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Abstract—For millimeter wave (mmWave) communication, fast
and accurate beam alignment is essential but challenging. Site-
specific beam adaptation using deep learning is a very promising
paradigm for beam alignment, but such methods typically require
a lot of clean channel measurements for training, which can be
difficult or even impossible to achieve in practice. This paper
introduces a novel method to learn beam alignment policies
using only uplink (UL) pilot measurements. The proposed method
integrates a generative adversarial network (GAN)-based channel
estimation (CE) model with an unsupervised deep learning model
beam alignment engine (BAE). We introduce an efficient form
of dataset amplification for improved training that leverages
the randomness of the deep generative model (DGM) and an
early stopping mechanism. Qur experiments show that the GAN-
BAE method achieves a better signal-to-noise ratio (SNR) by
nearly 3 dB compared to compressed sensing (CS) methods such
as orthogonal matching pursuit (OMP) and EM-GM-AMP (an
Approximate Message Passing algorithm), especially when there
are limited pilot measurements from each mobile user.

I. INTRODUCTION

Beam alignment is a key bottleneck in millimeter wave
(mmWave) systems, usually requiring large bandwidth, time
slot, and energy overheads [1]. As cellular systems continue
to migrate towards high carrier frequencies, fast and efficient
beam alignment will become increasingly important. This
underscores the need for more resilient and adaptive mmWave
beam codebook designs and beam alignment algorithms [2].

Site-specific beam adaptation is a promising approach to
beam alignment. The basic idea is that each cell in the network
learns a site-specific codebook-based (CB) that is efficient
and effective for the propagation conditions and channels
commonly experienced in that cell — thus it depends on
the UE distribution also. By concentrating the initial access
(probing) beam searches such that they are aligned with
the learned channel distribution in the cell, many fold gains
can be observed in terms of beam alignment latency [3].
Conventionally, most beam management approaches including
the 5G NR initial access procedure assume a CB-based method
[3]-[5]. Our recent work [6] was able to find a near-optimal
beam pair within the continuous angular domain, resulting in
better gain compared to the CB method. The results of this
paper apply to any deep learning-based BAE approach.
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Award CNS-2008824, and Keysight Technologies through the 6G@UT center
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Training a deep learning-based beam alignment engine
(BAE) requires a fairly large channel dataset, on the order
of 100K channel measurements for a typical macrocell sector
[3], [6], [7]. Instead of generating a large synthetic dataset
using statistical models, ray tracing, and/or simulations, we
prefer an approach that could result in automated training of
the BAE in a given cell just using existing over-the-air channel
measurements like UL pilot measurements, such as Sounding
Reference Symbols (SRS) or Demodulation Reference Sym-
bols (DM-RS) in 5G.

Advances in channel estimation (CE) techniques allow for
the creation of highly accurate underlying channels using
pilot measurements. Such examples include linear regression
methods such as least square (LS) and minimum mean square
error (MMSE), compressed sensing (CS) methods such as
orthogonal matching pursuit (OMP) [8] and EM-GM-AMP (an
Approximate Message Passing algorithm) [9]. Additionally,
there are discriminative deep neural network (DNN)-based CE
[10], [11], and deep generative model (DGM)-based CE such
as generative adversarial network (GAN) and diffusion models
[12], [13].

However, downlink (DL) CE is inapplicable as an input to
the BAE for two key reasons: (a) The limited volume of pilot
measurements, which will be on the order of the number of
users, is insufficient as BAE requires more extensive channel
data for training. (b) We anticipate that the BAE will be
trained at the BS, which has more computing power than a
UE. This implies that the BS needs to access the estimated
channels. In the traditional DL CE framework, however, the
BS sends DL pilots, based on which the UE estimates the
channel. Requiring UEs to transmit an estimated channel to
the BS would introduce a substantial overhead.

We propose a novel framework that addresses these two
challenges in automating the training of the BAE using pilot
channel measurements. To be concrete, this paper builds on
recent advancements in two parallel lines of research. First,
the GAN-based framework for high dimensional CE [12] using
UL pilots. Second, the end-to-end grid-free deep learning for
site-specific mmWave beam alignment [6], which we use as
our BAE. The contributions of this paper are as follows:

Beam alignment training system requiring only over-
the-air UL measurements. We can train the GAN-BAE using
only uplink (UL) pilot measurements, without any prerequisite
dataset. Most of the GAN and the BAE training takes place at
the base station (BS), as desired, given the substantial power
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Fig. 1: The structure and process of the proposed method.

requirements of the DGM. The framework is a novel approach
that can be carried out completely autonomously over-the-air
by leveraging the downlink-uplink channel reciprocity which
is completely new in the area of deep learning-aided beam
alignment approaches, to the best of our knowledge.

Amplifying channel dataset using a DGM. We harness
the generative capability of DGM-based channel estimation,
which enhances dataset robustness, by generating an amplified
channel dataset from minimal pilot measurements. Our method
can outperform beamforming (BF) that are using a CS CE with
the same number of measurements. In addition, to compensate
for the increased processing time from the above steps, we
propose a method to reduce the epoch during the GAN
inference.

Beam alignment SNR roughly doubled. Applying the
two methods mentioned above to train the BAE, the GAN-
based results exhibit better BF signal-to-noise ratio (SNR)
by 2.8 dB than CS-based results, achieving almost twice the
gain. Although GAN-based CE show higher normalized mean
square error (NMSE) values than CS methods in CE, it might
provide a better estimate for the BF especially when the end
goal of the channel estimate is simply to find a single optimal
beamforming direction.

II. SYSTEM MODEL

We consider a single user downlink (DL) narrowband
mmWave multiple-input multiple-output (MIMO) communi-
cation scenario, where the BS has an array of Ny antennas
and the user equipment (UE) has an array of Ny antennas,
each performing beam alignment. The BS and the UE sweep
Nprobe independent probing beams each, where each probing
beam consists of Npjior symbols.

We assume MIMO systems operating within a single-cell
time division duplex (TDD) so that the channel remains
constant within each time slot. Due to the channel matrix
reciprocity, it can be inferred that the UL pilot signal grants
the BS an estimation of the forward channel in the DL as well
[14].

Fig. 1 provides an overview of the system model. First,
we train the GAN generator using a significant amount of
accumulated UL pilot measurements at the BS. Next, we use

the GAN generator to predict the channel from real-time UL
pilot measurements. We then use these estimated channels to
train the DL probing beam structure of BAE. Finally, we select
a DL beam pair. Each step is detailed in Section III-A.

We will describe the formulas of the pilot measurements,
probing measurements, and final received signals. Denote the
hybrid precoder at the transmitter by Fyp € CNu*Noobe and
the hybrid combiner at the receiver by Wyp, € CN8XNprobe,
With the DL MIMO channel denoted by H € CMXNs | the
transmitted pilot symbols syp, € CNeoreXNilot are received as
the composite received signal Yyp € CNeobeXNpilr. The UL
received signal can be written as

Yur = vVPuWu "HFusur + WoL7n, (D

where Py is the transmit power of UE, and n ~ CN (0, o-*I)
is the UL measurement noise.

After receiving the pilot measurements, BS sweeps Nprobe
probing beams while the UE measures the received signal
power using Nprope probing beams. Let the BS probing beam
pairs F € CNeXNowve and the UE probing beam pairs W €
CNuXNprobe 1o transmit the probing symbols s € CVorobeXNitor,
The DL received signal of all combinations of probing beams
can be written as

Y = PsW/”HFs + Wn, )

~

where s is the vector of transmitted signals and n
CN (0, 1) is the DL noise.

The DL beam synthesizer is trained as detailed in Section
III-B. Finally, the DL signal is transmitted from the BS to the
UE. The BS selects a synthesized beam f € CNex1_ and the UE
selects a synthesized beam w € CM*! to transmit a symbol
s € C. In order to reduce the cost and power consumption of
a fully digital system, analog BF is assumed in this work. The
DL received signal can be written as

y = +/PgwHfs + win, 3)

where Py is the BS power and n ~ CN(0,0I) is the DL
noise. The SNR achieved by the chosen DL beam pair is
_ Pg|wHf |2

SNR
|wHn|?
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Fig. 2: The training phase of the proposed GAN-based CE
model.
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III. PROPOSED DNN MODEL

A. GAN-based CE

We introduce the GAN-based CE model [12]. The
beamspace representation of mmWave MIMO channel has
a high spatial correlation. Therefore, we can make discrete
Fourier transform (DFT) transformation to exploit the cluster-
ing in the angular domain directly as

H = ARH,Ar. ®)

When assuming uniformly spaced linear arrays at both the
transmitter and receiver, both Agr and At are unitary matrices.
As a result, H and H, share the same dimension. UL pilot
measurement can be expressed as

Yy = AH,” +0, (6)

where A is defined in [12]. Therefore, recovering H, becomes
an inverse problem, and a DGM G can be used to solve
it approximately [15]. Specifically, a Wasserstein GAN with
gradient penalty (WGAN-GP) is deployed in this work.

During the training process, we cannot access pure H
channels but only noisy pilot measurements. Consequently,
directly incorporating H, is not feasible. To address this issue,
we utilize the LS estimate from pilot measurements to generate
the inputs for the GAN.

We assume to have K = [ Ny/Npiio | precoder and combiner
pairs, which make K different pilot measurements for each

UE. This ensures sufficient rank of stacked A. Then, K pre-
train pilot measurement equations can be constructed, and
the beamspace LS channel estimate H, g can be obtained as
shown in Fig. 2. -

During inference, we use G to output samples H,, by
optimizing a latent vector using stochastic gradient descent
with inference pilot measurements Yuyr st as

2
2" = argmin|[YuLen - AG@)| + Aglll3. )

z€R4

Therefore, by training G and the subsequent optimization
in (7), the beamspace channel estimate is given by Hyeq =
G (z%), as shown in Fig. 3.

B. The grid-free beam alignment engine (BAE)

The BAE introduced in [6] aims to learn Npyope transmit (Tx)
probing beams and Nype receive (Rx) probing beams that
are tailored to the overall channel distribution in the cell (and
thus site-specific). Site-specific probing beams will effectively
obtain the pilot measurements sent from UE to BS. After the
probing beam sweeping, the BS uses collected measurements
as inputs to the transmitter beam synthesizer function fgg and
receiver beam synthesizer function fyg.

We use DL probing beam measurements in (2) as an input
to the beam synthesizer function

Y = [l[diag VL - |[diag(V)Inpl?]” ®)

The beam synthesizer functions should generate beams that
maximize the BF SNR for each channel realization. The prob-
ing beams should serve two parallel purposes simultaneously.
First, they must provide well-chosen pilot signals as input to
the beam synthesizer function. Second, they should be able to
discover new UEs during the initial access (IA) process.

The BAE optimizes F, W, f, and w using a complex neural
network (NN) module. For F and W, the complex NN module
computes the composite matrix of received signals, sweeping
probing beam pairs in a differentiable manner. For f and
w, the multilayer perceptron (MLP) uses two hidden layers
with rectified linear unit (ReLU) activation and a final linear
layer normalizing element-wise to enforce the unit-modulus
constraint for analog BF.

Beam synthesizers fgs at the BS and fyg at the UE
sweep probing beam pairs periodically. The UE measures and
reports received signal power vector Y,; to the BS. Using
these measurements, the BS and UE adjust the Tx and Rx
beams. Because these beams are site-specific, the BS transmits
components W and fyg to the UEs, possibly through a low-
frequency side link as supported in 5G systems. The BAE
model is illustrated in Fig. 3.

However, training the BAE for each site demands about
100K of clean channel matrices, which is nearly impossible.
This challenge leads us to the method discussed in Section
III-C, where we leverage GAN to estimate channels from pilot
measurements.



TABLE I: Simulation Parameters

Scenario Name Outdoor LOS (O1)

UE training samples 467265
UE inference attempts 46
Number of pilot symbols (Npiio) 8
BS Antenna 64 x 1 ULA
UE Antenna 16 x 1 ULA
GAN train epochs 30000
GAN inference epochs 50, 500

BAE probing beams (Npobe) 16

BAE training epochs 1000

Carrier frequency 28 GHz

Bandwidth (B) 100 MHz

BS power (Pg) 30 dBm
UE power (Py) -10, 0, 10, 20 dBm

Noise power (%) -81 dBm

= UE-inference
UE - train
[ &s

Fig. 4: Tllustration of the DeepMIMO ray-tracing scenarios.

C. Proposed unified model (GAN-BAE)

In this section, we introduce a novel framework that in-
tegrates the GAN-based channel estimation and the grid-free
beam alignment technique.

Setup. For concreteness, we consider the DeepMIMO
dataset [7] built from a ray-tracing-based channel simulator.
In this work, a 28 GHz outdoor scenario is considered. Table
I shows the exact parameters and settings. The O1 scenario
is an outdoor urban simulation environment with line-of-sight
(LOS) paths of UEs.

Our framework: GAN-BAE. Our framework integrates the
GAN-based CE from Section III-A and the BAE from Section
III-B. The unified model, GAN-BAE, operates as follows:
We collect UL pilot data at the BS over an extended period,
allowing the GAN to capture the channel matrix distribution.
This process is for the dataset generation before the actual
transmission, which only needs to be performed once in the
same environment if there are no significant channel distri-
bution shifts due to environmental changes. Once the GAN
generator is trained, we periodically collect a limited set of
real-time UL pilot measurements and amplify the CE dataset
from the pilot measurements using the GAN generator to train
the BAE. Consequently, the BAE learns the DL probing beam
and beam synthesizer, which can be conceptually viewed as
infinitely large codebooks.

In our experiment, the GAN is trained using a dataset
of 467,219 UE instances, which are assumed to have been
collected in advance. The dataset is split into training and

validation sets at a 3:1 ratio. This division helps determine
when to halt the GAN training.

At each time instance, we collect extremely few pilot
measurements. Specifically, we assume that 46 samples are
sparsely collected from the user grid, as shown in Fig. 4. This
represents 0.01% of the UEs. There are two reasons for using
such a limited number of pilot measurements. First, we aim to
align with the current channel distribution, so outdated data is
inappropriate. Second, training the BAE necessitates feedback
from the UE to the BS, which is time-consuming with real-
time UL measurements. While previous study [6] has assumed
offline training with synthetic channel datasets, the GAN-BAE
seeks to utilize real-time pilot measurements for online BAE
training. Hence, we must achieve effective BF with minimal
UL pilot measurements.

Handling limited pilot measurements presents a challenge in
developing a high-quality dataset for training the BF system.
While data augmentation emerges as a potential solution,
traditional methods tend to enhance robustness in the image
domain, often neglecting the unique characteristics of our
desired channel-like output. Instead of these conventional
methods, we capitalize on the stochastic nature of the GAN
generator.

For instance, DGMs can enhance model pre-training using
synthetic data, as well as boost performance in zero-shot and
few-shot image classification, as shown in [16]. We amplify
the dataset by generating CE multiple times from a single pilot
measurement. This approach not only improves the robustness
of the dataset but also compensates for occasional inaccuracies
in channel estimates from the GAN. Even if the CE are not
always perfect, the set of CE can be sufficient for learning
BF. By harnessing the stochastic properties of the GAN, we
amplify the dataset and enable more effective BF with less
information.

We also implement early-stop during the inference epoch.
The data amplification discussed earlier increases time con-
sumption, leading us to consider reducing the epoch count
during GAN inference. For the convergence in z in (7), 500
epochs of stochastic gradient descent are required empirically.
Therefore, the experiment has two different epoch counts: 500
and 50. While the 500-epoch GAN ensures convergence of
(7), the 50-epoch GAN does not fully converge. This early-
stop approach offers two main advantages. First, the runtime
of the inference loop is reduced by a factor of 10. Second, the
approach potentially enhances the robustness of the dataset
due to the diversity in CE results.

The baselines of the above method are CS methods, in-
cluding OMP [8] and EM-GM-AMP [9], which can serve
as direct alternatives to GAN for ill-posed inverse problems.
Once the pilot signal is received, CS-based CE might produce
comparable results, especially for the beamspace sparse sim-
ulated channels like DeepMIMO. This suggests that in real-
world settings, CS might fall short. On the other hand, GAN-
aided CE can potentially excel over CS techniques in BF by
amplifying the dataset. Our analysis compares the performance
of GAN-BAE against that of OMP-BAE and EM-GM-AMP-
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BAE. The latter two use CS methods for CE and BAE to learn
BF.

The performance metric for beam alignment is the SNR by
the optimized BS and UE beams, defined as

Pg|wHHE|?

SNR= E
|wHn|?

HeH

101log €))

IV. RESULTS & DISCUSSIONS

In this section, we highlight the enhanced performance
of GAN-BAE over other benchmarks when Npioc = 8. The
performance consistently outperforms across different ranges
of UE power. Interestingly, even if the NMSE value of the
CE is higher, it yields a superior BF gain. This suggests that
a low NMSE does not necessarily assure finding the best
beamforming direction.

A. Gain of the GAN-BAE with amplified dataset vs baselines

The GAN-BAE performance is measured using the average
SNR in dB. The standard setting for our experiments is
Py = 0 dB. In Fig. 5a for the Npjox = 8 scenario, GAN-
BAE outperforms OMP-BAE by 2.8 dB, and EM-GM-AMP-
BAE by 4.7 dB. This is because pilot measurements are not
sufficient to fully reconstruct the channel with CS methods,
as it is half of the UE channel dimension Ny. On the other
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Fig. 6: Average SNR of beamforming vs. UE power Py for
Npilor = 8, Data amplification rate = 1, 000.

hand, Fig. 5b with Npj = 16, the baseline shows similar
performance with GAN-BAE. This is attributed to providing
enough pilot measurements to capture the full UE channel
dimension, Ny.

Fig. 5 illustrates that the performance of the OMP-BAE
and the EM-GM-AMP-BAE significantly differs with Npijo.
For Npiioe = 16, the SNR of the OMP-BAE and the EM-
GM-AMP-BAE show a minor gap between the SNR and the
BAE trained using actual channels. Yet, with Npjjoc = 8, both
experience a marked decline in SNR. On the other hand, the
GAN-BAE shows a high average SNR on both Nyt = 8, 16.
This underlines the ability of the GAN-BAE to deliver a more
stable, higher SNR when having a lower Npjo. Our analysis
will further focus on the case of Npjor = 8 when the number
of the UE measurements is insufficient.

As we increase the data amplification rate in Fig. 5, we can
observe SNR improves significantly. The data amplification
rate of 1,000 boosts the performance by 2.1 dB compared to
the data amplification rate of 1. Given the limited pilot mea-
surements, this gap arises not from adding new information
but from leveraging the inherent randomness of a DGM, which
effectively captures the channel distribution.

Calculating the CE from pilot measurements presents an ill-
posed inverse problem, yielding multiple potential solutions.
Some of these solutions can significantly deviate from realistic
channels. The GAN generator ensures that these estimates
align closely with realistic channels, providing ample candi-
date channel matrices. This allows us to determine the optimal
beam angles based on an average-case channel matrix derived
from solving the inverse problem.

In Fig. 5a, we now examine GAN inference using 500
iterations which is fully iterated, and 50 iterations which
is early stopped. Given the extended time required for data
amplification, an approach to compensate for this is to termi-
nate the GAN inference iteration prematurely. This allows for
quicker dataset generation and, as an added benefit, yields a
more diverse channel generation without drastically violating
the channel distribution. An early-stopped CE results in an
SNR increase of 0.1 to 0.3 dB compared to a fully converged
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CE of a ten times lower data amplification rate. This suggests
that instead of investing time and resources to fully converge
the GAN-based CE, stopping it early and producing more
samples for the BAE training is more efficient.

In Fig. 6, the GAN-BAE method consistently outperforms
the baseline methods across all UE power levels ranging from
-10 dBm to 20 dBm. It shows that the method is not confined
to specific SNRs but remains robust across different UE power
levels.

B. Is NMSE a good metric for channel estimation?

Although Fig. 5 demonstrates that the GAN-BAE has the
highest SNR, GAN does not deliver the “best” CE by con-
ventional standards. Fig. 7 indicates that the OMP-based CE
achieves the lowest NMSE value, which is lower than the fully
converged GAN-based CE and EM-GM-AMP-based CE by 2
dB and surpasses the early-stopped GAN-based CE by 4 dB —
a significant difference. Why does the GAN-BAE outperform
OMP-BAE and EM-GM-AMP-BAE?

Relying solely on the average of the NMSE value can be
misleading. When reconstructed channels deviate significantly
from the expected distribution, their impact tends to be min-
imized by the averaging process. Given the ill-posed nature
of the problem and the limited number of pilot measurements
with CS methods, there is a risk that the reconstructed channel
could differ significantly from the desired outcome. When
averaged, a single deviation can be concealed, presenting an
inherent risk when training models on beamforming. Even a
single outlier can mislead the system into focusing its energy
on an unintended angle. Hence, when the primary objective of
CE is to pinpoint a singular optimal beamforming direction,
average NMSE might not serve as the most indicative metric.

V. CONCLUSION

We proposed a novel framework for deep learning aided
beam alignment, leveraging a combination of GAN-based
channel estimator and generator, and a site-specific beam
alignment engine (BAE). Importantly, this GAN-BAE frame-
work requires only uplink pilot measurements to train the

entire model, making it considerably closer to “deployment
ready” than most prior approaches that require extensive
synthetic simulations to produce a dataset for offline training.
Furthermore, the heavy computational tasks are at the BS side,
reducing the computational burden on the UE and minimizing
UL transmissions. Our experimental results show significant
improvement in beamforming gain over traditional CS tech-
niques such as the OMP and the EM-GM-AMP. Moreover,
the GAN-BAE framework demonstrates robust performance
in various power levels of UE.

Potential future directions include handling diverse UE
distributions in real time. Is it reasonable to make biased beam
predictions based on changed distribution? Determining the
optimal retraining interval, especially given the varying pilot
measurement presents future challenge topics that are central
to the future development of our proposed framework.
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