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Abstract—In decoding linear block codes, it was shown that
noticeable reliability gains can be achieved by introducing learn-
able parameters to the Belief Propagation (BP) decoder. Despite
the success of these methods, there are two key open problems.
The first is the lack of interpretation of the learned weights,
and the other is the lack of analysis for non-AWGN channels. In
this work, we aim to bridge this gap by providing insights into
the weights learned and their connection to the structure of the
underlying code. We show that the weights are heavily influenced
by the distribution of short cycles in the code. We next look at
the performance of these decoders in non-AWGN channels, both
synthetic and over-the-air channels, and study the complexity
vs. performance trade-offs, demonstrating that increasing the
number of parameters helps significantly in complex channels.
Finally, we show that the decoders with learned weights achieve
higher reliability than those with weights optimized analytically
under the Gaussian approximation.

I. INTRODUCTION

Short length block codes are an attractive choice for use

cases with stringent latency requirements [1]. However, they

suffer from poor error correction performance. One key reason

for this is the presence of short cycles in the Tanner graph of

the code, making the iterative decoding sub-optimal. Unfortu-

nately at such short lengths, codes designed without cycles

have worse error correction performance [2]. Additionally,

when fading channels are considered, the Log Likelihood

Ratio (LLR) computation suffers from errors because of

imperfect Channel State Information (CSI) and equalization,

which makes the Belief Propagation (BP) decoder sub-optimal

[3]. Hence modifications to the traditional BP decoder are

necessary to improve its performance.

In [4], the authors demonstrate the advantage of using neural

networks for improving the BP decoder by placing multiplica-

tive weights along the edges of the Tanner graph structure

and unrolling the iterations, resulting in a neural BP decoder.

In [5], the authors show that instead of using multiplicative

weights, comparable gains can be achieved by using offset

factors combined with min-sum approximation, which reduces

the implementation cost. Later in [6], the authors explore

the possibility of reducing the number of weights needed by

entangling them across iterations in a recurrent fashion and

show that the performance is still comparable to the fully

parameterized model. More recently, the authors in [7] propose

entangling the weights not only across iterations but also

across the edges. To compensate for the performance loss,

a shallow neural network referred to as Parameter Adapter

Network (PAN), is used to select different weights for different
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SNRs regions resulting in a performance very close to [6].

Recently in [8], the authors propose using the weights from

neural BP decoders to prune an over-complete parity check

matrix to find the most important check nodes. Authors in

[9] explore sparse constraints on node activations and use

knowledge distillation to improve the neural decoders.

Despite the success of these works, there are two key

open problems that we answer in this work. The first is

the interpretation of the learned weights. While it has been

conjectured that the use of normalization or offsets to modify

the beliefs helps mitigate the detrimental effects of short cycles

[4], [5], there is no supporting evidence. We present a first

empirical evidence that the weights learned are directly related

to the short cycles present in the code and investigate how they

help in improving the reliability of the posterior LLRs.

The second is the analysis and trade-offs associated with

the complexity of neural min-sum decoders for channels

beyond the Additive White Gaussian Noise (AWGN) channels.

Existing work has focused on AWGN channels [4]–[7],

[10]. We demonstrate that the trade-offs are quite different on

complicated channels (including the over-the-air channel) from

AWGN channels, showing a need for an adaptive selection

of model complexity based on channel conditions. Our main

contributions are as follows:

• Interpretation: We interpret the gains provided by neu-

ral min-sum decoders in a two-phase fashion, first by

correcting for cycles in the code structure and then pro-

viding additional gains by correcting for channel effects

(Section IV).

• Complexity Trade-off: We explore the complexity vs.

performance trade-off for neural min-sum decoders across

various channels including both synthetic and over-the-

air channels. We show that complex channels and over-

the-air channels require more weights to fully realize the

possible gains, while fewer weights suffice for simple

channels. To the best of our knowledge, we are the first

to evaluate and study neural min-sum decoders in non-

AWGN channels (Section V).

• Robustness and Adaptivity: We show that the learned

weights are fairly robust to channel variations i.e, the

decoder trained on one channel still outperforms the clas-

sical decoders on other channels. Furthermore, any loss in

performance due to the change in channel conditions can

be easily recovered with small fine-tuning (Section VI).

• Gaussian Approximation: Finally, we propose an ana-

lytical approach for finding the weights using Gaussian

approximation and compare the neural min-sum decoders

and analytical decoders in terms of reliability. We show



that for complicated channels, neural decoders lead to

much better performance than the analytically driven

weights under the Gaussian approximation. (Section VII).

II. SYSTEM MODEL

In this work, we consider linear block codes. A (N,K)
block code maps a message of length K to a codeword of

length N and is uniquely described by its parity check matrix

H of dimensions (N − K) × N , where the rate of the code

is R = K/N . The linear block code can be also represented

using a bipartite graph, known as the Tanner graph, which can

be constructed using its parity check matrix H. The Tanner

graph consists of two types of nodes. We refer to them as

Check Nodes (CN) that represent the parity check equations

and Variable Nodes (VN) that represent the symbols in the

codeword. There is an edge present between a check node c
and variable node v if H(c, v) = 1.

We consider a system with Binary Phase Shift Keying

(BPSK) modulation that transmits a random vector X ∈
{−1, 1}N , where N is the code length. The modulated signal

is then passed through a channel to receive Y as

Y = Channel(X) +W,

where Channel(X) applies the effect of channel on the transmit

vector X and W is the noise at the receiver. As a special case,

when the channel is AWGN the LLR at the receiver for vth

symbol can be calculated as

lv =
p(Yv = yv|Xv = 1)

p(Yv = yv|Xv = −1)
= −2yv

σ2
,

where Var(W ) = σ2 is the noise variance.

Apart from the AWGN channel, we also consider multi-

path fading propagation channels from the 3GPP specifi-

cations [11]. Specifically, we consider a multi-path fading

ETU channel, which has a high delay spread. We use the

MATLAB LTE Toolbox to transmit and receive data. The

multi-path delay profiles can be found in Table II. Finally,

we also test the decoder over-the-air by transmitting and

receiving using a USRP N200 SDR setup in a non-line-of-sight

(NLOS) multi-path environment. More comprehensive results

and the source code can be found at https://github.com/sravan-

ankireddy/nams.

III. BACKGROUND

In this section, we review the min-sum variant of the BP

decoder and neural decoders with augmented weights.

Min-sum decoding. The BP decoder is an iterative soft-in

soft-out decoder that operates on the Tanner graph to compute

the posterior LLRs of the received vector, also referred to as

beliefs. In each iteration, the check nodes and the variable

nodes process the information to update the beliefs passed

along the edge. Operating in such an iterative fashion allows

for incremental improvement in the estimated posteriors.

During the first half of iteration t, at the VN v, the received

channel LLR lv is combined with the remaining beliefs µt−1
c′,v

from check node to calculate a new updated belief, to be

passed to the check nodes in next iteration. Hence, the message

from VN v to CN c at iteration t can be computed as

µt
v,c = lv +

∑

c′∈N(v)\c

µt−1
c′,v , (1)

where N(v) \ c is the set of all check nodes connected to

variable node v except c, as illustrated below.

v

ci cj ck cl
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During the latter half of the iteration t, at the CN c, the

message from the CN to any VN is calculated based on the

criterion that the incoming beliefs µt
v′,c at any check node

should always satisfy the parity constraint. To reduce the

computational complexity of BP decoding, a hardware friendly

variant known as min-sum approximation is used in practice.

The message from CN c to VN v at iteration t is given by

µt
c,v = min

v′∈M(c)\v
(|µt

v′,c|)
∏

v′∈M(c)\v

sign
(

µt
v′,c

)

. (2)

where M(c) \ v is the set of all variable nodes connected to

check node c except v , as illustrated below.

c
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Finally, at the end of iteration t, we combine all the

incoming beliefs to estimate the posterior belief as

otv = lv +
∑

c′∈N(v)

µt
c′,v . (3)

Neural min-sum decoding. While the min-sum approxi-

mation simplifies the computation, it also comes with a loss

in performance. It is readily shown in [12] that the min-sum

approximation is always greater than the true LLR from BP.

The neural min-sum algorithm improves the performance of

the min-sum decoder by introducing trainable weights along

the edges of the Tanner graph [5], [6].

Depending on the choice of correction, (2) can be modified

to produce Neural Normalized Min-Sum (NNMS) and Neural

Offset Min-Sum (NOMS) algorithms, given by

µt
c,v = αt

v⋆,c|µt
v⋆,c|

∏

v′∈M(c)\v

sign
(

µt
v′,c

)

, (4)

µt
c,v = max

(

|µt
v⋆,c| − βt

v⋆,c, 0
)

∏

v′∈M(c)\v

sign
(

µt
v′,c

)

,
(5)



respectively, where v⋆ = argmin
v′∈M(c)\v

|µt
v′,c|. The coefficients

αt
v⋆,c and βt

v⋆,c denote trainable normalization and offset

factors respectively, corresponding to the edge connecting vari-

able node v⋆ to check node c in iteration t. These weights are

then learned via stochastic gradient descent algorithms using

off-the-shelf deep learning frameworks to provide noticeable

reliability improvements.

IV. INTERPRETING THE NEURAL MIN-SUM DECODERS

While neural decoders achieve impressive gains, it is natural

to wonder about the reason for these gains. In [4], [6], [7],

it has been conjectured that the weights mitigate the effect

of cycles and thus improve the performance but evidence

for the same is lacking. We propose that the neural min-

sum decoders provide gains in two phases. The first is, as

conjectured previously, gains are achieved by correcting for

the false overestimates introduced by the cycles. In this regard,

we provide the first empirical evidence that the weights are

closely associated with the cycles in the graph. Additionally,

by extending the analysis to non-AWGN channels, we show

that neural networks also learn to correct the channel effects

and provide additional gains.

For ease of analysis, we consider the NNMS version of the

neural min-sum decoder. We consider BCH(63,36) code for

our primary analysis, consistent with previous works [4], [5],

[7]. The performance of these codes is studied well in litera-

ture [13] and also similar codes have been used in practice for

space data systems [1]. While the BCH family of codes makes

it easier to realize the gains from modifications to the min-

sum decoder because of the inherent sub-optimality of using

the min-sum decoder for BCH codes, the same principles and

analysis can be applied to any linear block codes. Additionally,

we follow the same architecture and training methodology as

[5].

Connection to cycles. In order to study the connection

between cycles in the graph and the weights learned, we

enumerate the number of length-4 cycles present at each

variable node and compare them against the mean of weights

across all corresponding edges and iterations. We see from

Fig. 1 that the weights are inversely proportional to the number

of cycles present at each variable node for both AWGN and

ETU channels, demonstrating that the learned weights impose

higher correction in the presence of a higher number of cycles.

To investigate this further, we look at three different rates

of length 63 BCH codes, which have a different number of

length-4 cycles. For each code, we again measure the mean

weight across all edges and iterations. From Table I, we can

see that the trend holds true, with BCH(63,30) having the

highest number of cycles and hence the least mean weight,

while the default weight in traditional min-sum decoder would

be 1. We validate this for both AWGN and ETU channels,

thus showing strong evidence that the weights being learned

are indeed commensurate with the cycles present.

Since it is also conjectured that these cycles lead to

a correlation between the incoming beliefs at the variable

Fig. 1: Weights vs Cycles: The mean weights, across the edges and
iterations, learned by NNMS at each check node (for BCH(63,36))
are inversely proportional to the number of short cycles present.
Additionally, we observe a noticeable difference in weights between
AWGN and ETU channels.

Code Length-4 cycles
Average weight

AWGN ETU

BCH (63,30) 10122 0.2632 0.3134

BCH (63,36) 5909 0.2987 0.3512

BCH (63,57) 1800 0.3990 0.5712

TABLE I: Number of short cycles present vs the weights learned.
Weights are inversely proportional to the number of cycles indicating
that more correction is needed when the number of cycles is higher.

nodes [14], we proceed to empirically estimate and compare

these correlations to better understand the effect of the weights.

Mitigating the correlation due to cycles. We consider

the AWGN channel for this analysis, where the correlation

between incoming beliefs at nodes is because of the cycles

in the Tanner graph. To find if the learned weights mitigate

this effect, we measure and compare the expected pairwise

correlation coefficient between the incoming messages at the

variable nodes i.e, E[ρµv,ci
,µv,cj

], where ci, cj ∈ N(v) and

i ̸= j and the expectation is over the message and the channel.

We observe from Fig. 2 that the correlation is reduced consid-

erably across all the variable node positions, which supports

our conjecture that the weights are improving the reliability

of the posterior probabilities by reducing the correlation.

Revisiting Fig. 1, even though the trends of weights across

variables nodes are the same for both AWGN and ETU

channels, the difference in weights between the two channels

varies considerably. This indicates that the choice of channels

is heavily influencing the weights learned by the decoder. To

investigate this further, we study the performance of neural

min-sum decoders in various channels.

V. CHANNELS VS. DECODER COMPLEXITY

While the neural min-sum decoders come with a noticeable

gain in error correction performance, they also increase the

memory requirement because of the large number of param-

eters. Hence, it is important to study the gains achieved and



Fig. 2: BCH(63,36) AWGN channel at SNR 1 dB. The expected pair-
wise correlation coefficient between incoming messages at variable
nodes is reduced across all positions.

explore possible simplifications while maintaining little to no

trade-off in performance.

The authors in [6] propose entangling the weights across

iterations to form a Recurrent Neural Network (RNN) decoder

referred to as RNN-FW. Further, in [7], the authors propose

entangling weights not only across iterations but across edges

as well, referred to as RNN-SS. This results in a loss of

performance, which is compensated using a parameter adapter

network that selects different weights for different SNR re-

gions, known as BP-PAN. Finally, the authors in [6], [7]

conclude that entangling the weights across iterations or/and

edges only comes with a negligible loss.

But, as evident from Fig. 1, the weights learned by the

decoder change considerably depending on the channel. The

commonly used AWGN channel might be too simple com-

pared to more complex realistic channels, and it is not clear

whether the trade-offs observed in [6], [7] hold true for non-

AWGN channels. It is important to study the entanglement of

weights not just for one channel but across various channels.

Hence we rigorously evaluate the error correction perfor-

mance of different neural decoders with varying levels of en-

tanglement across different synthetic and real channels. Based

on this, we provide strong empirical evidence that having

more weights is considerably beneficial in more complicated

channels compared to AWGN channels.

AWGN channels. In Fig. 3 we plot the Bit Error Rate

(BER) performance of three variants of the NNMS decoder

with varying degrees of entanglement. We choose BCH(63,36)

specifically to enable direct comparison against existing neural

decoders for AGWN channels [4]–[7]. As expected from prior

work and can be seen from Fig. 3(a), the performance is almost

indistinguishable across the variants for the AWGN channel.

ETU channels. In Fig. 3(b), we perform the same exper-

iment for the ETU channel, where we estimate the channel

at the receiver using the pilots of OFDM symbols and use

MMSE equalizer from LTE MATLAB toolbox to perform

equalization. We choose the ETU channel over EPA/EVA

channels because of the high delay spread environment. The

multi-path delay profile for the ETU channel is provided

in Table II.

Excess tap delay (ns) Relative power (dB)

0 –1.0

50 –1.0

120 –1.0

200 0

230 0

500 0

1600 –3.0

2300 –5.0

5000 –7.0

TABLE II: Multipath delay spread of ETU channel

These multi-path components make it hard to achieve per-

fect equalization and the reliability of decoding is significantly

impacted by the choice of entanglement, even after equaliza-

tion. At a BER of 10−5, NNMS and RNN-FW outperform

RNN-SS by more than 1.8 dB.

Bursty channels. To further study the effect of channel con-

ditions on the trade-off in performance due to entanglement,

we design the following experiment. We consider a family of

bursty channels in which the transmitted signal gets corrupted

in two steps. First, a Gaussian noise of N (0, σ2) is added to

the signal. We then select S consecutive symbols uniformly at

random to add bursty noise N (0, σ2
b ). The resultant channel

can be described as

Y = X +W,

Y [j : j + S] = Y [j : j + S] +Wb,

where W ∼ N (0, σ2) ∈ R
N and Wb ∼ N (0, σ2

b ) ∈ R
S .

To investigate our conjecture that more weights help better

in a complex channel, we test five power levels for the bursty

noise for σb =
√
Pbσ, Pb ∈ {1, 2, 4, 8, 16}. From Table III, we

see that as the bursty noise power increases, the degradation

of the entangled neural decoder compared to the full version

also increases.

Bursty noise power Degradation (dB)

Ã2 0.5

2Ã2 0.7

4Ã2 1

8Ã2 1.2

16Ã2 1.5

TABLE III: As the channel worsens, with higher busty noise power,
the degradation due to entangled weights (from RNN-FW to RNN-
SS for NNMS decoder at BER 10

−5) becomes higher.

Over-the-Air channels. Apart from the previous synthetic

channels considered, we train and test the NNMS decoder in a

real multi-path environment by using two USRP N200 series

RF-transceivers with 1 antenna each communicating over the

air. The antennas are placed at a distance of 5 meters with

no direct line of sight. We generate random data, encode it

using BCH(63,36) code, and modulate using BPSK. We add

a synchronization preamble and transmit over the channel.

At the receiver, we capture the frames, correct for frequency



(a) AWGN (b) ETU

Fig. 3: Effect of entangling the weights: On the left, we see that SS entanglement of weights has up to 0.3 dB of degradation at a BER of
10

−5 for AWGN channel for BCH(63,36). However, for the ETU channel on the right, NNMS and RNN-FW outperform RNN-SS by up to
1.8 dB. We also see that while BP-PAN performs very well on the AWGN channel, it is unable to match with NNMS for a more complex
ETU channel.

Fig. 4: Over The Air testing: NNMS achieves a BER of 10−5 at 1.3
dBm lower Tx power compared to RNN-SS for BCH(63,36).

offset, and perform channel equalization. We then demodulate

the data to estimate the LLR. Once the data is collected, the

training and inference procedure is the same as other channels.

Fig. 4 shows that for a BER of 10−5, NNMS requires much

lower Tx power compared to RNN-SS which has only 2

weights.

These trends across different channels clearly demonstrate

that the trade-off of entangling weights varies considerably

with channel conditions. Thus, instead of fixing the number of

weights, we propose an adaptive framework depicted in Fig. 5,

where the model complexity is chosen based on the channel

conditions. We leave quantifying the channel conditions for

future work.

VI. ROBUSTNESS AND ADAPTIVITY

Since the performance of the decoders varies considerably

with the channel conditions, it is important for the learned

decoders to be robust. We test the robustness by training

a decoder on the AWGN channel and testing on the ETU

Analyze the 

channel

RNN-SS

RNN-FW
Train and 

deploy

Sense for changes 

in channel

Quick adaptive 

training

Good

Moderate

NNMS
Poor

No improvement

Improvement

Fig. 5: Adaptivity of neural min-sum decoders: The model complexity
can be chosen and adapted optimally on the go based on channel
variations.

channel. Fig. 6 shows that when the channel changes from

AWGN to ETU, the RNN-FW decoder still outperforms the

original min-sum decoder.

Even though neural min-sum decoders are robust to new

channels, we still observe degradation in performance com-

pared to the decoder trained on the true channel. To alleviate

this, we propose fine-tuning the decoder to the new channel

using a small amount of training data. We see from Fig. 6 that

with just 5% of additional training, the NNMS decoder adapts

well to the new channel, matching the performance of the

decoder trained fully on the ETU channel. This demonstrates

that the neural decoders are adaptive.

This shows that while the NNMS decoder trained on the

AWGN channel learns to correct the effect of short cycles,

additional training on newer channels introduces the capability

to correct channel effects as well.

It is interesting to note that the performance of BP-PAN

[7] degrades noticeably when the decoder trained on AWGN

is used on the ETU channel. We attribute this to the strong



Fig. 6: Robustness and Adaptivity: NNMS trained on AWGN is
robust and still outperforms the min-sum decoder on the ETU channel
for BCH(63,36). Further, with just 5% of additional training on ETU
data, NNMS adapts to ETU.

dependency of BP-PAN on the SNR values, which changes

from AWGN to ETU for a given BER. To alleviate this, we

scale the SNR range according to the BER to match with

the AWGN channel. This improves the performance of BP-

PAN trained on AWGN significantly, to match that of BP-PAN

trained on ETU. However, even with this transformation, the

performance is still worse than NNMS. This shows that while

BP-PAN learns very well on a simple channel with very few

parameters, NNMS takes advantage of the larger number of

weights and generalizes well, making them more robust.

VII. THEORETICAL ANALYSIS AND GAUSSIAN

APPROXIMATION

In this section, we explore finding good normalization fac-

tors using analytical approaches and compare the performance

of analytical and neural approaches.

We propose a novel formulation using Gaussian approxi-

mation analysis, where we assume that the sum of incoming

messages to the variable nodes is approximately Gaussian, as

supported by empirical evidence for AWGN channels [15].

Extending this assumption, we find the optimal normalization

factors that minimize the probability of error for a given SNR

for ETU channels.

Specifically, we consider the RNN-FW version of the neural

min-sum decoder. We restrict the analysis to one iteration. The

posterior belief at VN v is thus given by

ov = lv +





∑

c′∈N(v)

wc′,v ∗ µc′,v



 , (6)

where µc′,v is belief from CN c′ to VN v and wc′,v denotes

the corresponding weight. Since we are dealing with only

one iteration of the decoder, we can assume the incoming

messages to the variable node to be independent and ignore the

effect of cycles, approximating ov to the sum of independent

Gaussian random variables. The resultant distribution is given

by N (γv +
∑

c′∈N(v) wc′,vγc′,v, σ2
v +

∑

c′∈N(v) w
2
c′,vσ

2
c′,v),

Fig. 7: The weights from Gaussian Approximation deviate noticeably
compared to NNMS for BCH(63,36) at SNR 8 dB in ETU channel.

where γ and σ2 denote the mean and variance of correspond-

ing beliefs respectively. The probability of error is given by

Perror = Q





γv +
∑

c′∈N(v) wc′,vγc′,v
√

σ2
v +

∑

c′∈N(v) w
2
c′,vσ

2
c′,v



 .

We then analytically find the set of optimal weights wc,v

which minimize the probability of error, i.e., maximize the

argument in the Q function.

Now, we proceed to compare these analytical weights with

the weights learned from NNMS. In Fig. 7, we plot the mean

weights across the edges for each variable node, from which

we see that the weights from Gaussian approximation do not

capture the effect of cycles across the variable nodes and

deviate from the weights learned by the NNMS decoder.

In Fig. 8 we plot the BER performance of the normalized

min-sum decoder with weights obtained via Gaussian approx-

imation and compare it against min-sum and NNMS decoders.

We observe that while the Gaussian approximation approach

provides non-negligible gains, it is still significantly poorer

compared to NNMS. This shows that while approximating

the incoming beliefs to be Gaussian is applicable for AWGN

channel [15], which makes formulating the analytical solution

tractable, the same cannot be extended to ETU channels.

Alternative to analytical approaches, the problem of finding

optimal weights can also be solved using backpropagation of

the error for any channel conditions even for a large number

of weights, demonstrating the advantage of neural decoders

over the conventional approach.

VIII. CONCLUSION AND REMARKS

In this work, we provide an interpretation of the neural min-

sum decoders. We provide empirical evidence showing that the

weights learned by the decoder are strongly influenced by the

number of short cycles present in the Tanner graph. We show

that the learned weights attenuate the effect of these cycles to

improve the reliability of the posterior LLRs and contribute to

the robustness of the decoders across channels.

Further, we studied the complexity vs performance trade-

off for these decoders across various channels. Through our



Fig. 8: BCH(63,36) ETU: While the Gaussian approximation ap-
proach provides reliability gains, it is still considerably worse ( >
1 dB at BER 10

−4) compared to NNMS, after 1 iteration of min-
sum.

simulations, we show that more weights are needed for com-

plex channels to fully realize the gains while fewer weights

are sufficient for simple channels. We show that the weights

learned are robust to channel variations and can be quickly

adapted to newer channels. Additionally, we demonstrate the

performance of the neural min-sum decoders on practical

channels using SDRs.

Finally, we propose a novel Gaussian approximation analy-

sis for the neural min-sum decoders and study its performance.

We show that for complicated channels, neural decoders

lead to much better performance than the analytically driven

weights under the Gaussian approximation.

There are several interesting open problems. The first is to

understand more about quantifying the channel conditions and

simplifying the selection of model complexity. Additionally,

it would be interesting to establish connections between the

choice of hyperparameters, the channel conditions, and the

structure of the code, which could result in faster learning of

the weights.
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