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Abstract—Wireless use cases such as spectrum sharing and
Massive Machine Type Communications (mMTC) can benefit
from the detection of unknown signals, which includes estimating
their received power as well as other key characteristics such as
bandwidth, modulation type, and waveform. While conventional
signal detection methods are susceptible to noise, deep learning
(DL) models offer a more robust alternative. Previously, DL
models were used for solving simpler problems, focusing mainly
on modulation recognition. We propose an advanced DL neural
network structure that extracts the parameters of 5G NR
frequency range 2 (FR2) mmWave test model waveforms. We
evaluate our framework on a state-of-the-art signal generator and
vector signal analyzer (VSA) that mimics real-world detection.
Our work shows that incorporating curriculum training (CT)
on both additive white Gaussian noise (AWGN) and frequency
shift error enhances the model’s accuracy across all SNR and
frequency shift ranges. We further enhance the accuracy by em-
ploying the error vector magnitude (EVM) function to prioritize
the top five scored parameters and validate selected parameters.
As a result, our method consistently achieves an accuracy rate
exceeding 90% when extracting the key parameters from 5G NR
FR2 mmWave waveforms at diverse noise levels.

I. INTRODUCTION

Automatic detection and labeling of waveforms can play

a crucial role in the operation of modern wireless systems.

For example, preemptive waveform parameter detection en-

ables spectrum sharing, helping secondary users to minimize

interference with primary users, thus ensuring coexistence and

reliable services [1], [2]. This is particularly useful in satellite

networks where spectrum sharing allows both types of users to

use the same frequency, given that the primary users’ quality

standards are met [3]. While satellite-terrestrial non-orthogonal

multiple access (NOMA) is a practical solution for secondary

users with extremely low power [4], it traditionally necessi-

tates cooperation between satellite and terrestrial terminals.

However, identifying primary users’ signals allows spectrum

sharing to work even without coordination.

Similarly, Internet of Things (IoT) devices to connect, inter-

act, and share data, Massive Machine Type Communications

(mMTC) supports massive access with high interconnection
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density, which assumes numerous low-power user equipments

(UEs) [5]. For signal transmission, both the transmitter and

receiver should know waveform parameters, such as carrier

frequency, bandwidth, subcarrier spacing, and modulation. To

achieve frame synchronization in both the transmitter and

receiver, we can execute random initial access [6], especially

from primarily inactive UEs. This process adds significant

overhead to the system. However, preemptive signal parameter

detection can facilitate communication via low-power devices

without synchronization between the transmitter and receiver.

Previous works mainly focus on automatic modulation clas-

sification (AMC), detecting the modulation of single-carrier

waveforms. One straightforward method for classifying the

modulation of the waveforms is to capture specific features in

each case and rigidly classify the waveforms [7], [8]. Another

common approach employs a likelihood-based method, which

is optimal in the Bayesian context [9], [10]. More recently, var-

ious deep learning (DL) frameworks like Convolutional neural

networks (CNNs) [11], [12], and recurrent neural networks

(RNNs) [13] have been applied to modulation recognition

problems. An integrated model, the MCLDNN [14] and PET-

CGDNN [15] has been developed to pursue better accuracy,

representing the current state-of-the-art.

A further difficulty arises when applying the above frame-

works to the 5G new radio (NR) millimeter wave (mmWave)

waveforms specified in the 3rd generation partnership project

(3GPP) technical specifications (TS) 38.211 [16], where we

aim to recover various waveform parameters such as the band-

width and modulation scheme in a noisy environment. Unlike

single-carrier waveforms, the 5G NR mmWave waveform is

OFDM with scalable numerology, so it comprises subcarriers

of unknown width and modulation across multiple resource

blocks (RBs).

In this work, we extend the techniques of automatic mod-

ulation recognition to identify multiple parameters. These

include power allocation, bandwidth, subcarrier spacing, and

the modulation scheme. We introduce a new DL structure that

can accurately classify 5G NR mmWave waveforms, even

in situations where there is scarce data for each label. The

contributions of our proposed approach are as follows:

• Our method introduces a novel DL structure designed to

extract unknown parameters from 5G NR mmWave signals
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Fig. 1: Illustration of the proposed 5G NR mmWave transmission scenario.

for analysis.

• We incorporate and show the effectiveness of curriculum

training (CT) to ensure adaptability across two distinct

forms of degradation, namely additive white Gaussian noise

(AWGN) and frequency shifts.

• We propose a Top-5 candidate trial algorithm. Beyond a ba-

sic DL model, we can make better estimates with assistance

from vector signal analyzer (VSA) feedback.

• Our method demonstrates an enhanced accuracy rate of ap-

proximately 0.7, distinguishing itself from existing methods

that are developed mainly for single-carrier waveforms.

II. PROBLEM STATEMENT

Generally, which parameters should we extract to effectively

“detect” an unknown waveform? We decided on four parame-

ters: the type of Test Model ģ, the bandwidth þ, the subcarrier

spacing configuration č, and the modulation scheme ĝ. Here

is our reasoning for selecting these four parameters.

Although an incorrect carrier frequency reference can lead

to demodulation errors [17], we assume that our target carrier

frequency is fixed at 28 GHz. Then, by removing the subcarrier

spacing and determining the length of each RB, we can accu-

rately delineate the structure of the resource grid. This calls for

detecting þ, č, and ĝ. Also, by identifying specific standard

waveforms ģ, we can know the contents of the waveform

within each RB. Techniques such as parallelization and fast

Fourier transform (FFT) can then be employed to identify its

components [18]. As shown in Fig. 1, we consider a signal

parameter detection problem for noise-added 5G NR mmWave

signals. Detailed explanations of the above parameters are in

Section IV-A.

The structure of the source signal ĩ(Ī) with input parameters

Ħ = (ģ, þ, č, ĝ) ∈ P is given by

ĩĦ (Ī) =
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where subcarrier spacing defined as ĊCP = 15×2č (kHz) which

is a function of č, and the number of subcarriers defined as

Ċĩ , which is a function of þ. Carrier frequency Ĝ and the

coherence time Đc are constant values. Each element Ħ in the

ordered set P has a corresponding index, denoted by Ħ = P[ğ].

Various types of noise can be added to ĩ(Ī) which compli-

cates the problem. We categorize the potential noise types in

the received signal into two groups. The first is the additive

white Gaussian noise ĆAWGN, which represents the ratio of

the strength of the desired signal to background noise or

undesired signals. It can be disturbances such as intermodula-

tion, thermal, and electronic disruptions in the transmission

process. The second is a frequency shift error Ć� Ĝ , which

is the difference between the actual transmit frequency and

the assigned frequency, stemming from issues like inadequate

transmitter performance, receiver issues, baseband recovery

problems, and flaws with reference clocks. Therefore, received

signal ĩ̃(Ī) is given by

ĩ̃Ħ (Ī) =
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where č stands for a random phase offset value.

In this study, we focus on extracting the unidentified param-

eter tuple Ħ from the signal ĩ̃Ħ (Ī). Our objective is to minimize

the probability of error

Č(error) =

∑

Ħ∈P I(ģ(ĩ
Ħ) ≠ Ħ)

|P|
, (3)

utilizing a function ģ that maps input ĩ̃Ħ ∈ {İ | İ(Ī) ∈ C} to

output Ħ ∈ P. Given the numerous potential combinations in

Ħ, identifying the parameters of the waveform proves to be a

challenging task.

III. THE PROPOSED APPROACH

Fig. 2 shows the steps of our proposed method. A signal

is generated by a signal generator and sent to the VSA with

unknown parameters. Inside the VSA, a DL classifier finds

the parameter tuple Ħ. Then the VSA verifies whether the

parameter tuple Ħ is correct.

A. Model structure of the proposed model, NRCLDNN

To solve minģ Č(error), function ģ is approximated using

a DL model, denoted as M. The weights of M are optimized

by minimizing the following problem

Ĉ∗ = min
M

(

EĦ∈P

[

CE (M ( ĩ̃Ħ [Ĥ]) , Ħ)
] )

, (4)

where CE is the cross-entropy loss, and ĩ̃Ħ [Ĥ] is the input

discrete signal.

Fig. 3 provides an overview of our proposed DL archi-

tecture, new radio convolutional long short-term deep neural

network (NRCLDNN). For the structure of the DL classifier,

we adopt the MCLDNN framework introduced in [14]. This

framework was initially designed for modulation recognition

in single-carrier waveforms using I/Q data. Our approach

differs structurally from previous works in that we changed

I and Q data to magnitude and phase data, used only the
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Fig. 2: Procedure flow for signal parameter detection and vector signal analyzer (VSA) configuration.
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Fig. 3: The model architecture of NRCLDNN.

truncated amount of the signal, and set the filter size to 1,

as described below.

First, we transform the input consisting of the I and Q values

into the magnitude and phase values. This transformation is

essential due to random signal rotations in the I/Q plane.

By expressing the data in magnitude and phase terms, the

magnitude remains unaffected by I/Q rotations while the phase

undergoes a consistent shift. This representation enhances the

resilience of the DL model to I/Q rotations. Second, we set

the filter size in convolution layers to 1. When the filter size

exceeds 1, the model becomes less generalizable and overfits

the training data.

For maintaining uniform input dimensions, we retain only

the first 65,536 symbols. The empirical analysis indicates that

this length is optimal, providing ample representation without

leading to a large input size.

The processed magnitude and phase signals then pass

through three distinct pathways. Both the magnitude and phase

signals pass through a 1D convolution layer. Simultaneously, a

combined magnitude/phase signal passes through a 2D convo-

lution layer, capturing the spatial correlations corresponding to

the matching indices of magnitude and phase. These pathways

are subsequently merged and further refined via two additional

2D convolution layers, enhancing the investigation of their

spatial inter-relationships.

After extracting features from the previously described

processes, the architecture incorporates two fully connected

layers, each having a tangent hyperbolic (tanh) activation
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78kHz

(low � ) (high � )
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(high � )
Frequency shift ��
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Fig. 4: Trajectory of �,� Ĝ in CT. The training starts with the

frequency shift � Ĝ = 0 kHz frequency-shifted dataset. The

value of � Ĝ gradually increases to 36 kHz, then AWGN is

added from SNR � = 40 dB to 15 dB. It concludes with

training set at low � and high � Ĝ value.

function. A dropout rate of 0.5 is applied to minimize the

risk of overfitting or underfitting the model. Subsequently,

two softmax layers are introduced. The result is a probability

vector for each label, which undergoes back-propagation and

is compared to the target output, represented by a one-hot

vector.

B. Curriculum training

We modify two types of noise ĆAWGN and Ć� Ĝ by adjusting

the parameters: the AWGN signal-to-noise ratio (SNR) � and

the frequency shift � Ĝ , respectively. The AWGN SNR � is

defined as

� =
|ĩĦ |2

Ă2
AWGN

(5)

where ĆAWGN ∼ N(0, Ă
2
AWGN

). While � Ĝ is not represented in

a closed form as (5), Ć� Ĝ increases proportionally with � Ĝ .

In our approach, we employ CT. Initially, the model is

trained on coefficients derived from low-noise data. Subse-

quently, it is applied to high-noise data, enabling generaliza-

tion across various noise levels. Our study covers � ranging

from 15 dB to 40 dB and � Ĝ ranging from 0 to 78 kHz.

As shown in Fig. 4, in our experiments, we detail the CT

process of how we move through different noise levels. The



process begins at the point (�,� Ĝ ) = (40 dB, 0 kHz) which

has low ĆAWGN and low Ć� Ĝ . We initially progress to points

with maintaining �, gradually increasing � Ĝ by 6 kHz until

we reach (�,� Ĝ ) = (40 dB, 36 kHz), the point with higher

Ć� Ĝ . Subsequently, we decrease � by 5 dB until approaching

the final point (�,� Ĝ ) = (15 dB, 36 kHz), which has higher

ĆAWGN and higher Ć� Ĝ .

We selected � Ĝ = 36 kHz to prevent a significant drop in

model performance. Training the model with � Ĝ = 78 kHz

adversely affected its capacity to classify signals with � Ĝ = 0

kHz accurately. As a result, we chose a midpoint for Ć� Ĝ that

can handle both high and low noise levels. For the lowest �

value, we chose 15 dB, because the VSA could not process

signals with noise higher than 15 dB. To prevent overfitting

and ensure effective adaptation to subsequent datasets, we

limited our training to 15 epochs for each dataset rather than

training until loss convergence. The result of limiting epochs

can be observed in Fig. 5a.

C. Phase offset compensation through dataset amplification

Since the received signal, denoted as ĩ̃(Ī), undergoes an

arbitrary phase shift č, each received signal experiences a

rotation in the I/Q plane. Consequently, what the DL model

M learns differs from the inference data, even if signals share

the same parameter tuple Ħ. To counter this challenge, we

converted the I/Q channel to a magnitude/phase channel. The

magnitude value remains stable despite phase shifts, and the

phase value is moved by a constant when there is a phase

shift. Dataset boosting is much simpler and more effective

than teaching M an I/Q rotation from scratch.

Our strategy was to generate random phase-shifted data,

amplifying the original dataset by a factor of Ĩ = 50 times.

This prevented the model from overfitting to specific phase

offsets and allowed for a better test dataset generalization.

D. Top-5 candidate trial

When extracting parameters from the 5G NR mmWave

signal, the error vector magnitude (EVM) measurement, which

is fundamentally the root-mean-square (RMS) of the error

vectors calculated with our waveform, can be used to verify

the accuracy of the selected parameters. EVM measures the

accuracy of symbol transmission within a constellation of a

wireless signal. When we transmit bits with accurate waveform

parameters, each bit aligns perfectly with its constellation

points. However, any incorrect parameter can lead to misalign-

ments, which can be captured by a high EVM value. The EVM

value can be written as

EVM( ĩ̃ğ , Ħ) =

√

∑Ċĩ

ğ=1

(

ĩ̃ğ − ĩ̃
∗
ğ
(Ħ)

)2

ĊĩČ0

, (6)

where Ċĩ is the number of subcarriers, ĩ̃ğ is the i-th subcarrier

of received signal, and ĩ̃∗ğ is the ideal denoised signal location

of ĩ̃ğ in constellation. The constellation depends on the param-

eter tuple Ħ. We need parameter information Ħ to determine

the ideal signal location.

For the received signal ĩ̃ğ , determining the corresponding

parameter tuple Ħ enables us to find the ideal location ĩ̃∗ğ
for each point. If any estimated location deviates from the

constellation point, the EVM will exceed the predefined

threshold. Hence, we select the top-5 parameter candidates,

setting ć = 5, to verify the accuracy of our estimation by

trying parameter tuple candidates one by one to input them into

VSA for waveform interpretation. Starting with the parameter

candidate of the highest probability, we store the parameter

in the ordered set Pcand and sequentially input it into the

EVM function to check if it yields a reasonably low EVM

value. If not, we try the next candidate to see if it yields the

correct parameter tuple. The EVM threshold is set to 0.15

empirically. The technique is summarized in Algorithm 1.

While this approach enables the model to consider a range

of options, thereby enhancing its accuracy, it does come with

the trade-off of increased processing time.

Algorithm 1 Top-ć candidate trial

1: Input: signal ĩ̃(Ī), DL model M, parameter tuple candi-

date Pcand = ∅

2: for k = 1, 2, ..., ć do

3: ąġ = arg max
| P |

ğ=1,ğ≠ą1 ,ą2 ,...,ąġ−1
M( ĩ̃(Ī)) [ğ]

4: Pcand ← Pcand ∪ P[ąġ]

5: end for

6: Define the set of parameter tuple candidates and the EVM

threshold.

7: for k = 1, 2, ..., ć do

8: if EVM( ĩ̃(Ī),Pcand [ąġ]) < threshold then

9: Ħans = P[ąġ]

10: Break

11: end if

12: end for

13: Select the parameter tuple Ħans

IV. EXPERIMENT DETAILS

A. Dataset

First, we explain the four specific parameters we aim to

detect.

Test Model (ģ). A Test Model denotes standard waveform

configurations used for conformance testing. These standards

evaluate metrics like base station RF output power, timing

error, occupied bandwidth emissions, adjacent channel leakage

ratio, and other unwanted emissions. Specific Test Models are

tailored for distinct measurements outlined in 3GPP TS 38.141

[19]. TM (Test Model) 1.1 is primarily designed for examining

various emissions and power parameters, predominantly utiliz-

ing QPSK modulation. TM 2 and 2a target power dynamics

and frequency error at minimum power. Meanwhile, TM 3.1

and 3.1a concentrate on output power dynamics, signal quality,

and error metrics at maximum power.

Bandwidth (þ), subcarrier spacing (č), modulation

scheme (ĝ). The bandwidth of the 5G NR mmWave is

defined as the frequencies over which data can be transmitted.

Subcarrier spacing refers to the frequency difference between



adjacent subcarriers in an OFDM system, ensuring they do not

interfere with each other. The modulation scheme pertains to

the technique used to encode data onto carrier waves.

Next, we describe how our dataset is set up based on the

previous descriptions. To create the 5G NR mmWave test

model dataset, we employed a signal generation software,

Signal Studio, from Keysight Technologies. This work focuses

on the frequency range 2 (FR2) range of the 5G NR frequency

bands, which covers frequencies between 24.25 and 71.0 GHz,

specifically focusing on 28 GHz. Our dataset contain ģ of

TM1.1, TM2, TM2a, TM3.1, and TM3.1a. The modulation ĝ

of TM1.1 is set to QPSK, while ĝ of TM2a and TM3.1a are

set to 256QAM. However, TM2 and TM3 offer a range of ĝ:

QPSK, 16QAM, and 64QAM. Bandwidth þ can be 50 MHz,

100 MHz, 200 MHz, and 400 MHz, which are independent of

the test model and modulation, and the subcarrier spacing ĊCP

can be either 120 kHz or 60 kHz. In total, these configurations

yield 63 unique labels from different parameter combinations.

Each label of the parameter tuple Ħ corresponds to a specific

waveform, making it crucial to identify all four parameters

accurately. A misprediction in any of the four parameters will

lead to an incorrect label assignment.

B. Experimental setup

Our measurements were conducted using the Keysight

VXG-C Signal Generator with the Keysight UXA Spectrum

Analyzer. We selected a center frequency of 28 GHz for our

tests due to its common usage in the 5G NR FR2 waveform

frequency band. The analyzer was connected to the Keysight

Pathwave Vector Signal Analysis software, which recorded

the source waveforms successfully. The captured data was

subsequently fed into the model for inference.

The experiment can be adapted to other experimental setups.

The most challenging part is calculating the EVM value of

the signal, but the calculation becomes straightforward with

sufficient computational power at the receiver. We did not

make restrictive assumptions about the parameters, allowing

the method to be applied to different frequency signals and

generic waveforms rather than limited to specific test models.

V. RESULTS AND DISCUSSIONS

In this section, we demonstrate the following: (i) our pa-

rameter detection model NRCLDNN outperforms the state-of-

the-art DL models developed mainly for single-carrier wave-

forms; (ii) the curriculum training significantly improves the

performance; and (iii) the top-ć trial incorporating the EVM

provides another significant gain in the parameter detection

accuracy.

Comparison against existing approaches. To our knowledge,

there are no existing traditional benchmarks that are directly

comparable to our approach since this is the first work to detect

waveform parameters from 5G NR mmWave waveforms. We

evaluated our model against two state-of-the-art DL models,

MCLDNN [14] and PET-CGDNN [15], which were initially

developed for single-carrier waveforms. We trained our NR-

CLDNN and the baselines MCLDNN and PET-CGDNN under

No CT

(a) Accuracy vs frequency shift, where the SNR of
the AWGN noise � = 40 dB, 15 dB.

(b) Accuracy vs AWGN SNR, where the frequency
shift � Ĝ = 0 kHz, 78 kHz.

Fig. 5: Parameter detection accuracy with varying the types of

noise added to the training datasets. Curriculum Training (CT)

significantly improves the accuracy of parameter detection.

the same conditions for a fair comparison. As indicated in Fig.

5, the average accuracy of our NRCLDNN (without curriculum

training (No CT)) surpasses that of MCLDNN by 24% and

PET-CGDNN by 44%. The underperformance of the baseline

models is perhaps due to their assumption that I/Q symbols

lie on a specific configuration, which does not apply to 5G

NR mmWave signals. With CT, we achieve even more gains

as we describe next.

Effect of Curriculum Training (CT). Fig. 5 shows the

performance comparison of our NRCLDNN in three training

scenarios: CT applied to both � and � Ĝ , CT applied only to

� Ĝ , and no CT. The model trained with CT on both � and � Ĝ

consistently outperforms the other methods in all noise ranges

by a large margin, ranging from 20% to 50%, demonstrating

the effectiveness of CT.

In Fig. 5a, when dataset’s � is set at 40 dB, the model

trained with CT on both � and � Ĝ performs better, especially

when � Ĝ exceeds 36 kHz, compared to applying CT only to

� Ĝ . At a lower � of 15 dB, CT on both � and � Ĝ becomes

even more beneficial, consistently outperforming the strategy

of CT for � Ĝ alone. Fig. 5b demonstrates that applying CT

on both � and � Ĝ is generally more effective than CT only

on � Ĝ .

Effect of Top-ć candidate trial. In Fig. 6, we plot the

parameter detection accuracy of our NRCLDNN with top-1,3,



 = 40 dB

 = 15 dB

(a) Accuracy vs frequency shift, where the SNR of
the AWGN noise � = 40 dB, 15 dB.

Top-1

Top-3

Top-5

(b) Accuracy vs AWGN SNR, where the frequency
shift � Ĝ = 0 kHz, 78 kHz.

Fig. 6: Parameter detection accuracy with Top-ć candidate

trial. The top-5 candidate trial improves the detection accuracy

by more than 20% compared to the Top-1 candidate trial.

and 5 trials as a function of the frequency shift (Fig. 6a) and

the SNR of the AWGN noise (Fig. 6b) in the testing data.

This result shows that increasing the number of trials from

1 to 3 achieves about 20% accuracy gain. We achieve even

better accuracy by increasing the number of trials to 5, often

close to accuracy ≈ 1 as shown in Fig. 6a.

In Fig. 6a, we also see that the accuracy of a Top-1

NRCLDNN is close to one when the frequency shift is 36

kHz and starts to drop as the frequency shift deviates from 36

kHz. This is because during the training of our NRCLDNN,

we stopped at the frequency shift 36 kHz as depicted in Fig

4. Thus, when the testing frequency shift is close to 36 kHz,

NRCLDNN with a single trial achieve accuracy ≈ 1 while the

accuracy drops as the frequency shift departs from 36 kHz,

as shown in Fig. 6a. Top-ć trials successfully mitigate such

performance degradation by incorporating the EVM feedback

and exploring ć possible parameters instead of only one.

Fig. 6b shows that there is consistently about a 20%

difference in accuracy between selecting the top-5 choices

compared to just the top-1 choice across a wide range of

AWGN SNR values � from 15 to 40 dB. Here, we set the

frequency shift to � Ĝ as 0 kHz or 78 kHz – note that the

training of the NRCLDNN was performed only for frequency

shift training from 0 to 36 kHz. Our result implies that the

top-5 candidate trial algorithm can enhance the accuracy even

for frequency shift � Ĝ not covered in the training.
VI. CONCLUSION

We proposed a novel approach for 5G NR mmWave test

model waveform classification using DL and CT as the key

tool. We achieve consistently high accuracy across various

SNR and frequency shift levels by transforming the I/Q signal

to magnitude/phase and applying a DL model combined with

CT and top-5 candidate trials.
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