operations to learn the optimal parameters of a GP model.

4 Large-scale Spatial Modeling via smashGP

In this section, we present the smashGP framework for large-scale spatial modeling. Then, we

introduce practical considerations to speed up the computations and avoid numerical instability.

We start by specifying the kernels implemented in the current version of smashGP. Recall

that SMASH H2 matrices exploit the block low-rank properties arising from positive-definite

kernel functions. One convenient way of getting positive definite kernel functions for two or

more dimensions is to take tensor products of 1-dimensional positive definite kernel functions.
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(a) Hierarchical partitioning of a 1D domain. (b) Corresponding nearfield (black) and farfield

(gray) correlations.

(c) Leaf node and non-leaf node compression associated with the

farfield blocks.

Figure 2: Construction of SMASH H2 matrices.
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Such kernels, called separable kernels, are the most commonly used in the computer experiments

literature (Roustant et al. 2012). For the spatial setting, these kernels have the form:

R(si, sj) := g(h1; ✓)g(h2; ✓) (11)

where si, sj 2 D ✓ R2, hd = sid � sjd, for d = 1, 2, g is a 1-dimensional positive definite kernel,

and ✓ > 0 is the length-scale parameter of the kernel. The current version of smashGP allows the

user to select between three of the most commonly used kernels (Roustant et al. 2012):

Gaussian: g(h; ✓) = e
�h2

2✓2 , (12)

Matérn ⌫ = 5/2: g(h; ✓) =

 
1 +

p
5|h|
✓

+
5h2

3✓2

!
e

�
p
5|h|
✓ , (13)

Matérn ⌫ = 3/2: g(h; ✓) =

 
1 +

p
3|h|
✓

!
e

�
p
3|h|
✓ . (14)

The above kernels will result in di↵erent levels of smoothness. With the Gaussian kernel, the

sample paths of the associated GP have derivatives of all orders and, therefore, are very smooth.

With the Matérn kernel with parameter ⌫, the GP is di↵erentiable at order k if and only if ⌫ > k.

Thus, with ⌫ = 5/2, the process is twice di↵erentiable and, with ⌫ = 3/2, only once. When

⌫ ! 1, the Matérn kernel coincides with the Gaussian kernel. The general Matérn covariance

depends on the modified Bessel function and has not been implemented yet. We only consider

at least one-time di↵erentiable kernels as di↵erentiability is needed for the smashGP framework.

The three kernels considered correspond to commonly needed levels of smoothness encountered in

practice (Roustant et al. 2012).

4.1 smashGP Framework

Learning a GP for large-scale spatial modeling involves estimating the unknown parameters of the

model, µ, v,↵, and ✓, (Eq. 2, 3, and 4, Sec. 2), predicting the values of spatial observations at

unobserved locations (Eq. 5, Sec. 2), and quantifying the uncertainty of the predictions (Eq. 6,

Sec. 2).

In what follows, we first assume that the model parameters are known and propose a predic-

tion and uncertainty quantification framework using matrix-free linear solvers and matrix-vector
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products. Then, we present the framework to estimate the optimal model parameters, which

involves computing a matrix-free log-likelihood with its partial derivatives, which rely upon log-

determinants, traces, and matrix-vector products.

4.1.1 smashGP prediction and uncertainty quantification framework

For a sample s 2 D, the predictive mean, m(s), and the predictive variance, s2(s), are defined in

Equations 5 and 6, in Section 2. Here, we assume that the values for µ, v,↵, and ✓ are known.

Our goal is to calculate m(s) and s2(s) without forming the dense correlation matrix, R↵, which

appears in three instances:

• x1 = R
�1

↵ (Ỹ � µ̂ n) – (Eq. 5, Sec. 2)

• x2 = R
�1

↵ r(s) – (Eq. 6, Sec. 2)

• x3 = R
�1

↵ n – (Eq. 6, Sec. 2).

Notice that calculating x1,x2, and x3 is equivalent to solving the following systems of linear

equations:

• R↵x1 = (Ỹ � µ̂ n)

• R↵x2 = r(s)

• R↵x3 = n .

The Preconditioned Conjugate Gradient (PCG) algorithm is an iterative method, able to solve

such systems without requiring direct access to entries of R↵ (Saad 2003). This algorithm is one

of the best methods for this purpose for symmetric positive-definite matrices. Thus, we use the

SMASH H2 representation of R↵, and its matrix-free operations, presented in Section 3, together

with the PCG algorithm to solve the systems of linear equations and compute x1,x2, and x3.

Algorithm 1 presents the computations of the predictive mean, m(s), and the predictive variance,

s2(s), using smashGP.
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Algorithm 1 smashGP prediction and uncertainty quantification framework.

INPUT: s, Ỹ , µ, v,↵, ✓

OUTPUT: predictive mean m(s), predictive variance s2(s)

Step 1: Using the SMASH H2 representation of R↵, its matrix-free operations, and the PCG

algorithm compute:

• x1 = R
�1

↵ (Ỹ � µ̂ n)

• x2 = R
�1

↵ r(s)

• x3 = R
�1

↵ n

Step 2: Using Equation 5, in Section 2, compute the predictive mean.

• m(s) = µ+ ↵r(s)>x1

Step 3: Using Equation 6, in Section 2, compute the predictive variance.

• �2 = ↵v

• s2(s) = �2(1� ↵r(s)>x2) + v(1� ↵r(s)>x3)2/( >
nx3)

4.1.2 smashGP parameter estimation framework

Training a GP means finding the optimal values for the parameters µ, v,↵, and ✓. This is achieved

by minimizing the negative log-likelihood of the vector of observations Ỹ , i.e.,

(µ̂, v̂, ↵̂, ✓̂) = arg min
µ,v,↵,✓

n

2
log 2⇡ +

n

2
log v +

1

2
log |R↵|+

1

2v
(Ỹ � µ n)

>
R

�1

↵ (Ỹ � µ n). (15)

Next, we explain how to estimate each one of these parameters.

• Process mean, µ, and total variance, v

Writing the first order conditions in terms of µ and v results in the following analytical

expressions:

µ̂ =
>
nR

�1

↵ Ỹ

>
nR

�1

↵ n

and v̂ =
1

n
(Ỹ � µ̂ n)

>
R

�1

↵ (Ỹ � µ̂ n).

Therefore, to estimate µ and v, we need to compute R
�1

↵ Ỹ , R�1

↵ n, and R
�1

↵ (Ỹ � µ̂ n),

without forming the dense correlation matrix R↵. We achieve this by using the SMASH H2

representation of R↵, its matrix-free operations, and the PCG algorithm in a similar fashion

as we did in the smashGP prediction and uncertainty quantification framework.
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• Proportion of variance explained by Y (s), ↵, and length scale, ✓

With the estimates for µ and v, we estimate ↵ and ✓ by minimizing the concentrated negative

log-likelihood, i.e.,

(↵̂, ✓̂) = argmin
↵,✓

n log v̂ + log |R↵| = argmin
↵,✓

l(↵, ✓). (16)

Recall that ↵ is bounded between [0, 1], therefore, to solve the optimization problem, we can

use the L-BFGS-B algorithm (Zhu et al. 1997). To use this algorithm, we need to compute

the partial derivatives of the optimization function with respect to ↵ and ✓, i.e,

@l(↵, ✓)

@↵
= �(Ỹ � µ̂ n)

>
R

�1

↵

@R↵

@↵
R

�1

↵ (Ỹ � µ̂ n)/v̂ + Tr

✓
R

�1

↵

@R↵

@↵

◆
, (17)

@l(↵, ✓)

@✓
= �(Ỹ � µ̂ n)

>
R

�1

↵

@R↵

@✓
R

�1

↵ (Ỹ � µ̂ n)/v̂ + Tr

✓
R

�1

↵

@R↵

@✓

◆
. (18)

First, notice that to compute the derivatives, we need to calculate x1 = R
�1

↵ (Ỹ � µ̂ n).

We achieve this by using the SMASH H2 representation of R↵, its matrix-free operations,

and the PCG algorithm as we have explained before. Additionally, to compute l(↵, ✓)

and its derivatives, we need to calculate log |R↵|, x>
1

@R↵
@↵ x1, x>

1

@R↵
@✓ x1, Tr(R

�1

↵
@R↵
@↵ ), and

Tr(R�1

↵
@R↵
@✓ ). Next, we explain how to compute these.

– log |R↵|

From linear algebra, we have that log |R↵| = Tr(log(R↵)) =
Pn

i=1
log(�i), where �i,

i = 1, . . . , n, are the eigenvalues of R↵. As the correlation matrix R↵ is symmetric and

positive-definite, one method for computing log |R↵| is using the Stochastic Lanczos

Quadrature (SLQ) (Ubaru et al. 2017). This method utilizes the matrix-free Lanczos

algorithm to provide eigenvalue estimates, which can then be used to estimate the trace

of matrix functions of a symmetric and positive-definite matrix. In this case, we have

that log |R↵| =
Pn

i=1
log(�̂i), where �̂i, i = 1, . . . , n, are the eigenvalue estimates by

the SLQ algorithm without directly computing R↵.

– Tr(R�1

↵
@R↵
@↵ )

Recall that R↵ = ↵R + (1 � ↵)In. Therefore, @R↵
@↵ = R � In. In consequence,

Tr(R�1

↵
@R↵
@↵ ) = Tr((↵R + (1 � ↵)In)�1(R � In)). Denote by �i, i = 1, . . . , n, the
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eigenvalues of R. Since R is symmetric and positive-definite, we can use the matrix-

free SLQ algorithm to provide estimates for these eigenvalues, i.e., �̂i, i = 1, . . . , n.

Therefore, Tr(R�1

↵
@R↵
@↵ ) =

Pn
i=1

(↵�̂i + (1� ↵))�1(�̂i � 1).

– x
>
1

@R↵
@↵ x1

We have that x
>
1

@R↵
@↵ x1 = x

>
1
(R � In)x1 = x

>
1
Rx1 � x

>
1
x1. We can calculate Rx1

without directly computing R by using its SMASH H2 representation and its matrix-

free operations.

Notice that the computations of Tr(R�1

↵
@R↵
@✓ ) and x

>
1

@R↵
@✓ x1 depend on the kernel used. Here,

without loss of generality, we present the details for the computations when the kernel is

Gaussian. These can be easily adapted for the Matérn ⌫ = 5/2 and Matérn ⌫ = 3/2 kernels.

– Tr(R�1

↵
@R↵
@✓ )

We have that @R↵
@✓ = E

✓3 �R where Ei,j = ||si � sj ||22 is the squared euclidean distance

between two training data points, si and sj in D, and � is the elementwise product

between the two matrices. To compute Tr(R�1

↵
@R↵
@✓ ), we need to introduce the Hutchin-

son estimator. For a matrix A 2 Rn⇥n, we have that Tr(A) ⇡ 1

K

PK
k=1

z
>
k Azk, for a

su�ciently large K, where the n entries of each zk, k = 1, . . . , K, are chosen between

-1 and 1 with probability 0.5 (Hutchinson 1989). Let A = R
�1

↵
@R↵
@✓ = R

�1

↵

�
E
✓3 �R

�
.

For each k = 1, . . . , K, we first compute z̃k =
�
E
✓3 �R

�
zk, by using the SMASH H2

representation of
�
E
✓3 �R

�
and its matrix-free operations. Then, we compute R�1

↵ z̃k by

using the SMASH H2 representation of R↵, its matrix-free operations, and the PCG

algorithm.

– x
>
1

@R↵
@✓ x1

We have that x>
1

@R↵
@✓ x1 = x

>
1

�
E
✓3 �R

�
x1. Once again, to compute

�
E
✓3 �R

�
x1 we use

the SMASH H2 representation of
�
E
✓3 �R

�
and its matrix-free operations.

We now have all of the building blocks required for calculating the log-likelihood, the par-

tial derivatives of the log-likelihood, and the predictive mean and variance for a new sample.

These are the components of the proposed smashGP framework. Next, we present some practical

considerations that allow to speed up the computations and avoid numerical instability.
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4.2 Practical Considerations

4.2.1 Blocked Calculations

First, we incorporate blocked computations to the smashGP framework to further reduce the

computation time. Let us define blocking with a simple example. Suppose we want to perform

a series of dot products. We want to calculate wk = uk
>
v, for vectors uk, k = 1, . . . , K, and v.

This could be achieved with the following lines of code:

for k = 1, . . . , K do

wk  u
>
k v.

end for

Alternatively, one could use the following blocked line of code:

w = U
>
v,

where w = [w1, w2, . . . , wK ]
> and U = [u1,u2, . . . ,uK ]. Blocking can result in more e�cient use

of the hardware and increased parallelism, thus reducing the computation time (Dongarra et al.

1990).

In smashGP, blocking is implemented in three di↵erent instances: (1) computation of the pre-

dictive mean and variance, (2) use of the Hutchinson estimator, and (3) use of the SLQ algorithm.

Next, we explain how blocking is achieved in each one of these instances.

• Predictive mean and variance

Instead of predicting the mean and variance separately for unobserved locations, s0
1
, s0

2
, . . . , s0K 2

D, blocking can be used to consider multiple predictions at once. The blocked version of the

predictive mean computation (Eq. 5, Sec. 2) is:

m(S) = µ̂ K + ↵̂r̂(S)(R̂
�1

↵ (Ỹ � µ̂ n)), (19)

where S = [s0
1
, s0

2
, . . . , s0K ] and r̂(S) is a K ⇥ n matrix such that the kth row is equal to

r̂(s0k). Observe that we replace K dot products with a K ⇥ n matrix-vector product, which

reduces to the setting we described earlier.
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Similarly, the blocked version of the predictive variance computation (Eq. 6, Sec. 2) is:

s2(S) = �̂2

✓
K �

⇣
↵̂ >

N

⇣
r̂(S)> �

⇣
R̂

�1

↵ r̂(S)>
⌘⌘⌘>◆

+

⇣
K � ↵̂r̂(S)R̂

�1

↵ n

⌘�2

>
n (v̂R̂↵)�1

n

, (20)

where �2 denotes an elementwise square. Algorithm 2 summarizes the block computations

of the predictive mean and variance using smashGP.

Algorithm 2 smashGP block prediction and uncertainty quantification framework.

INPUT: S = [s0
1
, s0

2
, . . . , s0K ], Ỹ , µ̂, v̂, ↵̂, ✓̂

OUTPUT: predictive mean m(S) 2 RK , predictive variance s2(S) 2 RK

Step 1: Using the SMASH H2 representation of R̂↵, its-matrix-free operations, and the PCG

algorithm compute:

– x1 = R̂
�1

↵ (Ỹ � µ̂ n)

– x2 = R̂
�1

↵ r̂(S)>

– x3 = R̂
�1

↵ n

Step 2: Using Equation 19, compute the predictive mean.

– m(S) = µ̂ K + ↵r̂(S)x1

Step 3: Using Equation 20, compute the predictive variance.

– �̂2 = ↵̂v̂

– s2(S) = �̂2( K � (↵̂ >
N(r̂(S)

> � x2))>) + v̂( K � ↵r̂(S)x3)�2/( >
nx3)

• Hutchinson estimator

Recall that we use the Hutchinson estimator to estimate the trace of A = R
�1

↵
@R↵
@✓ . We

have that Tr(A) ⇡ 1

K

PK
k=1

z
>
k Azk, for a su�ciently large K, where the n entries of each

zk, k = 1, . . . , K, are chosen between -1 and 1 with probability 0.5 (Hutchinson 1989). To

accelerate the computations, we use a block operation. Let us construct the n ⇥K matrix

Z = [z1, z2, . . . , zK ]. To estimate Tr(A), we first compute the matrix-matrix product

AZ 2 Rn⇥K , by using the SMASH H2 representation of A and its matrix-free operations.

Then, we compute Tr(A) =
PK

k=1
z
>
k (AZ)k, where (AZ)k 2 Rn is the kth column of the

matrix AZ.
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• SLQ algorithm

We also use a blocked version of the Lanczos algorithm proposed by Gardner et al. (2018)

for their batched PCG method. For our problem setting, the block version presents com-

putational improvements in comparison with using the original Lanczos algorithm for SLQ

presented by Ubaru et al. (2017).

4.2.2 Preconditioning

When solving linear systems with smashGP, we use the PCG algorithm, which is an iterative

method. To solve the system to a desired accuracy, the number of iterations required depends on

the length scale ✓. To reduce the number of iterations and the amount of computational time,

the Nyström preconditioner is used. The hope is to reduce the number of iterations to a constant

number so that the number of iterations does not depend on the length scale.

Let us consider a system Ax = b, where we want to solve for x. A naive left preconditioner

would be M = A
�1, because MAx = x = Mb. Thus, we could calculate x with a single

application of the preconditioner. In general, we do not have an exact inverse to A, but perhaps

some approximation to the inverse of A that is easy to solve with.

In smashGP, we need to solve linear systems with R↵. Thus, as a preconditioner, we would

like an approximation of R�1

↵ . Based on the eigenspectrum of kernel matrices, we assume that

R↵ can be approximated by a low-rank matrix plus a diagonal shift as R↵ ⇡ UV
> +�In, where

R↵ 2 Rn⇥n,U 2 Rn⇥r,V 2 Rn⇥r, and � > 0. If we have the factors U ,V and �, then R
�1

↵ can

then be approximated as

(UV
> +�In)

�1 =
1

�
(In �U (�In + V

>
U )�1

V
>) (21)

(Woodbury 1950).

We estimate the factors U and V by using the Nyström approximation (Williams and Seeger

2000). With the Nyström approximation, a subset of m sample points S(m) = {s(1), . . . , s(m)} ⇢

{s1, . . . , sn} is selected. In smashGP, we use m = 4
p
n with the points randomly sampled,

following the recommendations provided in (Cutajar et al. 2016). Selecting too small of an m

results in the preconditioner not being as e↵ective as desired, but this should only result in more

iterations being required compared to the ideal preconditioner. Selecting too large of an m will
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result in an increase in the computation time required for forming the preconditioner. Let us

define R
(m) = {R(s(i), s(j))}mi,j=1

2 Rm⇥m as the correlation matrix evaluated pairwise over the

samples in S
(m). The eigendecomposition of R(m) is Um⇤mU

>
m. We can then approximate R as

R ⇡ r(S(m))>(R(m))
�1

r(S(m)) = Ũ⇤̃Ũ
>
.

where r(S(m)) is an m ⇥ n matrix such that the ith row is equal to r(s(i)), ⇤̃ = n
m⇤m, Ũ =

(r(S(m))>Um

p
m
n⇤

�1

m ). In Equation 21, let us set U = Ũ ,V > = ⇤̃Ũ
>
, and � = (1 � ↵). This

yields

(UV
> +�In)

�1 = (Ũ⇤̃Ũ
>
+ (1� ↵)In)

�1 =
1

1� ↵
((In � Ũ ((1� ↵)In + (⇤̃Ũ

>
)Ũ )�1)⇤̃Ũ

>
).

Thus, we can use this Nyström preconditioner to approximately solve R↵x = b. By using this

preconditioner, the number of iterations required for a solve is drastically reduced.

4.2.3 Numerical Issues

An additional challenge when modeling large-scale spatial data is that there is no guarantee

that the approximation of the correlation matrix R↵ will be positive definite. Samples that

are close together can artificially reduce the numerical rank of the matrix resulting in negative

eigenvalues, breaking the positive definiteness of R↵. However, PCG only has a convergence

guarantee for positive definite matrices. Additionally, the log-determinant, log |R↵|, in the log-

likelihood function, depends largely on the approximation of the smallest eigenvalues. If these are

negative, they can cause the log-determinant and log-likelihood to be undefined. To guarantee

estimating a positive definite correlation matrix, we build the SMASH H2 representation such that

the eigenvalues are accurate up to the approximation error tol defined by the user. Additionally,

to control for the e↵ect of small eigenvalues, we use a threshold. In the computation of the log-

determinant, if we have eigenvalue estimates that are smaller than the estimated noise ⌧̂ 2, we

replace them by this value, as we know the true eigenvalues would never be lower than the noise.

With this, we have explained the smashGP framework. Next, we evaluate its performance

with simulation experiments and case studies.
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5 Performance Evaluation via Simulations

In this section, we evaluate the performance of smashGP with a range of synthetic data. First,

we compare smashGP, which uses hierarchical matrix-free operations, and DiceKriging (Roustant

et al. 2012), which uses dense matrix decomposition and inversion. DiceKriging is presently the

fastest R package to directly learn a GP using CPUs, but still requires O(n3) operations and

O(n2) memory. Then, we empirically study the computational complexity of smashGP. Finally,

we compare the predictive accuracy and computational time of smashGP with state-of-art methods

for large-scale spatial modeling.

5.1 Data Generation and Evaluation Metrics

The data is generated by overlapping di↵erent layers of Perlin noise (Perlin 1985). Each layer is

generated with a di↵erent frequency, which controls the smoothness of the data, as can be seen

in Figure 3a. The smaller the frequency, the smoother the data. This procedural generation

of noise allows creating natural appearing spatial data, while controlling for smoothness. In the

experiments, we considered varying layers of Perlin noise. After the spatial data is created, we add

a random noise to each data point with mean 0 and variance ⌧ 2, to account for the measurement

noise that one could encounter in real-life settings. Examples of the data generated are presented

in Figures 3b and 3c.

To evaluate the performance of each method, we split the spatial data into training and test

datasets. To define the test dataset we considered two scenarios. In the first one, the test dataset is

generated by randomly sampling a percentage of the data. This scenario is denoted by “random”.

In the second one, an additional Perlin noise layer is generated and the locations associated with

the largest magnitudes are used as the test dataset. When collecting spatial datasets, it is common

to have large sections of missing data. For example, when using satellite images, one could not

have access to data due to cloud or tree coverage. The second scenario is denoted by “Perlin”, and

attempts to emulate the large sections of missing data. An example of the di↵erent test datasets

is provided in Figure 4.
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(a) Di↵erent layers of Perlin noise with varying frequencies.

(b) Three layers of Perlin noise and random noise. (c) Five layers of Perlin noise and random noise.

Figure 3: Data generation using Perlin noise.

(a) Perlin test data, 20% (left), 50% (right). (b) Random test data, 20% (left), 50% (right).

Figure 4: Examples of training and test datasets using Perlin noise. The training data is observed

in the image while the test data appears in solid black.

Our goal is to compare smashGP with other state-of-the-art methods on the ability to predict

accurately as well as to quantify the uncertainty associated with the predictions. We do this by

varying the smoothness and noise levels, as well as the amount and shape of test data, to ensure a

wide coverage of scenarios. We compare smashGP with other methods for spatial modeling with

GPs in terms of mean absolute error (MAE), root-mean-squared-error (RMSE), interval score

(INT; see Gneiting and Raftery (2007)), and prediction interval coverage (CVG; the percent of

intervals containing the true value). The definition for each of these metrics can be found in the

supplementary materials.
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(a) 25⇥ 25 (625) data points. (b) 140⇥ 140 (19,600) data points.

Figure 5: Example of the data used to compare smashGP and DiceKriging.

5.2 Comparison with DiceKriging

We start by comparing smashGP with DiceKriging (Roustant et al. 2012), which uses dense matrix

decomposition and inversion. Both smashGP and DiceKriging are configured to use a Gaussian

kernel. We compare the two methods for di↵erent sample sizes ranging from a 25 ⇥ 25 grid (625

points) up to a 140 ⇥ 140 grid (19600 points), as can be seen in Figure 5. For larger datasets,

the use of DiceKriging becomes restrictive. We will test smashGP performance for larger datasets

in the following sections. For these tests, we withhold 20% of the data as testing data using a

“Perlin” filter, and use a global noise standard deviation ⌧ of 0.01, and three layers of Perlin

noise for the dataset. The results are presented in Table 1. We see that the results obtained with

smashGP are very close to those obtained when using the dense computations of DiceKriging.

However, as can be seen in Figure 6, tuning smashGP by using hierarchical matrices and matrix-

free operations presents considerable computational time savings for large datasets. DiceKriging

scales with O(n3) while smashGP scales with O(n log n), achieving quasilinear computational

time. Above 6,400 points, a small size problem for today’s spatial datasets, smashGP outperforms

DiceKriging in terms of computational time, while maintaining the same performance in terms of

accuracy and uncertainty quantification. In next section, we investigate the computational time

of the di↵erent operations required to fit a GP using smashGP.
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Table 1: Performance comparison between smashGP and DiceKriging.

MAE RMSE INT CVG

Points smashGP Dice smashGP Dice smashGP Dice smashGP Dice

625 0.0892 0.0886 0.1132 0.1127 0.5203 0.5235 0.9040 0.9040

900 0.0817 0.0812 0.1015 0.1006 0.4947 0.4496 0.8722 0.8944

1600 0.0568 0.0573 0.0740 0.0743 0.3382 0.3550 0.9375 0.9125

2500 0.0331 0.0331 0.0433 0.0433 0.1930 0.1930 0.9360 0.9360

3600 0.0263 0.0264 0.0373 0.0374 0.1612 0.1620 0.9264 0.9347

4900 0.0231 0.0231 0.0322 0.0321 0.1286 0.1282 0.9143 0.9153

6400 0.0186 0.0186 0.0251 0.0251 0.1105 0.1107 0.9383 0.9352

8100 0.0166 0.0166 0.0220 0.0220 0.1027 0.1028 0.9420 0.9414

10000 0.0178 0.0178 0.0233 0.0232 0.1006 0.1008 0.9260 0.9245

14400 0.0165 0.0165 0.0217 0.0217 0.0966 0.0966 0.9201 0.9201

19600 0.0143 0.0143 0.0188 0.0188 0.0884 0.0880 0.9227 0.9242

Figure 6: Comparison of the tuning time for smashGP and DiceKriging.

5.3 Empirical study on the computational complexity of smashGP

In this section, we study the computational complexity of smashGP for large spatial datasets.

Without loss of generality, we consider the case when the kernel used is Gaussian. In the sup-

plementary materials, we present the computational complexity of constructing the SMASH H2

matrix representation of the correlation matrix R↵ for di↵erent sample sizes. We also present the
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computational complexity of SMASH matrix-free matrix-vector products. Here, we summarize

the results by evaluating the computational time of calculating log |R↵| and the gradient of the

log-likelihood function as these operations are critical for fitting a GP model using smashGP. For

this purpose, we generate data using three layers of Perlin noise for di↵erent sample sizes ranging

from 10,000 to 100,000, with a global noise standard deviation ⌧ of 0.01, and use 80% of the data

to train a GP using smashGP. The cumulative results over the required iterations to learn a GP

are presented in Figure 7. We observe that the computation of the log-determinant scales with

O(n) and the computation of the gradient scales with O(n log n). The log n term in the gradient

computation occurs because of the trace operations needed to compute the partial derivatives of

the log-likelihood (See Section 4.1.2). Empirically, we can conclude that by using smashGP we

are able to learn a GP in quasilinear time.

Figure 7: Comparison of the computational time for the di↵erent operations required to tune

smashGP for di↵erent problem sizes.

5.4 Comparison with state-of-art methods for large datasets

In this section, we compare the predictive accuracy of smashGP with the predictive accuracy

of state-of-art methods for large-scale spatial modeling with GPs. We consider four methods:

spatial partitioning (SP; Heaton et al. (2017)), lattice Kriging (latticeKrig; Nychka et al. (2015)),
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stochastic partial di↵erential equations (SPDE; Lindgren et al. (2011)), and GPyTorch (Gardner

et al. 2018).

SP, latticeKrig, and SPDE are GP methods that assume a particular structure of the covari-

ance matrix to overcome the computational limitations of directly fitting a GP. SP is a sparse

covariance method based on spatial partitioning of the domain. It assumes independence between

observations across subregions, and therefore allows for parallel computations. LatticeKrig is a

sparse precision method based on multiresolution radial basis functions. The main assumption

is that the spatial process can be approximated by a linear combination of the basis functions.

Finally, SPDE is a sparse precision method based on the equivalence between Matérn covariance

fields and stochastic partial di↵erential equations. The main assumption is that the spatial process

can be approximated by using basis functions chosen to be piecewise linear on a triangulation of the

domain. The sparse matrix coe�cients are determined solely by the choice of triangulation. These

three methods were chosen as benchmarks because in the case study competition paper by Heaton

et al. (2019), they showed the best performance. Their codes are provided as part of the afore-

mentioned paper and can be found at https://github.com/finnlindgren/heatoncomparison.

For the competition, SP, latticeKrig, and SPDE considered a constant mean and approximated an

exponential kernel function. The exponential kernel corresponds with the Matérn ⌫ = 1/2 kernel

and, in one dimension, is defined as g(h) = exp(�|h|/✓).

GPyTorch is a popular package for GP regression. We selected this package as a benchmark

because it is based on covariance matrix approximation and has open source code that allows

to fit a GP and generate predictions for large data sets. The code for GPyTorch is available at

https://gpytorch.ai/. GPyTorch has di↵erent settings that need to be specified by the user:

the covariance representation, the method for log-likelihood calculation, and the optimization

method. The settings used in this paper were set following the authors’ recommendations: the

Grid Kernel was used for the covariance matrix, the default black-box matrix-matrix multiplica-

tions (fast computations) were used for log-likelihood calculation, and ADAM was used as the

optimizer. The version of GPyTorch used is 1.3.1.

We tested sixteen scenarios, on a 316⇥316 grid (i.e., the grid has 99, 856 points), by modifying

the di↵erent parameters introduced in Section 5.1 with the goal of understanding the limitations
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and benefits of the di↵erent methods. We considered “high” and “low” levels of smoothness

when generating the data using Perlin noise, which corresponds to three and four layers of noise,

respectively. We changed the random noise added to each data point by setting ⌧ = 0.005 or

⌧ = 0.01. We considered di↵erent percentages of testing data, with t = 20% or t = 50%, as well as

di↵erent shapes of testing data by using a “random” mask or a “Perlin” mask. The results over

50 simulation replicates can be found in Tables 2 - 5. Boxplots comparing smashGP with the best

benchmark identified, SPDE are presented in the supplementary materials.

When the data is smoother, we observe that smashGP with the three implemented kernels

(i.e., Gaussian, Matérn ⌫ = 5/2, Matérn ⌫ = 3/2) outperforms the benchmarks in terms of

prediction (MAE, RMSE) and uncertainty quantification (INT, CVG). In general, the Gaussian

kernel provides the best results, followed by the Matérn ⌫ = 5/2 kernel. This is reasonable as with

the Gaussian kernel, the sample paths are assumed to have derivatives of all orders and thus to be

very smooth. When the data becomes less smooth, the prediction performance of smashGP with

Gaussian kernel decreases, as is to be expected. In these scenarios, smashGP with the Matérn

⌫ = 5/2 kernel is, in general, the best-performing method in terms of prediction (MAE, RMSE)

and uncertainty quantification (INT, CVG). Following the smashGP methods, SPDE has the best

performance in terms of MAE, RMSE, and INT, while latticeKrig has the best performance in

terms of CVG.

For GPyTorch, the prediction intervals are wide, limiting the uncertainty quantification capa-

bilities of the method. Based on our experiments, this occurs because GPyTorch uses a di↵erent

matrix approximation (i.e. Grid Kernel). With this approximation, the estimated parameters dif-

fer significantly from the parameters found by smashGP, a↵ecting the prediction and uncertainty

quantification capabilities.

Based on these results, we recommend using smashGP over state-of-art methods as it provides

the smallest prediction error with the best uncertainty quantification. Depending on the smooth-

ness of the underlying process, practitioners can choose the best kernel to be used. The Gaussian

kernel is recommended for smooth processes, and Matérn kernels are recommended for less smooth

scenarios. Furthermore, smashGP does not make strong assumptions about the structure of the

covariance/precision matrix and allows the user to control the accuracy of the GP approximation.

28



T
ab

le
2:

M
A
E

ov
er

50
si
m
u
la
ti
on

re
p
li
ca
te
s.

R
es
u
lt
s
ar
e
in

th
e
fo
rm

of
m
ea
n
(s
ta
n
d
ar
d
d
ev
ia
ti
on

).
A

*
id
en
ti
fi
es

th
e
b
es
t-

p
er
fo
rm

in
g
m
et
h
od

.
W
e
h
av
e
b
ol
d
en
ed

th
e
sm

as
h
G
P
m
et
h
od

s
th
at

ou
tp
er
fo
rm

th
e
b
en
ch
m
ar
ks
.

M
A
E

S
m
o
o
th

.
N
o
is
e

T
es
t
%

T
es
t
m
a
sk

sm
a
sh

G
P

sm
a
sh

G
P

sm
a
sh

G
P

G
P
y
T
o
rc
h

S
P

la
tt
ic
eK

ri
g

S
P
D
E

G
a
u
ss
ia
n

M
a
te
rn

5
/
2

M
a
te
rn

3
/
2

L
ow

0.
00
5

20
%

R
an

d
om

0
.0
0
4
6
(0
.0
0
0
0
)

*
0
.0
0
4
5
(0
.0
0
0
0
)

0
.0
0
4
6
(0
.0
0
0
0
)

0.
05
86
(0
.0
01
8)

0.
00
48
(0
.0
00
1)

0.
00
47
(0
.0
00
0)

0.
00
50
(0
.0
00
0)

P
er
li
n

0.
02
18
(0
.0
02
1)

*
0
.0
1
8
4
(0
.0
0
1
4
)

0
.0
1
9
4
(0
.0
0
1
4
)

0.
06
94
(0
.0
03
8)

0.
02
48
(0
.0
01
6)

0.
02
05
(0
.0
01
4)

0.
02
02
(0
.0
01
5)

50
%

R
an

d
om

0
.0
0
4
9
(0
.0
0
0
1
)

*
0
.0
0
4
7
(0
.0
0
0
0
)

0
.0
0
4
8
(0
.0
0
0
0
)

0.
04
05
(0
.0
01
7)

0.
00
53
(0
.0
00
1)

0.
00
50
(0
.0
00
0)

0.
00
51
(0
.0
00
0)

P
er
li
n

0.
04
10
(0
.0
03
8)

*
0
.0
3
1
1
(0
.0
0
2
4
)

0
.0
3
1
2
(0
.0
0
2
4
)

0.
06
25
(0
.0
08
6)

0.
03
93
(0
.0
03
0)

0.
03
31
(0
.0
02
5)

0.
03
15
(0
.0
02
3)

0.
01

20
%

R
an

d
om

0
.0
0
8
7
(0
.0
0
0
1
)

*
0
.0
0
8
6
(0
.0
0
0
1
)

0
.0
0
8
7
(0
.0
0
0
1
)

0.
05
88
(0
.0
01
7)

0.
00
92
(0
.0
00
1)

0.
00
89
(0
.0
00
1)

0.
00
90
(0
.0
00
1)

P
er
li
n

0.
02
44
(0
.0
01
5)

*
0
.0
2
2
0
(0
.0
0
1
4
)

0
.0
2
2
6
(0
.0
0
1
4
)

0.
06
96
(0
.0
03
9)

0.
02
85
(0
.0
01
9)

0.
02
38
(0
.0
01
4)

0.
02
33
(0
.0
01
4)

50
%

R
an

d
om

0
.0
0
8
9
(0
.0
0
0
1
)

*
0
.0
0
8
9
(0
.0
0
0
0
)

0
.0
0
9
1
(0
.0
0
0
1
)

0.
04
10
(0
.0
01
7)

0.
00
97
(0
.0
00
1)

0.
00
93
(0
.0
00
1)

0.
00
94
(0
.0
00
1)

P
er
li
n

0.
04
19
(0
.0
03
2)

0
.0
3
3
9
(0
.0
0
2
5
)

*
0
.0
3
3
7
(0
.0
0
2
3
)

0.
06
27
(0
.0
08
6)

0.
04
24
(0
.0
03
0)

0.
03
59
(0
.0
02
5)

0.
03
40
(0
.0
02
2)

H
ig
h

0.
00
5

20
%

R
an

d
om

*
0
.0
0
4
2
(0
.0
0
0
0
)

*
0
.0
0
4
2
(0
.0
0
0
0
)

0
.0
0
4
3
(0
.0
0
0
0
)

0.
05
64
(0
.0
01
7)

0.
00
44
(0
.0
00
0)

0.
00
45
(0
.0
00
0)

0.
00
45
(0
.0
00
0)

P
er
li
n

*
0
.0
0
7
5
(0
.0
0
0
4
)

0
.0
0
8
2
(0
.0
0
0
5
)

0
.0
0
9
8
(0
.0
0
0
7
)

0.
06
81
(0
.0
04
4)

0.
01
75
(0
.0
01
5)

0.
01
42
(0
.0
01
2)

0.
01
09
(0
.0
00
7)

50
%

R
an

d
om

*
0
.0
0
4
2
(0
.0
0
0
0
)

0
.0
0
4
3
(0
.0
0
0
0
)

0
.0
0
4
4
(0
.0
0
0
0
)

0.
03
64
(0
.0
01
3)

0.
00
46
(0
.0
00
0)

0.
00
47
(0
.0
00
0)

0.
00
47
(0
.0
00
0)

P
er
li
n

*
0
.0
1
5
4
(0
.0
0
1
6
)

0
.0
1
5
6
(0
.0
0
1
5
)

0
.0
1
8
6
(0
.0
0
1
7
)

0.
06
11
(0
.0
08
8)

0.
03
36
(0
.0
03
4)

0.
02
70
(0
.0
02
7)

0.
02
06
(0
.0
01
9)

0.
01

20
%

R
an

d
om

*
0
.0
0
8
2
(0
.0
0
0
1
)

0
.0
0
8
3
(0
.0
0
0
1
)

0
.0
0
8
3
(0
.0
0
0
1
)

0.
05
65
(0
.0
01
7)

0.
00
85
(0
.0
00
1)

0.
00
87
(0
.0
00
1)

0.
00
86
(0
.0
00
4)

P
er
li
n

*
0
.0
1
2
0
(0
.0
0
0
4
)

0
.0
1
2
1
(0
.0
0
0
5
)

0
.0
1
3
4
(0
.0
0
0
6
)

0.
06
83
(0
.0
04
4)

0.
02
09
(0
.0
01
4)

0.
01
78
(0
.0
01
1)

0.
01
48
(0
.0
00
7)

50
%

R
an

d
om

*
0
.0
0
8
4
(0
.0
0
0
0
)

*
0
.0
0
8
4
(0
.0
0
0
0
)

0
.0
0
8
5
(0
.0
0
0
0
)

0.
03
68
(0
.0
01
3)

0.
00
88
(0
.0
00
1)

0.
00
89
(0
.0
00
1)

0.
00
87
(0
.0
00
0)

P
er
li
n

*
0
.0
1
9
2
(0
.0
0
1
7
)

0
.0
1
9
4
(0
.0
0
1
5
)

0
.0
2
1
8
(0
.0
0
1
7
)

0.
06
12
(0
.0
08
8)

0.
03
59
(0
.0
03
2)

0.
03
00
(0
.0
02
7)

0.
02
39
(0
.0
01
9)

29



T
ab

le
3:

R
M
S
E

ov
er

50
si
m
u
la
ti
on

re
p
li
ca
te
s.

R
es
u
lt
s
ar
e
in

th
e
fo
rm

of
m
ea
n
(s
ta
n
d
ar
d
d
ev
ia
ti
on

).
A

*
id
en
ti
fi
es

th
e

b
es
t-
p
er
fo
rm

in
g
m
et
h
od

.
W
e
h
av
e
b
ol
d
en
ed

th
e
sm

as
h
G
P
m
et
h
od

s
th
at

ou
tp
er
fo
rm

th
e
b
en
ch
m
ar
ks
.

R
M

S
E

S
m
o
o
th

.
N
o
is
e

T
es
t
%

T
es
t
m
a
sk

sm
a
sh

G
P

sm
a
sh

G
P

sm
a
sh

G
P

G
P
y
T
o
rc
h

S
P

la
tt
ic
eK

ri
g

S
P
D
E

G
a
u
ss
ia
n

M
a
te
rn

5
/
2

M
a
te
rn

3
/
2

L
ow

0.
00
5

20
%

R
an

d
om

0
.0
0
5
7
(0
.0
0
0
0
)

*
0
.0
0
5
6
(0
.0
0
0
0
)

0
.0
0
5
7
(0
.0
0
0
1
)

0.
07
32

(0
.0
02
2)

0.
00
60

(0
.0
00
1)

0.
00
59

(0
.0
00
1)

0.
00
63

(0
.0
00
1)

P
er
li
n

0.
03
54

(0
.0
04
0)

*
0
.0
2
7
5
(0
.0
0
2
5
)

0
.0
2
8
3
(0
.0
0
2
4
)

0.
08
70

(0
.0
04
9)

0.
03
46

(0
.0
02
4)

0.
02
99

(0
.0
02
3)

0.
02
90

(0
.0
02
3)

50
%

R
an

d
om

0
.0
0
6
1
(0
.0
0
0
1
)

*
0
.0
0
5
9
(0
.0
0
0
0
)

0
.0
0
6
1
(0
.0
0
0
1
)

0.
05
04

(0
.0
02
2)

0.
00
68

(0
.0
00
1)

0.
00
63

(0
.0
00
1)

0.
00
64

(0
.0
00
0)

P
er
li
n

0.
06
34

(0
.0
06
3)

0.
04
58

(0
.0
04
0)

0.
04
47

(0
.0
03
7)

0.
07
97

(0
.0
10
6)

0.
05
49

(0
.0
04
5)

0.
04
73

(0
.0
03
8)

*0
.0
44
5
(0
.0
03
6)

0.
01

20
%

R
an

d
om

0
.0
1
0
9
(0
.0
0
0
1
)

*
0
.0
1
0
8
(0
.0
0
0
1
)

0
.0
1
0
9
(0
.0
0
0
1
)

0.
07
35

(0
.0
02
1)

0.
01
16

(0
.0
00
1)

0.
01
11

(0
.0
00
1)

0.
01
13

(0
.0
00
1)

P
er
li
n

0.
03
60

(0
.0
02
9)

*
0
.0
3
0
9
(0
.0
0
2
3
)

0
.0
3
1
3
(0
.0
0
2
3
)

0.
08
71

(0
.0
05
0)

0.
03
84

(0
.0
02
7)

0.
03
31

(0
.0
02
2)

0.
03
20

(0
.0
02
2)

50
%

R
an

d
om

0
.0
1
1
2
(0
.0
0
0
1
)

*
0
.0
1
1
2
(0
.0
0
0
1
)

0
.0
1
1
4
(0
.0
0
0
1
)

0.
05
10

(0
.0
02
1)

0.
01
22

(0
.0
00
2)

0.
01
17

(0
.0
00
1)

0.
01
17

(0
.0
00
1)

P
er
li
n

0.
06
17

(0
.0
05
3)

0.
04
78

(0
.0
03
9)

*
0
.0
4
6
7
(0
.0
0
3
6
)

0.
08
00

(0
.0
10
6)

0.
05
78

(0
.0
04
5)

0.
04
98

(0
.0
03
8)

0.
04
68

(0
.0
03
4)

H
ig
h

0.
00
5

20
%

R
an

d
om

*
0
.0
0
5
2
(0
.0
0
0
0
)

0
.0
0
5
3
(0
.0
0
0
0
)

0
.0
0
5
4
(0
.0
0
0
1
)

0.
07
04

(0
.0
02
1)

0.
00
55

(0
.0
00
0)

0.
00
57

(0
.0
00
0)

0.
00
56

(0
.0
00
1)

P
er
li
n

*
0
.0
1
0
9
(0
.0
0
1
0
)

0
.0
1
1
6
(0
.0
0
0
9
)

0
.0
1
4
1
(0
.0
0
1
2
)

0.
08
52

(0
.0
05
6)

0.
02
53

(0
.0
02
4)

0.
02
13

(0
.0
02
0)

0.
01
57

(0
.0
01
3)

50
%

R
an

d
om

*
0
.0
0
5
3
(0
.0
0
0
0
)

0
.0
0
5
4
(0
.0
0
0
0
)

0
.0
0
5
5
(0
.0
0
0
0
)

0.
04
50

(0
.0
01
6)

0.
00
59

(0
.0
00
0)

0.
00
59

(0
.0
00
0)

0.
00
59

(0
.0
00
1)

P
er
li
n

0
.0
2
5
3
(0
.0
0
3
7
)

*
0
.0
2
4
2
(0
.0
0
2
9
)

0
.0
2
8
1
(0
.0
0
3
0
)

0.
07
82

(0
.0
11
1)

0.
04
86

(0
.0
05
4)

0.
04
00

(0
.0
04
4)

0.
03
07

(0
.0
03
3)

0.
01

20
%

R
an

d
om

*
0
.0
1
0
3
(0
.0
0
0
1
)

*
0
.0
1
0
3
(0
.0
0
0
1
)

0
.0
1
0
5
(0
.0
0
0
1
)

0.
07
05

(0
.0
02
2)

0.
01
07

(0
.0
00
1)

0.
01
08

(0
.0
00
1)

0.
01
08

(0
.0
00
5)

P
er
li
n

0
.0
1
6
0
(0
.0
0
0
9
)

*
0
.0
1
6
0
(0
.0
0
0
8
)

0
.0
1
8
0
(0
.0
0
1
1
)

0.
08
55

(0
.0
05
6)

0.
02
87

(0
.0
02
2)

0.
02
48

(0
.0
01
9)

0.
01
98

(0
.0
01
2)

50
%

R
an

d
om

*
0
.0
1
0
5
(0
.0
0
0
0
)

*
0
.0
1
0
5
(0
.0
0
0
0
)

0
.0
1
0
6
(0
.0
0
0
0
)

0.
04
55

(0
.0
01
6)

0.
01
10

(0
.0
00
1)

0.
01
12

(0
.0
00
1)

0.
01
09

(0
.0
00
1)

P
er
li
n

0
.0
2
8
4
(0
.0
0
3
6
)

*
0
.0
2
7
8
(0
.0
0
2
7
)

0
.0
3
1
1
(0
.0
0
2
9
)

0.
07
83

(0
.0
11
1)

0.
05
07

(0
.0
05
2)

0.
04
28

(0
.0
04
4)

0.
03
39

(0
.0
03
2)

30



T
ab

le
4:

IN
T

ov
er

50
si
m
u
la
ti
on

re
p
li
ca
te
s.

R
es
u
lt
s
ar
e
in

th
e
fo
rm

of
m
ea
n
(s
ta
n
d
ar
d
d
ev
ia
ti
on

).
A

*
id
en
ti
fi
es

th
e
b
es
t-

p
er
fo
rm

in
g
m
et
h
od

.
W
e
h
av
e
b
ol
d
en
ed

th
e
sm

as
h
G
P
m
et
h
od

s
th
at

ou
tp
er
fo
rm

th
e
b
en
ch
m
ar
ks
.

IN
T

sm
a
sh

G
P

sm
a
sh

G
P

sm
a
sh

G
P

G
P
y
T
o
rc
h

S
P

la
tt
ic
eK

ri
g

S
P
D
E

G
a
u
ss
ia
n

M
a
te
rn

5
/
2

M
a
te
rn

3
/
2

L
ow

0.
00
5

20
%

R
an

d
om

0
.0
2
6
8
(0

.0
0
0
2
)

*
0
.0
2
6
2
(0

.0
0
0
2
)

0
.0
2
6
9
(0

.0
0
0
2
)

3.
20
06

(0
.0
40
9)

0.
03
65

(0
.0
01
5)

0.
02
76

(0
.0
00
3)

0.
03
11

(0
.0
00
4)

P
er
li
n

0
.1
3
2
3
(0

.0
1
7
4
)

*
0
.1
1
5
6
(0

.0
1
4
6
)

0
.1
4
4
8
(0

.0
1
9
4
)

3.
19
67

(0
.0
45
4)

0.
30
04

(0
.0
34
1)

0.
15
45

(0
.0
18
8)

0.
17
09

(0
.0
22
9)

50
%

R
an

d
om

0
.0
2
8
6
(0

.0
0
0
4
)

*
0
.0
2
7
6
(0

.0
0
0
2
)

0
.0
2
8
7
(0

.0
0
0
3
)

1.
63
59

(0
.1
23
6)

0.
04
50

(0
.0
02
0)

0.
02
98

(0
.0
00
3)

0.
03
04

(0
.0
00
2)

P
er
li
n

0
.2
7
0
7
(0

.0
3
9
9
)

*
0
.2
0
7
9
(0

.0
2
5
0
)

0
.2
4
8
0
(0

.0
3
1
7
)

1.
92
20

(0
.5
87
9)

0.
58
32

(0
.0
66
8)

0.
29
74

(0
.0
37
2)

0.
28
50

(0
.0
32
1)

0.
01

20
%

R
an

d
om

0
.0
5
0
9
(0

.0
0
0
4
)

*
0
.0
5
0
6
(0

.0
0
0
4
)

0
.0
5
1
2
(0

.0
0
0
4
)

3.
20
75

(0
.0
40
5)

0.
06
47

(0
.0
01
9)

0.
05
22

(0
.0
00
5)

0.
05
29

(0
.0
00
6)

P
er
li
n

0
.1
4
2
1
(0

.0
0
9
3
)

*
0
.1
2
8
0
(0

.0
1
0
3
)

0
.1
4
0
6
(0

.0
1
4
3
)

3.
20
43

(0
.0
45
1)

0.
29
31

(0
.0
35
5)

0.
15
67

(0
.0
15
2)

0.
15
47

(0
.0
17
0)

50
%

R
an

d
om

*
0
.0
5
2
4
(0

.0
0
0
3
)

*
0
.0
5
2
4
(0

.0
0
0
3
)

0
.0
5
3
3
(0

.0
0
0
4
)

1.
64
37

(0
.1
20
3)

0.
06
80

(0
.0
02
3)

0.
05
48

(0
.0
00
4)

0.
05
52

(0
.0
00
5)

P
er
li
n

0.
24
49

(0
.0
20
9)

*
0
.2
0
0
0
(0

.0
1
7
9
)

0
.2
1
7
2
(0

.0
2
2
2
)

1.
93
98

(0
.5
82
0)

0.
55
59

(0
.0
62
9)

0.
27
16

(0
.0
31
3)

0.
23
65

(0
.0
22
9)

H
ig
h

0.
00
5

20
%

R
an

d
om

*
0
.0
2
4
3
(0

.0
0
0
2
)

0
.0
2
4
8
(0

.0
0
0
2
)

0
.0
2
5
3
(0

.0
0
0
2
)

3.
10
87

(0
.0
42
0)

0.
03
48

(0
.0
01
5)

0.
02
65

(0
.0
00
3)

0.
02
79

(0
.0
00
5)

P
er
li
n

*
0
.0
4
4
3
(0

.0
0
3
0
)

0
.0
4
8
4
(0

.0
0
3
7
)

0
.0
6
4
1
(0

.0
0
7
6
)

3.
10
84

(0
.0
47
6)

0.
20
69

(0
.0
32
3)

0.
10
68

(0
.0
15
3)

0.
07
75

(0
.0
09
5)

50
%

R
an

d
om

*
0
.0
2
4
7
(0

.0
0
0
1
)

0
.0
2
5
2
(0

.0
0
0
1
)

0
.0
2
5
9
(0

.0
0
0
2
)

1.
44
50

(0
.1
31
0)

0.
03
44

(0
.0
01
8)

0.
02
80

(0
.0
00
2)

0.
02
91

(0
.0
00
5)

P
er
li
n

*
0
.0
9
3
7
(0

.0
1
2
4
)

0
.1
0
4
6
(0

.0
1
5
9
)

0
.1
5
8
7
(0

.0
2
5
7
)

1.
68
53

(0
.6
52
0)

0.
56
53

(0
.0
87
2)

0.
27
40

(0
.0
49
7)

0.
19
42

(0
.0
29
5)

0.
01

20
%

R
an

d
om

*
0
.0
4
8
3
(0

.0
0
0
3
)

0
.0
4
8
4
(0

.0
0
0
3
)

0
.0
4
8
9
(0

.0
0
0
3
)

3.
11
70

(0
.0
42
0)

0.
05
62

(0
.0
01
0)

0.
05
08

(0
.0
00
4)

0.
05
12

(0
.0
04
7)

P
er
li
n

0
.0
7
0
6
(0

.0
0
3
0
)

*
0
.0
7
0
4
(0

.0
0
3
2
)

0
.0
8
0
1
(0

.0
0
5
5
)

3.
11
65

(0
.0
48
5)

0.
19
70

(0
.0
27
1)

0.
11
69

(0
.0
12
4)

0.
09
41

(0
.0
11
6)

50
%

R
an

d
om

*
0
.0
4
9
1
(0

.0
0
0
2
)

*
0
.0
4
9
1
(0

.0
0
0
2
)

0
.0
4
9
8
(0

.0
0
0
2
)

1.
45
98

(0
.1
36
6)

0.
06
05

(0
.0
01
7)

0.
05
25

(0
.0
00
3)

0.
05
12

(0
.0
00
3)

P
er
li
n

*
0
.1
1
4
3
(0

.0
1
1
5
)

0
.1
1
6
1
(0

.0
1
3
2
)

0
.1
4
5
9
(0

.0
1
9
0
)

1.
70
90

(0
.6
44
3)

0.
49
58

(0
.0
77
7)

0.
25
25

(0
.0
42
3)

0.
17
44

(0
.0
22
1)

31



T
ab

le
5:

C
V
G

ov
er

50
si
m
u
la
ti
on

re
p
li
ca
te
s.

R
es
u
lt
s
ar
e
in

th
e
fo
rm

of
m
ea
n
(s
ta
n
d
ar
d
d
ev
ia
ti
on

).
A

*
id
en
ti
fi
es

th
e
b
es
t-

p
er
fo
rm

in
g
m
et
h
od

.
W
e
h
av
e
b
ol
d
en
ed

th
e
sm

as
h
G
P
m
et
h
od

s
th
at

ou
tp
er
fo
rm

th
e
b
en
ch
m
ar
ks
.

C
V
G

sm
a
sh

G
P

sm
a
sh

G
P

sm
a
sh

G
P

G
P
y
T
o
rc
h

S
P

la
tt
ic
eK

ri
g

S
P
D
E

G
a
u
ss
ia
n

M
a
te
rn

5
/
2

M
a
te
rn

3
/
2

L
ow

0.
00
5

20
%

R
an

d
om

0.
95
19

(0
.0
02
6)

0.
95
66

(0
.0
01
7)

0.
96
09

(0
.0
01
8)

1.
00
00

(0
.0
00
0)

0.
99
72

(0
.0
00
8)

*0
.9
50
2
(0
.0
01
9)

0.
90
66

(0
.0
05
0)

P
er
li
n

*
0
.9
3
1
4
(0
.0
0
9
9
)

0
.9
1
1
6
(0
.0
1
1
6
)

0.
86
29

(0
.0
13
7)

1.
00
00

(0
.0
00
0)

0.
72
07

(0
.0
15
8)

0.
87
42

(0
.0
12
7)

0.
81
92

(0
.0
14
9)

50
%

R
an

d
om

0.
95
20

(0
.0
03
0)

0.
95
81

(0
.0
01
5)

0.
96
14

(0
.0
01
6)

1.
00
00

(0
.0
00
0)

0.
99
84

(0
.0
00
3)

0.
95
17

(0
.0
01
5)

*0
.9
50
4
(0
.0
06
4)

P
er
li
n

*
0
.9
0
5
3
(0
.0
1
6
7
)

0
.8
8
8
0
(0
.0
1
1
4
)

0
.8
3
1
8
(0
.0
1
3
8
)

1.
00
00

(0
.0
00
0)

0.
62
85

(0
.0
15
7)

0.
81
27

(0
.0
13
7)

0.
77
99

(0
.0
13
1)

0.
01

20
%

R
an

d
om

0.
94
89

(0
.0
02
2)

0.
95
24

(0
.0
01
9)

0.
95
48

(0
.0
01
9)

1.
00
00

(0
.0
00
0)

0.
99
39

(0
.0
01
2)

*0
.9
49
7
(0
.0
01
9)

0.
94
18

(0
.0
02
4)

P
er
li
n

*
0
.9
4
6
9
(0
.0
0
6
2
)

0
.9
3
6
1
(0
.0
0
7
9
)

0
.9
0
9
8
(0
.0
1
0
9
)

1.
00
00

(0
.0
00
0)

0.
76
76

(0
.0
16
5)

0.
90
64

(0
.0
10
2)

0.
88
88

(0
.0
15
9)

50
%

R
an

d
om

0.
94
89

(0
.0
01
5)

0.
95
36

(0
.0
01
5)

0.
95
48

(0
.0
02
6)

1.
00
00

(0
.0
00
0)

0.
99
37

(0
.0
01
2)

*0
.9
50
5
(0
.0
01
4)

0.
94
35

(0
.0
01
8)

P
er
li
n

*
0
.9
4
3
7
(0
.0
0
8
7
)

0
.9
2
8
9
(0
.0
0
8
4
)

0
.8
9
1
9
(0
.0
1
2
3
)

1.
00
00

(0
.0
00
0)

0.
67
46

(0
.0
15
7)

0.
85
90

(0
.0
12
1)

0.
86
25

(0
.0
10
2)

H
ig
h

0.
00
5

20
%

R
an

d
om

0.
95
14

(0
.0
01
9)

0.
95
32

(0
.0
02
4)

0.
95
52

(0
.0
02
1)

1.
00
00

(0
.0
00
0)

0.
99
78

(0
.0
00
8)

*0
.9
49
8
(0
.0
01
8)

0.
90
42

(0
.0
03
4)

P
er
li
n

0
.9
4
4
1
(0
.0
0
6
4
)

*
0
.9
4
4
9
(0
.0
0
8
0
)

0
.9
2
0
2
(0
.0
1
3
2
)

1.
00
00

(0
.0
00
0)

0.
77
38

(0
.0
21
7)

0.
90
46

(0
.0
13
9)

0.
89
06

(0
.0
12
9)

50
%

R
an

d
om

0.
95
19

(0
.0
01
6)

0.
95
51

(0
.0
01
4)

0.
95
76

(0
.0
01
7)

1.
00
00

(0
.0
00
0)

0.
99
56

(0
.0
01
5)

*0
.9
50
8
(0
.0
01
5)

0.
90
38

(0
.0
05
1)

P
er
li
n

*
0
.9
3
3
8
(0
.0
0
8
6
)

0
.9
0
8
4
(0
.0
1
2
7
)

0
.8
4
3
0
(0
.0
1
6
9
)

1.
00
00

(0
.0
00
0)

0.
61
64

(0
.0
21
0)

0.
80
88

(0
.0
19
9)

0.
80
56

(0
.0
17
4)

0.
01

20
%

R
an

d
om

0.
95
05

(0
.0
02
1)

0.
95
26

(0
.0
02
0)

0.
95
37

(0
.0
01
8)

1.
00
00

(0
.0
00
0)

0.
98
90

(0
.0
02
0)

*0
.9
49
9
(0
.0
01
8)

0.
93
68

(0
.0
20
6)

P
er
li
n

0
.9
4
2
0
(0
.0
0
5
5
)

*
0
.9
5
1
1
(0
.0
0
5
5
)

0
.9
3
9
7
(0
.0
0
7
5
)

1.
00
00

(0
.0
00
0)

0.
82
46

(0
.0
18
3)

0.
92
65

(0
.0
10
7)

0.
93
66

(0
.0
23
8)

50
%

R
an

d
om

0.
95
06

(0
.0
01
3)

0.
95
27

(0
.0
01
9)

0.
95
33

(0
.0
01
9)

1.
00
00

(0
.0
00
0)

0.
99
25

(0
.0
01
8)

*0
.9
50
3
(0
.0
01
4)

0.
94
23

(0
.0
01
6)

P
er
li
n

*
0
.9
4
0
1
(0
.0
0
6
4
)

0
.9
3
4
0
(0
.0
1
2
0
)

0
.9
0
0
6
(0
.0
1
4
8
)

1.
00
00

(0
.0
00
0)

0.
68
81

(0
.0
20
7)

0.
85
33

(0
.0
17
5)

0.
87
35

(0
.0
21
2)

32



Next, we compare the computational time of smashGP and SPDE, as these were identified

as the two best methods in terms of accuracy and uncertainty quantification. The results for

learning the GP in each of the sixteen scenarios are presented in Table 6. We observe that

in two scenarios, when the smoothness is low, the noise is 0.005, and the test percentage is 20%,

SPDE outperforms smashGP. For the remaining fourteen scenarios, smashGP has a smaller tuning

time. It is worth highlighting that, in general, smashGP with the Matérn ⌫ = 3/2 kernel is the

fastest. With this kernel, when solving the systems of linear equations using the PCG algorithm,

fewer iterations are needed, potentially due to the fact that the kernel is less smooth, making

the problem better conditioned. Once the GP is learned, estimations need to be made for out-

of-sample observations. Figures 8 and 9 present the computational times to predict mean and

variance, respectively, for di↵erent sizes of the test dataset. For these figures, we withheld 50% of

the data as testing data using a “Perlin” filter and used a global noise standard deviation ⌧ of 0.01

and three layers of Perlin noise. We observe that the computational time to estimate the predicted

mean is always smaller when using smashGP. However, the computational time to estimate the

predicted variance is higher. Additionally, we observe that the computational time for SPDE is

mostly constant while the computational time for smashGP increases with the number of out-

of-sample observations. This behavior is expected. SPDE computes the correlation matrix once

when estimating the predicted mean and then uses it to compute the predicted variance. The

matrix computation does not increase with the number of out-of-sample observations. On the

other hand, smashGP needs to solve systems of linear equations that increase with the number

of out-of-sample observations to compute the predicted mean and variance (See Algorithm 2 in

Section 4.2.1). The trade-o↵ between accuracy, uncertainty quantification, and computational

time is something that practitioners need to consider when deciding which method to use.

In the supplementary materials, we present an analysis of the parameter estimation perfor-

mance of smashGP.
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Table 6: Computational time in minutes for smashGP and SPDE. Results are in the form of mean

(standard deviation). A * identifies the best-performing method. We have boldened the smashGP

methods that outperform the benchmark.

Time (minutes)

Smooth. Noise Test % Test mask
smashGP smashGP smashGP

SPDE
Gaussian Matern 5/2 Matern 3/2

Low

0.005

20%

Random 166.4 (47.2) 156.8 (44.6) 128.4 (34.0) *99.0 (22.0)

Perlin 154.7 (36.5) 151.0 (33.5) 112.7 (30.1) *94.3 (23.2)

50%

Random 88.9 (14.6) *82.4 (16.2) 85.4 (12.7) 115.3 (11.1)

Perlin 102.0 (18.7) 95.1 (22.8) *81.9 (17.7) 104.7 (19.5)

0.01

20%

Random 113.1 (32.2) 82.1 (23.6) *79.2 (23.5) 148.8 (25.0)

Perlin 98.2 (20.3) 80.2 (19.1) *73.4 (14.1) 144.7 (36.1)

50%

Random 62.4 (11.3) 50.9 (16.2) *47.9 (12.4) 121.5 (29.4)

Perlin 70.7 (15.1) 59.0 (13.9) *56.3 (14.2) 134.7 (21.8)

High

0.005

20%

Random 153.9 (39.4) 105.3 (22.5) *99.3 (23.0) 138.2 (30.7)

Perlin 147.0 (38.0) 97.8 (17.5) *95.0 (19.9) 139.6 (27.5)

50%

Random 89.6 (19.1) 62.2 (11.4) *55.3 (8.0) 109.2 (41.1)

Perlin 96.1 (16.6) 66.2 (13.8) *60.4 (9.3) 129.3 (26.3)

0.01

20%

Random 75.9 (21.3) 71.7 (17.6) *65.0 (14.9) 168.7 (69.4)

Perlin 75.7 (23.6) 69.1 (19.3) *62.3 (16.0) 179.9 (85.7)

50%

Random 47.2 (12.8) 44.2 (8.7) *42.2 (6.4) 127.0 (28.1)

Perlin 55.9 (18.1) 54.4 (11.9) *52.5 (12.8) 160.4 (57.7)

Figure 8: Computational times to estimate the predictive mean for out-of-sample observations for

smashGP and SPDE.
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Figure 9: Computational times to estimate the predictive variance for out-of-sample observations

for smashGP and SPDE.

6 Case Studies

In this section, smashGP and SPDE are applied to datasets from two sources. The first source

contains daytime land surface temperatures and was used in the case study competition by Heaton

et al. (2019). The second source contains elevation information for a 2D road network in North

Jutland, Denmark (Kaul et al. 2013). In the supplementary materials, we present a third case

study where smashGP is applied to a very large dataset of a million data points.

6.1 Daytime land surface temperatures

As a first case study, we use two datasets, one real and one simulated, provided by Heaton et al.

(2019) to compare methods for modelling large spatial data. Both datasets contain observations

on a 500 ⇥ 300 grid, with the longitude ranging from -95.91153 to -91.28381, and the latitude

ranging from 34.29519 to 37.06811.

The real dataset consists of daytime land surface temperatures as measured by the Terra

instrument onboard of the MODIS satellite on August 4, 2016. The longitude and latitude ranges,
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Figure 10: Borrowed from (Heaton et al. 2019). (a) Satellite data on August 4, 2016. (b) Training

satellite dataset. (c) Simulated dataset. (d) Training simulated dataset.

as well as the date, were chosen because of the small area covered by clouds. Only 1.1% of the

MODIS data was corrupted by cloud cover, leaving 148,309 of the 150,000 possible observed values.

To generate the simulated dataset, a random sample of 2,500 observations from the MODIS

data on August 4, 2016 was considered. A GP with constant mean and exponential kernel was

fitted to the sampled data. The resulting parameter estimates were 4/3, 16.40, 0.05, and 44.49

for the length scale, process variance, noise variance, and constant mean, respectively. These

parameters were then used to simulate 150,000 observations on the same grid as the MODIS data.

To define the training and test datasets, the missing data pattern from the August 6, 2016

MODIS satellite data product was used. The training dataset consisted of 105,569 observations,

leaving 42,740 observations in the test set. Figure 10 displays the datasets, along with the training

datasets.

We compare smashGP with the most competitive benchmark of Section 5, SPDE, in terms of

prediction and uncertainty quantification. The results are presented in Table 7.
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Table 7: Comparison for simulated and satellite datasets. A * identifies the best-performing

method. We have boldened the smashGP methods that outperform the benchmark.

MAE INT

smashGP smashGP smashGP
SPDE

smashGP smashGP smashGP
SPDE

Gaussian Matern 5/2 Matern 3/2 Gaussian Matern 5/2 Matern 3/2

Simulated data 0.91 0.75 0.69 *0.62 5.39 4.48 *4.26 7.81

Satellite data 2.61 2.17 1.89 *1.10 13.72 10.36 9.35 *8.85

RMSE CVG

smashGP smashGP smashGP
SPDE

smashGP smashGP smashGP
SPDE

Gaussian Matern 5/2 Matern 3/2 Gaussian Matern 5/2 Matern 3/2

Simulated data 1.26 1.03 0.94 *0.86 *0.95 0.97 0.97 1.00

Satellite data 3.32 2.88 2.56 *1.53 0.85 0.93 *0.94 0.97

SPDE is the best method in terms of prediction accuracy (MAE and RMSE) for both the

simulated and the satellite data. In terms of uncertainty quantification, for the simulated data,

smashGP with the Matérn ⌫ = 3/2 kernel has the smallest INT, and smashGP with Gaussian

kernel has the best CVG. SPDE has the smallest INT for the satellite data, and smashGP with

the Matérn ⌫ = 3/2 kernel has the best CVG. For this case study, smashGP performs worse

because the underlying process is not smooth, and the exponential kernel approximated by SPDE

provides better results. It is worth noticing that from the three smashGP methods, the one with

the Matérn ⌫ = 3/2 kernel performs better as this kernel is only one-time di↵erentiable. These

results are not surprising since SPDE was already known to work well on these datasets. Next,

we present a case study where smashGP outperforms the benchmark.

6.2 Elevation for 2D road network

As a second case study, we use a dataset containing elevation information for a 2D road network

in North Jutland, Denmark. The network covers a region of 185 x 135 km2. Elevation values

were extracted from a publicly available massive Laser Scan Point Cloud for Denmark (Kaul et al.

2013). The data can be accessed from: https://archive.ics.uci.edu/ml/datasets/3D+Road+

Network+\%28North+Jutland\%2C+Denmark\%29#. The data is presented in Figure 11.

We randomly select 80,000 points as training data and 20,000 points as test data. We compare

smashGP with SPDE in terms of prediction accuracy and uncertainty quantification. The results
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Figure 11: Laser Scan Point Cloud for 2D road network in North Jutland, Denmark. Borrowed

from (Kaul et al. 2013).

are presented in Table 8. We observe that for this dataset, smashGP outperforms the benchmark

in terms of predictive accuracy (MAE and RMSE) and uncertainty quantification (INT and CVG).

smashGP with the Matérn ⌫ = 3/2 kernel is the best performing method. It is hard to assert

exactly why SPDE performs poorly. We have two hypotheses for this behavior. (1) It is possible

that the precision matrix, in this case, is far from being sparse (this is hard to verify in practice).

(2) It is possible that we misspecified some of the hyperparameters required for SPDE, although

we chose the best parameters we could find. In this case study, we can see the advantage of using

smashGP over SPDE. smashGP does not make an assumption on the structure of the covari-

ance matrix and thus will perform better in general settings. Additionally, no hyperparameters

need to be specified by the user. The only information needed is the desired tolerance for the

approximation.

Table 8: Prediction and uncertainty quantification comparison for 2D road network dataset. A *

identifies the best-performing method. We have boldened the smashGP methods that outperform

the benchmark.

MAE INT

smashGP smashGP smashGP
SPDE

smashGP smashGP smashGP
SPDE

Gaussian Matern 5/2 Matern 3/2 Gaussian Matern 5/2 Matern 3/2

1.49 1.16 *1.04 14.46 14.42 11.75 *10.61 97.27

RMSE CVG

smashGP smashGP smashGP
SPDE

smashGP smashGP smashGP
SPDE

Gaussian Matern 5/2 Matern 3/2 Gaussian Matern 5/2 Matern 3/2

2.75 2.20 *1.98 18.35 *0.95 0.96 0.96 0.95
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7 Conclusion

GPs are essential for spatial data analysis as they allow to predict unknown values and quantify

uncertainty. However, with advanced sensing technologies, the use of direct GPs is restricted as

the sample size n is large and naively estimating a GP requires O(n3) computations and O(n2)

memory. In this paper, we propose smashGP, a framework to estimate GPs for large-scale spatial

modeling. smashGP represents the GP covariance matrix as an H2 hierarchical matrix and uses

matrix-free operations for training and prediction. With smashGP, the asymptotic computational

time is reduced to O(n log n).

We compared smashGP with state-of-art methods for large-scale spacial modeling in terms

of prediction accuracy, uncertainty quantification, and computational time. As illustrated by

the simulations and case studies, no one method dominates the others. In general, we saw that

smashGP and SPDE are the best methods overall. If there is no domain knowledge on the sparsity

of the precision matrix, which is hard to verify in practice, we recommend using smashGP. The

proposed framework can handle di↵erent levels of smoothness thanks to the di↵erent kernels

implemented (Gaussian, Matérn ⌫ = 5/2, Matérn ⌫ = 3/2). Additionally, no hyperparameters

need to be specified by the user, and the level of approximation can be easily controlled. If enough

resources are available, we suggest running both smashGP and SPDE and using the one that

provides the best results over a validation data set.

smashGP was developed to model spatial data in two dimensions. As is, it can be used for GPs

in higher than two dimensions. However, it is expected to su↵er from the curse of dimensionality.

Its performance for high-dimensional GPs is of interest for future research. Additionally, in the

future, we will consider extending smashGP to work with non-di↵erentiable kernel functions such

as the exponential kernel approximated by SPDE. Finally, we will extend smashGP to learn a GP

in cases when the e↵ect of covariates needs to be accounted for in the mean of the process.

Supplementary Materials

Code: Code used to run smashGP can be found at https://gitlab.com/libsmash_public/

smashgp. See the Readme file for detailed instructions.

Supplementary Materials: Document containing: (A) derivations for GPs with non-constant
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mean; (B) additional details on SMASH and its matrix-free operations; (C) definitions of

the evaluation metrics used in the simulations and case studies; (D) additional details on the

computational complexity of smashGP; (E) parameter estimation evaluation via simulations;

(F) comparison with state-of-art methods for large datasets; and (G) case study for a million

data points. (.pdf file)
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