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Abstract—Wireless use cases such as spectrum sharing and
Massive Machine Type Communications (mMTC) can benefit
from the detection of unknown signals, which includes estimating
their received power as well as other key characteristics such as
bandwidth, modulation type, and waveform. While conventional
signal detection methods are susceptible to noise, deep learning
(DL) models offer a more robust alternative. Previously, DL
models were used for solving simpler problems, focusing mainly
on modulation recognition. We propose an advanced DL neural
network structure that extracts the parameters of 5G NR
frequency range 2 (FR2) mmWave test model waveforms. We
evaluate our framework on a state-of-the-art signal generator and
vector signal analyzer (VSA) that mimics real-world detection.
Our work shows that incorporating curriculum training (CT)
on both additive white Gaussian noise (AWGN) and frequency
shift error enhances the model’s accuracy across all SNR and
frequency shift ranges. We further enhance the accuracy by em-
ploying the error vector magnitude (EVM) function to prioritize
the top five scored parameters and validate selected parameters.
As a result, our method consistently achieves an accuracy rate
exceeding 90% when extracting the key parameters from 5G NR
FR2 mmWave waveforms at diverse noise levels.

I. INTRODUCTION

Automatic detection and labeling of waveforms can play
a crucial role in the operation of modern wireless systems.
For example, preemptive waveform parameter detection en-
ables spectrum sharing, helping secondary users to minimize
interference with primary users, thus ensuring coexistence and
reliable services [1], [2]. This is particularly useful in satellite
networks where spectrum sharing allows both types of users to
use the same frequency, given that the primary users’ quality
standards are met [3]. While satellite-terrestrial non-orthogonal
multiple access (NOMA) is a practical solution for secondary
users with extremely low power [4], it traditionally necessi-
tates cooperation between satellite and terrestrial terminals.
However, identifying primary users’ signals allows spectrum
sharing to work even without coordination.

Similarly, Internet of Things (IoT) devices to connect, inter-
act, and share data, Massive Machine Type Communications
(mMTC) supports massive access with high interconnection
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density, which assumes numerous low-power user equipments
(UEs) [5]. For signal transmission, both the transmitter and
receiver should know waveform parameters, such as carrier
frequency, bandwidth, subcarrier spacing, and modulation. To
achieve frame synchronization in both the transmitter and
receiver, we can execute random initial access [6], especially
from primarily inactive UEs. This process adds significant
overhead to the system. However, preemptive signal parameter
detection can facilitate communication via low-power devices
without synchronization between the transmitter and receiver.

Previous works mainly focus on automatic modulation clas-
sification (AMC), detecting the modulation of single-carrier
waveforms. One straightforward method for classifying the
modulation of the waveforms is to capture specific features in
each case and rigidly classify the waveforms [7], [8]. Another
common approach employs a likelihood-based method, which
is optimal in the Bayesian context [9], [10]. More recently, var-
ious deep learning (DL) frameworks like Convolutional neural
networks (CNNs) [11], [12], and recurrent neural networks
(RNNs) [13] have been applied to modulation recognition
problems. An integrated model, the MCLDNN [14] and PET-
CGDNN [15] has been developed to pursue better accuracy,
representing the current state-of-the-art.

A further difficulty arises when applying the above frame-
works to the 5G new radio (NR) millimeter wave (mmWave)
waveforms specified in the 3rd generation partnership project
(3GPP) technical specifications (TS) 38.211 [16], where we
aim to recover various waveform parameters such as the band-
width and modulation scheme in a noisy environment. Unlike
single-carrier waveforms, the SG NR mmWave waveform is
OFDM with scalable numerology, so it comprises subcarriers
of unknown width and modulation across multiple resource
blocks (RBs).

In this work, we extend the techniques of automatic mod-
ulation recognition to identify multiple parameters. These
include power allocation, bandwidth, subcarrier spacing, and
the modulation scheme. We introduce a new DL structure that
can accurately classify 5G NR mmWave waveforms, even
in situations where there is scarce data for each label. The
contributions of our proposed approach are as follows:

e Our method introduces a novel DL structure designed to
extract unknown parameters from 5G NR mmWave signals
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Fig. 1: Illustration of the proposed 5G NR mmWave transmission scenario.

for analysis.

o We incorporate and show the effectiveness of curriculum
training (CT) to ensure adaptability across two distinct
forms of degradation, namely additive white Gaussian noise
(AWGN) and frequency shifts.

o We propose a Top-5 candidate trial algorithm. Beyond a ba-
sic DL model, we can make better estimates with assistance
from vector signal analyzer (VSA) feedback.

« Our method demonstrates an enhanced accuracy rate of ap-
proximately 0.7, distinguishing itself from existing methods
that are developed mainly for single-carrier waveforms.

II. PROBLEM STATEMENT

Generally, which parameters should we extract to effectively
“detect” an unknown waveform? We decided on four parame-
ters: the type of Test Model m, the bandwidth B, the subcarrier
spacing configuration u, and the modulation scheme g. Here
is our reasoning for selecting these four parameters.

Although an incorrect carrier frequency reference can lead
to demodulation errors [17], we assume that our target carrier
frequency is fixed at 28 GHz. Then, by removing the subcarrier
spacing and determining the length of each RB, we can accu-
rately delineate the structure of the resource grid. This calls for
detecting B, u, and g. Also, by identifying specific standard
waveforms m, we can know the contents of the waveform
within each RB. Techniques such as parallelization and fast
Fourier transform (FFT) can then be employed to identify its
components [18]. As shown in Fig. 1, we consider a signal
parameter detection problem for noise-added SG NR mmWave
signals. Detailed explanations of the above parameters are in
Section IV-A.

The structure of the source signal s(¢) with input parameters
p=(m,B,u,g) € P is given by
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where subcarrier spacing defined as Ncp = 15%2# (kHz) which
is a function of u, and the number of subcarriers defined as
Ny, which is a function of B. Carrier frequency f and the
coherence time T, are constant values. Each element p in the
ordered set P has a corresponding index, denoted by p = P[i].

Various types of noise can be added to s(¢) which compli-
cates the problem. We categorize the potential noise types in
the received signal into two groups. The first is the additive
white Gaussian noise €awgn, which represents the ratio of
the strength of the desired signal to background noise or

undesired signals. It can be disturbances such as intermodula-
tion, thermal, and electronic disruptions in the transmission
process. The second is a frequency shift error £4r, which
is the difference between the actual transmit frequency and
the assigned frequency, stemming from issues like inadequate
transmitter performance, receiver issues, baseband recovery
problems, and flaws with reference clocks. Therefore, received
signal §(¢) is given by
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where ¢ stands for a random phase offset value.
In this study, we focus on extracting the unidentified param-
eter tuple p from the signal §7 (). Our objective is to minimize
the probability of error
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utilizing a function m that maps input §7 € {z | z(¢) € C} to
output p € £. Given the numerous potential combinations in
p, identifying the parameters of the waveform proves to be a
challenging task.

P(error) =
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III. THE PROPOSED APPROACH

Fig. 2 shows the steps of our proposed method. A signal
is generated by a signal generator and sent to the VSA with
unknown parameters. Inside the VSA, a DL classifier finds
the parameter tuple p. Then the VSA verifies whether the
parameter tuple p is correct.

A. Model structure of the proposed model, NRCLDNN

To solve min,, P(error), function m is approximated using
a DL model, denoted as M. The weights of M are optimized
by minimizing the following problem

L' =min (Epep[CEMG” ). p) |}, @)

where CE is the cross-entropy loss, and §” [n] is the input
discrete signal.

Fig. 3 provides an overview of our proposed DL archi-
tecture, new radio convolutional long short-term deep neural
network (NRCLDNN). For the structure of the DL classifier,
we adopt the MCLDNN framework introduced in [14]. This
framework was initially designed for modulation recognition
in single-carrier waveforms using I/Q data. Our approach
differs structurally from previous works in that we changed
I and Q data to magnitude and phase data, used only the
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Fig. 2: Procedure flow for signal parameter detection and vector signal analyzer (VSA) configuration.
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Fig. 3: The model architecture of NRCLDNN.

truncated amount of the signal, and set the filter size to 1,
as described below.

First, we transform the input consisting of the I and Q values
into the magnitude and phase values. This transformation is
essential due to random signal rotations in the I/Q plane.
By expressing the data in magnitude and phase terms, the
magnitude remains unaffected by I/Q rotations while the phase
undergoes a consistent shift. This representation enhances the
resilience of the DL model to I/Q rotations. Second, we set
the filter size in convolution layers to 1. When the filter size
exceeds 1, the model becomes less generalizable and overfits
the training data.

For maintaining uniform input dimensions, we retain only
the first 65,536 symbols. The empirical analysis indicates that
this length is optimal, providing ample representation without
leading to a large input size.

The processed magnitude and phase signals then pass
through three distinct pathways. Both the magnitude and phase
signals pass through a 1D convolution layer. Simultaneously, a
combined magnitude/phase signal passes through a 2D convo-
lution layer, capturing the spatial correlations corresponding to
the matching indices of magnitude and phase. These pathways
are subsequently merged and further refined via two additional
2D convolution layers, enhancing the investigation of their
spatial inter-relationships.

After extracting features from the previously described
processes, the architecture incorporates two fully connected
layers, each having a tangent hyperbolic (tanh) activation
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Fig. 4: Trajectory of I', Af in CT. The training starts with the
frequency shift Af = 0 kHz frequency-shifted dataset. The
value of Af gradually increases to 36 kHz, then AWGN is
added from SNR I' = 40 dB to 15 dB. It concludes with
training set at low I" and high Af value.

function. A dropout rate of 0.5 is applied to minimize the
risk of overfitting or underfitting the model. Subsequently,
two softmax layers are introduced. The result is a probability
vector for each label, which undergoes back-propagation and
is compared to the target output, represented by a one-hot
vector.

B. Curriculum training

We modify two types of noise eawgN and gxr by adjusting
the parameters: the AWGN signal-to-noise ratio (SNR) I" and
the frequency shift Af, respectively. The AWGN SNR T is

defined as
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where eawon ~ N (0, criWGN). While Af is not represented in
a closed form as (5), 5y increases proportionally with Af.

In our approach, we employ CT. Initially, the model is
trained on coefficients derived from low-noise data. Subse-
quently, it is applied to high-noise data, enabling generaliza-
tion across various noise levels. Our study covers I' ranging
from 15 dB to 40 dB and Af ranging from O to 78 kHz.

As shown in Fig. 4, in our experiments, we detail the CT
process of how we move through different noise levels. The



process begins at the point (I',Af) = (40 dB, 0 kHz) which
has low eawgn and low g5y. We initially progress to points
with maintaining I', gradually increasing Af by 6 kHz until
we reach (I', Af) = (40 dB, 36 kHz), the point with higher
eaf. Subsequently, we decrease I by 5 dB until approaching
the final point (I', Af) = (15 dB, 36 kHz), which has higher
EAWGN and higher EAS-

We selected Af = 36 kHz to prevent a significant drop in
model performance. Training the model with Af = 78 kHz
adversely affected its capacity to classify signals with Af =0
kHz accurately. As a result, we chose a midpoint for exy that
can handle both high and low noise levels. For the lowest I
value, we chose 15 dB, because the VSA could not process
signals with noise higher than 15 dB. To prevent overfitting
and ensure effective adaptation to subsequent datasets, we
limited our training to 15 epochs for each dataset rather than
training until loss convergence. The result of limiting epochs
can be observed in Fig. 5a.

C. Phase offset compensation through dataset amplification

Since the received signal, denoted as §(¢), undergoes an
arbitrary phase shift ¢, each received signal experiences a
rotation in the I/Q plane. Consequently, what the DL model
M learns differs from the inference data, even if signals share
the same parameter tuple p. To counter this challenge, we
converted the I/Q channel to a magnitude/phase channel. The
magnitude value remains stable despite phase shifts, and the
phase value is moved by a constant when there is a phase
shift. Dataset boosting is much simpler and more effective
than teaching M an I/Q rotation from scratch.

Our strategy was to generate random phase-shifted data,
amplifying the original dataset by a factor of » = 50 times.
This prevented the model from overfitting to specific phase
offsets and allowed for a better test dataset generalization.

D. Top-5 candidate trial

When extracting parameters from the 5G NR mmWave
signal, the error vector magnitude (EVM) measurement, which
is fundamentally the root-mean-square (RMS) of the error
vectors calculated with our waveform, can be used to verify
the accuracy of the selected parameters. EVM measures the
accuracy of symbol transmission within a constellation of a
wireless signal. When we transmit bits with accurate waveform
parameters, each bit aligns perfectly with its constellation
points. However, any incorrect parameter can lead to misalign-
ments, which can be captured by a high EVM value. The EVM
value can be written as
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where N; is the number of subcarriers, §; is the i-th subcarrier
of received signal, and 57 is the ideal denoised signal location
of §; in constellation. The constellation depends on the param-
eter tuple p. We need parameter information p to determine
the ideal signal location.

For the received signal §;, determining the corresponding
parameter tuple p enables us to find the ideal location §7
for each point. If any estimated location deviates from the
constellation point, the EVM will exceed the predefined
threshold. Hence, we select the top-5 parameter candidates,
setting K = 5, to verify the accuracy of our estimation by
trying parameter tuple candidates one by one to input them into
VSA for waveform interpretation. Starting with the parameter
candidate of the highest probability, we store the parameter
in the ordered set P.,ng and sequentially input it into the
EVM function to check if it yields a reasonably low EVM
value. If not, we try the next candidate to see if it yields the
correct parameter tuple. The EVM threshold is set to 0.15
empirically. The technique is summarized in Algorithm 1.
While this approach enables the model to consider a range
of options, thereby enhancing its accuracy, it does come with
the trade-off of increased processing time.

Algorithm 1 Top-K candidate trial

1: Input: signal §(z), DL model M, parameter tuple candi-
date Peang = 0

:fork=1,2, .. K do

I = arg maxll.fll’iill’12’“.’11(71 M(3(2)) [7]

Peand «— Peand U P[]

: end for

: Define the set of parameter tuple candidates and the EVM
threshold.

:fork=1,2, .. K do

if EVM(5(?), Peand[1x]) < threshold then
: Pans = P [1Ix]

10: Break

11:  end if

12: end for

13: Select the parameter tuple pans

IV. EXPERIMENT DETAILS
A. Dataset

First, we explain the four specific parameters we aim to
detect.

Test Model (m). A Test Model denotes standard waveform
configurations used for conformance testing. These standards
evaluate metrics like base station RF output power, timing
error, occupied bandwidth emissions, adjacent channel leakage
ratio, and other unwanted emissions. Specific Test Models are
tailored for distinct measurements outlined in 3GPP TS 38.141
[19]. TM (Test Model) 1.1 is primarily designed for examining
various emissions and power parameters, predominantly utiliz-
ing QPSK modulation. TM 2 and 2a target power dynamics
and frequency error at minimum power. Meanwhile, TM 3.1
and 3.1a concentrate on output power dynamics, signal quality,
and error metrics at maximum power.

Bandwidth (B), subcarrier spacing (u), modulation
scheme (g). The bandwidth of the 5G NR mmWave is
defined as the frequencies over which data can be transmitted.
Subcarrier spacing refers to the frequency difference between



adjacent subcarriers in an OFDM system, ensuring they do not
interfere with each other. The modulation scheme pertains to
the technique used to encode data onto carrier waves.

Next, we describe how our dataset is set up based on the
previous descriptions. To create the 5G NR mmWave test
model dataset, we employed a signal generation software,
Signal Studio, from Keysight Technologies. This work focuses
on the frequency range 2 (FR2) range of the 5G NR frequency
bands, which covers frequencies between 24.25 and 71.0 GHz,
specifically focusing on 28 GHz. Our dataset contain m of
TMI1.1, TM2, TM2a, TM3.1, and TM3.1a. The modulation g
of TM1.1 is set to QPSK, while g of TM2a and TM3.1a are
set to 256QAM. However, TM2 and TM3 offer a range of g:
QPSK, 16QAM, and 64QAM. Bandwidth B can be 50 MHz,
100 MHz, 200 MHz, and 400 MHz, which are independent of
the test model and modulation, and the subcarrier spacing Ncp
can be either 120 kHz or 60 kHz. In total, these configurations
yield 63 unique labels from different parameter combinations.
Each label of the parameter tuple p corresponds to a specific
waveform, making it crucial to identify all four parameters
accurately. A misprediction in any of the four parameters will
lead to an incorrect label assignment.

B. Experimental setup

Our measurements were conducted using the Keysight
VXG-C Signal Generator with the Keysight UXA Spectrum
Analyzer. We selected a center frequency of 28 GHz for our
tests due to its common usage in the 5SG NR FR2 waveform
frequency band. The analyzer was connected to the Keysight
Pathwave Vector Signal Analysis software, which recorded
the source waveforms successfully. The captured data was
subsequently fed into the model for inference.

The experiment can be adapted to other experimental setups.
The most challenging part is calculating the EVM value of
the signal, but the calculation becomes straightforward with
sufficient computational power at the receiver. We did not
make restrictive assumptions about the parameters, allowing
the method to be applied to different frequency signals and
generic waveforms rather than limited to specific test models.

V. RESULTS AND DISCUSSIONS

In this section, we demonstrate the following: (i) our pa-
rameter detection model NRCLDNN outperforms the state-of-
the-art DL models developed mainly for single-carrier wave-
forms; (ii) the curriculum training significantly improves the
performance; and (iii) the top-K trial incorporating the EVM
provides another significant gain in the parameter detection
accuracy.

Comparison against existing approaches. To our knowledge,
there are no existing traditional benchmarks that are directly
comparable to our approach since this is the first work to detect
waveform parameters from 5G NR mmWave waveforms. We
evaluated our model against two state-of-the-art DL models,
MCLDNN [14] and PET-CGDNN [15], which were initially
developed for single-carrier waveforms. We trained our NR-
CLDNN and the baselines MCLDNN and PET-CGDNN under
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Fig. 5: Parameter detection accuracy with varying the types of
noise added to the training datasets. Curriculum Training (CT)
significantly improves the accuracy of parameter detection.

the same conditions for a fair comparison. As indicated in Fig.
5, the average accuracy of our NRCLDNN (without curriculum
training (No CT)) surpasses that of MCLDNN by 24% and
PET-CGDNN by 44%. The underperformance of the baseline
models is perhaps due to their assumption that I/Q symbols
lie on a specific configuration, which does not apply to 5G
NR mmWave signals. With CT, we achieve even more gains
as we describe next.

Effect of Curriculum Training (CT). Fig. 5 shows the
performance comparison of our NRCLDNN in three training
scenarios: CT applied to both I" and Af, CT applied only to
Af, and no CT. The model trained with CT on both I" and A f
consistently outperforms the other methods in all noise ranges
by a large margin, ranging from 20% to 50%, demonstrating
the effectiveness of CT.

In Fig. 5a, when dataset’s I" is set at 40 dB, the model
trained with CT on both I" and Af performs better, especially
when Af exceeds 36 kHz, compared to applying CT only to
Af. At a lower I'" of 15 dB, CT on both I" and Af becomes
even more beneficial, consistently outperforming the strategy
of CT for Af alone. Fig. 5b demonstrates that applying CT
on both I' and Af is generally more effective than CT only
on Af.

Effect of Top-K candidate trial. In Fig. 6, we plot the
parameter detection accuracy of our NRCLDNN with top-1,3,
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Fig. 6: Parameter detection accuracy with Top-K candidate
trial. The top-5 candidate trial improves the detection accuracy
by more than 20% compared to the Top-1 candidate trial.

and 5 trials as a function of the frequency shift (Fig. 6a) and
the SNR of the AWGN noise (Fig. 6b) in the testing data.
This result shows that increasing the number of trials from
1 to 3 achieves about 20% accuracy gain. We achieve even
better accuracy by increasing the number of trials to 5, often
close to accuracy =~ 1 as shown in Fig. 6a.

In Fig. 6a, we also see that the accuracy of a Top-1
NRCLDNN is close to one when the frequency shift is 36
kHz and starts to drop as the frequency shift deviates from 36
kHz. This is because during the training of our NRCLDNN,
we stopped at the frequency shift 36 kHz as depicted in Fig
4. Thus, when the testing frequency shift is close to 36 kHz,
NRCLDNN with a single trial achieve accuracy ~ 1 while the
accuracy drops as the frequency shift departs from 36 kHz,
as shown in Fig. 6a. Top-K trials successfully mitigate such
performance degradation by incorporating the EVM feedback
and exploring K possible parameters instead of only one.

Fig. 6b shows that there is consistently about a 20%
difference in accuracy between selecting the top-5 choices
compared to just the top-1 choice across a wide range of
AWGN SNR values I" from 15 to 40 dB. Here, we set the
frequency shift to Af as 0 kHz or 78 kHz — note that the
training of the NRCLDNN was performed only for frequency
shift training from O to 36 kHz. Our result implies that the
top-5 candidate trial algorithm can enhance the accuracy even

for frequency shift A {/ not covered in the training.
I. CONCLUSION

We proposed a novel approach for 5G NR mmWave test
model waveform classification using DL and CT as the key
tool. We achieve consistently high accuracy across various
SNR and frequency shift levels by transforming the I/Q signal
to magnitude/phase and applying a DL model combined with

CT and top-5 candidate trials.
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