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Abstract

Neurodevelopmental disorders (NDDs) have arisen as one of the most prevailing chronic diseases within the US.
Often associated with severe adverse impacts on the formation of vital central and peripheral nervous systems during
the neurodevelopmental process, NDDs are comprised of a broad spectrum of disorders, such as autism spectrum
disorder, attention deficit hyperactivity disorder, and epilepsy, characterized by progressive and pervasive detriments
to cognitive, speech, memory, motor, and other neurological functions in patients. However, the heterogeneous nature
of NDDs poses a significant roadblock to identifying the exact pathogenesis, impeding accurate diagnosis and the
development of targeted treatment planning. A computational NDDs model holds immense potential in enhancing our
understanding of the multifaceted factors involved and could assist in identifying the root causes to expedite treatment
development. To tackle this challenge, we introduce optimal neurotrophin concentration to the driving force and
degradation of neurotrophin to the synaptogenesis process of a 2D phase field neuron growth model using isogeometric
analysis to simulate neurite retraction and atrophy. The optimal neurotrophin concentration effectively captures the
inverse relationship between neurotrophin levels and neuron survival, while its degradation regulates concentration
levels. Leveraging dynamic domain expansion, the model efficiently expands the domain based on outgrowth patterns
to minimize degrees of freedom. Based on truncated T-splines, our model simulates the evolving process of complex
neurite structures by applying local refinement adaptively to the cell/neurite boundary. Furthermore, a thorough
parameter investigation is conducted with detailed comparisons against neuron cell cultures in experiments, enhancing
our fundamental understanding of the possible mechanisms underlying NDDs.

Keywords: Neuron growth, Neurodevelopmental disorders, Phase field method, Isogeometric analysis, Dynamic
domain expansion, Truncated T-splines, Local refinement

1. Introduction

Neurodevelopmental disorders (NDDs), often associated with impairments during the neuron developmental pro-
cess, pose persistent complications that have a profound and long-lasting impact on patients such as attention deficit
hyperactivity disorder (ADHD) and autism spectrum disorder [1, 2]. A wide range of potential factors behind the eti-
ology of NDDs are gaining recognition recently, with emerging research highlighting their significant impact on the
pathophysiology of these conditions [3, 4]. Investigations into the functional roles of these factors have revealed some
potential influences on NDDs progression, indicating that they play crucial roles during the neurodevelopmental pro-
cess [5, 6]. Moreover, emerging evidence suggests that certain factors, such as fluctuating levels of neurotrophic factor
and receptors during the neurodevelopmental process, may play protective roles, potentially preventing the onset of
NDDs [7, 8]. However, the lack of comprehensive disorder studies of the specific biological functions or biophysical
processes highlights a significant gap in the current field. Furthermore, NDDs often manifest through complex neu-
ron morphological transformations, such as beading, retraction, and atrophy. All of these behaviors add complexity
to a thorough neurological study and pose challenges to therapeutic targeting and planning [9, 10]. Analyzing the
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complex morphological changes observed in NDDs and understanding the biological mechanisms that drive these
conditions are crucial for developing effective therapeutic strategies. Given the level of complexity associated with
the sophisticated processes involved, unconventional approaches are necessary to enhance our understanding of the
NDDs process. As such, there is a pressing need for a comprehensive computational model to study NDDs and unravel
the intricate neurodevelopmental process. These models will be indispensable for shedding light on the fundamental
causes and complexities of NDDs, consequently enabling the development of precise and potent treatments [11, 12].

In computational neuroscience, significant progress has been made in mathematically modeling neurodevelop-
mental processes, including initial neurite outgrowth [13], axon differentiation [14, 15] and axon guidance [16].
Phenomenological models have provided insights into a wide range of neurodevelopmental processes such as filopo-
dia [17], external repulsive cues [18], stochastic mechanisms [19], generalized neurite characteristics for modeling
morphology [20, 21], and incorporating interactions with surrounding substrates [22]. However, these models fo-
cus on phenomenological outcomes, often overlooking underlying biophysics [23, 24]. Integrating comprehensive
biophysical mechanisms into neuron growth models comes with significant computational costs and numerical insta-
bilities [25, 26], which are particularly aggravated in scenarios like intracellular material transport [27] and traffic jams
in complex 3D structures [28]. Despite these complications, ongoing efforts are underway to enhance and validate
computational models with biophysical phenomena from experimental observations. Among different approaches,
some noteworthy work includes the utilization of phase field techniques for neuron growth modeling [29], exploration
of neurotrophin interactions [30], and the development of biophysically coupled phase field neuron growth mod-
els [31]. There are also models that integrate neurite morphometric features and bridge the gap between theoretical
and experimental neuroscience [32, 33, 34]. Considering the complexity and large variety of the neurodevelopmental
process [35], robust computational approaches that tackle high-order equations on complex geometries are crucial for
advancing our understanding of neurodevelopmental processes and paving the way toward effective targeted therapeu-
tic interventions. This raises the need for isogeometric analysis (IGA) with high-fidelity spline modeling techniques
that provide the necessary flexibility and precision [36, 37], particularly through domain expansion and localized
refinements to accurately capture the dynamic and detailed evolution of neuron growth during development and de-
generation in response to damage or pathology.

Non-uniform rational B-splines are widely adopted [38, 39] and were initially chosen as the foundational basis
for IGA [40, 41]. However, B-splines lack local refinement support, an important feature for our NDDs study. To
address this limitation, T-splines have been developed to work with IGA and support the local refinements required
for efficient and accurate analysis [42]. Local refinement in T-splines is achieved with T-junctions that are analogous
to hanging nodes in conventional finite element methods (FEM), which break down global tensor product struc-
tures [43, 44]. This adaptability particularly benefits IGA because it lowers the degrees of freedom (DOFs) necessary
while preserving the exact representations. In addition to local refinement, T-splines maintain essential properties of
B-splines, including non-negativity and partition of unity. Thus, they extend the functionality of B-splines through
local refinements while preserving the underlying mathematical properties. These properties make T-splines highly
desirable in a wide range of problems, therefore leading to the development of T-splines into various forms such as
analysis-suitable T-splines [45], LR-splines [46, 47], modified T-splines [48, 49], and weighted T-splines [50, 51].
Hierarchical approaches such as PHT-splines [52], hierarchical analysis-suitable T-splines [53], and truncated hier-
archical Catmull–Clark subdivision [54, 55] have also been used for local refinement, with additional advancements
in adaptive refinement techniques [56]. The capability of T-splines is further showcased in modeling heterogeneous
solids [57], additive manufacturing analysis [58], and arbitrary-degree T-splines for IGA of Kirchhoff-Love shells [59].
In particular, the applications of T-splines in intracellular material transport modeling [28, 60, 61] further underline
the versatility and potential of IGA and truncated T-splines in computational neuroscience.

To this end, we propose a novel IGA phase-field NDDs model coupling neuron growth with complex biophysics
processes, built upon dynamic domain expansion, local refinement, and the Portable, Extensible Toolkit for Scientific
Computation (PETSc) [62, 63] for Message Passing Interface (MPI) parallelization. With this model, we can investi-
gate how neurons behave under NDDs and the underlying biophysics processes. The main contributions include:

• Development of a PETSc-based IGA phase field NDDs model. The NDDs model simulates complex neuron
growth and disorder behaviors on truncated T-splines, leveraging PETSc for efficient parallel processing;

• Introduction of optimal neurotrophin concentration into the driving force and degradation of neurotrophin into
the synaptogenesis process of the phase field model to simulate neurite retraction and atrophy. The optimal
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neurotrophin concentration effectively captures the inverse relationship between neurotrophin levels and neuron
survival, and its degradation regulates concentration levels, providing hypotheses into NDD mechanisms;

• Dynamic domain expansion that optimizes computational focus by expanding the domain based on neurite
growth and interface-based local refinements that refine at the evolving interface to preserve accuracy while
minimizing computational load;

• Comprehensive NDDs model parameter study utilizing the computational model to investigate neurite retraction
and atrophy, providing new insights into possible factors and biophysical mechanisms underlying NDDs; and

• Detailed qualitative validation through comparisons of the external-cue guided computational NDDs model
with experimental healthy human induced pluripotent stem cell (iPSC)-derived neurons and rat hippocampal
neurons undergoing cell death and neurite fragmentation.

The rest of this paper is organized as follows. Section 2 outlines our NDDs model structure. Section 3 introduces
our IGA-based phase field model for NDDs. Section 4 reviews the truncated T-splines and introduces our phase field
variable interface-based local refinements. Section 5 walks through our dynamic domain expansion algorithm and
interpolation process. Section 6 documents the experimental procedures for culturing human iPSCs-derived neurons
and rat hippocampal neurons. Section 7 explains the parallelized computational model and showcases neuron growth
and disorders simulation results with experimental comparisons. Section 8 concludes the NDDs model and discusses
the potential future directions.

2. Algorithm overview

Figure 1: Flow chart of the NDDs modeling pipeline. (A) The overall pipeline that conducts NDDs modeling. (B) Adaptive mesh refinement
module that locally refines the mesh based on neuron outgrowth. (C) The IGA NDDs model simulates disorders using the phase field method,
PETSc, and truncated T-splines. Parameters in red dashed boxes are selected to study their effects on NDDs. (D) Dynamic domain expansion
module that directionally expands domain based on neurites near the domain boundary.
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The flowchart illustrates our NDDs modeling workflow (Fig. 1). The model starts with predefined domain size
and neuron growth parameters, which are used to generate the initial control mesh and variables (Fig. 1A). Then,
the adaptive mesh refinement module (Fig. 1B) is called to generate truncated T-splines. This module checks for
control mesh elements that require local refinements based on phase field variable ϕ value and selectively refines
elements located on the ϕ interface, achieving sufficient resolution while keeping DOFs minimum. The relevant
elements ID are selected and passed if refinement is needed to generate locally refined Bézier mesh [64]. Subsequently,
mesh partitioning software METIS is called to partition the generated mesh for optimizing the computational load
distribution across multiple processors [65]. The model then builds and solves all nonlinear and linear systems using
PETSc (Fig. 1C) [62]. Afterward, the model checks whether the final iterations have been reached. If not, the model
checks for neurites near domain boundaries and expands the domain as needed using the dynamic domain expansion
module (Fig. 1D). If the mesh changes, the model regenerates the truncated T-splines to ensure that all Bézier elements
have up-to-date control point information. The above steps are iterated until the final iteration is reached.

3. IGA-based phase field NDDs modeling

IGA and phase field methods are robust and powerful numerical methods for modeling complex engineering prob-
lems [66, 67]. IGA is a high-order numerical method that can capture the exact smooth representation of the geometry
by eliminating the discretization needed by conventional FEM [40]. The phase field method, on the other hand,
specializes in tackling evolving boundaries such as crack propagation and dendritic solidification [68]. Considering
that NDDs are neuron growth processes with retracting cell boundaries, they are essentially an interface evolution
problem. The convergence of IGA and phase field is highly effective in accurately simulating neurite morphological
transformations. Utilizing these two techniques, an IGA-based phase field framework was introduced to depict the
complex stages of healthy neuron growth by incorporating intracellular concentration [31, 32]. This model accounts
for intracellular transport during the growth, enables the differentiation of the longest neurite into an axon, and mod-
els various growth dynamics across multiple stages to simulate the behavior of growth cones at neurite tips based on
neurite morphometric features [34]. The proposed NDDs model extends upon it, consisting of five equations:

1. Phase field governing equation that captures the neuron morphological transformation with phase field variable;
2. Intracellular tubulin transport equation that models the effect of tubulin on neurite elongations;
3. Competitive tubulin consumption equation that captures the consumption of tubulin at neurite tips;
4. Synaptogenesis equation that captures the effect of neurotrophin particles supporting interface evolution. We

include the effect of neurotrophin degradation that regulates its concentration level to model NDDs; and
5. Driving force equation that couples the effect of tubulin and neurotrophin back to the phase field equation. We

introduce optimal neurotrophin concentration to model the inverse relationship between neurotrophin level and
neuron survival. This inverse relationship adjusts the driving force magnitude and, therefore, drives the phase
field interface evolution for NDDs modeling.

Phase field governing equation. To model NDDs in the context of phase field, we treat the neuron domain Ω
as a binary phase field ϕ, where phase “1” indicates the neuron and phase “0” is the extracellular environment. The
phase field interface evolution is achieved by constantly solving for energy minimization at interfaces. Starting with
the simplified free energy functional for the phase field model as

E f ree =

∫
Ω

(
Echem + Egrad + Edoub

)
dΩ, (1)

where Echem is the chemical free energy density that expresses the bulk energy relationship, Egrad is the gradient energy
density [29], and Edoub is the double-well function that describes the barrier in free energy density as a function of the
phase field parameter ϕ with two stable states representing the two phases of the system. Then, following the modified
Allen–Cahn equation [68, 69], we have

∂ϕ

∂t
= −Mϕ

δE f ree

δϕ
, (2)
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where the functional derivative δE f ree

δϕ
is derived based on Eqn. 1:

δE f ree

δϕ
=
∂Echem

∂ϕ
− ∇ ·

∂Egrad

∂(∇ϕ)
+
∂Edoub

∂ϕ
, (3)

with

Echem = p(ϕ) fs + (1 − p(ϕ)) fl, (4)

Egrad =
a(Ψ)2

2
|∇ϕ|2, (5)

Edoub = Wq(ϕ). (6)

Following approach taken in existing literature [68, 70], Echem interpolates a monotomically increasing bulk free
energy relationship between solid fS and liquid fL with p(ϕ) = ϕ3(10 − 15ϕ + 6ϕ2). Egrad is defined using the
anisotropy gradient coefficient a(Ψ) to account for thin neurite morphology, Edoub is defined using double well function
q(ϕ) = ϕ2(1 − ϕ)2. W is the energy barrier magnitude. Substituting Eqns. 3-6 into Eqn 2, we obtain

∂ϕ

∂t
= Mϕ

[
▽ ·

(
a(Ψ)2∇ϕ

)
+ 4Wϕ(1 − ϕ)

(
ϕ −

1
2
+

15
2W
ϕ(1 − ϕ)( fL − fS )

)]
. (7)

The anisotropic gradient coefficient a(Ψ) [29, 71] is defined as

a(Ψ) =

a1(Ψ) = ā
1+ξ

[
1 + ξ cos (k(Ψ − θ))

]
for πi + θm ≤ Ψ − θ ≤ π(i + 1) − θm,

a2(Ψ) = a1(θm) cos(Ψ−θ)
cos θm

for πi − θm < Ψ − θ < πi + θm.
(8)

where ā is a scaling constant, ξ the anisotrophy strength, k is the anisotrophy mode, i is 0 and 1, and θm is the
missing orientation under high anisotrophy [71, 72]. θ is the orientation that denotes the variation in neurite elongation
direction [29]. We also include the driving force term Fdriv to couple with the orientation field [31, 73]. Then, the
phase field governing equation becomes

∂ϕ

∂t
= Mϕ

[
∇ ·

(
a(Ψ)2∇ϕ

)
−
∂

∂x

(
a(Ψ)

∂a(Ψ)
∂Ψ

∂ϕ

∂y

)
+
∂

∂y

(
a(Ψ)

∂a(Ψ)
∂Ψ

∂ϕ

∂x

)
+ϕ(1 − ϕ)

(
ϕ −

1
2
+ Fdriv + 6H|∇θ|

)]
, (9)

where Mϕ denotes the mobility coefficient of the phase field equation, Fdriv is the driving force for the evolution of
the phase field variable. H is a constant value, and the term 6H|∇θ| is introduced to disrupt symmetry [73].

Intracellular tubulin transport equation. Tubulin is the building block of microtubules in cells and is transported
to neurite tips via active transport and diffusion, which is necessary to support neurite elongations [74, 75]. Developing
based on 1D tubulin model [76], we can model the effect of intracellular tubulin transport as

∂(ϕ ctubu)
∂t

= δt ▽ · (ϕ∇ctubu) − αt · ▽(ϕ ctubu) − βt(ϕ ctubu) + ϵ0
|∇(ϕ0)|2∫
|∇(ϕ0)|2 dΩ

, (10)

where δt is the rate at which tubulin diffuses, αt is the active transport coefficient for tubulin, βt is the decay coefficient
for tubulin, and ϵ0

|∇(ϕ0)|2∫
|∇(ϕ0)|2dΩ

represents constant tubulin production. ϕ0 is the initial phase field, and ϵ0 is coefficient
for tubulin production.

Competitive tubulin consumption equation. Tubulin concentration is then used to calculate competitive tubulin
consumption at neurite tips, which is a crucial factor that determines neurite outgrowth:

dL
dt
= rg ctubu − sg, (11)

where rg and sg are the tubulin assembly and disassembly rate [75], and dL
dt reflects the effect of dynamic tubulin

consumption balance that is crucial for neurite extension [74, 77].
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Synaptogenesis equation. Drawing inspiration from previous studies on heat conduction in dendritic solidifi-
cation [78], we adopt the concept to simulate the diffusion of neurotrophin concentration in neurons [30]. In order
to model NDD behaviors, we incorporate the effect of neurotrophin into the model. Since neurotrophin diffusion is
crucial for guiding growth cone and neurite pathways during synaptogenesis progress [79], we utilize the evolution of
the ϕ interface, denoted by ∂ϕ

∂t , as the neurotrophin source generation in the synaptogenesis equation. The survival or
death of neurons is influenced by the differential binding of neurotrophins to receptors such as p75NTR receptors, a
type of transmembrane proteins located near the neuron growth cone [80, 81]. Its balance is discovered to be a critical
factor in neuron survival following injury [82, 83]. Since p75NTR receptors are proven to be fast-diffusive monomers
and bind to neurotrophin concentration [84], we introduce a degradation kp75cneur into the source generation in the
synaptogenesis equation to model the associated degradation [30]. We obtain

∂cneur

∂t
= Dc∇

2cneur + (K − kp75cneur)
∂ϕ

∂t
− k2cneur, (12)

where cneur is the neurotrophin concentration, Dc is the diffusion coefficient, and K is the latent neurotrophin. kp75
is the degradation rate when binding to p75NTR receptors, and k2cneur is the sink term for the degradation [30, 85].
Because cneur is vital in neurite outgrowths and directly supports the ϕ interface balance and evolution, the degradation
to cneur introduced by kp75 and k2 can lead to abnormal neurite morphological transformations associated with NDDs.

Driving force equation. In neurons, neurotrophin concentrations are a determining factor in neuron survival.
An optimal amount of neurotrophin is necessary for the survival of neurons [86]. Lower levels typically support
neuron survival, while higher concentrations can negate this effect. This inverse relationship between neurotrophin
concentrations and cell survival is particularly notable at higher concentrations, where an observed survival-promoting
effect at lower concentrations is reversed [87]. To model the aforementioned inverse relationship between neurotrophin
concentrations and cell survival considering the intricate balance of neurotrophin concentration [88], we introduce copti

to the driving force equation and obtain

Fdriv =
α

π
tan−1

[
Hϵ

(
dL
dt

)
γ(copti − cneur)

]
, (13)

where α
π

is a scaling coefficient, Hϵ is a Heaviside step function, and γ is the interfacial energy constant. By introducing
copti, Eqn. 13 can effectively model the inverse relationship between cneur and neuron survival. When the magnitude
of cneur exceeds copti, the effect of cneur is reversed, leading to the ϕ interface retractions.

In the implementation, we use IGA to solve the phase field governing equation (Eqn. 9) concurrently with the
intracellular tubulin transport equation (Eqn. 10) and the synaptogenesis equation (Eqn. 12), coupled through the
driving force equation (Eqn. 13) with competitive tubulin consumption equation (Eqn. 11).

4. Truncated T-splines and local refinement

Since the ϕ domain is mostly stable with values consistently at “0” and “1” except at the evolving interface,
we utilize truncated T-splines to apply local refinements at ϕ interface within the IGA framework to accelerate the
computation. This approach prioritizes computational efforts on the areas undergoing evolutions over iterations,
maintaining high accuracy while avoiding extensive mesh refinement by substantially decreasing the number of DOFs.
This leads to quicker solver iterations and increased computational efficiency.

4.1. Review of truncated T-spline
T-spline is developed to lift the limitations of the uniform control grid B-splines [43]. B-splines rely on a uniform,

rectangular grid, which has limited capability when modeling intricate geometries and often requires more control
points. A univariate B-spline of order p is defined on a non-decreasing sequence of real numbers, ui, which are used
to build a knot vector Ū = {u1, u2, · · · un+p+1}, where n is the number of basis functions and p is the order of the
B-spline [38]. The basis function Ni,p(u) is defined recursively as follows:

Ni,0(u) =

1 if ui ≤ u < ui+1,

0 otherwise,
(14)
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Ni,p(u) =
u − ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u), (15)

where Ni,0(u) is a piece-wise linear basis function, Ni,p(u) is the B-spline basis function of degree p, recursively
calculated based on combinations of two degree (p − 1) basis functions over the knot vector Ū. Given a set of control
points P = {Pi}

n
i=1, the B-spline curve C(u) is defined as:

C(u) =
n∑

i=0

Ni,p(u)Pi, 0 ≤ u ≤ 1. (16)

We can obtain a T-spline control mesh by introducing T-junctions into a quadrilateral mesh in the physical domain.
Each edge in the mesh is assigned a parametric value, known as the knot interval, that requires an equal cumulative
sum across the opposite edge of the element to ensure continuity and uniform parameterization across the mesh. T-
spline basis functions differ from B-splines in that they are defined using local knot vectors, determined by shooting
rays across the T-mesh in the parametric directions [64]. A ray is extended to intersect with the mesh to determine
the local knot vector for a particular point. The intersection coordinates are collected and arranged in ascending order
to form the local knot vector. This allows the T-spline basis functions to be directly influenced by the local topology
of the T-mesh, enhancing their flexibility and ability to accurately represent geometry with less restriction than the
global knot vectors used in B-splines. T-splines enhance these capabilities by supporting local refinement via knot
insertion [89]. Given a univariate T-spline basis function NU(u) based on an initial knot vector U = {u1, u2, u3, u4, u5},
we can extend U by adding n knots, where n ∈ Z+, to obtain an enlarged and refined knot vector U′ = {u′1 =
u1, u′2, . . . , u

′
n+5 = u5} ⊃ U. Here U′i = {u

′
i , u
′
i+1, . . . , u

′
i+4} (i = 1, . . . , n+ 1) are enriched local knot vectors. The locally

refined basis function NU′ (u) is then defined as:

NU′ (u) =
n+1∑
i=1

ciNU′i (u), (17)

where ci is the refinement coefficients from knot insertion [89], and NU′i are the active children of NU′ (u). A bi-variate
T-spline basis function, B(u, v) = NU(u)NV (v), is the tensor product of two uni-variate functions, and its refinement is
achieved by refining NU(u) and NV (v) [64].

While locally refined T-splines offer significant flexibility for geometric modeling, they can pose challenges for
analysis due to difficulties in maintaining linear independence due to overlapping basis functions across different re-
finement levels. Analysis-suitable T-splines were introduced to address these problems with standard T-splines, such
as ensuring linear independence and maintaining the partition of unity [45, 90] by limiting intersections except under
specific conditions that ensure analysis suitability. Truncation is an approach that has been applied to T-splines to
enhance their robustness and flexibility by allowing certain intersections, except for face-face types [64]. This ap-
proach, initially implemented in truncated hierarchical B-splines [91, 92], has been extended to truncated hierarchical
Catmull-Clark subdivision [54, 55]. To preserve the partition of unity and geometric integrity, the truncation mech-
anism mitigates overlapping basis functions by selectively excluding redundant contributions from active children
functions in the refinement hierarchy. For a T-mesh T and its refined counterpart T ′ from truncated T-spline quadtree
subdivision, a bi-variate partially refined basis function Bi(u, v) needs to exclude redundant children B′j(u, v) to avoid
overlapping influences of basis functions [64]. The truncated basis function, denoted as trunBi(u, v), is defined as

trunBi(u, v) = Bi(u, v) −
∑

j,i,B′j∈Bi

ci jB′j(u, v), (18)

where ci j are coefficients determined in the knot insertion process, Bi(u, v) is the parent basis functions, and B′j(u, v)
represents the set of partially refined children basis functions being discarded. This ensures that trunBi(u, v) forms a
partition of unity while preserving local refinement effects. The truncated T-spline surface, S (u, v), is defined as

S (u, v) =
∑n

i=0 trunBi j(u, v)Pi j∑n
i=0 trunBi j(u, v)

, (19)

where Pi j are the control points and trunBi j(u, v) are the truncated T-spline basis functions. Note that trunBi j(u, v) at
any particular point sums up to 1 to ensure the property of partition of unity [93], which makes truncated T-splines
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particularly effective for accurate computational analysis with complex geometries. We refer readers to [64] for an
in-depth discussion on truncated T-splines.

4.2. Phase field interface-based local refinements

Figure 2: Local refinements using truncated T-splines. (A) Phase field variable ϕ initialization on a coarse mesh. (B) Identifying elements at
the ϕ interface. (C) Interface elements are locally refined with subdivision. (D) Detecting face-face intersections created by face extension from
subdivisions. (E) Applying 1-ring of bisections to resolve these face-face intersections and maintaining the integrity of the mesh for truncated T-
splines. (F) Generating locally refined T-mesh for truncated T-splines with enhanced accuracy in regions of interest. (G) Interpolating ϕ initialization
from the coarse control mesh to the locally-refined mesh. (H) The locally refined ϕ initialization.

To solve the phase field model, ϕ initialization is needed. To apply local refinements, the model first needs to
know ϕ initialization on a uniform coarse control mesh (Fig. 2A), refine elements at ϕ interface, and then obtain
ϕ initialization on the locally refined mesh. Beginning with a uniform coarse control mesh, we can calculate ϕ
initialization based on the initial cell center and cell radius r0. Then, by selecting elements along ϕ interface (Fig. 2B),
we can refine and enhance the effective mesh resolution at these critical areas of interest (Fig. 2C) while keeping the
mesh coarse in areas where ϕ values are stable at either 0 or 1. This targeted refinement approach ensures efficient
use of computational resources. Because a valid T-mesh in truncated T-splines must be strongly balanced and free
of face-face intersections to satisfy linear independence [64, 90], we need to resolve these face-face intersections in
the automated local refinement process (Fig. 2D). To address this issue, we apply bisections to 1-ring of elements
surrounding the selected interface elements (Fig. 2E). This approach effectively resolves face-face intersections and
allows the model to refine the mesh only where needed. Thus, we can obtain a locally-refined T-mesh for truncated
T-splines tailored explicitly to the given ϕ value (Fig. 2F). Subsequently, ϕ values are interpolated and transferred
onto this newly refined mesh using the KD tree-based interpolation method [94], providing accurate initialization
for the computation of the evolving neuron outgrowth ϕ (Fig. 2G). Starting with an existing control point, a search
using the KD tree data structure finds the nearest new control point. If a matching control point is found, the value at
the input control point is directly used. If the new control point is situated among the existing points, the algorithm
interpolates depending on their positions and connectivity in the control mesh (Fig. 2G). This conditional handling
ensures values are correctly passed to the locally refined mesh. The KD tree approach effectively utilizes spatial
indexing and positions, preserving the initialization accuracy while minimizing unnecessary computations.

8



5. Dynamic domain expansion

During neuron growth, neurites initiate along soma boundaries and then extend outwards toward the domain
boundary. If using conventionally fixed domain size, this nature of the neuron growth process requires excessive DOFs
in largely static areas where ϕ remains “0”, away from the center. To address this issue, the NDDs model incorporates
dynamic domain expansion to accommodate the complex, ever-expanding neurite elongation process, followed by a
KD tree-based interpolation to ensure fast and accurate variable pass-through [94]. This method reduces redundant
DOFs associated with neurite extension, enabling the simulation of complex, high-resolution neuron outgrowth and
enhancing both accuracy and computational efficiency.

The model incorporates a dynamic domain expansion algorithm (Algorithm 1) to dynamically adjust the control
mesh in response to neurite approaching the domain boundary (double-sided arrows in Fig. 3A-D). The algorithm
takes neuron growth ϕ and control mesh as the input and evaluates each element adjacent to the domain boundary,
searching for any nonzero values of the ϕ. If nonzero ϕ is detected near the boundary, the algorithm flags the corre-
sponding edge for expansion using expFlag. Once boundaries are flagged, the algorithm modifies the domain size
based on the predetermined expansion size (default 3×∆x, where ∆x is coarse element size). It generates an enlarged
control mesh (dashed zone in Figure 3A-D) and translates the entire control mesh according to the specified direction
of expansion to maintain the position of the neuron ϕ. This directional domain expansion approach works in tandem
with the truncated T-splines generation, discussed in Section 4, to ensure that the computational domain adapts to
accommodate growing neurites with the least amount of elements, maintaining analysis accuracy and efficiency. The
transition to the expanded mesh requires an interpolation operation that passes values from the original control points
to the new control points (Fig. 2G). The interpolation process for a dynamically expanding mesh in the NDDs simu-
lation leverages the KD tree algorithm to optimize spatial queries of control points cpts, significantly accelerating the
search for the nearest cpts [94]. Starting with new control points cpts′, each cpts′ undergoes a rounding process to
identify whether it is located on expanded elements. This procedure significantly speeds up the algorithm by skipping
elements that are not expanded and reduces the total number of DOFs while preserving the analysis accuracy.

Algorithm 1 Dynamic Domain Expansion (Figure 3)
Input: Control points cpts, control mesh Mesh, neuron outgrowth ϕ
Output: Expanded control points cpts′, Expanded control mesh Mesh′

Procedure Check for potential expansion direction based on ϕ value
1: Initialize expansion flag expFlag for each element e of the domain.
2: for each element e in Mesh adjacent to the domain boundary do
3: if ϕ(x, y) > 0 then
4: expFlag[e] = true
5: break ▷ Terminate search if expansion is necessary
6: end if
7: end for

Procedure Expanding domain based on expansion parameters
8: if any expFlag[e] is true then ▷ Expand mesh where elements are flaggeed
9: Determine direxp and szexp based on flagged elements

10: Create enlarged control mesh Mesh′ with new control points cpts′

11: Translate cpts′ based on direxp ▷ Offset mesh to keep ϕ position consistant
12: else
13: Set cpts′ = cpts and Mesh′ = Mesh ▷ No expansion needed
14: end if
15: return cpts′ and Mesh′

6. Experimental human iPSC-derived and rat hippocampal neuron cultures

In this section, we outline the protocols and details for culturing human induced pluripotent stem cells (iPSCs)
and rat hippocampal neuron cultures. Conducting experimental cultures to obtain neuron growth observations is
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Figure 3: Sequential representation of directional domain expansion in neuron outgrowth simulation. (A) The initial soma ϕ and checking for
neurites near the domain boundary. (B) Detected neurite near the bottom boundary and subsequent bottom directional domain expansion. (C) As
growth continues, neurites approach the top and left boundaries, and the domain is expanded along these directions. (D) Neurites detected near
the top, left, and right boundaries, and domain expansions follow. (E) The expanded computational domain for neurite development. The process
showcasing the model can adapt to the evolving morphology of the neuron and minimize unnecessary computational costs.

necessary for computational modeling as it provides a reference to simulations and for comparison with realistic
results. This approach allows us to better understand the intricacy of neurite outgrowth, improving the ability of the
NDDs model to reflect real-world biological behaviors in NDDs studies. Human iPSC-derived neurons are selected
to better correlate between the NDDs model and actual human neuron growth. Building upon our previous studies
of healthy rat hippocampal neurons [32, 33, 34], we now extend our focus to unhealthy rat hippocampal neurons to
deepen our understanding of NDDs. In future work, we intend to include unhealthy human iPSC-derived neurons
currently being developed at the Mayo Clinic to broaden our investigation of underlying disorder mechanisms.

Human iPSC-derived neuron culture. Human iPSCs, derived from a healthy 83-year-old female (MC0192),
were cultured in TeSR-E7 complete medium on Matrigel-coated plates, with karyotyping conducted by the Mayo
Clinic Genomics Core Facility [95]. The iPSCs were differentiated into neural precursor cells (NPCs) using the
STEMdiff™ SMADi Neural Induction Kit as previously described [96]. After initial culturing in 24-well AggreWell™

800 plates, embryoid bodies were transferred to Matrigel-coated 6-well plates on day 8 to promote neural rosette for-
mation for another 5 days. These NPCs were expanded, supplemented with ROCK inhibitor Y27632 on day 15, and
eventually cryopreserved in Neural Progenitor Freezing Medium. NPCs were seeded on Poly-L-ornithine/Laminin-
coated plates for neuronal differentiation in BrainPhys Neuronal Medium. Immunocytochemistry involved fixing the
cells, staining them with primary antibodies against βIII-tubulin and secondary Alexa Fluor 488- or 568-conjugated
secondary antibodies, and counterstaining nuclei with DAPI. Imaging was performed using a Keyence BZ-X800 fluo-
rescence microscope. We refer readers to [95, 96] for detailed documentation of experimental protocols. The images
of experimental human iPSC-derived neuron culture are used to compare with healthy neuron growth simulations to
better analyze neurite outgrowth behaviors.

Rat hippocampal neuron cultures. For rat hippocampal neuron cultures used in this paper, images are drawn
from failed cultures during protocol optimization for our previously published work creating a dataset and model of
rat hippocampal neuron growth [32, 33, 34], and from cultures in which cells experienced mechanical damage.

For culture condition optimization examples, cryopreserved embryonic day 18 neurons (A36513, Gibco, USA)
were thawed and grown in dishes coated with poly-D-lysine (PDL) (P6407, Sigma-Aldrich, USA) following the man-
ufacturer’s guidelines [97] with slight modification to optimize conditions for low-density culture. Primary neurons
are notoriously challenging to culture [98]. It is not uncommon when establishing new neural cultures to optimize
media formulation, media change frequency, and the fraction of media replaced during media changes. During this
optimization process, several cultures underwent cell death with neurite breaking and fragmentation. The seeding den-
sity for all samples was either 20,000 or 100,000 cells per square centimeter in Neurobasal Plus medium (A3582901,
Gibco, USA) supplemented with 2% B-27 Plus (A3582801, Gibco, USA) (complete Neurobasal Plus medium). Cul-
tures were maintained at 37◦C with 5% CO2. Imaging was carried out using an Echo Revolve Microscope (Echo
Revolve | R4, inverted, BICO, USA) with a 12-megapixel color camera at 20X and 40X magnifications. The images
included here for model comparison were all taken 3-4 days after plating.

For samples in which neurons experienced mechanical damage, a 48-well plate that was commercially coated with
poly(N-isopropylacrylamide) (PIPPAM) (UpCell surface, 174898, Nunc, USA) was coated with a PDL-extracellular
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matrix (ECM) gel mixture (PECM). Briefly, each well of this plate was coated with the 150 µL PECM mixture (9.86%
Geltrex ECM gel (Thermo Fisher, A1413301), 10 µg/mL PDL (P6407, Sigma-Aldrich, USA) in DMEM), modified
from [99, 100] and incubated at room temperature for 1 hour before removal of the solution. The plate was dried
uncovered in the laminar flow biosafety cabinet overnight.

Cryopreserved embryonic day 18 neurons (A36513, Gibco, USA) were then seeded at a density of 60,000
cells/cm2 and cultured for 7 days at 37◦C in 5% CO2. After the initial culture period cells were lifted from the
plate using a gelatin plunger transfer technique [101]. Briefly, a gelatin gel plunger was gently placed in contact with
the cells, and the cells were released from the plate by incubation at 20◦C for 45 minutes on a cold plate (ColdPlate
slim, QINSTRUMENTS, Germany) in the laminar flow biosafety cabinet. The gelatin plunger was then removed and
placed into a separate PECM-coated 48-well plate. To remove the gelatin from the plunger and release the cells, this
new plate was incubated at 37◦C for 30 minutes on the cold plate in the laminar flow biosafety cabinet. Afterward,
the plunger was removed and warmed complete Neurobasal Plus medium was added to the wells. Then, the plate was
placed in a 37◦C, 5% CO2 incubator for 30 minutes to fully liquefy the gelatin. All wells were gently washed with
warmed complete Neurobasal Plus medium to remove gelatin and imaged.

It should be noted that these conditions were not intended to replicate any specific developmental disorder. They
are included here for qualitative comparison to demonstrate the model’s ability to create degenerating and damaged
morphologies.

7. Numerical results and validation with experiments

In this section, we first explain the implementation specifics of the proposed IGA phase field NDDs model. Then,
we showcase simulation results of healthy and unhealthy neurons with several parameter studies designed to inves-
tigate NDDs. Finally, we compare our simulation outcomes with experimental data, focusing on cases with external
cue-guided mechanisms. This comparative analysis aims to evaluate the effectiveness and accuracy of our NDDs
model in simulating biomimetic neurite behaviors and disorders.

We implemented the IGA NDDs model in C++, leveraging the extensive capabilities and scalabilities of the
PETSc library [62]. PETSc as the computational backbone offers a significant computational efficiency advantage
over MATLAB-based implementations [31]. This is mainly because the PETSc library is written in compiled lan-
guage and tailored for high-performance computing environments, while MATLAB is a scripting language that faces
limitations due to its inherently interpreted mode of execution, making it less efficient for tasks requiring inten-
sive computation. Compared to our previous MATLAB-based neuron growth model, the PETSc-based model reduces
computational time by 2 to 4 times while maintaining a similar number of DOFs. It is worth noting that the MATLAB-
based model directly solves the strong form of the equations at collocation points. In contrast, our PETSc-based model
solves the weak form using Gaussian quadrature points. While improving analytical accuracy, the weak form requires
substantially more computational steps. In addition to that, the neuron growth model requires tip detection and neuron
identification functionalities. The previous MATLAB-based model leveraged well-optimized built-in functions, while
our PETSc-based model utilizes in-house functions to achieve these functionalities. Although the current C++ im-
plementations are effective, they could benefit from further optimization to enhance performance in future iterations.
Through the utilization of the MPI for parallel processing, our model facilitates efficient distribution of computations
across multiple threads [63, 102], thereby cutting down execution times significantly when compared with MATLAB
analysis. Although MPI leverages the immense computational power enabled by supercomputers, communication
time among processors becomes a bottleneck. Mesh partitioning using METIS [65] ensures optimal load balancing
for the computationally intensive simulations. This is crucial for the scalability and efficiency of the model, particu-
larly when simulating complex neurite structures on locally refined truncated T-splines with a large number of DOFs
because mesh alterations during execution often lead to unbalanced loads. Unbalanced loads across threads could lead
to unnecessary slowdown and waiting during inter-threads/node communications. We employ an implicit backward
Euler method for time integration in the NDD model and use Newton Raphson method to handle non-linearities in
the phase field equation, ensuring numerical stability throughout the simulation. We ran simulations on the Bridges-2
supercomputer at Pittsburgh Supercomputing Center [103, 104] using 128-thread regular memory nodes.

For clarity, we provide a detailed list of variables for NDDs and healthy neurons in Table 1. The domain ϕ is
initialized with a central filled circle with radius r0, representing the cell. The initial values of θ are randomized to
between [0, 1] across the domain with T set to 0 at the beginning. Due to the significant variability in biophysics
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Table 1: Parameters used in the NDDs model.

Parameter Description Value Parameter Description Value
copti Optimal neurotrophin concentration [0, 1] H Orientation constant coefficient 0.007
Dc Neurotrophin diffusion coefficient [0, 6] δt Tubulin diffusion rate 4 (µm2/h)

kp75 Neurotrophin binding rate [0, 3] αt Tubulin active transport rate 0.001 (µm/h)
k2 Neurotrophin degradation rate [0, 3] βt Tubulin decay coefficient 0.001 (1/h)
γ Phase field interface driving force constant [0, 10] ϵ0 Tubulin production coefficient 15
K Dimensionless latent neurotrophin [0, 2] r0 Initial cell radius 15△x

Mϕ Mobility coefficient 60 rg Tubulin assembly rate 5
ā Surface energy scaling constant 0.04 sg Tubulin disassembly rate 0.1
ξ Anisotropy strength 0.2 α

π
Scaling coefficient 0.2865

k Anisotropy mode 6 θ Neurite growth orientation angle [0, 1]

Note: Variables shaded in gray contribute to NDDs morphological transformation. For copti, higher levels cause excessive branching
and lower values lead to retractions. For Dc, high levels initiate neurite formation and low levels lead to atrophy. kp75 increases neurite
thickness as values rise. k2 increases neurite thickness as values rise. γ maintains a constant effect on interface stability and scales the
effect of cneur. Higher K values enhance neurite thickness and branching. Parameters require initializations are shown with their default
value. Dimensionless parameters are listed with default values without units. ∆x is the coarse element size

and growth behaviors across different types of neurons, the parameter values used in the phase field NDDs model
were sourced from established literature [29, 30, 105] and fine-tuned empirically to capture realistic neuron growth.
These parameters can be adjusted to better simulate biomimetic growth of specific neuron types [32]. We adjusted
our simulation parameters to biomimetically reflect the DIV time scale of neuron growth observed experimentally
(about 1 week). While some parameters have direct physical relevance, such as the neurotrophin diffusion coefficient
Dc and the optimal concentration copti, others are dimensionless or phenomenological in nature, like growth cone
size and the orientation parameter θ in the context of neuron growth. We fine-tuned these dimensionless parameters
to capture observed neurite growth patterns. With these parameter settings, we first simulate healthy neuron growth
and analyze single- and multiple-neuron growth scenarios (Section 7.1). Then, we conduct a simulation of abnormal
neurite morphological transformation using the NDDs model with three case studies that each focuses on a specific
parameter (Section 7.2). Finally, we compare simulation results with experimental observations to evaluate our NDDs
model (Section 7.3).

7.1. Healthy neuron growth simulation

Our NDDs model supports simulating healthy neuron growth. We set copti to 1 to ensure sufficient concentration
level to drive interface outwards expansion, Dc to 6 to ensure sufficient neurotrophin diffusion, and kp75, k2cneur to 0 to
eliminate degradation effects. The rest parameters for healthy neuron growth are set following Table 1. Simulations are
done with both single- and multiple-neuron configurations up to 350,000 iterations, and results near the final iteration
that best illustrate the growth behaviors are shown (Fig. 4). The single-neuron scenarios aim to study individual neuron
outgrowth behaviors, while the multiple-neuron setups focus on understanding neurite interactions that contribute to
the formation of complex neurite networks.

In our results, the neuron, represented by ϕ, is shown in yellow, and the surrounding medium is shown in blue. For
single neuron cases, the results (Fig. 4A) show that the model captures a broad spectrum of neurite outgrowth behav-
iors, from axon elongations to complex branching. Concurrently, our multiple-neuron simulations investigate interac-
tions within complex neurite network formation, varying from 2-7 neurons (Fig. 4B). Starting from 2-neuron cases,
we gradually increase complexity to configurations with up to 7 randomly placed neurons. While self-intersection is
acceptable in conventional phase field models, it is biologically inaccurate for neuron growth simulations. To prevent
unnatural neurite self-intersections, we incorporate a neuron identification algorithm that detects and labels individual
neurites within the simulation domain. Each neuron is assigned a unique identifier, which enables us to track the
spatial positions of its neurites over time accurately. The tip detection mechanism leverages this identification data to
continuously update tip positions, avoiding overlaps with other neurite segments of the same neuron. This approach
allows our model to simulate complex neurite networks that closely resemble those observed in biological systems.
These multi-neuron simulations showcase individual neurite growth patterns and the intricate neurite interactions with
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Figure 4: Healthy neuron growth simulations. (A) Single neuron growth with many neurite morphologies. (B) Multiple-neuron growth simulations
with neurite interactions. For multi-neuron cases, the initial soma placements are randomized in the domain.
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responses of other neurons in proximity. With the detailed dynamics of ctubu and cneur, these biomimetic single and
multi-neuron simulation results showcase the potential of our model for in-depth neurodevelopmental research and
provide a possible computational foundation for exploring NDDs.

7.2. Neurodevelopmental disorders

Extending from healthy neuron growth simulations, we conduct a comprehensive study (Figs. 5-7) to investigate
the functional roles of different parameters and factors affecting the onset of NDDs, with a focus on critical parameters
copti, Dc, kp75, and k2 as detailed in Table 1. In this section, we categorize the parameters into three studies based on
their effects on neurite morphological transformations:

1. Optimal neurotrophin concentration copti. This parameter models the inverse relationship between neurotrophin
concentration level and neuron survival and is analyzed for its impact mostly on neurite retraction;

2. Neurotrophin diffusion rate Dc. This parameter is responsible for diffusing the concentration necessary for
neurite outgrowths and predominantly triggers neurite atrophy; and

3. Degradation rates kp75 and k2. These parameters are investigated for their effects on neurite thickness. Very thin
neurites lead to atrophy.

For each study, the parameter being analyzed was adjusted based on the specified ranges listed in Table 1. All other
parameters were set according to their default values listed in the same table. By adjusting these parameters in our
NDD simulations, we can not only enhance our understanding of the pathophysiological mechanisms of NDDs but
also examine the capability of our model to capture the intricate dynamics, which is critical for future application of
the NDDs model in developing targeted interventions and advancing neurodevelopmental research.

Optimal neurotrophin concentration copti. By adjusting the value of copti while keeping other parameters con-
sistent with Table 1, we can better understand its impact on neurite morphological transformations in NDDs. We
first analyze neurite growth behaviors under different copti values ranging from 0.5 to 3.0 at around 40, 000 iterations
(Fig. 5A). As copti increases from 0.5 to 1.5, there is a noticeable improvement in neurite density and complexity, pro-
moting more extended growth patterns. This process indicates a positive response of neurites to optimal neurotrophin
levels, matching our previous expectations of enhanced growth behaviors. As copti progresses from 1.5 to 3.0, there is
a noticeable shift towards highly branched and extensively multidirectional neurite structures. This range of growth
patterns, from minimal to excessive branching, shows a critical threshold level of neurotrophins necessary for neu-
rodevelopmental processes. Notably, lower values of copti lead to suppressed neurite outgrowth, validating that there
is an inverse relationship between cneur and neuron survival [87], as well as a critical balance of cneur for maintaining
healthy neurite development. We then explore the dynamic effects of varying copti in our NDDs model to understand
its impact on neurodevelopmental processes. For simulation cases in Fig. 5B, we initialize copti as 1 to simulate healthy
neurite outgrowth and then reduce copti to 0 at 150, 000 iterations across cases involving different numbers of neurons.
The first two rows in Fig. 5B showcase the growth behavior of individual neurons, showing a straightforward process
of neurite retraction as copti decreases, highlighting the sensitivity of single neurons to cneur and copti levels. The third
and fourth rows extend this analysis to multi-neuron configurations with two and three neurons to investigate neurite
retraction and interactions among multiple neurons. These simulation results highlight the intricate influence of copti

levels on the simulated morphology transformation of neurites and the potential implications to retraction and atrophy
simulations. When tuned and validated on experimental data thse details within the model may help inform the future
development of effective therapeutic strategies targeting NDDs.

Neurotrophin diffusion rate Dc. In this study, we focus on the neurotrophin diffusion rate Dc that is respon-
sible for controlling the diffusion of cneur to support ϕ interface balance. We analyze the effect of Dc with varying
magnitude from 1.0 to 6.0 on single- and multiple-neuron cases, and results at around 100, 000 iterations that best
exhibit atrophy are shown in Fig. 6. The results show severe atrophy when the Dc value is below 2.0. As the Dc value
approaches 3.0, atrophy becomes moderate. This atrophy behavior indicates that lower values of Dc, particularly at
1.0, severely restrict the diffusion necessary for generating a neurotrophin gradient field for Eqn. 13 that stabilizes the
phase field interface during neurite outgrowth. This insufficient gradient compromises neurite integrity and leads to
the degeneration or atrophy of neurite structures due to inadequate neurotrophic support. As a result, as neurite tips
continue growing out, there is not enough concentration to support and maintain the grown neurite structures, leading
to neurite atrophy. On the other hand, as Dc increases, particularly beyond 5.0, a noticeable improvement in neurite
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Figure 5: Impact of copti variations on neurite morphology and development. (A) Variations of neurite growth behaviors as influenced by copti
values ranging from 0.5 to 3.0 with zoomed-in views of the intricate neurite structures at around 40,000 iterations, illustrating the progressive
neurite density and branching complexity changes. (B) Demonstration of the dynamic retraction behaviors in the simulated neuron growth process
with an initial copti value of 1, which is subsequently reduced to 0 at 150,000 iterations during the simulation to mimic the effect of increasing
cneur magnitude and its inverse relationship on neuron survival. Atrophies are marked with cyan dashed circles, and retractions are traced with
magenta dashed lines. The copti reduction simulates neurite retraction, showcasing the potential impacts of decreasing neurotrophic support on
neurite morphology and structural integrity over time.
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Figure 6: Impact of neurotrophin diffusion rate Dc variations on neurite outgrowth. (A) Single- and (B) multiple-neuron NDDs simulations with
different Dc values. It highlights how low values of Dc, corresponding to inadequate diffusion, can lead to neurite atrophy. As the Dc value
increases from 1.0 to 6.0, neurite continuity improves noticeably, showcasing the critical role of diffusion rates in supporting and maintaining
neurite structures. Atrophies are marked in (A) with cyan dashed circles. Zoomed-in views in (B) provide a detailed view of atrophy behaviors.

continuity is observed in both single- (Fig. 6A) and multiple-neuron cases (Fig. 6B), markedly reducing the incidence
of neurite atrophy. This highlights the necessity of maintaining a diffusion rate Dc to ensure a consistent concentra-
tion distribution surrounding the simulated growing neurite, thereby supporting the uninterrupted neurodevelopmental
process during the simulation and providing insights for potential NDDs progression mitigation.

Degradation rates kp75 and k2. We initialize the simulation with kp75 and k2 values ranging from 0.0 to 2.5, and
results at around 30, 000 iterations are shown in Fig. 7. The parameter kp75, when adjusted from 0.0 to 1.5, enhances
the complexity of neurite branching, as well as from thin neurites to thicker neurites (Fig. 7A). This progression
showcases the role of kp75 in modulating neurotrophin generation and maintaining cneur levels, which are vital for the
healthy development of neurite structures. As increasing kp75 value increases beyond 1.5 to 2.5, the results showcase
a plateau in morphological complexity changes, indicating a point where further increases in kp75 yield diminishing
effects on morphological changes. Similarly, the impact of k2 on neurite morphology is demonstrated through its
influence on increasing neurite thickness (Fig. 7B), enhancing the structures of neurites but without subtle changes
to the overall branching patterns and the complexity of the neurite structures. As the k2 value rises, its effects also
gradually diminish, highlighting diminishing effects similar to kp75. These results provide an interesting perspective
on the degradation of neurotrophin in the pathophysiology of NDDs, which will contribute to the development of
targeted therapeutic planning.

These detailed parameter studies utilizing our NDDs model demonstrate NDDs morphological transformations
to specific simulation parameters. The impact of copti is most dominantly on neurite retraction and branching, the
influence of Dc leads to neurite atrophy, and the degradation rates kp75 and k2 affect the thickness of neurite growth.
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Figure 7: Impact of variations in degradation rates kp75 and k2 on neurite morphology. (A) Neurite growth results with varying kp75 values.
(B) Neurite growth results with varying k2 values. Both variables predominantly affect neurite thickness (marked with cyan arrows), subtly
impacting the physical structure while maintaining the complexity of the neurite structures unchanged. Increasing values of these variables result
in progressively thicker neurites but with diminishing effects.

By categorically investigating these parameters, we have identified crucial factors that predominantly influence the
progression of NDDs in our computational model. Our analysis provides crucial insights into how variations in these
key parameters can trigger or exacerbate the symptoms associated with NDDs. This knowledge is vital in guiding
ongoing research toward understanding the pathophysiological mechanisms underlying these disorders. In the long
term, this model could enable more targeted therapeutic planning by focusing on the most influential factors of neuron
development and treatment strategy.

7.3. Qualitative validation with experiments

A crucial component of our NDDs model study involves comparing it with experimental observations. We apply
the external-cue guided mechanism [32] to simulate the existence of external attractive cues in the extracellular matrix
for several simulation cases and set the results against experimental neuron growth patterns (Fig. 8-10). By selectively
placing external cues around the neuron, our model can effectively guide neurite outgrowth toward these external cues,
allowing it to capture the complex and dynamic growth patterns observed in experimental cultures. These simulations
explore how well our model reflects real-world neural growth behaviors. This study compares simulation results with
single neuron cultures to better understand the effect of model parameters on individual neurite morphology. Although
culturing denser neuron cultures is feasible, the densely overlapping neurite structures will significantly complicate
neurite identifications and comparisons. Considering these limitations, efforts have been made to develop sparser
neuron cultures to improve the clarity and reliability of neurite analysis.

Comparison with healthy human iPSC-derived neurons. First, we evaluate the model by comparing single-
neuron growth patterns from day 1 to day 5 (Fig. 8A). Experimental images of human iPSC-derived neurons cultured
over five days are used as the reference. We incorporate the external cue-guided mechanism by placing external cues
around the soma to direct neurite outgrowth. These results indicate that the NDDs model can capture the observed
neurite growth patterns when external cues are placed according to experimental culture images. Next, we test the
NDDs model with multiple neuron configurations (Fig. 8B). This setup involved comparing experimental images of
multi-neuron growth with simulations where external cues were selectively placed to guide neurite outgrowth. The
simulation outcomes closely aligned with the experimental images, demonstrating that the model can biomimetically
capture complex growth behaviors in multi-neuron environments. Although measuring the exact biological conditions
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Figure 8: Comparison of simulated neuron growth patterns and experimental cultures of human iPSC-derived neurons. (A) Comparisons of single
neuron cases up to day 5. (B) Comparisons of multiple-neuron cases involving two and three neurons. External cue placements are marked
with cyan stars. These comparisons provide a visual qualitative validation of NDDs model to replicate key aspects of neurite morphology and
developmental processes seen in vitro.

and translating them into parameters in the phase field model present inherent challenges, this comparison showcases
the effectiveness and potential of our NDDs model in capturing essential aspects of the neurodevelopmental process,
highlighting its potential as a powerful tool for studying NDDs. These results evaluate the biomimetic capabilities and
applicability of the NDDs model in simulating realistic neurodevelopmental processes, providing valuable insights for
targeted therapeutic strategies in the future.

Comparison with damaged and degenerating rat hippocampus neurons. Utilizing the external cue placement
strategy [32], we perform a detailed comparative analysis of two neuron growth cases with disorders (Fig. 9). This
analysis involves modifying the diffusion coefficient Dc and the optimal concentration copti. The results are compared
with rat hippocampal neuron cultures exhibiting neurite fragmentation morphologies, characterized by observable
severance of neurites followed by disintegration. The NDDs model captures atrophy and retraction by adjusting Dc,
which controls the diffusion of neurotrophin concentration, and copti, which sets the optimal neurotrophin concentra-
tion for neurodevelopmental processes. Based on experimental images of neuron growth undergoing damage and cell
death (Fig. 9A&E). Red outlines are empirically traced based on both experimental observations and accumulated
expertise. External cues are placed to guide healthy neurite patterns (Fig. 9B&F). Subsequently, we decrease the mag-
nitude of Dc from 6 to 1 to simulate reduced diffusion in neurotrophin concentration (Fig. 9C&G). This simulation
reveals that neurites suffer significant atrophy and disconnections, showcasing a stark contrast to simulated healthy
growth. In the other comparison, we lowered copti magnitude from 1 to 0 (Fig. 9D&H). The results show that neurites
not only experience significant atrophy but also demonstrate retraction behaviors, which are influenced by the cascad-
ing energy balance at the interface. This study highlights the critical influence of Dc and copti on pathological neuron
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growth affected by NDDs in our model. These parameter adjustments show great potential to enable the NDDs model
to simulate a variety of morphological abnormalities and provide insights into the dynamics of NDDs, aiding in the
development of future targeted therapies.

Figure 9: Comparison of experimental neuron cultures undergoing neurite degeneration and simulation results. (A&E) Experimental images of
neurons exhibiting neurite breaking and fragmentation are highlighted in red outlines. (B&F) Simulated healthy neurons using the NDDs model.
(C&G) Simulated neuron morphology with disorders induced by reducing the diffusion rate Dc from 6 to 1. (D&H) Simulated neuron morphology
with disorders induced by lowering the optimal concentration copti from 1 to 0.

In addition to the above two in-depth comparison studies, we apply our NDDs model to simulate a range of cases
following the same approach (Fig. 10). The first and third rows in Fig. 10 are the experimental images of neurons
exhibiting degeneration and neurite fragmentation (in red outlines), following mechanical damage or culture condition
optimization, respectively. The second and fourth rows in Fig. 10 are the corresponding NDDs model simulation
results of NDDs neurite growth patterns. Each simulation is able to simulate biomimetic growth behaviors under
non-ideal conditions with atrophy and retraction. The ability of the NDDs model to qualitatively capture the neurite
fragmentation and retraction observed during cell death and degeneration through biologically plausible parameter
tuning highlights its potential for use in modeling NDDs. Future studies should calibrate parameters to individual
disorders researchers wish to study.

8. Conclusion and future work

We present a novel computational model for NDDs, incorporating IGA, dynamic domain expansion and local
refinement techniques into the phase field method. The NDDs model demonstrates an uplift in computational perfor-
mance compared to existing models and provides insights into complex neurite behaviors. We conclude that:

• We have developed a PETSc-based NDDs model to utilize parallel processing with IGA and truncated T-splines.
This approach allows for accurate simulations of neuron growth processes and disorders, significantly enhancing
computational efficiency without sacrificing accuracy.

• We introduced optimal neurotrophin concentration and degradation of neurotrophin to the phase field model and
simulated NDDs neurite morphological transformations including retraction and atrophy, capturing the inverse
relationship between neurotrophin levels and neuron survival.

• The NDDs model incorporates dynamic domain expansion and targeted local refinements at the phase field
interface. This approach optimizes computational resources by expanding the domain dynamically based on
the evolving neurite structures, ensuring high accuracy with reduced computational costs.
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Figure 10: Additional comparison of experimental rat hippocampal neurons exhibiting dysfunction and simulated growth patterns. (A) Experi-
mental (top) and model (bottom) neurons that experienced mechanical damage during culture. (B) Experimental (top) and model (bottom) neurons
that exhibited neurite breaking and fragmentation from culture condition optimization during the first 3-4 days of culture in vitro. These examples
demonstrate the ability of the model to capture a wide array of growth patterns and subsequently qualitatively capture the neurite fragmentation
and retraction observed in damaged and degenerating neurons.

• We leveraged our computational NDDs model to investigate the intricate neurite morphological transforma-
tions associated with neural degeneration and NDDs, including retraction, atrophy, branching, and thickness
variations.

• The parameter study demonstrates the effect of each parameter on cell morphology resulting from the NDDs
model with an external-cue guided mechanism. Qualitative comparisons with observed experimental neuron
growth and eventual neurite breaking and fragmentation patterns, demonstrate its potential to advance the NDDs
research. Our study unveils the functional roles of related factors and parameters within the model, offering
critical hypotheses into underlying mechanisms of NDDs.

The model simulates neurite outgrowth morphologies through these novel techniques and expedites the study
of NDDs. By capturing single- and multi-neuron dynamics, the model provides essential insights into the complex
networks critical for understanding neurodevelopmental disorders. The parameter study reveals how the specific pa-
rameters influence neurite morphology and development within the model. For example, how variations in parameters
such as kp75 and Dc significantly alter neurite growth, affecting the thickness, branching, and survival of the neurites.
These findings, once validated in experimental models, may aid in developing more accurate target treatments and
therapeutic planning. In addition, our NDDs model can simulate biomimetic neurite outgrowth patterns utilizing an
external-cue-guided mechanism when compared with experimental observations. These additions will significantly
broaden the potential of the NDDs model, positioning it as a promising computational tool for understanding the
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mechanisms behind disorders.
Because the current implementation is limited to 2D simulations, our future endeavors include extending the NDDs

model to 3D implementation utilizing truncated hierarchical B-spline [56, 106]. This improvement will facilitate a
more precise representation of the complex 3D aspects of neuron morphology. We plan to conduct more experiments
with our collaborators to validate the model and ensure its accuracy and reliability in capturing neurodevelopmental
processes. To broaden our investigation, we intend to include unhealthy human iPSC-derived neurons currently
being developed at the Mayo Clinic. Despite parallelization and optimizations, the model still requires substantial
computational resources, rendering it less practical for rapid and accurate predictions of neurite growth. Furthermore,
we will explore the integration of advanced machine learning techniques, including convolutional recurrent neural
networks [107], and transformers [108], to predict and analyze the time series evolution of neuron growth data.
Incorporating machine learning models with physics-based simulations has proven successful for simple reaction-
diffusion problems on 2D domain [109] and complex neurite tree structures [27]. In addition, physics-informed
neural networks could significantly improve model performance [110] for complex problems, including neuron traffic
jams [28]. These advancements will significantly improve the model and broaden its potential in NDDs study.
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[20] H. Cuntz, F. Forstner, A. Borst, M. Häusser, One rule to grow them all: a general theory of neuronal branching and its practical application,

PLoS Computational Biology 6 (8) (2010) e1000877.
[21] D. E. Donohue, G. A. Ascoli, A comparative computer simulation of dendritic morphology, PLoS Computational Biology 4 (6) (2008)

e1000089.
[22] B. Torben-Nielsen, E. De Schutter, Context-aware modeling of neuronal morphologies, Frontiers in Neuroanatomy 8 (2014) 92.
[23] J. P. Eberhard, A. Wanner, G. Wittum, NeuGen: a tool for the generation of realistic morphology of cortical neurons and neural networks in

3D, Neurocomputing 70 (1-3) (2006) 327–342.
[24] A. van Ooyen, A. Carnell, S. de Ridder, B. Tarigan, H. D. Mansvelder, F. Bijma, M. de Gunst, J. van Pelt, Independently outgrowing neurons

and geometry-based synapse formation produce networks with realistic synaptic connectivity, PLOS ONE 9 (1) (2014) e85858.
[25] M. O’Toole, P. Lamoureux, K. E. Miller, A physical model of axonal elongation: force, viscosity, and adhesions govern the mode of

outgrowth, Biophysical Journal 94 (7) (2008) 2610–2620.
[26] B. P. Graham, A. Van Ooyen, Mathematical modelling and numerical simulation of the morphological development of neurons, BMC

Neuroscience 7 (2006) S9.
[27] A. Li, A. Barati Farimani, Y. J. Zhang, Deep learning of material transport in complex neurite networks, Scientific Reports 11 (2021) 11280.
[28] A. Li, Y. J. Zhang, Isogeometric analysis-based physics-informed graph neural network for studying traffic jam in neurons, Computer

Methods in Applied Mechanics and Engineering 403 (2023) 115757.
[29] T. Takaki, K. Nakagawa, Y. Morita, E. Nakamachi, Phase-field modeling for axonal extension of nerve cells, Mechanical Engineering

Journal 2 (3) (2015) 15–00063.
[30] K. T. Nella, B. M. Norton, H.-T. Chang, R. A. Heuer, C. B. Roque, A. J. Matsuoka, Bridging the electrode–neuron gap: finite element

modeling of in vitro neurotrophin gradients to optimize neuroelectronic interfaces in the inner ear, Acta Biomaterialia 151 (2022) 360–378.
[31] K. Qian, A. Pawar, A. Liao, C. Anitescu, V. Webster-Wood, A. W. Feinberg, T. Rabczuk, Y. J. Zhang, Modeling neuron growth using

isogeometric collocation based phase field method, Scientific Reports 12 (2022) 8120.
[32] K. Qian, A. S. Liao, S. Gu, V. A. Webster-Wood, Y. J. Zhang, Biomimetic IGA neuron growth modeling with neurite morphometric features

and CNN-based prediction, Computer Methods in Applied Mechanics and Engineering 417 (2023) 116213.
[33] A. Liao, W. Cui, Y. J. Zhang, V. Webster-Wood, Quantitative evaluation of neuron developmental morphology in vitro using the change-point

test, Summer Biomechanics, Bioengineering and Biotransport Conference (2021).
[34] A. S. Liao, W. Cui, Y. J. Zhang, V. A. Webster-Wood, Semi-automated quantitative evaluation of neuron developmental morphology in vitro

using the change-point test, Neuroinformatics 21 (1) (2023) 163–176.
[35] A. van Ooyen, Modeling Neural Development, MIT Press, 2003.
[36] Y. J. Zhang, Challenges and advances in image-based geometric modeling and mesh generation, in: Image-Based Geometric Modeling and

Mesh Generation, Springer, 2013.
[37] Y. J. Zhang, Geometric Modeling and Mesh Generation from Scanned Images, Chapman and Hall/CRC, 2016.
[38] L. Piegl, W. Tiller, The NURBS Book, Springer Science & Business Media, 1996.
[39] W. J. Gordon, R. F. Riesenfeld, B-spline Curves and Surfaces (1974) 95–126.
[40] T. J. Hughes, J. A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement,

Computer Methods in Applied Mechanics and Engineering 194 (39-41) (2005) 4135–4195.
[41] J. A. Cottrell, T. J. Hughes, Y. Bazilevs, Isogeometric analysis: toward integration of CAD and FEA, John Wiley & Sons, 2009.
[42] H. Casquero, L. Liu, Y. J. Zhang, A. Reali, H. Gomez, Isogeometric collocation using analysis-suitable T-splines of arbitrary degree,

Computer Methods in Applied Mechanics and Engineering 301 (2016) 164–186.
[43] T. W. Sederberg, J. Zheng, A. Bakenov, A. Nasri, T-splines and T-NURCCs, ACM Transactions on Graphics 22 (3) (2003) 477–484.
[44] T. W. Sederberg, D. L. Cardon, G. T. Finnigan, N. S. North, J. Zheng, T. Lyche, T-spline simplification and local refinement, ACM Trans-

actions on Graphics 23 (3) (2004) 276–283.
[45] M. A. Scott, X. Li, T. W. Sederberg, T. J. Hughes, Local refinement of analysis-suitable T-splines, Computer Methods in Applied Mechanics

and Engineering 213 (2012) 206–222.
[46] T. Dokken, T. Lyche, K. F. Pettersen, Polynomial splines over locally refined box-partitions, Computer Aided Geometric Design 30 (3)

(2013) 331–356.
[47] K. A. Johannessen, T. Kvamsdal, T. Dokken, Isogeometric analysis using LR B-splines, Computer Methods in Applied Mechanics and

Engineering 269 (2014) 471–514.
[48] H. Kang, F. Chen, J. Deng, Modified T-splines, Computer Aided Geometric Design 30 (9) (2013) 827–843.

22



[49] X. Wei, X. Li, K. Qian, T. J. Hughes, Y. J. Zhang, H. Casquero, Analysis-suitable unstructured T-splines: multiple extraordinary points per
face, Computer Methods in Applied Mechanics and Engineering 391 (2022) 114494.

[50] L. Liu, Y. J. Zhang, X. Wei, Weighted T-splines with application in reparameterizing trimmed NURBS surfaces, Computer Methods in
Applied Mechanics and Engineering 295 (2015) 108–126.

[51] L. Liu, Y. J. Zhang, X. Wei, Handling extraordinary nodes with weighted T-spline basis functions, Procedia Engineering 124 (2015) 161–
173.

[52] J. Deng, F. Chen, X. Li, C. Hu, W. Tong, Z. Yang, Y. Feng, Polynomial splines over hierarchical T-meshes, Graphical Models 70 (4) (2008)
76–86.

[53] E. Evans, M. Scott, X. Li, D. Thomas, Hierarchical T-splines: analysis-suitability, Bézier extraction, and application as an adaptive basis for
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