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Abstract Recent collection efforts along the
Brazilian coast revealed a Haliclona species
preliminarily identified as a likely new species.
However, sequencing of the 28S rRNA C-Region,
a barcode marker in sponges, showed its high
genetic similarity with a Haliclona sp. from Hawai‘i
(GenBank MW016137-MW016139). We applied an
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integrated morphological and molecular assessment,
which allowed us to identify both Brazilian and
Hawaiian specimens as H. (Reniera) laubenfelsi,
a species with an Indo-Pacific distribution. We
postulate this species to be exotic both in the Brazilian
coast and in Hawai‘i. Our evidence is based on the
arrival of the species in Brazil after 2001, being first
registered next to an international port. In turn, the
species is distributed discontinuously in Hawai‘i,
being mainly restricted to sheltered bays and vicinities
of ports, showing a predilection for anthropogenic
substrates, which strengthen the hypothesis of
its exotic origin. Recent collections in Hawai‘i
(2016-2018) failed to find this species in natural
habitats, though it was an abundant pioneer species
in Autonomous Reef Monitoring Structures. Its
capacity to colonize artificial substrata may indicate
either a cryptobenthic nature or an invasive potential.
We highlight the need of monitoring its abundance,
spatial distribution, and biotic interactions along the
Brazilian coast to assess its potential environmental
impacts. The full morphological description, and the
molecular sequences we provided certainly will speed
up the identification of this species, allowing to track
its range extension.
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Introduction

The introduction of non-indigenous species of
marine sponges is an understudied topic globally.
Currently, there are at least 29 recognized marine
non-indigenous sponges worldwide (Cavalcanti
et al. 2020; Carlton and Eldredge 2009, 2015;
Gastaldi et al. 2018; Turner 2020; Harbo et al. 2021;
Samaai et al. 2022; Bertolino et al. 2022), most of
them of unknown origin and vector of introduction.
This number includes, besides those species listed
by Cavalcanti et al. (2020), the sponge species
Batzella aurantiaca (Lévi, 1958), Halichondria
(Halichondria) coerulea Bergquist, 1967, Halich.
(Halichon.) melanadocia de Laubenfels, 1936,
Haliclona (Halichoclona) vansoesti de Weerdt, de
Kluijver & Go6mez, 1999, Hymeniacidon perlevis
(Montagu, 1814), Monanchora quadrangulata (Lévi,
1958), Mycale (Carmia) cecilia de Laubenfels,
1936, Protosuberites epiphytum (Lamarck, 1815),
Raspailia (Clathriodendron) darwinensis Hooper,
1991, Suberites aurantiacus (Duchassaing &
Michelotti, 1864), Tedania ignis (Duchassaing &
Michelotti, 1864), most of them have their origin and
vector of introduction unknown. Nevertheless, these
numbers are very likely underestimated as they do
not account for cryptogenic and pseudoindigenous
species (Carlton 2009).

The study of non-indigenous sponges is still little
explored and a hard to tackle subject. The taxonomy
of these organisms is often difficult, leading to a
large knowledge gap of their actual distributions
(i.e. Wallacean shortfall sensu Lomolino 2004) that
hampers the detection of arrivals of alien species.
Another pitfall resides in the common practice of
naming new species of sponges after only a limited
comparison with congeners is carried out. This is
mostly justified based on the limited dispersal ability
of most sponges, a consequence of the very short life
span of their larvae (Maldonado 2006). This practice
is more common in species-rich genera (e.g. Zea et al.
2014; Calcinai et al. 2017; Bispo et al. 2022), where
taxonomic comparisons with all extant congeners is
difficult to handle, and would be too time consuming.
In fact, many actual dispersals may lie hidden
all around the globe (pseudoindigenous species),
awaiting comprehensive integrative reviews to be
disclosed.
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Whenever a thorough baseline of sponge species
exists for a geographic region, a faster detection of
exotic species is possible. For example, the invasion
of Mycale grandis Gray, 1867 in Hawai‘i was easy to
be detected because previous faunistic surveys were
already available for this area (de Laubenfels 1950;
Bergquist 1967). Thus, it is expected that the very
conspicuous M. grandis would have been included
in these studies, if it was there at the surveyed
timeframe. However, such baseline inventories on
the local biodiversity of sponges are very rare in
many other areas worldwide, making early detection
of exotic species almost impossible. Examples of
pseudoindigenous species are usually found in these
poorly known areas, where several species might
be described as new and native, when they actually
represent ill-known exotic species. This was the case
for the calcareous sponges Paraleucilla magna and
Heteropia glomerosa (Bowerbank, 1873), both exotic
in the Brazilian coast, but initially thought to be
native. Their exotic condition was uncovered only after
integrative taxonomic assessments (Guardiola et al.
2016; Cavalcanti et al. 2020; Klautau et al. 2020). The
delayed detection of introductions may compromise the
evaluation of possible ecological impacts. In this sense,
the regular, systematic use of coupled morphological
and molecular data in species inventories could speed
up the detection of introductions, as similar Molecular
Operational Taxonomic Units (MOTUs) from disjunct
localities can easily be detected in this way (Comtet
et al. 2015; Mazzamuto et al. 2016; Rocha et al. 2019).

When studying a purportedly new species of
Haliclona from the Brazilian coast, we discovered
that our material was genetically identical to other
sequences from Hawai‘i (Vicente et al. 2022a).
Thus, we assessed comparatively their morphology
and molecular information to answer the following
questions: (1) are Brazilian and Hawaiian materials
conspecific? (2) Is this a new or an already described
species? (3) Is this species exotic in Hawai‘i or in
Brazil?

Materials and methods

Sampling

Specimens were collected from the Costa do
Descobrimento (Bahia, Brazil), Sao Sebastido
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Channel (Sdo Paulo, Brazil), and O‘ahu (Hawai‘i,
USA) (Fig. 1). In Brazil, sample collections were
undertaken by wading at low tide and snorkeling
at tide pools, using knifes, or alternatively a small
sledgehammer and chisel to remove samples from
the substrate. Collection permits were issued by the
Municipal Environment Secretary of Porto Seguro
(#05/2019) and (#09/2020). Hawaiian specimens were
collected on modified Autonomous Reef Monitoring
Structures (ARMS) over two years in mesocosms at
the Hawai‘i Institute of Marine Biology on Moku
o Lo‘e (Coconut Island) in Kane’ohe Bay (O’ahu,
Hawai‘i) (Vicente et al. 2022a; Timmers et al.
2022). Collection permits for Hawaiian specimens
were issued by the State of Hawai‘i Division of
Aquatic Resources SAP nos. 2018-03 and 2019-16
(covering the period of January 13, 2017, through
April 10, 2019). Individuals were photographed
in situ, underwater, whenever possible. Upon
arrival at the beach or the field lab, specimens were
subsampled, fixed in 99% ethanol, and kept at — 15
to — 18°C for subsequent molecular work. In the lab
they were transferred to appropriate jars completed
with 80% ethanol and deposited in either the ZUEC-
POR (Museu de Zoologia da Universidade Estadual
de Campinas, Brazil), the UF (Florida Museum of
Natural History, USA), the BPBM (Bernice Pauahi
Bishop Museum, USA), or the MNRJ (Museu
Nacional, Universidade Federal do Rio de Janeiro,
Brazil) sponge collections.

Molecular phylogeny and species delimitation

Total genomic DNA was extracted through a modified
phenol-chloroform protocol (Sambrook and Russell
2001), with a lysis buffer containing Tris—HCI
10 mM (pH 8.0), EDTA 50 mM, NaCl 0.1 M, 0.5%
SDS and Proteinase K (20 mg/mL). We checked the
concentration and quality (260/280 absorbance) of
extracted DNA with a nano spectrophotometer. A
fragment of the nuclear 28S rRNA gene (C-region)
was amplified through PCR using the primer pair
285-C2-fwd (GAA AAG AAC TTT GRA RAG
AGA GT) and 28S-D2-rev (TCC GTG TTT CAA
GAC GGG) (ca. 480bp) (Chombard et al. 1998;
Erpenbeck et al. 2016). PCR amplifications were
performed in 25puL reactions consisting of 22.5 pL
PCR SuperMix (Invitrogen™) 0.5 pL of template
DNA (up to 50 ng/uL), 0.5 pL of each primer

(10 pM), supplemented with 0.5 pL of BSA (50 mg/
ml). The PCR reactions were submitted to the
following thermocycling profile: initial denaturation
at 94 °C for 3’, followed by 35 cycles of 30”
denaturation at 94°C, 30" annealing at 50°C, 60"
elongation at 72 °C, and a final elongation at 72 °C
for 5°.

The amplicons were then purified using a standard
ammonium acetate-ethanol precipitation (Sambrook
and Russell 2001), then both strands were sequenced
using the Big Dye™ terminator v. 3.1 reaction
performed on an ABI Genetic Analyzer 3500/3730
XL automated sequencer at ACTGene Andlises
Moleculares (Brazil). The electropherograms were
assembled and edited using Geneious Prime 10 or
2021. Ambiguous bases were coded with TUPAC
ambiguity codes. Sequences with high quality
had their poriferan origin checked using the Basic
Alignment Search Tool (BLAST) tool of NCBI
(https://blast.ncbi.nlm.nih.gov).

The 28S rRNA C-region sequences obtained in
this study (Acc. # OR229997-0OR230000), the 28S
rRNA sequences from Vicente et al. 2022a, b (Acc.
# MWO016137- MWO016139) and other haplosclerid
sequences available at GenBank were aligned using
MAFFT v.7 (Katoh et al. 2019) online service with
the FFT-NS—i algorithm. Uncorrected p-distance
(pairwise deletion and 500 bootstrap replicates)
within and among species were calculated in MEGA
7 (Kumar et al. 2016). Phylogenetic analysis was
conducted using the maximum likelihood (ML)
framework in RA X ML v.8.2.10 software (Stamatakis
2014) implemented in the CIPRES Science
Gateway  (https://www.phylo.org/portal2),  using
the GTRGAMMA model and 1,000 rapid bootstrap
pseudoreplications (BST) to assess the confidence
of the topology. Only bootstrap values above 70
are exhibited in the trees. The BLAST result of our
specimens showed their close relationship with
members of Clade A of Haplosclerida (Redmond
et al 2013), therefore sequences from Dasychalina
melior (KC869455) and Amphimedon compressa
(KY825184) in Clade C were chosen as an outgroup.
The Assemble Species by Automatic Partitioning—
ASAP (Puillandre et al. 2021) was executed (https://
bioinfo.mnhn.fr/abi/public/asap/) as a tool for
molecular species delimitation, using the same fasta
matrix used for phylogenetic reconstruction and
based on p-distance.
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Fig. 1 Collection sites of Haliclona (Reniera) laubenfelsi of Pescadores Beach (Arraial D’Ajuda, Porto Seguro munici-
van Soest & Hooper, 2020. A Map showing collection sites in pality, Bahia state); F Pitinga Beach (Arraial D’Ajuda, Porto
Hawai‘i and Brazil; B Hawai‘i archipelago; C Brazilian coast; Seguro municipality, Bahia state); G southern corner of Araca
D Moku o Lo‘e (Coconut Island) in Kane’ohe Bay (O’ahu, Bay (Sao Sebastido Channel, Sao Sebastido municipality, Sdo
Hawai‘i), type locality is indicated by a violet circle; E Detail Paulo state). Ecoregions are delimited by white lines

@ Springer
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Morphological identification

Taxonomic identification was achieved by the usual
procedures for sponges as outlined in Hajdu et al.
(2011), including the preparation of thick anatomical
sections and dissociated spicules. Data gathered
in this way was contrasted to that available in the
specialized literature, as compiled in de Voogd et al.
(2023). Type material of Toxadocia violacea de
Laubenfels, 1950 [=Haliclona (Gellius) laubenfelsi]
was obtained on loan from the USNM (Smithsonian
Institution, Washington DC). Spicule measurements
were made from Light Microscopy (LM) for each
type of spicule. In the main text the measurements
correspond to the total of spicules measured in
all the specimens examined and are expressed in
micrometers — as
length X width.

minimum-mean—-maximum for

Results

Our morphological and molecular analyses of
the 28S rRNA gene indicate conspecificity of
Brazilian (Southwestern Atlantic) and Hawaiian
samples (Central Pacific Ocean). The latter were
identified as Haliclona sp. in Genbank (Acc. #
MWO016137-MWO016139). We thus compared the
morphology of our specimens with the species of
Haliclona from the Central Pacific and the Atlantic,
resulting in their identification as Haliclona (Gellius)
laubenfelsi van Soest & Hooper, 2020 by the presence
of toxas and oxeas of similar shape to that observed
in our material. This identification was confirmed
through comparison with type material. We propose
the transfer of this species to the subgenus Haliclona
(Reniera) based on its skeletal architecture (see below
in Discussion).

Molecular phylogeny and species delimitation

The aligned dataset included 25 terminals and 580bp
after trimming. Haliclona (Reniera) laubenfelsi
is positioned within Clade A of Haplosclerida
(Redmond et al. 2013). Our specimens clustered
in a highly supported clade (84 BST), being sister
(94 BST) with an unidentified Haliclona from
the Caribbean. Other closely related species are
Haliclona (Reniera) tubifera (George & Wilson,

1919) and Haliclona (Gellius) toxia (Topsent, 1897)
(Fig. 2). The genetic distance within sequences of
H. (Re.) laubenfelsi ranged from 0 to 0.6%. There
was no correlation between geographic and genetic
distances, as some sequences from Bahia and Sao
Paulo (MNRIJ 23911 and MNRIJ 22807) were more
similar to Hawaiian samples than to other samples
from the same localities (MNRIJ 23723 and ZUEC-
POR 23), respectively (0.2-0.6% in p-distance, see in
Table S1).

Haliclona (Reniera) laubenfelsi sequences showed
a genetic divergence greater than 3.8% to Haliclona
sp. and greater than 21% and 19% in p-distance to H.
(G.) toxia and H. (Re.) tubifera, respectively, values
that considerably exceed the observed intraspecific
genetic divergence in H. (Re.) laubenfelsi, of up
to 0.6% in p-distance (Table S1). ASAP results
recovered two partitions with the same asap-score of
4.00: Partition 1 and Partition 2 recovered 14 and 10
putative species, respectively. The barcode gap for
each Partition was ~3% in Partition 1 and ~19% in
Partition 2, which resulted in the union of Chalinula
molitha (de Laubenfels, 1949), Calyx nicaeensis
(Risso, 1827), Neopetrosia rosariensis (Zea &
Riitzler, 1983) and Neopetrosia subtriangularis
(Duchassaing, 1850) in the same MOTU in Partition
2. Nevertheless, in both Partitions the ASAP analyses
retrieved all the sequences of H. (Re.) laubenfelsi
from Brazil and Hawai‘i in the same MOTU.

Systematics

Class Demospongiae Sollas, 1885

Order Haplosclerida Topsent, 1928

Family Chalinidae Gray, 1867

Genus Haliclona Grant, 1841

Subgenus Haliclona (Reniera) Schmidt, 1862

Haliclona (Reniera) laubenfelsi van Soest &
Hooper, 2020

(Figs. 3, 4, 5).

Haliclona enamela sensu de Laubenfels (1939)
[Non Haliclona enamela de Laubenfels,
1930]—de Laubenfels (1939): 1.

Toxadocia violacea de Laubenfels, 1950—de
Laubenfels (1950): 16, Fig. 9; de Laubenfels
(1951): 259; de Laubenfels (1954): 338; de
Laubenfels (1957): 247; Bergquist (1965): 154,

@ Springer



3480

L. Bettcher et al.

Tree scale: 1
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KC869455 Dasychalina melior ** NCI282

KY825184 Amphimedon compressa ** MNRJ 18771
KC869591 Neopetrosia subtriangularis P10x50

KC869609 Neopetrosia subtriangularis P10x49

KX688751 Calyx nicaeensis ** P025570

KC869457 Neopetrosia rosariensis P10x55

KC869499 Neopetrosia rosariensis P10x54

KC869463 Chalinula molitba SI06x69

KC869533 Haliclona (Reniera) implexiformis P54

KC869599 Haliclona (Reniera) manglaris P05

KUO060317 Callyspongia (Callyspongia) siphonella GW26925
KU060345 Callyspongia (Callyspongia) siphonella GW26985
KU060318 Callyspongia (Callyspongia) siphonella GW26926
HQ379251 Haliclona (Haliclona) oculata ** BELUMMc4065
KU060457 Haliclona (Gellius) toxia GW3494

KU060458 Haliclona (Gellius) toxia GW3495

KC869461 Haliclona (Reniera) tubifera P110

KC869594 Haliclona sp. P10x31

KC869516 Haliclona sp. P10x30

KC869487 Haliclona sp. P10x1

OR230000 Haliclona (Reniera) laubenfelsi MNRJ 23723 (Bahia, BRA)

OR229997 Haliclona (Reniera) laubenfelsi ZUEC-POR 23 (Sao Paulo, BRA)
OR229998 Haliclona (Reniera) laubenfelsi MNRJ 22807 (Sao Paulo, BRA)

MWO016138 Haliclona (Reniera) laubenfelsi BPBM C1472 (Hawai‘i, USA)
MWO016139 Haliclona (Reniera) laubenfelsi BPBM C1470 (Hawai'i, USA)
OR229999 Haliclona (Reniera) laubenfelsi MNRJ 23911 (Bahia, BRA)
MWO016137 Haliclona (Reniera) laubenfelsi BPBM C1473 (Hawai'i, USA)

Fig. 2 Maximum likelihood phylogeny of selected Clade A
Haplosclerida based on partial 28S rDNA (C-Region), includ-
ing Haliclona (Reniera) laubenfelsi van Soest & Hooper, 2020
from Brazil and Hawai’i. OTUs in bold highlight original
sequences. Bootstrap values >70 are shown on the branches.

Fig. 17; 7 Vacelet and Vasseur (1971): 113,
Fig. 74; Bigger et al. 1983: 240.

Haliclona (Gellius) violacea van Soest et al., —
van Soest et al. (2011): 31, Fig. 14.

Haliclona (Gellius) laubenfelsi van Soest &
Hooper, 2020—van Soest et al. (2020): 66.

? Kaneohea poni de Laubenfels, 1950—
Bergquist (1967): 159; Bergquist (1977): 65.

Material examined

Holotype: USNM 22752, Moku o Lo‘e (Coconut
Island, Kane‘ohe Bay, O‘ahu Island, Hawai‘i, USA),
Im depth, coll. M. W. de Laubenfels, 3rd November
1947.

USA (Hawai‘i): on Autonomous Reef Monitoring
Structure (ARMS) inside mesocosms at the Hawai ‘i

@ Springer

Haplosclerida Clade C sequences KC869455 and KY825184
were used as outgroups. Black vertical bars indicate Assem-
ble Species by Automatic Partitioning (ASAP) putative spe-
cies, P1 =Partition 1, P2 =Partition 2

Institute of Marine Biology (HIMB) in Moku o Lo‘e
(Coconut Island) (21.4334, —157.7868; Kane‘ohe
Bay, O‘ahu Island), coll. Jan Vicente: BPBM C1473
and BPBM C1474, 16th March 2018; BPBM C1471/
UF 3956, 7th June 2017, BPBM C1470, 19th
December 2016; BPBM C1472, 19th April 2017.

Brazil (Sao Paulo State): MNRJ 22807, Araca
Bay entrance (—23.8195,—45.405; Sao Sebastido
municipality), depth not recorded, coll. G. Dias, 1st
October 2012. ZUEC-POR 23, Aragd Bay entrance
(Sao Sebastido municipality), depth not recorded,
coll. F. Dutra, 1st January 2013, subsampled under
MNRIJ 22759.

Brazil (Bahia State): MNRIJ 20478, Praia da
Pitinga (—16.51333, —39.07333; Arraial D’Ajuda,
Porto Seguro municipality), intertidal, coll. E. Hajdu
and A. Fioravanso, 23rd March 2019. MNRJ 23620
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Fig. 3 Morphological variability of Haliclona (Reniera)
laubenfelsi van Soest & Hooper, 2020 alive. A-C Mate-
rial from Brazil. D-E Material from Hawai‘i Archipelago. A
MNRJ 22807 from S@o Paulo. B MNRJ 20478 from Bahia.

and MNRJ 23723, Praia da Pitinga (—16.51333,
—39.07333; Arraial D’Ajuda, Porto Seguro
municipality), intertidal, coll. L. Bettcher, J.C.C.
Fernandez and E. Hajdu, 22nd August 2021. MNRJ
23911 Praia dos Pescadores (—16.4881, —39.0660;
Arraial D’Ajuda, Porto Seguro municipality),
intertidal, coll. A. Bispo, A. Lage and D. Rezende,
5th November 2021.

Description
Encrusting digitate morphology expanding both

laterally as mounds, 0.3-1.0 cm thick, and vertically
with irregular, slender, digitiform projections,

C MNRJ 23723 from Bahia. D BPBM C1471 or UF 3956
from O‘ahu. E BPBM C1470 from O‘ahu. Photographs: A M.
Borges, B-C E. Hajdu, D-E J. Vicente

1.0-5.0 mm in diameter (Fig. 3). Long thin branches
stem from encrusting mounds. Oscula circular to oval,
0.5-4.0 mm in diameter, flush with the surface or apical
on short digitate projections, aligned or more randomly
distributed. Surface is smooth. Consistency is soft and
fragile. Color in situ varies between dull beige, pinkish
beige, pink, purple, but always beige in ethanol.

Skeleton

Ectosome a delicate, slightly regular, unispicular,
isodictyal reticulation, forming three- to four-sided
meshes, or confused (Fig. 4c, e, g). Choanosome of
the same structure (Fig. 4a, b, d, f). Dark pigments
dispersed throughout the skeleton. Spongin scarce

@ Springer
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Fig. 4 Haliclona (Reniera)
laubenfelsi van Soest &
Hooper, 2020, variability
of skeletal architecture. A,
C,E, G ectosome. B, D, F,
H choanosome. A-B Holo-
type, USNM 22752 from
O‘ahu. C-D BPBM C1473
from O‘ahu. E-F MNRJ
22807 from Sao Paulo.
G-H MNRJ 20478 from
Bahia, arrows indicate the
presence of embryos in H

to abundant. The holotype and the specimens from
the mesocosm tanks in Hawai‘i have very scarce
spongin, creating a looser/confused reticulation
(Fig. 4a—d). Specimens from Sdo Paulo are more
spicule-reinforced, including development of pauci-
to multispicular tracts in MNRJ 22807 (Fig. 4e, f).
Specimens from Bahia are more spongin-reinforced
(Fig. 4g, h). Embryos present in MNRJ 20478,

@ Springer

62-85.1-113 um in diameter, contain small oxeote
spicules (Fig. 4h).

Spicules

Oxeas (Fig. 5a, b, ¢), mainly hastate, abruptly tapering
to a sharp point, some modified to styles or strongyles,
most slightly curved, 64—111.7-141x%2.0-4.6-7.4 um
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Fig. 5 Haliclona (Reniera) laubenfelsi van Soest & Hooper, 2020, variability of spicules. A-D oxeas. E-H toxas. A, E Holotype,
USNM 22752 from O‘ahu. B, F BPBM C1470 from O‘ahu. C, G MNRJ 22807 from Sao Paulo. D, H MNRIJ 20478 from Bahia

(Table 1). Toxas (Fig. 5d, e, f), in a single, deeply
curved category, 32-5/.6—71 pm long (Table 1).
Only a single toxa was found in ZUEC-POR 23, ca.
50x1.0 pm. Small oxeote spicules <2.0um thick
are understood as immature oxeas and were found in
most specimens in variable amounts. Oxeote spicules
measured directly from embryos in MNRJ 20478,
37—48-55 pm long (n=10).

Ecology and distribution

Haliclona (Re.) laubenfelsi is rare along the
Brazilian coast, found in rocky shores close to
the port of Sdo Sebastido (Sdo Paulo state), or in
crevices and overhangs in areas protected from
direct sunlight (sciophilous) of intertidal sandstone
reefs fringing the city of Porto Seguro (Bahia
state). Despite intense collecting on several reefs

spread over 30km in southern Bahia (Bettcher et al.
2023), only four specimens were found in a single
reef. In Hawai‘i, our specimens recruited onto
Autonomous Reef Monitoring Structures (ARMS)
placed in mesocosm tanks supplied with unfiltered
flow-through seawater from Kane‘ohe Bay. ARMS
mimic a cryptic low light reef environment which
attracts a high diversity of cryptobenthic sponge
species (Vicente et al. 2022a).

This species is known from the Central Pacific
(Hawai‘i as Toxadocia violacea; de Laubenfels 1950),
the East Pacific (Clipperton Atoll as H. (Gellius)
violacea; van Soest et al. 2011), the West Pacific (Palau
as T. violacea; Bergquist 1965), and the western Indian
Ocean (Madagascar as 7. violacea; Vacelet and Vasseur
1971). However, we consider this latter record as
doubtful, given the black color of the specimen, much
unlike the purplish, pinkish or beige hues of H. (Re.)

@ Springer
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Table 1 Summary of external morphology, skeletal archi-
tecture and spicule measurements of Haliclona (Reniera)
laubenfelsi van Soest & Hooper, 2020 from Brazil and

Hawai‘i. Spicule dimensions were based on the measurements
of 30+spicules per specimen, except when indicated, and
expressed as minimum-mean—maximum for length X width

Voucher Locality Shape and color Skeleton Oxeas (um) Toxas (um)
USNM 22752 (Holo- Hawai‘i, EUA Encrusting-digitate, Isotropic, unispicular, 96-7125.6-141x2.2— 33-55.8-74
type) violet (sensu de scarce spongin 5.1-1.0
Laubenfels 1950)
BPBM C1470 Hawai‘i, EUA Encrusting mound No skeletal prepara- ~ 76-107.9-122%x2.5— 45-59-64 (n=10)
with distal branch, tion made 4.1-6.1
light pink
BPBM C1471 Hawai‘i, EUA Encrusting-branched, Isotropic, unispicular; 81-107.9-120%2.3— 51x3 (n=1)
pinkish beige to scarce spongin 3.8-5.6
pink
BPBM C1472 Hawai‘i, EUA Encrusting mound, No skeletal prepara- 111-7123.0-135x4.1- 55-59.7-66 (n=10)
beige tion made 5.9-74
BPBM C1473 Hawai‘i, EUA Encrusting mounds, Isodictyal to isotropic, 94—110.8-125%x2.4— 46-56.2-69 (n=10)
laterally ramified, unispicular; scarce 3.6-4.8
beige spongin
BPBM C1474 Hawai‘i, EUA Encrusting mounds, Isotropic, unispicular; 100-174.4-122%2.3— 42-59.9-71 (n=10)
laterally ramified, scarce spongin 4.6-6.8
beige
ZUEC-POR 23 Sdo Paulo, BR Encrusting mounds,  Isodictyal to isotropic, 82-705.1-118x2.5—- 50 (n=1)
laterally ramified, unispicular; scarce 5.7-1.3
anastomosed, color spongin
alive unknown
MNRIJ 22807 Sao Paulo, BR Encrusting mounds,  Isodictyal, unispicu-  92-716.3-130%x2.4— 44-52.4-66 (n=10)
laterally ramified, lar, with some 5.9-7.4
pink to beige pauci- to multispic-
ular tracts; scarce
spongin
MNRIJ 20478 Bahia, BR Encrusting mounds,  Isodictyal to isotropic, 67-104.2-120%x2.2— 32—48.7-68
laterally ramified, unispicular; moder- 4.0-5.6
anastomosed, beige ate spongin
MNRJ 23620 Bahia, BR Encrusting mounds,  Isodictyal to isotropic, 90-109.4-120%x2.2— 38-50-62
laterally ramified, unispicular; moder- 4.5-6.3
beige ate spongin
MNRJ 23723 Bahia, BR Encrusting mounds, Isodictyal to isotropic, 64—100.0-118x2.4— 37-46.5-59
laterally ramified, unispicular; moder- 4.2-5.6
beige ate spongin
MNRIJ 23911 Bahia, BR Encrusting mounds,  Isodictyal to isotropic, 75-108.1-123x2.0- 48-52.4-66 (n=12)

laterally ramified,
beige

unispicular; moder-
ate spongin

3.9-53

Italic represents the mean value for each spicule type

laubenfelsi. A map of the currently known distribution
of H. (Re.) laubenfelsi and a timeline of its records
are presented in Fig. 6. Type locality: Moku o Lo‘e
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(Coconut Island, Kane‘ohe Bay, O‘ahu Island, Hawai‘i,
USA). The type locality is a man-modified structure
within the lagoon (de Laubenfels 1950).
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Timeline of
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1947 Hawai‘i
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1960 Hawai‘i
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Hawai‘i 1961
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1 982 W Kane‘ohe Bay
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Fig. 6 Geographic distribution of Haliclona (Reniera)
laubenfelsi van Soest & Hooper, 2020 and Timeline Chart
with the records of the species globally. Global (A) and small-
scale distribution of H. (Re.) laubenfelsi at O‘ahu (B) and at
Hawai‘i (C) islands. Type locality is indicated by a violet cir-
cle. Black triangle indicates the doubtful record from Mada-
gascar. Legends: violet and red circles = Hawai‘i Archipel-

Discussion
Taxonomy

Haliclona (Reniera) laubenfelsi was originally
described as Toxadocia violacea by de Laubenfels
(1950) from Hawai‘i. Subsequent records were
made for Micronesia (Bergquist 1965), Madagascar
(Vacelet and Vasseur 1971) and Clipperton Atoll
(van Soest et al. 2011). The record from Madagascar
is considered doubtful given the black colour of
the specimen which deviates from the typical
coloration of H. (Re.) laubenfelsi. De Weerdt (2002)
synonymized Toxadocia with Haliclona (Reniera),
but van Soest et al. (2011), in reporting violacea
from Clipperton Atoll, preferred to classify it in

1 992 _ Honolulu Harbor
HonolquH:::l?;: 1 993
Hawai‘i
1994~ oo varoor
oot waroor [T 1997

201 2 Honolulu Harbor

Brazil

Séao Paulo — 201 3
201 7 — Sé&o Paulo
Gm\iﬂ:linagmogsézgirsn Hawai‘i 201 8
2019 —5] namesocoom

Bahia L 2021

Bahia

ago, red diamond = Clipperton Atoll, red pentagon = Palau,
black triangle = Madagascar, red squares Brazil, 1 =Kane‘ohe
Bay, 2=Waialua Bay, 3=Honolulu Harbor, 4 =Pearl Harbor,
5=Hilo. References used for timeline: Bergquist (1965), Coles
(1997, 1999a, 2002), de Laubenfels (1950, 1951, 1954, 1957),
Vacelet and Vasseur (1971), van Soest et al. (2011)

H. (Gellius) instead. Curiously, this species was
first collected in 1938 at Clipperton Atoll, but its
presence there remained hidden until 2011 on a
misidentification as H. enamela (de Laubenfels
1939; van Soest et al. 2011). Van Soest and Hooper
(2020) noted the synonymy between H. (G.) violacea
(de Laubenfels 1950) and H. (H.) violacea (Keller,
1883), and proposed to rename the junior synonym as
H. (G.) laubenfelsi. In opposition to van Soest et al.
(2011), we propose the assignment of this species to
H. (Reniera), as the reticulation of small-sized oxeas
(<200 um) is mainly isodictyal, suggesting a better
allocation in the latter subgenus than in H. (Gellius),
according to the Systema Porifera definitions (de
Weerdt 2002).
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Our specimens conform to the type material of
Haliclona (Reniera) laubenfelsi in habit, skeleton, and
shape and dimensions of the spicules. Morphological
variability lies mainly in the color and in the skeletal
architecture. Whereas the holotype was described
to be vivid violet colored in life, the remaining
specimens from Brazil and Hawai‘i are beige or
pink. This color variability might be related to light
exposure (Bergquist and Warne 1980; Fromont
1993; Cavalcanti et al. 2007; Calcinai et al. 2017),
with specimens in sciophilous conditions showing
a beige color and those who experienced increased
light exposure showing pinkish hues. We could also
observe that specimens from Hawai‘i (including the
holotype) have less spongin content in their skeleton,
creating a looser and more confused reticulation than
that observed in specimens from Brazil, where the
skeleton tends to be more regular and isodictyal. In
addition, a specimen from Brazil also exhibits a few
loose, pauci- to multispicular reinforcing tracts in its
skeleton. Nevertheless, this is within this species’
known intraspecific variability, as similar pauci—to
multispicular tracts were also observed in conspecific
Palau materials (Bergquist 1965). Similar variability
on spongin and spicule density has been previously
observed in other chalinid species (Jones 1987).

Another toxa-bearing species in the Pacific is
H. (Gellius) toxia (Topsent 1897). Both species can
develop similar shape, share the same spiculation
and skeletal architecture, and may have a similar
color (Topsent 1897; Desqueyroux-Faindez 1981;
Pulitzer-Finali 1993). Desqueyroux-Fatindez (1981)
reported an isodictyal, seemingly mostly unispicular
reticulation, with occasional 3-5 spicule-thick tracts
in her Indonesian material of foxia (as Toxadocia
toxius) which fits smoothly in H. (Reniera) as did H.
(Re.) laubenfelsi. The only small apparent difference
between both species lies in the dimensions of the
oxeas, which are slightly longer in H. (G.) toxia
(145-180 pm), while the longest oxea already
reported for H. (Re.) laubenfelsi was 158 um
(Bergquist 1965). Nevertheless, usual common upper
limits for the oxeas in H. (Re.) laubenfelsi are close
to 130-140 um (de Laubenfels 1950; this study). In
addition, two Genbank sequences (Acc. # KU060457
and KU060458) (Erpenbeck et al. 2016) identified
as H. (Gellius) toxia, from the Red Sea, nested in a
close relationship with H. (Re.) laubenfelsi (Fig. 1),
but their genetic divergence (p-distance 21-23%) and
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ASAP analysis indicate non-conspecificity. However,
it is highly desirable to sequence topotypical materials
of H. (G.) toxia, whose type locality is in Indonesia,
in order to attest more confidently that both species
are not synonymous.

Two other Hawaiian sponge species were assigned
by Bergquist (1967, 1977) to the synonymy of H.
(Re.) laubenfelsi: Kaneohea poni de Laubenfels,
1950 [currently Phoriospongia poni (de Laubenfels,
1950)] and Neoadocia mokuoloe de Laubenfels, 1950
[currently Haliclona (Halichoclona) mokuoloe (de
Laubenfels, 1950)]. However, except for mentioning
that type material was revised, no argumentation
was provided in these papers that could support
such a decision. These three species share similar
colour, isodictyal skeleton, oxeas of the same size
and the presence of raphidiform spicules. However,
N. mokuoloe was revised in the Systema Porifera (de
Weerdt 2002: 863), when the raphidiform spicules
were not observed, and the species was allocated in
H. (Halichoclona). This species is being redescribed
based on Hawaiian material and there is genetical
and morphological evidence that it is distinct from H.
(Re.) laubenfelsi (Jan Vicente, in prep.).

On the other hand, at first glance, the lack of toxas
and presence of sand incorporated in the skeleton of
K. poni might distinguish this species from H. (Re.)
laubenfelsi. Nevertheless, the presence of oxeas
modified to styles or strongyles were also observed
in Brazilian materials of H. (Re.) laubenfelsi and the
rarity of toxas in some specimens (like ZUEC-POR
23) render both species similar in spiculation as well.
The presence of sand in the choanosome of Kaneohea
poni allowed a tentative allocation of this species in
Phoriospongia (van Soest 2002: 524), presuming that
oxeas were not endogenous. These inconsistencies,
despite some evidence that K. poni could indeed
be a junior synonym of H. (Re.) laubenfelsi,
require previous reexamination of type material
and collection of fresh specimens to establish this
synonymy confidently. Thus, it is only tentatively that
we follow the suggestions by Bergquist (1967, 1977).

The introduction of H. (Re.) laubenfelsi in Brazil and
Hawai ‘i

In the present work, specimens of H. (Re.)
laubenfelsi from Brazil and Hawai‘i are accurately
identified using an integrative approach including
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morphological (oxeas, toxas and the skeleton
architecture) and genetic data (high similarity of
their 28S rDNA C-region sequences). This represents
the first record of this species in the Atlantic Ocean.
According to our data, it is not possible to recover
the origin of this species, which hampers the
recognition of where it was subsequently introduced
in the Indo-Pacific. However, according to the nine
criteria proposed by Chapman and Carlton (1994)
to recognize alien species, we can infer that H.
(Re.) laubenfelsi is exotic both in Brazil—where
it is undergoing a process of local and regional
dispersion—and in Hawai’i.

The species was absent in previous inventories
carried out between 1997 and 2001 on the coast of
Sdo Paulo (Brazil) (Custédio and Hajdu 2011; Bispo
et al. in prep.), which indicates that it arrived later at
this location (Criterion 1—Previously Unknown in
Local Region). Although its distribution in Brazil is
confined to natural environments (rocky shores and
sandstone reefs), the species was first collected there
close to a large Brazilian port at Sdo Sebastido (Sao
Paulo State), suggesting fouling on vessels or marine
structures as a possible vector of its introduction
(Criterion 3—Human mechanisms of Introduction),
likewise described for the scleractinean corals
Tubastraea spp., the octocoral Stragulum bicolor van
Ofwegen and Haddad 2011, and the ascidians Pyura
gangelion (Savigny, 1816) and Sidneioides peregrinus
Kremer et al. 2011 (Kremer et al. 2011; van Ofwegen
and Haddad 2011; Capel et al. 2019; Skinner et al.
2019), also reported for the Brazilian coast.

The abundance of H. (Re.) laubenfelsi along
the Brazilian coast still seems to be quite low. The
species was first found in Brazil in 2012-2013
(Sdo Paulo, two individuals), and then in 2019
(Bahia, one individual) and lastly in 2021 (Bahia,
three individuals). Despite a significant sampling
effort aiming at a faunistic inventory of the area in
2019 (Bettcher et al. 2023), the species was found
only in one location, while in 2021 it was observed
in two locations (Criterion 2—Post-introduction
Range Expansion). Embryos were observed in one
of the specimens collected in 2021, which indicates
that sexual reproduction is playing a role in the
establishment of the species there. It is unlikely that
the species dispersed naturally or by rafting from Sao
Paulo (Sao Sebastido, 23 °S) to Bahia (Porto Seguro,
16 °S)—1300 km apart—as the Brazilian current,

main current system acting in the region, flows
southwards (Stramma and England 1999) in opposite
route of the hypothetical species dispersion. The lack
of a port in Porto Seguro also weakens fouling on ship
hulls as a vector for the arrival of the species there.
On the other hand, it is possible that an independent
arrival occurred in the port of Ilhéus, only 200 km
north of Porto Se-guro, followed by a local expansion
southwards, where the species found several intertidal
reefs naturally disturbed by coastal run-off, salinity
and water temperature fluctuations, air exposure
during low tides, etc. (Ledo et al. 2016). Such a
disturbed habitat may facilitate the establishment of
exotic species (Altman and Whitlatch 2007; Bugnot
et al. 2016).

There is also strong evidence that H. (Re.)
laubenfelsi is exotic (pseudoindigenous) in Hawai‘i
according to the Chapman and Carlton (1994) criteria.
The Hawaiian archipelago was once characterized as
being the centre of maritime traffic and biological
invasions in the Pacific Ocean (Carlton 1987; Coles
et al. 1999b; Coles 2006; Concepcion et al. 2010) and
there are many native Indo-Pacific species that were
later introduced there, such as Mycale (M.) grandis
(Coles et al. 2007). The same is true for other benthic
invertebrates, as the octocoral Carijoa riisei (Grigg
2003). The most comprehensive surveys (Carlton and
Eldredge 2009, 2015; Pons et al. 2017) indicated that
from the 141 sponge species reported for Hawai‘i,
63 are considered invasive or cryptogenic. In
addition, a large proportion of the biota in Kane‘ohe
Bay is recognized as non-indigenous (Coles et al.
2002) (Criterion 4—Association with Known
Introductions).

Although the original description of H. (Re.)
laubenfelsi mentions the presence of this species on
dead corals along Kane‘ohe Bay, its type specimen
was collected in 1947 on man-made structures
of Hawaii Institute of Marine Biology at O‘ahu
(Hawai‘i) (de Laubenfels 1950). We observed that this
species has great affinity for artificial substrates, such
as the concrete walls of an aquarium tank in Honolulu
(de Laubenfels 1954) or the PVC plates of ARMS
where they were collected in 2016-2018 at Kane‘ohe
Bay (Vicente et al. 2022a) (Criterion 5—Association
with Artificial or Altered Environments). A temporal
study of the cryptic sponge community in Kane‘ohe
Bay consistently found H. (Re.) laubenfelsi on
mesocosm ARMS, but absent on reef ARMS during
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a two year monitoring period. Another recent effort
to describe sponge fauna from Kane‘ohe Bay failed in
finding H. (Re.) laubenfelsi in natural habitats as well
(Pons et al. 2017) and the last record of this species in
natural habitats of Kane‘ohe Bay was made in 1982,
about 40 years ago (Bigger et al. 1983). Vicente et al.
(2022b) attribute community differences between
mesocosm and reef ARMS to different stages of
ecological succession where sponges in mesocosm
ARMS resemble early colonizers, and those on reef
environments resemble the climax community of the
reef. The ease of colonizing artificial environments,
such as ARMS in mesocosms, may indicate that
the species is cryptobenthic or that it has invasive
potential. The hypothesis of a strict cryptobenthic
habit is weakened as previous reports describe it
as a photophilic species abundant on the upper reef
(Bigger et al. 1983).

Similarly to many other invasions on Hawai‘i, H.
(Re.) laubenfelsi is mainly restricted to sheltered sites
and harbor vicinities at O‘ahu Island, like Kane‘ohe
Bay (de Laubenfels 1950; Coles et al. 2002), Pearl
Harbor (Coles et al. 1997) and Honolulu Harbor
(Coles et al. 1999a). This indicates that this species is
not widespread along the archipelago (Criterion 6—
Discontinuos or Restricted Regional Distribution) and
that it has a great affinity with areas associated with
exotic species, like harbors (Criterion 3—Human
mechanisms of Introduction). Exceptions for this
pattern are the single records at Waialua Bay (O‘ahu
Island) (de Laubenfels 1957) and at Hilo (Hawai‘i
Island) (de Laubenfels 1950), which might represent
a local expansion after an initial event of introduction
in Kane‘ohe Bay, or even independent arrivals of this
species in the archipelago.

The species has a postulated distribution including
the Pacific, Indian and Atlantic oceans, but with
disjunct records (Criterion 7—Disjunct Global
Distribution). This is in marked contrast to the
expected low dispersal ability of most sponges, a
consequence of their short-lived larvae (Maldonado
2006). For example, in Haliclona (Gellius)
amboinensis (Lévi, 1961) and H. (Soestella) xena
de Weerdt, 1986, larval settlements can occur in
approximately 2 h after larval release into the water
column (Wapstra and van Soest 1987; Nada et al.
2020). In H. (Rhizoniera) indistincta (Bowerbank,
1866), the larval settlement may take longer (at least
25h, Stephens et al. 2013). This timeframe is still
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considered a short time, insufficient for transoceanic
dispersal, except if juvenile sponges have attached
to any sort of floating substrate. Thus, sponges and
associated larvae have “difficulty” carrying out
long-distance dispersion or withstanding survival in
ballast water (Carlton and Geller 1993) (Criterion
8—Insufficient Life History Adaptations for Global
Dispersal). Rafting could have played a role in the
spread of H. (Re.) laubenfelsi within the Indo-Pacific,
and this might explain the long-range dispersal of the
sponge Terpios hoshinota in the Indo-Pacific (Chow
et al. 2022) and of the red algae Chondrus retortus
K.Matsumoto & S.Shimada, 2013 from Japan to
Hawaii (Kittle et al. 2023). However, it is impossible
to explain the introduction of H. (Re.) laubenfelsi
in the Atlantic through natural passive dispersal
mechanisms, such as rafting on biological or artificial
substrata or even on pumice. For instance, the longest
known dispersion by rafting in anthropogenic debris
reached about 7000km following the Great Japan
Earthquake in 2011, and it was restricted to the
Pacific Ocean (Carlton et al. 2017; Elvin et al. 2018).
Furthermore, rafting on pumice is a phenomenon
mainly restricted to areas of high volcanic activity,
like the Southwest Pacific and the Iceland shelf
(Bryan et al. 2012; Larsen et al. 2014). However,
ocean currents make it unlikely that volcanic pumice
originating in the SW Pacific will reach the Atlantic.
Therefore, we hypothesize that H. (Re.) laubenfelsi
has an Indo-Pacific origin and was ship-mediated
introduced to Hawai‘i. This archipelago stands out
as the major receiver area of introduced species
coming from several points of the Pacific. Main
donors are the Northwest Pacific, French Polynesia,
the Mariana Islands, and the Central Indo-Pacific
(Carlton 1987). The presence of this species in Palau,
more than 7000km apart from Hawai‘i, strengthens
this hypothesis. On the other hand, introduction in the
Atlantic could have occurred either from Hawai‘i or
elsewhere in the Indo-Pacific also via ship hull. The
routes of introduction of this species should be tested
in future studies with wider geographic sampling
and using microsatellite markers or next-generation
sequencing (Rius et al. 2015; Cristescu 2016;
Cavalcanti et al. 2020; Céndor-Lujan et al. 2021).
The Brazilian coast is facing a plethora of new
arrivals of exotic species (Teixeira and Creed 2020;
Soares et al. 2022) that is to some extent comparable
to what Hawai‘i faced during the World War II. These
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arrivals are modifying the community structure of
several benthic ecosystems, like coralline reefs and
rocky shores (Carvalho-Junior et al. 2023; Lolis et al.
2023). Despite that, only four alien or cryptogenic
sponge species have been recognized in Brazil so
far, all of them pertaining to the Calcarea (Cavalcanti
et al. 2020; Klautau et al. 2020), contrasting with
the 56 cryptogenic and seven exotic sponges already
reported from Hawai‘i (Pons et al. 2017). The number
of exotic non-indigenous sponge species in Brazil is
also discrepant from the number of exotic species
of other benthic taxa, like corals (van Ofwegen and
Haddad 2011; Mantelatto et al. 2018; Carpinelli
et al. 2020; Menezes et al. 2021; Dutra et al. 2023),
ascidians (Kremer et al. 2011; Rocha et al. 2019;
Skinner et al. 2019) and bryozoans (Farrapeira et al.
2011; Miranda et al. 2018; Lopez-Gappa et al. 2010),
which suggests that the number of alien sponge
species is underestimated.

The Wallacean shortfall and the challenging
taxonomy of Porifera are certainly key factors
limiting the recognition of exotic sponge species
everywhere. Such pitfalls are easily overcome using
an integrative taxonomic framework, as was the
case of H. perlevis, P. magna, H. glomerosa and
now H. (Re.) laubenfelsi. Otherwise, if the present
assessment had been based only on morphological
data H. (Re.) laubenfelsi would have been described
as a new species native to the Brazilian coast, and
its exotic nature both in Brazil and Hawai‘i would
remain hidden for more years or decades, a classic
example of pseudoindigenous species. Thus, we
strongly recommend the integration of morphological
and molecular analyses in the taxonomy of Porifera,
especially on speciose genera with a meagre set of
taxonomically informative morphological features,
such as Haliclona.

While Haliclona (Re.) laubenfelsi appears
to be in the beginning of an expansion process
along the Brazilian coast, it is still lacking a robust
assessment of its possible invasiveness and efforts
should be made to fill this gap, as already done for
other sponge species (Pérez et al. 2006; Coles et al.
2007, Avila and Carballo 2009; Henkel and Janussen
2011; Rossi et al. 2015; Turicchia et al. 2018). We
strongly recommend monitoring its abundance,
reproductive biology, spatial distribution, and biotic
interactions at the sites where this species occurs both
in Brazil and Hawai‘i. Such studies are essential to

delineate strategies to cope with this and other alien
sponge species. Still, the species now counts with a
comprehensive description showing its phenotypic
plasticity, and DNA sequences can be generated
from newly collected samples of similar morphology,
enhancing traceability during H. (Re.) laubenfelsi’s
spread process.
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