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Abstract—In decoding linear block codes, it was shown that
noticeable reliability gains can be achieved by introducing learn-
able parameters to the Belief Propagation (BP) decoder. Despite
the success of these methods, there are two key open problems.
The first is the lack of interpretation of the learned weights,
and the other is the lack of analysis for non-AWGN channels. In
this work, we aim to bridge this gap by providing insights into
the weights learned and their connection to the structure of the
underlying code. We show that the weights are heavily influenced
by the distribution of short cycles in the code. We next look at
the performance of these decoders in non-AWGN channels, both
synthetic and over-the-air channels, and study the complexity
vs. performance trade-offs, demonstrating that increasing the
number of parameters helps significantly in complex channels.
Finally, we show that the decoders with learned weights achieve
higher reliability than those with weights optimized analytically
under the Gaussian approximation.

I. INTRODUCTION

Short length block codes are an attractive choice for use
cases with stringent latency requirements [1]. However, they
suffer from poor error correction performance. One key reason
for this is the presence of short cycles in the Tanner graph of
the code, making the iterative decoding sub-optimal. Unfortu-
nately at such short lengths, codes designed without cycles
have worse error correction performance [2]. Additionally,
when fading channels are considered, the Log Likelihood
Ratio (LLR) computation suffers from errors because of
imperfect Channel State Information (CSI) and equalization,
which makes the Belief Propagation (BP) decoder sub-optimal
[3]. Hence modifications to the traditional BP decoder are
necessary to improve its performance.

In [4], the authors demonstrate the advantage of using neural
networks for improving the BP decoder by placing multiplica-
tive weights along the edges of the Tanner graph structure
and unrolling the iterations, resulting in a neural BP decoder.
In [5], the authors show that instead of using multiplicative
weights, comparable gains can be achieved by using offset
factors combined with min-sum approximation, which reduces
the implementation cost. Later in [6], the authors explore
the possibility of reducing the number of weights needed by
entangling them across iterations in a recurrent fashion and
show that the performance is still comparable to the fully
parameterized model. More recently, the authors in [7] propose
entangling the weights not only across iterations but also
across the edges. To compensate for the performance loss,
a shallow neural network referred to as Parameter Adapter
Network (PAN), is used to select different weights for different
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SNRs regions resulting in a performance very close to [6].
Recently in [8], the authors propose using the weights from
neural BP decoders to prune an over-complete parity check
matrix to find the most important check nodes. Authors in
[9] explore sparse constraints on node activations and use
knowledge distillation to improve the neural decoders.

Despite the success of these works, there are two key
open problems that we answer in this work. The first is
the interpretation of the learned weights. While it has been
conjectured that the use of normalization or offsets to modify
the beliefs helps mitigate the detrimental effects of short cycles
[4], [5], there is no supporting evidence. We present a first
empirical evidence that the weights learned are directly related
to the short cycles present in the code and investigate how they
help in improving the reliability of the posterior LLRs.

The second is the analysis and trade-offs associated with
the complexity of neural min-sum decoders for channels
beyond the Additive White Gaussian Noise (AWGN) channels.
Existing work has focused on AWGN channels [4]-[7],
[10]. We demonstrate that the trade-offs are quite different on
complicated channels (including the over-the-air channel) from
AWGN channels, showing a need for an adaptive selection
of model complexity based on channel conditions. Our main
contributions are as follows:

e Interpretation: We interpret the gains provided by neu-
ral min-sum decoders in a two-phase fashion, first by
correcting for cycles in the code structure and then pro-
viding additional gains by correcting for channel effects
(Section 1V).

o Complexity Trade-off: We explore the complexity vs.
performance trade-off for neural min-sum decoders across
various channels including both synthetic and over-the-
air channels. We show that complex channels and over-
the-air channels require more weights to fully realize the
possible gains, while fewer weights suffice for simple
channels. To the best of our knowledge, we are the first
to evaluate and study neural min-sum decoders in non-
AWGN channels (Section V).

e Robustness and Adaptivity: We show that the learned
weights are fairly robust to channel variations i.e, the
decoder trained on one channel still outperforms the clas-
sical decoders on other channels. Furthermore, any loss in
performance due to the change in channel conditions can
be easily recovered with small fine-tuning (Section VI).

e Gaussian Approximation: Finally, we propose an ana-
Iytical approach for finding the weights using Gaussian
approximation and compare the neural min-sum decoders
and analytical decoders in terms of reliability. We show



that for complicated channels, neural decoders lead to
much better performance than the analytically driven
weights under the Gaussian approximation. (Section VII).

II. SYSTEM MODEL

In this work, we consider linear block codes. A (N, K)
block code maps a message of length K to a codeword of
length N and is uniquely described by its parity check matrix
H of dimensions (N — K) x N, where the rate of the code
is R = K/n. The linear block code can be also represented
using a bipartite graph, known as the Tanner graph, which can
be constructed using its parity check matrix H. The Tanner
graph consists of two types of nodes. We refer to them as
Check Nodes (CN) that represent the parity check equations
and Variable Nodes (VN) that represent the symbols in the
codeword. There is an edge present between a check node ¢
and variable node v if H(e,v) = 1.

We consider a system with Binary Phase Shift Keying
(BPSK) modulation that transmits a random vector X €
{—1,1}", where N is the code length. The modulated signal
is then passed through a channel to receive Y as

Y = Channel(X) + W,

where Channel(X) applies the effect of channel on the transmit
vector X and W is the noise at the receiver. As a special case,
when the channel is AWGN the LLR at the receiver for v
symbol can be calculated as

j— p(Yv = yv|Xv = ]-) _

! p(}/v = yUIXU = _1)
where Var(W) = o2 is the noise variance.

Apart from the AWGN channel, we also consider multi-

path fading propagation channels from the 3GPP specifi-
cations [11]. Specifically, we consider a multi-path fading
ETU channel, which has a high delay spread. We use the
MATLAB LTE Toolbox to transmit and receive data. The
multi-path delay profiles can be found in Table II. Finally,
we also test the decoder over-the-air by transmitting and
receiving using a USRP N200 SDR setup in a non-line-of-sight
(NLOS) multi-path environment. More comprehensive results
and the source code can be found at https://github.com/sravan-
ankireddy/nams.
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III. BACKGROUND

In this section, we review the min-sum variant of the BP
decoder and neural decoders with augmented weights.

Min-sum decoding. The BP decoder is an iterative soft-in
soft-out decoder that operates on the Tanner graph to compute
the posterior LLRs of the received vector, also referred to as
beliefs. In each iteration, the check nodes and the variable
nodes process the information to update the beliefs passed
along the edge. Operating in such an iterative fashion allows
for incremental improvement in the estimated posteriors.

During the first half of iteration ¢, at the VN v, the received
channel LLR [, is combined with the remaining beliefs uifi
from check node to calculate a new updated belief, to be

passed to the check nodes in next iteration. Hence, the message
from VN v to CN c at iteration ¢ can be computed as

dooui )

c’eN(v)\c

/’Lf),c = lU +

where N(v) \ ¢ is the set of all check nodes connected to
variable node v except ¢, as illustrated below.

During the latter half of the iteration ¢, at the CN ¢, the
message from the CN to any VN is calculated based on the
criterion that the incoming beliefs 4!, . at any check node
should always satisfy the parity constraint. To reduce the
computational complexity of BP decoding, a hardware friendly
variant known as min-sum approximation is used in practice.
The message from CN c to VN v at iteration ¢ is given by

II sien(uh.). @
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where M (c) \ v is the set of all variable nodes connected to
check node c except v , as illustrated below.

Finally, at the end of iteration ¢, we combine all the
incoming beliefs to estimate the posterior belief as

o =l,+ > b, 3)
c¢’€N (v)

Neural min-sum decoding. While the min-sum approxi-
mation simplifies the computation, it also comes with a loss
in performance. It is readily shown in [12] that the min-sum
approximation is always greater than the true LLR from BP.
The neural min-sum algorithm improves the performance of
the min-sum decoder by introducing trainable weights along
the edges of the Tanner graph [5], [6].

Depending on the choice of correction, (2) can be modified
to produce Neural Normalized Min-Sum (NNMS) and Neural
Offset Min-Sum (NOMS) algorithms, given by

:uf:,’u = as)*,c“’(’z*,c' H Sign (/"Lg)',c) ) (4)
v'e€M(c)\v
,U’Z,'u = max (|Mf)*,c| - f}*,c? O) H Sign (:uf;’,c) »(5)

v'eM(c)\v



respectively, where v* = argmin |ul, .|. The coefficients

v’ €M (c)\v
.. and B}. . denote trainable normalization and offset
factors respectively, corresponding to the edge connecting vari-
able node v* to check node c in iteration ¢. These weights are
then learned via stochastic gradient descent algorithms using
off-the-shelf deep learning frameworks to provide noticeable
reliability improvements.

IV. INTERPRETING THE NEURAL MIN-SUM DECODERS

While neural decoders achieve impressive gains, it is natural
to wonder about the reason for these gains. In [4], [6], [7],
it has been conjectured that the weights mitigate the effect
of cycles and thus improve the performance but evidence
for the same is lacking. We propose that the neural min-
sum decoders provide gains in two phases. The first is, as
conjectured previously, gains are achieved by correcting for
the false overestimates introduced by the cycles. In this regard,
we provide the first empirical evidence that the weights are
closely associated with the cycles in the graph. Additionally,
by extending the analysis to non-AWGN channels, we show
that neural networks also learn to correct the channel effects
and provide additional gains.

For ease of analysis, we consider the NNMS version of the
neural min-sum decoder. We consider BCH(63,36) code for
our primary analysis, consistent with previous works [4], [5],
[7]. The performance of these codes is studied well in litera-
ture [13] and also similar codes have been used in practice for
space data systems [1]. While the BCH family of codes makes
it easier to realize the gains from modifications to the min-
sum decoder because of the inherent sub-optimality of using
the min-sum decoder for BCH codes, the same principles and
analysis can be applied to any linear block codes. Additionally,
we follow the same architecture and training methodology as

[5].

Connection to cycles. In order to study the connection
between cycles in the graph and the weights learned, we
enumerate the number of length-4 cycles present at each
variable node and compare them against the mean of weights
across all corresponding edges and iterations. We see from
Fig. 1 that the weights are inversely proportional to the number
of cycles present at each variable node for both AWGN and
ETU channels, demonstrating that the learned weights impose
higher correction in the presence of a higher number of cycles.

To investigate this further, we look at three different rates
of length 63 BCH codes, which have a different number of
length-4 cycles. For each code, we again measure the mean
weight across all edges and iterations. From Table I, we can
see that the trend holds true, with BCH(63,30) having the
highest number of cycles and hence the least mean weight,
while the default weight in traditional min-sum decoder would
be 1. We validate this for both AWGN and ETU channels,
thus showing strong evidence that the weights being learned
are indeed commensurate with the cycles present.

Since it is also conjectured that these cycles lead to
a correlation between the incoming beliefs at the variable
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Fig. 1: Weights vs Cycles: The mean weights, across the edges and
iterations, learned by NNMS at each check node (for BCH(63,36))
are inversely proportional to the number of short cycles present.
Additionally, we observe a noticeable difference in weights between
AWGN and ETU channels.

Average weight

Code Length-4 cycles

AWGN ETU
BCH (63,30) 10122 0.2632 0.3134
BCH (63,36) 5909 0.2987 0.3512
BCH (63,57) 1800 0.3990 0.5712

TABLE I: Number of short cycles present vs the weights learned.
Weights are inversely proportional to the number of cycles indicating
that more correction is needed when the number of cycles is higher.

nodes [14], we proceed to empirically estimate and compare
these correlations to better understand the effect of the weights.

Mitigating the correlation due to cycles. We consider
the AWGN channel for this analysis, where the correlation
between incoming beliefs at nodes is because of the cycles
in the Tanner graph. To find if the learned weights mitigate
this effect, we measure and compare the expected pairwise
correlation coefficient between the incoming messages at the
variable nodes i.e, Elpy, . u,. ], where ¢;;¢; € N(v) and
1 # 7 and the expectation is over the message and the channel.
We observe from Fig. 2 that the correlation is reduced consid-
erably across all the variable node positions, which supports
our conjecture that the weights are improving the reliability
of the posterior probabilities by reducing the correlation.

Revisiting Fig. 1, even though the trends of weights across
variables nodes are the same for both AWGN and ETU
channels, the difference in weights between the two channels
varies considerably. This indicates that the choice of channels
is heavily influencing the weights learned by the decoder. To
investigate this further, we study the performance of neural
min-sum decoders in various channels.

V. CHANNELS VS. DECODER COMPLEXITY

While the neural min-sum decoders come with a noticeable
gain in error correction performance, they also increase the
memory requirement because of the large number of param-
eters. Hence, it is important to study the gains achieved and
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Fig. 2: BCH(63,36) AWGN channel at SNR 1 dB. The expected pair-
wise correlation coefficient between incoming messages at variable
nodes is reduced across all positions.

explore possible simplifications while maintaining little to no
trade-off in performance.

The authors in [6] propose entangling the weights across
iterations to form a Recurrent Neural Network (RNN) decoder
referred to as RNN-FW. Further, in [7], the authors propose
entangling weights not only across iterations but across edges
as well, referred to as RNN-SS. This results in a loss of
performance, which is compensated using a parameter adapter
network that selects different weights for different SNR re-
gions, known as BP-PAN. Finally, the authors in [6], [7]
conclude that entangling the weights across iterations or/and
edges only comes with a negligible loss.

But, as evident from Fig. 1, the weights learned by the
decoder change considerably depending on the channel. The
commonly used AWGN channel might be too simple com-
pared to more complex realistic channels, and it is not clear
whether the trade-offs observed in [6], [7] hold true for non-
AWGN channels. It is important to study the entanglement of
weights not just for one channel but across various channels.

Hence we rigorously evaluate the error correction perfor-
mance of different neural decoders with varying levels of en-
tanglement across different synthetic and real channels. Based
on this, we provide strong empirical evidence that having
more weights is considerably beneficial in more complicated
channels compared to AWGN channels.

AWGN channels. In Fig. 3 we plot the Bit Error Rate
(BER) performance of three variants of the NNMS decoder
with varying degrees of entanglement. We choose BCH(63,36)
specifically to enable direct comparison against existing neural
decoders for AGWN channels [4]-[7]. As expected from prior
work and can be seen from Fig. 3(a), the performance is almost
indistinguishable across the variants for the AWGN channel.

ETU channels. In Fig. 3(b), we perform the same exper-
iment for the ETU channel, where we estimate the channel
at the receiver using the pilots of OFDM symbols and use
MMSE equalizer from LTE MATLAB toolbox to perform
equalization. We choose the ETU channel over EPA/EVA
channels because of the high delay spread environment. The

multi-path delay profile for the ETU channel is provided
in Table II.

Excess tap delay (ns) Relative power (dB)

0 -1.0
50 -1.0
120 -1.0
200 0
230 0
500 0
1600 -3.0

2300 -5.0
5000 7.0

TABLE II: Multipath delay spread of ETU channel

These multi-path components make it hard to achieve per-
fect equalization and the reliability of decoding is significantly
impacted by the choice of entanglement, even after equaliza-
tion. At a BER of 1075, NNMS and RNN-FW outperform
RNN-SS by more than 1.8 dB.

Bursty channels. To further study the effect of channel con-
ditions on the trade-off in performance due to entanglement,
we design the following experiment. We consider a family of
bursty channels in which the transmitted signal gets corrupted
in two steps. First, a Gaussian noise of N'(0,0?) is added to
the signal. We then select S’ consecutive symbols uniformly at
random to add bursty noise N(0,07). The resultant channel
can be described as

Y =X+ W,
Y[j:j+S=Y[j:j+ S+ W,

where W ~ N(0,02) € RY and W}, ~ N(0,02) € RS.

To investigate our conjecture that more weights help better
in a complex channel, we test five power levels for the bursty
noise for o, = \/Pyo, P, € {1,2,4,8,16}. From Table III, we
see that as the bursty noise power increases, the degradation
of the entangled neural decoder compared to the full version
also increases.

Bursty noise power  Degradation (dB)

o? 0.5
202 0.7
402 1
802 12
1602 15

TABLE III: As the channel worsens, with higher busty noise power,
the degradation due to entangled weights (from RNN-FW to RNN-
SS for NNMS decoder at BER 10~°) becomes higher.

Over-the-Air channels. Apart from the previous synthetic
channels considered, we train and test the NNMS decoder in a
real multi-path environment by using two USRP N200 series
RF-transceivers with 1 antenna each communicating over the
air. The antennas are placed at a distance of 5 meters with
no direct line of sight. We generate random data, encode it
using BCH(63,36) code, and modulate using BPSK. We add
a synchronization preamble and transmit over the channel.
At the receiver, we capture the frames, correct for frequency
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Fig. 3: Effect of entangling the weights: On the left, we see that SS entanglement of weights has up to 0.3 dB of degradation at a BER of
10~° for AWGN channel for BCH(63,36). However, for the ETU channel on the right, NNMS and RNN-FW outperform RNN-SS by up to
1.8 dB. We also see that while BP-PAN performs very well on the AWGN channel, it is unable to match with NNMS for a more complex

ETU channel.
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Fig. 4: Over The Air testing: NNMS achieves a BER of 107° at 1.3
dBm lower Tx power compared to RNN-SS for BCH(63,36).

offset, and perform channel equalization. We then demodulate
the data to estimate the LLR. Once the data is collected, the
training and inference procedure is the same as other channels.
Fig. 4 shows that for a BER of 1075, NNMS requires much
lower Tx power compared to RNN-SS which has only 2
weights.

These trends across different channels clearly demonstrate
that the trade-off of entangling weights varies considerably
with channel conditions. Thus, instead of fixing the number of
weights, we propose an adaptive framework depicted in Fig. 5,
where the model complexity is chosen based on the channel
conditions. We leave quantifying the channel conditions for
future work.

VI. ROBUSTNESS AND ADAPTIVITY

Since the performance of the decoders varies considerably
with the channel conditions, it is important for the learned
decoders to be robust. We test the robustness by training
a decoder on the AWGN channel and testing on the ETU

Good
RNN-SS
Analyze the Moderate Train and
channel RNN-FW deploy
Poor NNMS Sense for changes
in channel
Improvement
No improvement Quick adaptive

training

Fig. 5: Adaptivity of neural min-sum decoders: The model complexity
can be chosen and adapted optimally on the go based on channel
variations.

channel. Fig. 6 shows that when the channel changes from
AWGN to ETU, the RNN-FW decoder still outperforms the
original min-sum decoder.

Even though neural min-sum decoders are robust to new
channels, we still observe degradation in performance com-
pared to the decoder trained on the true channel. To alleviate
this, we propose fine-tuning the decoder to the new channel
using a small amount of training data. We see from Fig. 6 that
with just 5% of additional training, the NNMS decoder adapts
well to the new channel, matching the performance of the
decoder trained fully on the ETU channel. This demonstrates
that the neural decoders are adaptive.

This shows that while the NNMS decoder trained on the
AWGN channel learns to correct the effect of short cycles,
additional training on newer channels introduces the capability
to correct channel effects as well.

It is interesting to note that the performance of BP-PAN
[7] degrades noticeably when the decoder trained on AWGN
is used on the ETU channel. We attribute this to the strong
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for BCH(63,36). Further, with just 5% of additional training on ETU
data, NNMS adapts to ETU.

dependency of BP-PAN on the SNR values, which changes
from AWGN to ETU for a given BER. To alleviate this, we
scale the SNR range according to the BER to match with
the AWGN channel. This improves the performance of BP-
PAN trained on AWGN significantly, to match that of BP-PAN
trained on ETU. However, even with this transformation, the
performance is still worse than NNMS. This shows that while
BP-PAN learns very well on a simple channel with very few
parameters, NNMS takes advantage of the larger number of
weights and generalizes well, making them more robust.

VII. THEORETICAL ANALYSIS AND GAUSSIAN
APPROXIMATION

In this section, we explore finding good normalization fac-
tors using analytical approaches and compare the performance
of analytical and neural approaches.

We propose a novel formulation using Gaussian approxi-
mation analysis, where we assume that the sum of incoming
messages to the variable nodes is approximately Gaussian, as
supported by empirical evidence for AWGN channels [15].
Extending this assumption, we find the optimal normalization
factors that minimize the probability of error for a given SNR
for ETU channels.

Specifically, we consider the RNN-FW version of the neural
min-sum decoder. We restrict the analysis to one iteration. The
posterior belief at VN v is thus given by

0y =1, +

Z Wer v * Ue! v ) (6)

c¢’eN(v)

where pi./ ,, is belief from CN ¢’ to VN v and w, , denotes
the corresponding weight. Since we are dealing with only
one iteration of the decoder, we can assume the incoming
messages to the variable node to be independent and ignore the
effect of cycles, approximating o, to the sum of independent
Gaussian random variables. The resultant distribution is given
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Fig. 7: The weights from Gaussian Approximation deviate noticeably
compared to NNMS for BCH(63,36) at SNR 8 dB in ETU channel.

where v and 2 denote the mean and variance of correspond-
ing beliefs respectively. The probability of error is given by

Yo + ZC/EN(U) We! vYe! v
2 2 2
\/Jv + ZC/EN(’U) wc’,vac’,v

We then analytically find the set of optimal weights w, ,
which minimize the probability of error, i.e., maximize the
argument in the Q function.

Now, we proceed to compare these analytical weights with
the weights learned from NNMS. In Fig. 7, we plot the mean
weights across the edges for each variable node, from which
we see that the weights from Gaussian approximation do not
capture the effect of cycles across the variable nodes and
deviate from the weights learned by the NNMS decoder.

In Fig. 8 we plot the BER performance of the normalized
min-sum decoder with weights obtained via Gaussian approx-
imation and compare it against min-sum and NNMS decoders.

We observe that while the Gaussian approximation approach
provides non-negligible gains, it is still significantly poorer
compared to NNMS. This shows that while approximating
the incoming beliefs to be Gaussian is applicable for AWGN
channel [15], which makes formulating the analytical solution
tractable, the same cannot be extended to ETU channels.

Alternative to analytical approaches, the problem of finding
optimal weights can also be solved using backpropagation of
the error for any channel conditions even for a large number
of weights, demonstrating the advantage of neural decoders
over the conventional approach.

Petror = Q

VIII. CONCLUSION AND REMARKS

In this work, we provide an interpretation of the neural min-
sum decoders. We provide empirical evidence showing that the
weights learned by the decoder are strongly influenced by the
number of short cycles present in the Tanner graph. We show
that the learned weights attenuate the effect of these cycles to
improve the reliability of the posterior LLRs and contribute to
the robustness of the decoders across channels.

Further, we studied the complexity vs performance trade-
off for these decoders across various channels. Through our
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proach provides reliability gains, it is still considerably worse ( >
1 dB at BER 10™%) compared to NNMS, after 1 iteration of min-
sum.

simulations, we show that more weights are needed for com-
plex channels to fully realize the gains while fewer weights
are sufficient for simple channels. We show that the weights
learned are robust to channel variations and can be quickly
adapted to newer channels. Additionally, we demonstrate the
performance of the neural min-sum decoders on practical
channels using SDRs.

Finally, we propose a novel Gaussian approximation analy-
sis for the neural min-sum decoders and study its performance.
We show that for complicated channels, neural decoders
lead to much better performance than the analytically driven
weights under the Gaussian approximation.

There are several interesting open problems. The first is to
understand more about quantifying the channel conditions and
simplifying the selection of model complexity. Additionally,
it would be interesting to establish connections between the
choice of hyperparameters, the channel conditions, and the
structure of the code, which could result in faster learning of
the weights.
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