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A Multiaxial Plasticity Model with Softening for Simulating

Inelastic Local Buckling in Steel Beam Columns under
Monotonic Loading through Fiber Elements

Diego Isidoro Heredia Rosa'; Albano de Castro e Sousa?; Dimitrios G. Lignos, M.ASCE?,;
Arka Maity“; and Amit Kanvinde, M.ASCE?®

Abstract: This paper proposes a novel multiaxial plasticity model for 3-dimensional nonlinear static analysis of steel frame buildings
with fiber-based beam-column elements. The proposed constitutive formulation is expressed within the framework of rate-independent
metal plasticity and captures both the pre- and postpeak response of typical structural steel elements due to yielding and inelastic local
buckling under monotonic loading. An initial yield criterion is selected along with newly developed evolution laws. The material
response follows J2 plasticity under a tensile stress state. Under compressive loading, the developed constitutive relation incorporates
softening to simulate the postpeak response of a member due to inelastic local buckling. The model relies on appropriate yield
line mechanisms inferred from buckling analyses of steel plates with characteristic boundary conditions. The proposed constitutive
formulation, which is implemented in an open-source frame analysis finite element program, is general and can be used to represent
a wide range of softening phenomena. To tackle mesh dependency in the presence of a softening material response, a regularization
procedure is developed for 3-dimensional fiber-based elements. Direct comparisons between the predicted and measured nonlinear mon-
otonic responses of physically tested steel beam-columns suggest that the proposed formulation predicts accurately their deduced
moment-rotation and the axial shortening-rotation relations. Moreover, the stress distributions across typical cross sections in the post-
peak loading regime depict the importance of axial-shear-flexure interaction within a steel beam-column. DOI: 10.1061/JSENDH.

STENG-13136. © 2024 American Society of Civil Engineers.

Introduction

Reduced-order models are highly desirable for computing the load-
carrying capacity of frame structures. These models are widely used
for predicting the performance of new and existing structures
(ASCE 2023; CEN 2005b) either with nonlinear static or nonlinear
dynamic analysis procedures. In the case of steel structures, which
is the primary focus of this thesis, predictive models should capture
the strength and stiffness deterioration of steel members. Deterio-
ration mechanisms can be associated with the interaction of differ-
ent loading modes (e.g., a variable axial force interacting with
biaxial flexure, or shear and torsion interacting with axial force
and flexure) or with nonlinear geometric instabilities due to local
and/or flexural buckling and/or or lateral torsional buckling. While
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coupling of these nonlinear geometric instabilities may be evident
(Kemp 1985; Ozkula et al. 2017b; Elkady and Lignos 2018a), the
focus of the present work is on reduced-order models for predicting
inelastic local buckling under monotonic loading. It should be
noted that failure mechanisms associated with material (e.g., frac-
ture) are out of the scope of this study.

Models of various fidelities have been developed to take into
account inelastic local buckling in steel members; namely, (1) point
hinge models for flexure; (2) fiber-based beam-column elements;
and (3) continuum finite element models. It is also common to use
the preceding models in a hybrid fashion (Ribeiro et al. 2015;
Hartloper et al. 2022b). Point hinge models for flexure (Ibarra et al.
2005; Lignos and Krawinkler 2011) are computationally efficient,
but they exhibit a number of limitations. Particularly, these ele-
ments confine inelastic deformation to the ends of the member, thus
they are unable to account for inelastic deformations that might
occur elsewhere along the length of the element. This is an impor-
tant consideration when the interaction of axial load and flexure
is dominant within a member (MacRae 1989; Ozkula et al. 2017b;
Elkady and Lignos 2018a; Suzuki and Lignos 2021). Moreover,
point hinge elements for flexure specially tailored to capture local
buckling in steel beam column members cannot readily reproduce
column axial shortening following the onset of local buckling,
which may be an important aspect for a structure from a repairabil-
ity standpoint (Cravero et al. 2020).

Fiber-based beam-column elements (Taucer et al. 1991;
Spacone et al. 1996) can trace the spread of plasticity along
with the interaction of axial load and flexure within a member.
Moreover, axial shortening in steel columns can be successfully
traced when a constitutive material with softening is featured
(Suzuki and Lignos 2020). Others have developed 2-dimensional
beam-column elements (Saritas and Filippou 2009) that incorporate
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shear-flexure-axial interaction as well as 3-dimensional beam-
column elements (Gruttmann et al. 2000; Mazars et al. 2006;
Navarro Gregori et al. 2007; Le Corvec 2012; Di Re and Addessi
2018; Maity et al. 2023) to account for shear torsion and warping in
addition to flexure and axial load effects.

In structural and continuum mechanics, the use of a constitutive
formulation with a distinct behavior under a tensile stress state and
another in a compressive one, has been incorporated to capture
softening in quasibrittle materials, such as concrete. Particularly,
Mander et al. (1988) propose a uniaxial concrete material model
that can be used within 2D and 3D beam-column elements, while
Lubliner et al. (1989) and Lee and Fenves (1998) propose multi-
axial constitutive models for 3D finite element analysis of concrete
members. In these cases, the use of damage plasticity in a multi-
axial stress state involves a nonassociated plastic flow that results in
a non-symmetric material stiffness matrix. Furthermore, in soil
plastification the Drucker and Prager (1952) yield criterion is an-
other example of such constitutive formulation.

Moreover, in nonlinear analysis of steel structures, uniaxial
material formulations with softening are commonly used in fiber-
based beam-column elements (Krishnan 2010; Suzuki and Lignos
2020). It is important to emphasize herein that the softening ob-
served is in an effective sense, i.e., over a finite length of a member
owing to inelastic local buckling that occur within this length.
Uniaxial material formulations with softening have been developed
for simulating the postbuckling behavior of steel reinforcement
bars in reinforced concrete members (Gomes and Appleton 1997;
Dhakal and Maekawa 2002a, b; Kashani et al. 2015). Varma et al.
(2005) and Tort and Hajjar (2010) proposed a material law formu-
lation that can be used within a fiber-based beam-column element
to represent the inelastic response of concrete filled steel tubes
under monotonic and cyclic loading. Wang et al. (2012) developed
a phenomenological uniaxial effective stress-strain constitutive
model for wide flange steel beams. Similarly, Bai and Lin (2015)
and Bai et al. (2016) proposed a uniaxial constitutive law formu-
lation that exhibits softening in compression under monotonic load-
ing and can be used in fiber-based beam-column elements.

Continuum finite element approaches have been used to simu-
late the strength and stiffness deterioration mechanisms in steel
members subjected to multiaxial loading (Newell and Uang 2008;
Fogarty and El-Tawil 2016; Wu et al. 2018; Elkady and Lignos
2018b; Sediek et al. 2020; Hartloper et al. 2022a, b). Due to the
associated memory requirements, these models are prohibitively
expensive relative to reduced-order finite element modeling ap-
proaches (Hartloper 2021) to compute the load-carrying capacity
of structures under mechanical loading.

The general consensus from the previous studies is that existing
material formulations with softening for fiber-based models are
mostly uniaxial. Fiber models even when enhanced with shear and
torsional degrees of freedom typically assume a nonevolving shear
stress distribution with a constant shear tangent modulus when used
with a uniaxial material law along the fiber and an elastic material
everywhere else. Therefore, currently, any nonlinear analysis with
fiber-based elements that wants to incorporate local buckling in
steel members by introducing softening in the material as a proxy,
will neglect important member response characteristics correspond-
ing to the interaction of different loading modes (i.e., axial, shear,
bending moment, and uniform and non-uniform torsion). In the
case of steel beam-columns with wide flange cross sections, the
significance of interactive effects has been highlighted experimen-
tally (Ozkula et al. 2017a; Elkady and Lignos 2018a). In capacity-
designed steel frame structures, interactive effects become evident
after the onset of local buckling.
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This paper proposes a multiaxial plasticity formulation to re-
present inelastic local buckling in steel beam-columns under mon-
otonic loading. Although the focus of the work is on the monotonic
response of members with steel wide flange and hollow structural
steel (HSS) cross sections, the model formulation is general and can
be extended to other softening problems. The model distinguishes
between the tensile and compressive behavior in one continuous
yield function that evolves independently. Validation studies are
presented to demonstrate the suitability of the proposed formu-
lation to predict the postbuckling behavior of steel members with
wide flange and HSS cross sections. The examined members are
only susceptible to inelastic local buckling, i.e., torsion and warp-
ing are not pronounced. Limitations of the proposed formulation
are also discussed.

A Multiaxial Constitutive Formulation with Softening
for Simulating Inelastic Local Buckling

This section summarizes the primary features of the proposed
constitutive formulation with softening. The developed formulation
is expressed within the framework of rate-independent metal plas-
ticity (Simo and Hughes 1998). First, a suitable initial yield surface
is selected, and then, evolution rules are formulated in order to
guide the yield surface evolution conditioned on the respective
stress state.

The present formulation distinguishes between tensile (i.e., mean
stress, I; > 0, where I; = 0;;) and compressive stress states
(I, < 0). Local buckling induced softening may only occur under
a compressive stress state. Depending on the respective cross-
sectional slenderness ratio and the structural steel material, softening
may occur prior or after the postyield hardening path. Conversely,
tensile loading should only lead to a hardening response after
yielding. Referring to Fig. 1, the yield criterion assumed in this
work is composed of two different surfaces: (1) the classic von-Mises
yield surface in tension [Fig. 1(a)], and (2) an ellipsoid yield surface
in compression [Figs. 1(b and c)] that matches the von-Mises yield
surface prior to softening. In order to ensure the yield surface con-
tinuity on the m-plane (i.e., /; = 0 in the principal stress space),
both the von-Mises and the ellipsoid yield surfaces should have
the same radius along that plane. This is shown in Fig. 1(d).
The previously mentioned yield surface criterion is formulated
mathematically in Eq. (1)

i’ {¢VM: 3J,—02<0 for 1, =0

GFLL: 30y + x4 17 — 03 <0 for [; <0 (M)
where ¢"™ and ¢FLE denote the von-Mises and the ellipsoid yield
surfaces, respectively, J, the second invariant of the deviatoric stress
tensor, 7, the first invariant of the stress tensor, o, and o, respec-
tively, denote the yield stress and the stress at capping, ;. the
parameter guiding the ellipsoid yield surface evolution in the soft-
ening stage. It should be noted that the function is continuous
and differentiable at every point in its surface. The selected yield
surface can be seen as an inverted Huber (2004) surface, with the
von-Mises cylinder in tension, and an ellipsoid in compression. This
ensures the uniqueness of the plastic flow solution at every point on
the selected surface, including at the intersection of the tensile and
compressive surface on the pi-plane (Kolupaev 2018).

The parameter x;. controls the evolution of the compressive el-
lipsoid yield surface radius parallel to the hydrostatic axis (i.e., the
axis where 0y = 0, = 03). During the elastic and hardening stages
in compression, the parameter, ;. = 0. In those loading stages, the
second line of Eq. (1) is the original von-Mises yield surface shown
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(b)

(c)

Fig. 1. Yield surface evolution.

in Fig. 1(a). Once the evolution rule for parameter .. is selected, a
return mapping algorithm is developed in order to find the resulting
stress state given an input strain state. The developed return map-
ping algorithm follows the principles formulated in Simo and
Hughes (1998).

Typical 3-dimensional fiber-based beam-column elements (Le
Corvec 2012; Di Re and Addessi 2018; Maity et al. 2023), feature
three stress and strain components, the axial and the two in-plane
shear components. Because the proposed constitutive formulation
features a full stress-strain tensor (six independent components
due to symmetry), a condensation procedure is required to impose
the other three stress components equal to zero as assumed in most
3d-fiber formulations (Le Corvec 2012). In order to reduce the
computational cost of fiber-based beam-column elements, an alter-
native approach to condensation is developed for the case where the
stress-strain constitutive law is formulated on the basis of a return-
mapping algorithm. This approach is motivated by the enforcement
of plane-stress constraints directly in the return mapping algorithm
(Simo and Hughes 1998). The stress state of the considered 3d-
fibers implies that 0,3 = 05, = 033 = 0. This stress state will be
hereafter referred to as multiaxial fiber stress state. The free stress
and strain components can be written as the following vectors
0 — [O'] 1-012, 0'13}7- and € = [61] . 25]2, 25]3]T. With this definition
of the stress and strain vector, Eq. (1) can be rewritten as follows:

P"M: ZETPE— 02 <0 for I, =0
¢ = (2)
3
PHHE: §§TP§+X1C(PT")2—U§$O for 1, <0

where & = 6 — a is the relative stress (the backstress component
is defined in the following section). The projection matrix P and
projection vector p are given by

2/3 0 0
P=| 0 2 0 (3)
0O 0 2
and
p=[1 0 0] (4)

Elastic and Hardening Paths

The present work uses the updated Voce-Chaboche (UVC) plastic-
ity formulation (Hartloper et al. 2021) to model the elastic and
hardening loading stages. This hardening law is formulated within
the framework of rate independent J2 metal plasticity (Chen and
Han 1988; Lubliner 2008). Hereafter, a brief description of the
UVC material law is provided. The reader is referred to the original
work by Hartloper et al. (2021) for further details.
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The kinematic hardening mechanism given in rate form in
Eq. (5) has been proposed by Frederick and Armstrong (2007)
in order to represent the yield surface translation in the principal
stress space

. 2 . .
@ = \/; Créegh — Viébqty (5)

where 55,] denotes the equivalent plastic strain, n = (8¢>VM /0c) is the
normal to yield surface, and C;, and -y, are material parameters related
to the magnitude and rate of the kth backstress component, respec-
tively. The use of multiple backstresses was proposed in Chaboche
et al. (1979), where the overall backstress is expressed in Eq. (6)

Ny
a= Zak (6)
=1

Hartloper et al. (2021) proposed the isotropic hardening mecha-
nism in order to represent the yield surface expansion in the prin-
cipal stress space

Uy = Uy,() + Qoo(l — CXp[_bfgq]) - Doo(] - exp[—aegq]) (7)

where 0y is the initial yield stress, O, and b are material param-
eters defining the isotropic hardening magnitude and rate, respec-
tively. Similarly, D,, and a are material parameters defining the
magnitude and rate of the decrease in the initial yield stress. This
formulation features the initial yield plateau, which is typically seen
in mild structural steels (Lubliner 2008).

For typical mild structural steels, the material parameters oy, ¢, b,
Quos Do, Cy, and 7y, can be determined from a set of uniaxial mon-
otonic tensile and cyclic coupon tests as discussed in de Castro e
Sousa et al. (2020). The experimental data has been made publicly
available in Hartloper et al. (2023).

Softening Path

The following two assumptions are made on the yield surface
evolution in the postbuckling path: (1) there is no kinematic and
isotropic hardening or (2) the evolution of the compressive ellipsoid
yield surface is only guided by the evolution of the parameter .
[see Egs. (1) and (2)]. The first assumption implies that the yield
surface center and extent in the deviatoric plane remain constant in
the softening path, while the second one implies that the ellipsoid
yield surface radius parallel to the hydrostatic axis varies.

After the onset of local buckling, the yield surface in compres-
sion (I; < 0) shrinks in order to capture softening. From the second
line in Eq. (2), it can be seen that as . increases, the yield surface
becomes progressively more oblate, as its radius along the hydro-
static axis reduces. Fig. 1(d) shows the yield surface evolution in
the softening path.
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The proposed multiaxial formulation with softening can be con-
sidered with any evolution rule of ;.. As such, different ellipsoid
yield surface behaviors may be considered, thereby enabling the
modeling of different softening responses, if necessary.

It is postulated that the strain vector € can be decomposed into a
linear sum of strain components according to Eq. (8)

e =¢°+¢el +gblt (8)

where €¢ is the elastic strain vector, €7 is the plastic strain vector
and e”? is the postbuckling strain vector. The elastic stress-strain
relation can then be expressed following Eq. (9)

6=0C(e—el —e) 9)

where C is the matrix of elastic tangent moduli in the case of the
multiaxial fiber stress state.

In the softening path, normality is maintained, thus considering
an associative flow rule, the postbuckling strain e”? is given by
Eq. (10)

8¢ELL

apb
€ = )‘ph 96

(10)

where A, is the postbuckling consistency parameter, and the term
O¢FLL | 9o represents the normal to the ellipsoid yield surface. By
using the ellipsoid yield surface definition, the equivalent postbuck-
ling strain can be defined by Eq. (11)

LD = A\ JOEL PE .y 48X (0,0 (1)

The constitutive relation for the evolution of ), can be formu-
lated independently of the framework for the general softening
material response. An application example is shown later for steel
plates.

The plasticity constitutive relations and flow rules for the hard-
ening stage are consistent with those of J2 plasticity; the particular
details are not presented here for brevity. The reader is referred to
Simo and Hughes (1998) and Hartloper et al. (2021) for further
details.

Numerical Implementation

In order to implement the developed formulation discussed in the
previous section, three different considerations are discussed here:
first, the criterion used to distinguish between the different loading
stages, second, the procedure used to solve the consistency con-
ditions to obtain the stress state given an input strain vector, and
lastly, the derivation of the consistent tangent modulus operator,
which ensures a quadratic convergence rate for the solution
schemes used in beam-column elements (Hartloper et al. 2021).
The subsequent sections summarize important details regarding the
previous issues.

Loading Stage Criterion

During loading, a distinction is made between the tensile and
compressive loading directions. As previously stated, tensile strain-
ing can only result into elastic and hardening stages, which are de-
picted via the UVC material model. Conversely, during compressive
loading, a criterion is needed to consider softening after the elastic
and/or hardening stage depending on the corresponding cross-
sectional slenderness ratio. This criterion assumes that once the von-
Mises stress is equal to the stress, o at capping, then the multiaxial
constitutive relation should revert to softening from the original
UVC formulation. The stress at capping may be independently
calibrated either by using test data or via finite element simulations.
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An empirical formulation is presented later on (see previous section)
for estimating the stress at capping for mild structural steels. Math-
ematically, the previous criterion can be formulated as follows:

3
EGTPO' —0%, =0 (12)

where the first term (3/2)6” Po represents the square of the von-
Mises stress. A detailed pseudocode is provided together with
the source code that is made publicly available.

Solving the Consistency Conditions
The solution to the consistency condition during the softening stage
is addressed by following a methodology analogous to that of
classic metal plasticity (Simo and Hughes 1998; Hartloper et al.
2021). Particularly, a return mapping approach is developed for this
purpose to determine the stress state resulting from an imposed
strain vector. Within such a context, the Kuhn-Tucker complemen-
tary conditions are introduced following Eq. (13) in order to define
loading in the softening stage or elastic unloading. Specifically
App =0, ¢FE <0, AppdFHE =0 (13)

These conditions form the basis of the elastic-predictor-plastic-
corrector approach, whereby if the assumed elastic trial state does
not respect Eq. (13), then loading in the softening stage is activated,
and the return mapping approach determines the postbuckling
multiplier A, which constrains the final stress state to the ellipsoid
yield surface.

According to Simo and Hughes (1998), the return mapping
algorithm consists of an implicit backward Euler time integration
procedure, where 7 € [0, 7, ..., T] denotes the selected discretized
time interval. It is assumed that at time t = ¢, the strain state
decomposition (i.e., total strain, plastic and postbuckling strain),
as well the internal variables governing the yield surface evolution
are known.

Eq. (14) shows the algorithmic consistency conditions that
should be respected at time increment ¢ = ¢,

3
f()‘pb) = §§£+IP§11+1 + ch(pTO-rH»l)2 - U% =0 (14)

This equation is solved for time step ¢ = ¢, using the Newton-
Raphson Method (Bierlaire 2015) following Eq. (15)

(k)
)\(k+1> _ )\(k> _ f()\Pb) (15)

b b k
T Do)
where the linearization of Eq. (14) yields

0
Df(\yp) = prf()‘pb)
Ix
2 c
oA

(16)

0
= [(3P§n+1) + ZXICPPTO-VH-I] _§ + (pTo-n-H)
Ny

with

194 N )
8)\—b = QFIACIQT[ erll - C)‘pblecpp 'a
P
8X1L‘
O

—OTAC' Q" |C2x pp'a + CN 2 pp'a|  (17)
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where €14 denotes the elastic trial stress state, and I'(),) and its

derivative T’ = (0T'/0),;,) are functions of the postbuckling
multiplier A,, given by Egs. (18) and (19)

ro‘pb) = [AEL + >‘pb(3AP + ZXICApp)Fl (]8)

(9[‘ 6X]
' = =-T|3A 2x 1A 2\, <A, |T 19
8)\pb P + Xle pp + pb a)‘pb pp ( )

The matrices Q, A¢, Ap and A, result from the spectral de-
composition of the matrix of elastic tangent moduli C = QA-Q7,
the projection matrix P = QApQ", and projection vector
" =0A,,0".

The procedure described previously is valid for all the evolution
laws for the parameter x.. Only the derivative dx,./0A,, should
be computed in order to solve the consistency condition provided in
Eq. (14). For this purpose, a detailed pseudocode is made available
together with the source code of the proposed formulation. More-
over, the reader is referred to Hartloper et al. (2021) for a detailed
description of the solution procedure for the consistency conditions
during the hardening stage.

Consistent Tangent Modulus

This section provides the tangent modulus operator do/de,
which is consistent to the developed return mapping solution
scheme for loading in the softening stage. The tangent moduli
for loading in the hardening stage can be found in Hartloper et al.
(2021).

For clarity, the case where the parameter . is only a function
of the postbuckling strain component £/} according to Eq. (10) is
shown herein. However, this procedure can be generalized for any
evolution law of . by linearizing Eq. (14) and by considering the
different quantities governing the evolution of yj,.

The matrix of the consistent elastoplastic tangent modulus
operator C¢P can be computed using Eq. (20)

. a2¢ELL 82¢ELL
cer — C(I + C<,\pb (W AT )

_D (&zﬁm o ApT 8¢ELL) T) ) - (20)

oo oo
where I is the 3 x 3 identity matrix, and

B 82¢C{)mp 8X1c

=" 21
9601 Dety @
8¢C0mp a(bComp 8X1 32¢Comp
D= ° r B
( Jo * Mie 85{’{7 Apb do*
a(bCom[) 8X1c . a(bComp >—1
X B 22
< aXl(r 8€ffp Jdo ( )
aXl 82¢Comp —1
B=(1-2) p" 2
( del? AooP 96X, 23)

Eq. (20) yields an asymmetric matrix of tangent moduli;
therefore, a symmetric approximation is used according to
Eq. (24). This approximation by Hopperstad and Remseth (1995)
enables the use of optimized solvers and storing strategies for sym-
metric matrices

Application to Inelastic Steel Plate Buckling

The proposed constitutive formulation is tailored to inelastic steel
plate buckling under monotonic loading. For this purpose, typical
cross-sectional profiles (wide flange and HSS) can be idealized as
steel plates with simplified boundary conditions. These idealiza-
tions are made to construct suitable yield line mechanisms to ana-
lytically represent the local buckling of the previous two steel
plate types. It should be noted that these idealizations still exhibit
the following approximations: (1) the geometric symmetry of the
steel plates, (2) the idealized boundary conditions, and (3) the
assumption of constant stresses on the boundaries, which may
not hold true when we consider the effects of St Venant torsion
on the fibers. The previous assumptions are only considered to
infer generic behavioral characteristics that will be subsequently
calibrated.

To demonstrate the suitability of the developed constitutive re-
lation with softening to inelastic steel plate buckling, continuum
finite element simulations are conducted on steel plates represent-
ing the web and flanges of wide flange and HSS cross sections.
First, those simulation results are leveraged to develop simplified
empirical expressions for estimating the effective stress at capping
0.0 [Eq. (12)] based on reference geometric properties of the steel
plate of interest. Moreover, the same simulations are used to infer
the buckling deformations in the steel plates. The preceding are
then used to construct appropriate yield line mechanisms to analyti-
cally represent the local buckling mechanisms of steel plates with
different boundary conditions. Those yield line mechanisms are
then used to formulate the evolution rule of the parameter x . guid-
ing the compressive surface evolution during softening once web
and flange plate buckling occurs. Finally, the simulation results are
used for benchmarking the proposed multiaxial material model
formulation.

Finite Element Simulations

Continuum finite element simulations are conducted using ABAQUS
(2019). The steel plates to be analyzed reflect cross-sectional
slenderness ratios similar to those of highly ductile and moderately
ductile members according to AISC (2022). Particularly, web plates
with a slenderness ratio 10 < b/t < 30 (where b and ¢ are the width
and thickness of the steel plate, respectively) are considered.
Similarly, flange plates with a slenderness ratio of 4 < b/t <8
are considered. In prior work, the plate buckling mechanism has
been shown to be solely dependent on the plate slenderness ratio
(Moller et al. 1997). Therefore, the reference web and flange plate
geometry that is used in the simulations is 360 x 360 mm and
180 x 180 mm, respectively.

The simulations follow the modeling guidelines by Elkady and
Lignos (2018b). In brief, four-node shell elements with reduced
integration (S4R) are used. The adopted mesh size consists of
32 elements along both plate directions. Multiaxial plasticity is
considered with the UVC material model (Hartloper et al. 2021).
The simulations conducted herein use as a basis A992 Grade 50
structural steel. The material model parameters are identical to
those reported in Hartloper et al. (2021). The onset of local
buckling is triggered by introducing geometric imperfections pro-
portional to the first buckling mode of the respective steel plate.
This mode is determined via a standard buckling eigenvalue
analysis prior to the application of the compressive loading. The
geometric imperfections are scaled according to the modeling rec-
ommendations reported in Hartloper (2021). Residual stresses are
neglected in this case. The boundary conditions for the web and

1
Cl == ()T +C 24
symantl =9 (G + G (24) flange plates are shown in Fig. 2. From this figure, the four edges
© ASCE 04024196-5 J. Struct. Eng.
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Fig. 2. Boundary conditions of web and flange plates.
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Fig. 3. Buckled shape of plates: (a) web plates; and (b) flange plates.

of a web plate are restrained in the out-of-plane direction, but are
free to move in-plane. Conversely, one edge of the flange plate
is free in all directions, while the other three edges are restrained
in the out-of-plane direction and free in the in-plane direction.
For both web and flange plates, two opposing plate edges are
loaded in the longitudinal direction using displacement control.

Fig. 3 shows the obtained buckled shapes of the reference
web and flange plates. Of interest is an effective stress-strain
relationship that can be retrieved from the finite element simu-
lations for uniaxial compression of the corresponding plate as
shown in Fig. 4(a) for the web and in Fig. 4(b) for the flange
plates. The uniaxial effective stress and strain are defined as
follows:

R 1
Ueff = E and Efff = B (25)

where R and ¢ are the reaction force and the displacement, re-
spectively at the plate edges in the axial direction.

Fig. 5 depicts representative simulations for web and flange
plates with different plate slenderness ratios. Qualitatively, the
figure suggests that a more compact steel plate exhibits a larger
postyield effective plastic strain prior to the onset of local buckling
regardless of the respective boundary conditions, as expected.
Moreover, relatively slender web plates (e.g., b/t > 20) exhibit
a steep postbuckling tangent modulus, which is not as evident
in flange plates. This is attributed to the differences in the boundary
conditions of the two considered steel plate types.

The effective stress-strain relationships shown in Fig. 5 are
employed to develop an empirical formulation for predicting the
capping stress o, as a function of the steel material and the plate
geometry. This empirical formulation is established by conven-
tional linear regression analysis (Wasserman 2004). The assumed

Fig. 4. Plate yield line mechanisms and effective stress-strain definition: (a) web plates; and (b) flange plates. (Images from Elkady and Lignos

2018a.)
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Fig. 5. Comparison of continuum finite element simulations, plate yield line mechanisms and proposed formulation: (a) web plate b/7 = 15; (b) web
plate b/t = 20; (c) web plate b/t = 25; (d) web plate b/t = 30; (e) flange plate b/t = 5; (f) flange plate b/t = 6; (g) flange plate b/t = 7; and

(h) flange plate b/t = 8.

functional form for o is established according to Eq. (26). In prior
work on uniaxial formulations with softening the preceding
expression has been found to be effective (Suzuki and Lignos

2020)
Oc0 é ) Ty0 B2
70 = 61 <(t> _E ) +e (26)

where 3, and 3, are the empirical regression parameters and e is
the error term. Table 1 summarizes the values of 3, and 3, obtained
for the web and flange plates, as well as the corresponding R? val-
ues for characteristic structural steels in North America and Europe.
From the corresponding R? values the functional form represents
relatively well the predicted capping stress for different plate
geometries. In the presence of interactive buckling (Ozkula et al.
2017b; Elkady and Lignos 2018a) rather than inelastic local buck-
ling, which is addressed herein, the resultant calibration may need

Table 1. Capping stress regression model parameters

Steel Regression parameter Web plates Flange plates
A992 Gr.50 B4 1.12 0.54

B —0.52 —0.70

R? 0.96 0.98
A500 Gr.B* o 1.13 N/A

B —-0.27 N/A

R? N/A N/A
S355)2 B4 1.12 0.62

B —0.52 —0.60

R? 0.99 0.99

“Data from Suzuki and Lignos (2020).
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to be further tuned. However, this is outside the scope of the
present paper.

Yield Line Mechanism for Analytical Formulation of
Plate Buckling

This subsection discusses the yield line mechanisms defined for
web and flange steel plates under uniaxial loading in order to
formulate the evolution rule of the parameter . of the compres-
sive yield surface in the softening path.

Web plates: The yield line mechanism depicted in Fig. 3(a) is
assumed for the web plates. The primary assumptions of this
mechanism are that the length A = b/2 does not change during
the buckling-induced deformation, and that the angle 1 between
the plate edge and the inclined yield line is equal to 55 °. These
assumptions are consistent with prior related work (Mdller et al.
1997). In order to formulate the governing equation of this yield
line mechanism, the internal work increment dissipated by the
mechanism is equated to work increment done by the external load.
Recognizing that the total internal work increment comprises the
internal work increment dissipated in the inclined yield lines,
the one dissipated in the yield line perpendicular to the load, as
well as the internal work dissipated by the axial shortening of
the two lateral triangles, the internal and external work increments
are expressed in Eq. (27)

(1—¢) dm, b—2c

"sin(2n) /1 — (1 —¢)2 b\/1—(1—¢)?

+0t\/62+ (g 1—(1—5)2>2=otb (27)

where m, and m, are the bending moments per unit length in the
inclined yield lines and in the yield line perpendicular to the load,
respectively. Eq. (28) depicts the bending moment in a yield line
that is inclined with a certain angle # (Moller et al. 1997)

8m
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(o) = m[1- ()] (28)
\/1 — 3 [sin?(26) + sin*(6)] (al)z

where m, = (0,#*/4) is the plastic moment per unit length.
Eq. (27) can then be rewritten as follows:

o1 (£ ]

plate buckling simulations with those obtained analytically from
Eq. (31). The accuracy in all cases is noteworthy.

Eq. (31) can be further modified in order to obtain a similar
quartic expression reported in Eq. (40), which can be solved ana-
lytically to obtain the o/o, ratio

~ (oY o (o3 . [(oN\? . (o N
Dw —_ +Ew —_ +Fw — +GW —_ +I_Iw:o
O—_V O'y U_)' Uy

(40)
\/1 — 2 [sin®(2n) + sin*(n)] (”i‘)z sin(2n)/1 — (1 —¢)? where
A (B2
4mp |:1_ (01)2:| (b_zc) Dw - (Bw) (41)
+ : . - .
by/1—(1—¢)? E, =2B,C, (42)
b 2 N - N
+ 0'[\/C2 + (E 1— (1 — 6)2> FW = _(AW)2 + Z(Bw)z - Cgv (43)
= otbh (29) Gw = _ZBWCW (44)
This nonlinear equation may be solved numerically to find the H,=A2-B (45)
stress o given an input strain €. However, computational efficiency )
is a key feature to be preserved in the envisioned formulation. with
Therefore, Eq. (29) is further simplified into an expression that A 22(1 —¢)
can be solved analytically. Particularly, the following approxima- A, == . ° (46)
tion can be made for an angle 1 = 55° oy sin(2n)/1—(1—¢)
3. . 2(p —
Z 5in(2n) +sin’ ()] ~ 1 (30) B, =Be__rb=2) (47)
oy by/1—(1—¢)?
Simplifying the first term of Eq. (29) and after some basic al-
gebraic manipulations, the following quartic equation is obtained . b 2
C,=C, = |t,/]c*+ (—,/1—(1—5)2> — bt (48)
D,o* + E,0® + F,0> + G0+ H, =0 (31) 2
where The evolution of the o/0, ratio in Eq. (40) as a function of a
B2 strain € may be used to formulate the evolution law for . for the
D, =— <_V2V) (32) developed multiaxial constitutive response of web plates of various
ay geometries and structural steel materials.
Flange plates: The yield line mechanism of a flange plate is
_ 2B,C, (33) shown in Fig. 3(b). For the flange plate mechanism, it is further
" Uf assumed that the length A does not change as the plate buckling
progresses. Moreover, nn = 55°. Expressing the equality between
A,\? B, \? ) the dissipated internal work increment and the external work incre-
Fy == a_, +2 U_v -G (34) ment and by using the approximation from Eq. (30) yields the
) following quartic equation for the flange plates:
G = —2B,Cy (3) D;o* + Epo® + F;0® + Gro+ Hy =0 (49)
H, =A%, - B} (36) where
with B,\2
8m, (1 Pr= _(79 30
_ m, €) (37) y
sin(2n)4/1 — (1 —¢)? 2B.C
Ep =% (51)
4m,(b —2c y
y=2mplb 20 (38)
by\/1—(1—¢)? A2 B2
R L) S
oy ay
b 2
C, = {t c2+(— 1—(1—5)2> —bt} (39)
v \/ 2 Gy =—-2B,Cy (53)
Eq. (31) has a closed form solution. Therefore, the effective Hp = A]% — B]% (54)
stress-strain relation with softening can be analytically derived ‘
for a given fiber. Figs. 5(a—d) compare the results from the web with
© ASCE 04024196-8 J. Struct. Eng.
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B 4m,(1 —¢)
Ny 59

_ Amy(b—c)
b i—aoor 36)

Cr=

%t\/cz-i- <§ 1—(1—5)2>2_bt} (57)

Figs. 5(e-h) compare the stress-strain relations obtained from
the Abaqus plate buckling simulations with those from the yield
line mechanism obtained by solving Eq. (49) analytically for the
considered flange plates. Similarly to the web plate cases the agree-
ment between the two is noteworthy.

The o/ 0, ratio can be analytically derived for a given strain ¢ in
a similar fashion with the web plates [see Eq. (58)]. The quartic
expression for a flange plate is given in Eq. (58)

~ (o\* . (o} . [(o\? . [o .
D L) +E () +F () +G, (=) +H,=0
oy oy oy oy

(58)
where
Dy =—(B,) (59)
Fp=—(A;)?+2(By)?—C} (61)
H;=A; — B} (63)
with
.~ A 2(1—¢)
A="L= : (64)
oy sin(2n)y/1 — (1 —¢)
N Bf tz(b — (,)
By=—= (65)

0.8

0.6

0.4

0.2

(@)

The evolution of the /0, ratio as a function of a strain ¢ is used
to formulate the y,,. evolution for the multiaxial constitutive for-
mulation with softening for a flange plate.

Ellipsoid Yield Surface Evolution

In the softening path, the yield surface evolution is guided by the
evolution rule for the parameter . [Egs. (1) and (2)], which in turn
is determined from the /o, ratio for a given strain and plate slen-
derness ratio according to Egs. (40) and (58) for web and flange
plates, respectively. In the present work, the evolution of this ratio
is assumed to be a function of the postbuckling strain component in
the axial direction &/ 1b defined in Eq. (10). Finally, the evolution of
X1c Tatio is determined according to Eq. (67)

o 2
xie=bie(1=Z (40D + e (67)

y

where ¢, is a constant term used in order to enable buckling prior
to yielding, which could very well be the case for noncompact
steel plates (i.e., Class 4 according to the European cross section
classification (CEN 2005a). Once the capping stress oy < 0, is
attained, the constant c;. is determined such that the compressive
ellipsoid yield surface is reached for the specific stress state as
determined by Eq. (12). The term b, is given by the following

b % (68)
lce =72 2 N . 2
(0—30 - O—im)(alc)z

where . is a free parameter, closely related to the stress triaxiality
in the plates yield lines. Fig. 6 shows an example of the absolute
value of the stress triaxiality in the web and flange plates during the
softening stage. From this figure, ;. may be assumed to be equal
to 1/3 and 2/3 for the web and flange plates, respectively.

Referring to Eq. (68), o, represents the stress at which there
is stabilization of the buckling length within a dissipative zone
(Krawinkler et al. 1983). A value o, = 10 MPa may be empiri-
cally assumed based on prior studies with emphasis at large
deformations of structural steel members (Suzuki and Lignos
2020, 2021).

The evolution rule for x. as reported in Eq. (67) may be used
within the proposed multiaxial constitutive formulation as dis-
cussed earlier in the previous section. This can be achieved by com-
puting the required derivatives of x;. to fully define the return
mapping algorithm, as well as the consistent tangent modulus dis-
cussed earlier. These derivatives are defined in Eqs. (69) and (70)

Do (1-Z00D) 25 (2) )

P pb
8511 y 851 1 Uy

(b)

Fig. 6. Stress triaxiality in plate yield lines: (a): web plates; and (b) flange plates.
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8X10 o 8X10 T 3¢ELL
Ny 0"’ e

(70)

where the partial derivative (9/0e? f’)(o/ o,) is obtained from
Eqs. (40) or (58) using a complex step derivative approximation
(Martins et al. 2003).

The associated pseudo-code of the return mapping algorithm
for the softening stage is provided together with the source code in
order to replicate the local buckling induced softening behavior of
web and flange plates within a cross section. The developed
multiaxial constitutive formulation with softening has been imple-
mented in OpenSees version 3.3.0 (McKenna 1997). The developed
algorithm and the commands necessary to utilize the developed
multiaxial constitutive formulation with softening within OpenSees
are provided in Heredia Rosa (2024). The source code in MATLAB
is also made available in GitHub (Heredia Rosa et al. 2023 https://
github.com/RESSLabTeam/MonotonicPlateBucklingModel).

Fig. 5 contrasts the effective stress-strain relation obtained with
the return mapping formulation (termed Proposed model) with
those obtained from Abaqus and the yield line mechanism for the
web and flange plates. The results for the proposed model are ob-
tained by inputting the following strain vector to the return mapping
algorithm discussed earlier

e=[en 2 23] = [Ceteeive 0 0]" (71)

The input model parameters to consider combined isotropic/
kinematic hardening are taken from Hartloper et al. (2021) for
A992 Grade 50. The capping stress o, is obtained by using
Eq. (26) along with the parameters reported in Table 1. The return
mapping algorithm assumes a tolerance tol= 10~° for the conver-
gence criterion.

Referring to Figs. 5(a and b), for very compact web plates
(b/t < 20), there is a difference between the results obtained with
the Proposed model and those from the Abaqus plate simulations
whereas the predictions based on the assumed yield line mecha-
nism are generally better. One reason for this relates to the empiri-
cal nature of equation [Eq. (26)] used to determine the capping
stress of web plates with different local slenderness ratios. For
instance, from Figs. 5(a and b), the predicted capping stress is no-
ticeably higher than that obtained from the Abaqus simulations.
Another reason is the fact that the stress state of compact web
plates is considerably different than that of the assumed uniaxial
stress state resulting from the assumed uniaxial input vector of
Eq. (71). Conversely, for slender web plates [see Figs. 5(c and d)],
the proposed formulation agrees fairly well with the Abaqus results
as well as the analytically derived formulation with the assumed
yield line mechanism. Referring to Figs. 5(e-h) same observations
hold true for the flange plates regarding the accuracy of the pro-
posed formulation.

Regularization Procedure to Mitigate Mesh-
Dependency in Fiber-Based Elements

It is generally known that in the presence of softening section con-
stitutive relations (i.e., softening material response) such as those
presented herein, strain localization and loss objectivity is common
in fiber-based beam-column elements (Coleman and Spacone
2001; Sideris and Salehi 2016; Kolwankar et al. 2018). Among
different options, one approach to tackle mesh dependence is to
formulate a regularization procedure. While the regularization pro-
cedure presented herein is general for any 3-dimensional fiber-
based beam-column elements, a force-based beam-column element
is used to demonstrate the proposed approach. Within such a
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Fig. 7. Normalized axial stress - displacement relation and dissipated
energy G of a plate simulated in Abaqus. Dissipated energy is quanti-
fied for mesh-dependency regularization.

context, a regularization procedure is proposed, which is motivated
by earlier work as summarized in Coleman and Spacone (2001) for
reinforced concrete beam-column elements. For brevity, the pro-
posed procedure is illustrated for a web plate with a slenderness
ratio of b/r = 22.3.

A reference dissipated energy G should first be determined that
corresponds to the softening stage. This energy may be determined
either from finite element simulations or physical experiments on
steel plates under uniaxial compression. The reference dissipated
energy G is defined as the area under the normalized stress-
displacement curve shown in Fig. 7. The capping point is used
as the starting point, whereas the end point is considered to be that
at which postbuckling stress stabilization occurs. Mathematically,
this point is defined as the stress at which the tangent modulus
becomes constant. Referring to Fig. 7, the value of the ratio
(0/0¢0)|sa corresponding to the postbuckling stabilization point
should also be determined. Mathematically, this point is defined
as the stress at which the tangent modulus of the corresponding
effective stress-strain relation begins to exhibit a constant rate of
change. This is achieved when the second derivative of the corre-
sponding effective-strain relation becomes constant, with a value
less than 1 MPa.

In order to regularize the developed constitutive formulation
with softening, a parameter o, is used to multiply the strain &} f
that is inputted into Eq. (40) to compute the evolution of the o/a,
ratio. Within a fiber-based beam-column element and for a given
quadrature rule, the dissipated energy G shown in Fig. 7 can be
expressed in terms of stress and strain using Eq. (72)

G=1L, Uids (72)
c0

where L,;p is the length of the integration point for which strain
localization is expected.

The integral in Eq. (72) corresponds to the area under the curve
defined by the quartic yield line Eq. (40); therefore, it can be
expressed as

_pbx

‘n o b b

G=Lip [ ey el (73)
. y

where e lb * indicates the value of the postbuckling strain compo-
nent corresponding to the (o/0¢g)|sqp ratio.

As the dissipated energy G is known, Eq. (73) can be solved for
a given L;p in order to determine the regularization parameter o,
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Validation with Physical Tests on Steel Beam-
Columns

In this section, the proposed constitutive formulation is employed
within the 3-dimensional Timoshenko force-based beam-column
element that is available in OpenSees (McKenna 1997). Specifi-
cally, this element follows the element state determination pro-
cedure described in Spacone et al. (1996) for a 3-dimensional
Euler-Bernoulli beam element and is enhanced by assuming the
section state determination discussed in Di Re (2017) in the case
of a Timoshenko fiber-based beam-column element with a constant
shear strain distribution due to bending. Because the present paper
focuses on the multiaxial constitutive formulation with softening,
the constant shear strain distribution is deemed acceptable and al-
lows to capture the interaction between the axial and shear forces
by accounting for the interaction between longitudinal and shear
stresses at the fiber level.

The corotational formulation (Crisfield 1991) is used in order to
account for nonlinear geometric effects. This formulation can be
used with any 3-dimensional beam-column element as it considers
the displacement at the element end node degrees-of-freedom.
Furthermore, since the scope of this paper is on the development
of the multiaxial softening material law, the effect of this corota-
tional formulation with specific loading modes such as shear, is
outside the scope of the present work. The simulation results
are compared with those from experimental data on representative
steel beam-columns featuring HSS and wide flange profiles under
monotonic loading. The comparisons are based on the deduced
moment - rotation as well as axial shortening - rotation relation-
ships. For comparison purposes, the results are compared with
those derived from continuum finite element simulations in
Abaqus.

The experimental data comprise cantilever beam-columns fea-
turing two different cross-sectional profiles; namely, a HSS254x9.5
made of A500 Grade B steel (D/t = 24.7, where D and ¢ are the
depth and thickness of the HSS, respectively) and a W16x89 made
of A992 Grade 50 steel (i.e., web slenderness ratio, d/t,, = 25.9;
where d and tyy is the web depth and thickness, respectively; and a
flange slenderness ratio, by / 2ty = 5.9; where b and 1, is the width
and thickness of the flange, respectively). The former is used in
specimen H27MC from Suzuki and Lignos (2021), whereas the
latter is used in specimen B1 from Cravero et al. (2020). Both
specimens where subjected to monotonic lateral load coupled with
a constant axial load demand of P = 0.3P,. Steel members featur-
ing wide flange shapes may be susceptible to torsion and warping.
In this case, the use of more advanced 3-dimensional beam-column
elements (Le Corvec 2012; Maity et al. 2023) would be suitable.
However, specimen B1 is laterally braced at L, = 1825 mm from
the fixed end [see Fig. 8(a)], resulting into a relatively small,
unbraced member length, L,/r, = 37.9; hence, the test specimen
did not experience any torsional demands and softening was only
attributed to the formation of cross-sectional local buckling at a
distance of about 1.1D from the fixed end. Consequently, the use
of the selected 3-dimensional Timoshenko beam element is justifi-
able in this case. Specimen H27MC is braced at L, = 1525 mm
from the bottom end.

Both test specimens are idealized with the force-based beam-
column element shown in Fig. 8(b). Five integration points are
considered along the element length [see Fig. 8(b)]. The number
of integration points along the member length is selected such that
their distance is larger than a characteristic length scale. This is
taken as the HSS and wide flange local buckling lengths, which,
according to Suzuki and Lignos (2021), should be 1.0D. The
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Fig. 8. Model validation with steel column tests: (a) experimental
setup; (b) beam-column element; and (c) fiber sections.

Newton-Cotes quadrature rule (Abramowitz and Stegun 1965) is
employed.

The HSS and wide flange cross sections are discretized into
the fiber sections shown in Fig. 8(c). Each fiber is assigned with
the developed constitutive relation with softening. A distinction is
made between fibers within a web and a flange plate so that the
corresponding relation is assigned as discussed earlier. The regres-
sion parameters (3; and (3, for estimating the capping stress o
using Eq. (26) are taken from Table 1 conditioned on the structural
steel type. The capping stress is determined according to Eq. (26).
For the HSS profile, the depth is assumed to be equal to D — 2r,
where r is the corner radius of the HSS. Similarly, a depth equal to
d —2t; —2r is used for the web plate of the wide flange cross
section; where r is the radius of the k-area. However, in this case,
the computed capping stress was increased by 20 % because the
regression equation neglects the interaction of flange and web plate
buckling. A regularization parameter «,,, = 0.32 is obtained for
the HSS profile that is idealized with four web plates. The corre-
sponding regularization parameters of the web and flange plates of
the wide flange cross section are equal t0 vy, = 0.44 and
Qreg flange = 0.18, respectively.

In parallel with the fiber-based simulations in OpenSees, an ad-
ditional set of simulations is carried out in Abaqus for comparison
purposes. These simulations are conducted by following the mod-
eling guidelines according to Suzuki (2018) and Hartloper (2021),
for HSS and wide flange beam-columns, respectively. In both
cases, shell elements are employed along with the UVC constitu-
tive relation to take into account plasticity. The input material
parameters reported in Hartloper et al. (2021) are assumed for
the A500 grade B and the A992 grade 50 structural steels.

Figs. 9(a) and 10(a) compare the moment - rotation relations for
the cantilever steel beam-column elements. Superimposed in the
same figure are the experimental data as well as the corresponding
predictions from the Abaqus simulations. From these figures, it is
evident that the developed constitutive formulation can predict
relatively well both the postyield and the postbuckling response
of both steel beam-columns under monotonic loading, regardless
of their employed cross section. A similar level of agreement is
noted for the axial shortening—rotation relations [Figs. 9(b) and
10(b)].

Figs. 9(c)-10(d) depict the stress distribution across the cross
sectional depth of the HSS and the wide flange profiles, respec-
tively. Both figures suggest that after reaching the capping point
in the moment-chord rotation relation (point B), the neutral axis
(defined as the point where the axial stress oy, is equal to zero)
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Fig. 9. Model validation with steel HSS column test: (a) moment-chord rotation relation; (b) axial shortening-chord rotation relation; (c) axial stress
distribution; and (d) shear stress distribution. (Experimental data from Suzuki and Lignos 2021, © ASCE.)
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Fig. 10. Model validation with steel wide flange column test: (a) moment-chord rotation relation; (b) axial shortening-chord rotation relation; (c) axial
stress distribution; and (d) shear stress distribution. (Experimental data from Cravero et al 2020, © ASCE.)

descends toward the tension-loaded fibers. This shift in the neutral
axis location is attributed to the fact that the fibers loaded in tension
exhibit elastic unloading to maintain the equilibrium within the
cross section after the onset of softening in the fibers loaded in
compression. While the featured experimental data refer to the
response of cantilever beam-columns under planar monotonic
loading, the corresponding simulations trace a complex multiaxial
stress state that arises due to the interaction of flexure-axial-shear
deformations in the presence of softening due to inelastic local
buckling. For instance, referring to Figs. 9(d) and 10(d), the shear
stress o, is maximum at the neutral axis location. Upon further
loading, in the descending branch of the moment-rotation relation,
the location of the maximum shear stress shifts and follows the
neutral axis location in the axial stress distribution. Interestingly,
once softening commences at a compressive fiber, the shear stress
at that fiber also decreases. This is attributed to the fact that, during
softening, the multiaxial ellipsoid yield surface shrinks, thereby
reducing both the axial and shear stresses within that fiber. The
reduction in the axial and shear stresses within a fiber results into
a loss of the axial, shear and flexural load carrying capacity at
the cross-sectional level and subsequently at the member level.
The preceding indicate the importance of capturing the interaction
of axial load, bending and shear in the postbuckling regime.

It is crucial to recognize that the stress distributions given by the
proposed modeling approach are contingent upon the fiber-based
beam-column element formulation. For instance, as depicted in
Figs. 9(d) and 10(d), notable shear stresses o, are observed in
the flanges of HSS and wide-flange sections, which may not be
realistic. Heredia Rosa (2024) provides a more comprehensive
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comparison of the axial and shear stress distributions for both
HSS and wide-flange sections. This comparison contrasts the dis-
tributions obtained from detailed Abaqus (ABAQUS 2019) shell
continuum finite element simulations with those obtained from
the utilized 3D Timoshenko force-based beam-column element.
The estimated stress distributions can nonetheless be useful for
obtaining a qualitative understanding of force redistributions within
a member experiencing nonlinear geometric instabilities but one
should always be mindful of the important role that the element
formulation plays.

It may be argued that these simulations are not sufficient to
illustrate the material model performance and that applications
to statically indeterminate members would be more appropriate.
In this regard, additional simulations were conducted but for the
sake of brevity are not shown herein. These simulations indicate
that the proposed modeling approach can estimate relatively well
the moment-chord rotation relation and axial shortening-chord ro-
tation relation of fixed-fixed wide flange steel beam-columns under
monotonic loading. These results can be consulted in Heredia
Rosa (2024).

Limitations and Future Work

The proposed softening section constitutive formulation has been
developed for simulating the monotonic behavior of steel beam-
columns while exhibiting flexural yielding and inelastic local
buckling. Member effects (e.g., lateral torsional buckling) are not
addressed herein as it is outside the scope of the present paper and it
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is conditioned on available element formulations that can indeed
capture interactive buckling. The authors are working toward this
objective, including advancements at the element level (Maity et al.
2023). Other element formulations (Le Corvec 2012) are also
suitable to address the same issue.

Although the proposed formulation is quite flexible, cases
where the steel cross section is composed of plates with boundary
conditions other than those discussed herein have not been explic-
itly studied. Moreover, the exploited yield line mechanisms, which
are used to capture generic insights of response, exhibit certain lim-
itations with regards to simplified boundary conditions, the geomet-
ric symmetry as well as the loading. In the proposed formulations,
web and flange plates with idealized boundary conditions have
been considered by neglecting the interactions between the two.
While this is a simplification, it should be further considered in
subsequent parametric studies with members featuring various
cross-sectional geometries. This is outside the scope of the present
paper. Moreover, the proposed material formulation with softening
does not currently address inelastic cyclic buckling, which is typ-
ical when earthquake effects on structures are to be addressed.

The material law formulation proposed herein to model inelastic
buckling of steel plates is suitable to represent member-level
response of steel HSS and wide-flange beam columns subjected
to flexure-dominant loading conditions. This is demonstrated by
the moment-chord rotation and axial shortening-chord rotation
fiber-model comparisons with experimental data. However, the
proposed material law formulation should be further evaluated and
refined when shear dominant of shear-flexure interaction is of in-
terest. Moreover, the material model has been thoroughly examined
under quasi-static loading conditions at a given temperature. Rate
effects have not been considered.

The predicted strain and stress fields at the section and fiber-
level shall be treated with caution particularly in the postpeak
response regime as the fiber-based modeling approach assumes that
plane sections remain plane and inelastic local buckling is modeled
implicitly through a softening material model. Moreover, because
the section and fiber-level results are contingent on the employed
element formulation, further investigation is necessary to assess
the impact of the proposed multiaxial material law formulation
with softening within a 3-dimensional fiber-based beam-column
element more capable of accurately capturing stress distributions
(e.g., shear within the cross section).

Although a regularization procedure has been proposed to tackle
the strain localization and mesh dependency in the presence of the
softening material response, this could be further enriched with a
nonlocal section deformation approach within a 3-dimensional
fiber-based beam-column element. However, this, again is an issue
addressed at the element-level and not at the material scale.
The advantage of tackling the strain localization through a nonlocal
formulation is that this approach does not require the calibra-
tion of a case specific reference dissipated energy such as that
discussed in the present paper. Examples of nonlocal formulations
for 2-dimensional fiber-based simulations are available in the liter-
ature (Sideris and Salehi 2016; Kolwankar et al. 2020).

Summary and Conclusions

This paper proposes a novel multiaxial plasticity formulation for
simulating inelastic local buckling in fiber-based beam-column
elements under monotonic loading. The proposed material model
is established on the basis of rate-independent metal plasticity. In
the pre-peak response and under a compressive stress state, the
proposed model follows J2 plasticity in an identical manner with
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the corresponding tensile loading. An ellipsoidal yield surface has
been developed that exhibits shrinkage when a softening response
is anticipated under compressive stresses. This is achieved by for-
mulating an appropriate evolution rule for the parameter governing
the compressive yield surface evolution. As such, the proposed
constitutive formulation is general and can depict a wide range of
softening phenomena. The primary equations of the proposed re-
turn mapping algorithms are established, along with the consistent
tangent moduli for the main loading stages.

The proposed constitutive relation with softening is then formu-
lated for typical steel plates exhibiting inelastic local buckling
under monotonic loading. Their boundary conditions idealize those
in plates composing hollow square sections (HSS) and wide flange
cross sections. While this idealization is convenient, it neglects
the coupling between the flange and webs. Appropriate yield line
mechanisms are proposed and validated with continuum finite
element simulations on steel plates featuring two characteristic
boundary conditions. The yield line mechanisms facilitate the
development of an evolution rule for the compressive yield surface
with softening. The multiaxial constitutive formulation simulates
inelastic steel plate buckling relatively well based on direct com-
parisons with simulated data from continuum finite element
simulations.

In order to mitigate the mesh-dependency due to strain localization
in the presence of softening in typical fiber-based beam-column
elements (i.e., displacement- or force-based), a regularization
procedure is developed for the proposed constitutive formulation.
The proposed regularization procedure is based on equating the
dissipated energy calibrated from a continuum finite element sim-
ulation or an experiment with the selected plate, to the dissipated
energy over the integration section where strain localization is
expected in the beam-column element.

The formulated constitutive relation is implemented into an
open-source simulation platform, and is then assigned to the cross
section of a 3-dimensional force-based beam-column element.
The overall modeling approach is validated with experiments and
continuum finite element simulations on steel HSS and wide flange
cantilever beam-columns subjected to planar monotonic loading.
Comparisons of the simulated and measured moment-chord
rotation and axial shortening-chord rotation of physically tested
steel beam-columns demonstrate a noteworthy accuracy both in
the pre- and postpeak response regime. Limitations of the proposed
multiaxial constitutive formulation are presented along with sug-
gestions for future work.
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Notation

The following symbols are used in this paper:
a =isotropic hardening rate parameter for yield
surface reduction;
b =isotropic hardening rate parameter for cyclic
hardening;
b,. = constant term controlling the evolution of y.;
b/t =plate slenderness;
¢y =constant term enabling buckling prior to
yielding;
C = matrix of elastic tangent moduli;
C°P =matrix of consistent tangent moduli;
C\ =kinematic hardening magnitude for kth
backstress;
D, =isotropic hardening magnitude for yield surface
reduction;
G =reference dissipated energy;
I, =first invariant of the stress tensor;
J, =second invariant of the deviatoric stress tensor;
L =member length;
L, =unbraced member length;
L,;p = integration point length;
L,/r,=member slenderness ratio;
M = member base moment;
m,, = plastic moment per unit length in the yield lines;
m,, =bending moment per unit length in the inclined
yield lines;
m | =bending moment per unit length in the
perpendicular yield line;
n =unit vector normal to yield surface;
P = projection vector;
P = projection matrix;
P =member axial load demand;
P, =member axial resistance;
0, =isotropic hardening magnitude for cyclic
hardening;
T=(0,/oyy) =stress triaxiality;
« = backstress vector;
«y. = free parameter related to the stress triaxiality in
the plates yield lines;
Qe = regularization parameter;
(; =regression parameter i;
7 = kinematic hardening rate parameter for kth
backstress;
6 = axial shortening;
€.ry = effective strain;
¢ = total strain vector;
g¢ =elastic strain vector;
e? =plastic strain vector;
£P? = postbuckling strain vector;
el lb = axial postbuckling strain component;
b, = equivalent plastic strain;
b, =equivalent postbuckling strain;
n=angle between the plate edge and the inclined
yield line;
¢ = member chord rotation;
App = postbuckling multiplier;
A =plate half-length;
& =relative stress;
Oeff = effective stress;
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o = stress vector;
o4, = stress at buckling length stabilization;
0.0 = 1initial capping stress;
o= (1/3)(0y] + 023 + 033) =mean stress;
oyy =von-Mises stress;
oy =yield stress;
oy =initial yield stress;
o/oy =ratio from the plates yield line mechanisms
controlling the evolution of y,;
= compressive ellipsoid yield surface;
=von-Mises yield surface; and
X1c = parameter controlling the compressive yield
surface radius parallel to the hydrostatic axis.
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