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Abstract—For millimeter wave (mmWave) communication, fast
and accurate beam alignment is essential but challenging. Site-
specific beam adaptation using deep learning is a very promising
paradigm for beam alignment, but such methods typically require
a lot of clean channel measurements for training, which can be
difficult or even impossible to achieve in practice. This paper
introduces a novel method to learn beam alignment policies
using only uplink (UL) pilot measurements. The proposed method
integrates a generative adversarial network (GAN)-based channel
estimation (CE) model with an unsupervised deep learning model
beam alignment engine (BAE). We introduce an efficient form
of dataset amplification for improved training that leverages
the randomness of the deep generative model (DGM) and an
early stopping mechanism. Our experiments show that the GAN-
BAE method achieves a better signal-to-noise ratio (SNR) by
nearly 3 dB compared to compressed sensing (CS) methods such
as orthogonal matching pursuit (OMP) and EM-GM-AMP (an
Approximate Message Passing algorithm), especially when there
are limited pilot measurements from each mobile user.

I. INTRODUCTION

Beam alignment is a key bottleneck in millimeter wave

(mmWave) systems, usually requiring large bandwidth, time

slot, and energy overheads [1]. As cellular systems continue

to migrate towards high carrier frequencies, fast and efficient

beam alignment will become increasingly important. This

underscores the need for more resilient and adaptive mmWave

beam codebook designs and beam alignment algorithms [2].

Site-specific beam adaptation is a promising approach to

beam alignment. The basic idea is that each cell in the network

learns a site-specific codebook-based (CB) that is efficient

and effective for the propagation conditions and channels

commonly experienced in that cell – thus it depends on

the UE distribution also. By concentrating the initial access

(probing) beam searches such that they are aligned with

the learned channel distribution in the cell, many fold gains

can be observed in terms of beam alignment latency [3].

Conventionally, most beam management approaches including

the 5G NR initial access procedure assume a CB-based method

[3]–[5]. Our recent work [6] was able to find a near-optimal

beam pair within the continuous angular domain, resulting in

better gain compared to the CB method. The results of this

paper apply to any deep learning-based BAE approach.

This work was partly supported by NSF Award CNS-2148141, as well
as ARO Award W911NF2310062, ONR Award N00014-21-1-2379, NSF
Award CNS-2008824, and Keysight Technologies through the 6G@UT center
within the Wireless Networking and Communications Group (WNCG) at the
University of Texas at Austin.

Training a deep learning-based beam alignment engine

(BAE) requires a fairly large channel dataset, on the order

of 100K channel measurements for a typical macrocell sector

[3], [6], [7]. Instead of generating a large synthetic dataset

using statistical models, ray tracing, and/or simulations, we

prefer an approach that could result in automated training of

the BAE in a given cell just using existing over-the-air channel

measurements like UL pilot measurements, such as Sounding

Reference Symbols (SRS) or Demodulation Reference Sym-

bols (DM-RS) in 5G.

Advances in channel estimation (CE) techniques allow for

the creation of highly accurate underlying channels using

pilot measurements. Such examples include linear regression

methods such as least square (LS) and minimum mean square

error (MMSE), compressed sensing (CS) methods such as

orthogonal matching pursuit (OMP) [8] and EM-GM-AMP (an

Approximate Message Passing algorithm) [9]. Additionally,

there are discriminative deep neural network (DNN)-based CE

[10], [11], and deep generative model (DGM)-based CE such

as generative adversarial network (GAN) and diffusion models

[12], [13].

However, downlink (DL) CE is inapplicable as an input to

the BAE for two key reasons: (ė) The limited volume of pilot

measurements, which will be on the order of the number of

users, is insufficient as BAE requires more extensive channel

data for training. (Ę) We anticipate that the BAE will be

trained at the BS, which has more computing power than a

UE. This implies that the BS needs to access the estimated

channels. In the traditional DL CE framework, however, the

BS sends DL pilots, based on which the UE estimates the

channel. Requiring UEs to transmit an estimated channel to

the BS would introduce a substantial overhead.

We propose a novel framework that addresses these two

challenges in automating the training of the BAE using pilot

channel measurements. To be concrete, this paper builds on

recent advancements in two parallel lines of research. First,

the GAN-based framework for high dimensional CE [12] using

UL pilots. Second, the end-to-end grid-free deep learning for

site-specific mmWave beam alignment [6], which we use as

our BAE. The contributions of this paper are as follows:

Beam alignment training system requiring only over-

the-air UL measurements. We can train the GAN-BAE using

only uplink (UL) pilot measurements, without any prerequisite

dataset. Most of the GAN and the BAE training takes place at

the base station (BS), as desired, given the substantial power
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Fig. 1: The structure and process of the proposed method.

requirements of the DGM. The framework is a novel approach

that can be carried out completely autonomously over-the-air

by leveraging the downlink-uplink channel reciprocity which

is completely new in the area of deep learning-aided beam

alignment approaches, to the best of our knowledge.

Amplifying channel dataset using a DGM. We harness

the generative capability of DGM-based channel estimation,

which enhances dataset robustness, by generating an amplified

channel dataset from minimal pilot measurements. Our method

can outperform beamforming (BF) that are using a CS CE with

the same number of measurements. In addition, to compensate

for the increased processing time from the above steps, we

propose a method to reduce the epoch during the GAN

inference.

Beam alignment SNR roughly doubled. Applying the

two methods mentioned above to train the BAE, the GAN-

based results exhibit better BF signal-to-noise ratio (SNR)

by 2.8 dB than CS-based results, achieving almost twice the

gain. Although GAN-based CE show higher normalized mean

square error (NMSE) values than CS methods in CE, it might

provide a better estimate for the BF especially when the end

goal of the channel estimate is simply to find a single optimal

beamforming direction.

II. SYSTEM MODEL

We consider a single user downlink (DL) narrowband

mmWave multiple-input multiple-output (MIMO) communi-

cation scenario, where the BS has an array of ĊB antennas

and the user equipment (UE) has an array of ĊU antennas,

each performing beam alignment. The BS and the UE sweep

Ċprobe independent probing beams each, where each probing

beam consists of Ċpilot symbols.

We assume MIMO systems operating within a single-cell

time division duplex (TDD) so that the channel remains

constant within each time slot. Due to the channel matrix

reciprocity, it can be inferred that the UL pilot signal grants

the BS an estimation of the forward channel in the DL as well

[14].

Fig. 1 provides an overview of the system model. First,

we train the GAN generator using a significant amount of

accumulated UL pilot measurements at the BS. Next, we use

the GAN generator to predict the channel from real-time UL

pilot measurements. We then use these estimated channels to

train the DL probing beam structure of BAE. Finally, we select

a DL beam pair. Each step is detailed in Section III-A.

We will describe the formulas of the pilot measurements,

probing measurements, and final received signals. Denote the

hybrid precoder at the transmitter by FUL ∈ CĊU×Ċprobe , and

the hybrid combiner at the receiver by WUL ∈ CĊB×Ċprobe .

With the DL MIMO channel denoted by H ∈ CĊU×ĊB , the

transmitted pilot symbols sUL ∈ CĊprobe×Ċpilot are received as

the composite received signal YUL ∈ CĊprobe×Ċpilot . The UL

received signal can be written as

YUL =

√

ČUWUL
Ą

H
Ą

FULsUL + WUL
Ą

n, (1)

where ČU is the transmit power of UE, and n ∼ CN(0, Ă2
I)

is the UL measurement noise.

After receiving the pilot measurements, BS sweeps Ċprobe

probing beams while the UE measures the received signal

power using Ċprobe probing beams. Let the BS probing beam

pairs F ∈ CĊB×Ċprobe and the UE probing beam pairs W ∈

CĊU×Ċprobe to transmit the probing symbols s ∈ CĊprobe×Ċpilot .

The DL received signal of all combinations of probing beams

can be written as

Y =

√

ČBW
Ą

HFs + W
Ą

n, (2)

where s is the vector of transmitted signals and n ∼

CN(0, Ă2
I) is the DL noise.

The DL beam synthesizer is trained as detailed in Section

III-B. Finally, the DL signal is transmitted from the BS to the

UE. The BS selects a synthesized beam f ∈ CĊB×1, and the UE

selects a synthesized beam w ∈ CĊU×1 to transmit a symbol

ĩ ∈ C. In order to reduce the cost and power consumption of

a fully digital system, analog BF is assumed in this work. The

DL received signal can be written as

į =
√

ČBw
Ą

Hfĩ + w
Ą

n, (3)

where ČB is the BS power and n ∼ CN(0, Ă2
I) is the DL

noise. The SNR achieved by the chosen DL beam pair is

SNR =

ČB |w
Ą

Hf |2

|wĄn|2
. (4)
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III-C.

III. PROPOSED DNN MODEL

A. GAN-based CE

We introduce the GAN-based CE model [12]. The

beamspace representation of mmWave MIMO channel has

a high spatial correlation. Therefore, we can make discrete

Fourier transform (DFT) transformation to exploit the cluster-

ing in the angular domain directly as

H = ARHvAT. (5)

When assuming uniformly spaced linear arrays at both the

transmitter and receiver, both AR and AT are unitary matrices.

As a result, H and Hv share the same dimension. UL pilot

measurement can be expressed as

YUL = AHv
Ą + ñ, (6)

where A is defined in [12]. Therefore, recovering Hv becomes

an inverse problem, and a DGM G can be used to solve

it approximately [15]. Specifically, a Wasserstein GAN with

gradient penalty (WGAN-GP) is deployed in this work.

During the training process, we cannot access pure H

channels but only noisy pilot measurements. Consequently,

directly incorporating Hv is not feasible. To address this issue,

we utilize the LS estimate from pilot measurements to generate

the inputs for the GAN.

We assume to have ć =

⌈

ĊU/Ċpilot

⌉

precoder and combiner

pairs, which make ć different pilot measurements for each

UE. This ensures sufficient rank of stacked A. Then, ć pre-

train pilot measurement equations can be constructed, and

the beamspace LS channel estimate Hv,LS can be obtained as

shown in Fig. 2.

During inference, we use G to output samples Hv, by

optimizing a latent vector using stochastic gradient descent

with inference pilot measurements YUL,test as

z
∗
= arg min

z∈RĚ








YUL,test − AG(z)
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2. (7)

Therefore, by training G and the subsequent optimization

in (7), the beamspace channel estimate is given by Hv,est =

G (z∗), as shown in Fig. 3.

B. The grid-free beam alignment engine (BAE)

The BAE introduced in [6] aims to learn Ċprobe transmit (Tx)

probing beams and Ċprobe receive (Rx) probing beams that

are tailored to the overall channel distribution in the cell (and

thus site-specific). Site-specific probing beams will effectively

obtain the pilot measurements sent from UE to BS. After the

probing beam sweeping, the BS uses collected measurements

as inputs to the transmitter beam synthesizer function ĜBS and

receiver beam synthesizer function ĜUE.

We use DL probing beam measurements in (2) as an input

to the beam synthesizer function

Yall =
[

| [diag(Y)]1 |
2 · · · | [diag(Y)]Ċprobe

|2
]Đ
. (8)

The beam synthesizer functions should generate beams that

maximize the BF SNR for each channel realization. The prob-

ing beams should serve two parallel purposes simultaneously.

First, they must provide well-chosen pilot signals as input to

the beam synthesizer function. Second, they should be able to

discover new UEs during the initial access (IA) process.

The BAE optimizes F,W, f, and w using a complex neural

network (NN) module. For F and W, the complex NN module

computes the composite matrix of received signals, sweeping

probing beam pairs in a differentiable manner. For f and

w, the multilayer perceptron (MLP) uses two hidden layers

with rectified linear unit (ReLU) activation and a final linear

layer normalizing element-wise to enforce the unit-modulus

constraint for analog BF.

Beam synthesizers ĜBS at the BS and ĜUE at the UE

sweep probing beam pairs periodically. The UE measures and

reports received signal power vector Yall to the BS. Using

these measurements, the BS and UE adjust the Tx and Rx

beams. Because these beams are site-specific, the BS transmits

components W and ĜUE to the UEs, possibly through a low-

frequency side link as supported in 5G systems. The BAE

model is illustrated in Fig. 3.

However, training the BAE for each site demands about

100K of clean channel matrices, which is nearly impossible.

This challenge leads us to the method discussed in Section

III-C, where we leverage GAN to estimate channels from pilot

measurements.



TABLE I: Simulation Parameters

Scenario Name Outdoor LOS (O1)

UE training samples 467265

UE inference attempts 46

Number of pilot symbols (Ċpilot) 8

BS Antenna 64 × 1 ULA

UE Antenna 16 × 1 ULA

GAN train epochs 30000

GAN inference epochs 50, 500

BAE probing beams (Ċprobe) 16

BAE training epochs 1000

Carrier frequency 28 GHz

Bandwidth (þ) 100 MHz

BS power (ČB) 30 dBm

UE power (ČU) -10, 0, 10, 20 dBm

Noise power (Ă2) -81 dBm

UE grid

UE - inference

BS BS

UE - train

Fig. 4: Illustration of the DeepMIMO ray-tracing scenarios.

C. Proposed unified model (GAN-BAE)

In this section, we introduce a novel framework that in-

tegrates the GAN-based channel estimation and the grid-free

beam alignment technique.

Setup. For concreteness, we consider the DeepMIMO

dataset [7] built from a ray-tracing-based channel simulator.

In this work, a 28 GHz outdoor scenario is considered. Table

I shows the exact parameters and settings. The O1 scenario

is an outdoor urban simulation environment with line-of-sight

(LOS) paths of UEs.

Our framework: GAN-BAE. Our framework integrates the

GAN-based CE from Section III-A and the BAE from Section

III-B. The unified model, GAN-BAE, operates as follows:

We collect UL pilot data at the BS over an extended period,

allowing the GAN to capture the channel matrix distribution.

This process is for the dataset generation before the actual

transmission, which only needs to be performed once in the

same environment if there are no significant channel distri-

bution shifts due to environmental changes. Once the GAN

generator is trained, we periodically collect a limited set of

real-time UL pilot measurements and amplify the CE dataset

from the pilot measurements using the GAN generator to train

the BAE. Consequently, the BAE learns the DL probing beam

and beam synthesizer, which can be conceptually viewed as

infinitely large codebooks.

In our experiment, the GAN is trained using a dataset

of 467,219 UE instances, which are assumed to have been

collected in advance. The dataset is split into training and

validation sets at a 3:1 ratio. This division helps determine

when to halt the GAN training.

At each time instance, we collect extremely few pilot

measurements. Specifically, we assume that 46 samples are

sparsely collected from the user grid, as shown in Fig. 4. This

represents 0.01% of the UEs. There are two reasons for using

such a limited number of pilot measurements. First, we aim to

align with the current channel distribution, so outdated data is

inappropriate. Second, training the BAE necessitates feedback

from the UE to the BS, which is time-consuming with real-

time UL measurements. While previous study [6] has assumed

offline training with synthetic channel datasets, the GAN-BAE

seeks to utilize real-time pilot measurements for online BAE

training. Hence, we must achieve effective BF with minimal

UL pilot measurements.

Handling limited pilot measurements presents a challenge in

developing a high-quality dataset for training the BF system.

While data augmentation emerges as a potential solution,

traditional methods tend to enhance robustness in the image

domain, often neglecting the unique characteristics of our

desired channel-like output. Instead of these conventional

methods, we capitalize on the stochastic nature of the GAN

generator.

For instance, DGMs can enhance model pre-training using

synthetic data, as well as boost performance in zero-shot and

few-shot image classification, as shown in [16]. We amplify

the dataset by generating CE multiple times from a single pilot

measurement. This approach not only improves the robustness

of the dataset but also compensates for occasional inaccuracies

in channel estimates from the GAN. Even if the CE are not

always perfect, the set of CE can be sufficient for learning

BF. By harnessing the stochastic properties of the GAN, we

amplify the dataset and enable more effective BF with less

information.

We also implement early-stop during the inference epoch.

The data amplification discussed earlier increases time con-

sumption, leading us to consider reducing the epoch count

during GAN inference. For the convergence in z in (7), 500

epochs of stochastic gradient descent are required empirically.

Therefore, the experiment has two different epoch counts: 500

and 50. While the 500-epoch GAN ensures convergence of

(7), the 50-epoch GAN does not fully converge. This early-

stop approach offers two main advantages. First, the runtime

of the inference loop is reduced by a factor of 10. Second, the

approach potentially enhances the robustness of the dataset

due to the diversity in CE results.

The baselines of the above method are CS methods, in-

cluding OMP [8] and EM-GM-AMP [9], which can serve

as direct alternatives to GAN for ill-posed inverse problems.

Once the pilot signal is received, CS-based CE might produce

comparable results, especially for the beamspace sparse sim-

ulated channels like DeepMIMO. This suggests that in real-

world settings, CS might fall short. On the other hand, GAN-

aided CE can potentially excel over CS techniques in BF by

amplifying the dataset. Our analysis compares the performance

of GAN-BAE against that of OMP-BAE and EM-GM-AMP-



(a) Ċpilot = 8

(b) Ċpilot = 16

Fig. 5: Average SNR of beamforming vs. Data amplification

rate for ČU = 0 dB.

BAE. The latter two use CS methods for CE and BAE to learn

BF.

The performance metric for beam alignment is the SNR by

the optimized BS and UE beams, defined as

SNR = E
H∈H

[

10 log
ČB |w

Ą
Hf |2

|wĄn|2

]

(9)

IV. RESULTS & DISCUSSIONS

In this section, we highlight the enhanced performance

of GAN-BAE over other benchmarks when Ċpilot = 8. The

performance consistently outperforms across different ranges

of UE power. Interestingly, even if the NMSE value of the

CE is higher, it yields a superior BF gain. This suggests that

a low NMSE does not necessarily assure finding the best

beamforming direction.

A. Gain of the GAN-BAE with amplified dataset vs baselines

The GAN-BAE performance is measured using the average

SNR in dB. The standard setting for our experiments is

ČU = 0 dB. In Fig. 5a for the Ċpilot = 8 scenario, GAN-

BAE outperforms OMP-BAE by 2.8 dB, and EM-GM-AMP-

BAE by 4.7 dB. This is because pilot measurements are not

sufficient to fully reconstruct the channel with CS methods,

as it is half of the UE channel dimension ĊU. On the other

Fig. 6: Average SNR of beamforming vs. UE power ČU for

Ċpilot = 8, Data amplification rate = 1, 000.

hand, Fig. 5b with Ċpilot = 16, the baseline shows similar

performance with GAN-BAE. This is attributed to providing

enough pilot measurements to capture the full UE channel

dimension, ĊU.

Fig. 5 illustrates that the performance of the OMP-BAE

and the EM-GM-AMP-BAE significantly differs with Ċpilot.

For Ċpilot = 16, the SNR of the OMP-BAE and the EM-

GM-AMP-BAE show a minor gap between the SNR and the

BAE trained using actual channels. Yet, with Ċpilot = 8, both

experience a marked decline in SNR. On the other hand, the

GAN-BAE shows a high average SNR on both Ċpilot = 8, 16.

This underlines the ability of the GAN-BAE to deliver a more

stable, higher SNR when having a lower Ċpilot. Our analysis

will further focus on the case of Ċpilot = 8 when the number

of the UE measurements is insufficient.

As we increase the data amplification rate in Fig. 5, we can

observe SNR improves significantly. The data amplification

rate of 1,000 boosts the performance by 2.1 dB compared to

the data amplification rate of 1. Given the limited pilot mea-

surements, this gap arises not from adding new information

but from leveraging the inherent randomness of a DGM, which

effectively captures the channel distribution.

Calculating the CE from pilot measurements presents an ill-

posed inverse problem, yielding multiple potential solutions.

Some of these solutions can significantly deviate from realistic

channels. The GAN generator ensures that these estimates

align closely with realistic channels, providing ample candi-

date channel matrices. This allows us to determine the optimal

beam angles based on an average-case channel matrix derived

from solving the inverse problem.

In Fig. 5a, we now examine GAN inference using 500

iterations which is fully iterated, and 50 iterations which

is early stopped. Given the extended time required for data

amplification, an approach to compensate for this is to termi-

nate the GAN inference iteration prematurely. This allows for

quicker dataset generation and, as an added benefit, yields a

more diverse channel generation without drastically violating

the channel distribution. An early-stopped CE results in an

SNR increase of 0.1 to 0.3 dB compared to a fully converged



Fig. 7: CE NMSE vs. UE power ČU for Ċpilot = 8. It shows

that NMSE is not reflective when the channel is solely used

to calculate the single optimal beam.

CE of a ten times lower data amplification rate. This suggests

that instead of investing time and resources to fully converge

the GAN-based CE, stopping it early and producing more

samples for the BAE training is more efficient.

In Fig. 6, the GAN-BAE method consistently outperforms

the baseline methods across all UE power levels ranging from

-10 dBm to 20 dBm. It shows that the method is not confined

to specific SNRs but remains robust across different UE power

levels.

B. Is NMSE a good metric for channel estimation?

Although Fig. 5 demonstrates that the GAN-BAE has the

highest SNR, GAN does not deliver the “best” CE by con-

ventional standards. Fig. 7 indicates that the OMP-based CE

achieves the lowest NMSE value, which is lower than the fully

converged GAN-based CE and EM-GM-AMP-based CE by 2

dB and surpasses the early-stopped GAN-based CE by 4 dB –

a significant difference. Why does the GAN-BAE outperform

OMP-BAE and EM-GM-AMP-BAE?

Relying solely on the average of the NMSE value can be

misleading. When reconstructed channels deviate significantly

from the expected distribution, their impact tends to be min-

imized by the averaging process. Given the ill-posed nature

of the problem and the limited number of pilot measurements

with CS methods, there is a risk that the reconstructed channel

could differ significantly from the desired outcome. When

averaged, a single deviation can be concealed, presenting an

inherent risk when training models on beamforming. Even a

single outlier can mislead the system into focusing its energy

on an unintended angle. Hence, when the primary objective of

CE is to pinpoint a singular optimal beamforming direction,

average NMSE might not serve as the most indicative metric.

V. CONCLUSION

We proposed a novel framework for deep learning aided

beam alignment, leveraging a combination of GAN-based

channel estimator and generator, and a site-specific beam

alignment engine (BAE). Importantly, this GAN-BAE frame-

work requires only uplink pilot measurements to train the

entire model, making it considerably closer to “deployment

ready” than most prior approaches that require extensive

synthetic simulations to produce a dataset for offline training.

Furthermore, the heavy computational tasks are at the BS side,

reducing the computational burden on the UE and minimizing

UL transmissions. Our experimental results show significant

improvement in beamforming gain over traditional CS tech-

niques such as the OMP and the EM-GM-AMP. Moreover,

the GAN-BAE framework demonstrates robust performance

in various power levels of UE.

Potential future directions include handling diverse UE

distributions in real time. Is it reasonable to make biased beam

predictions based on changed distribution? Determining the

optimal retraining interval, especially given the varying pilot

measurement presents future challenge topics that are central

to the future development of our proposed framework.
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