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Abstract—The recently announced National Institute of Stan-
dards and Technology (NIST) Post-quantum cryptography (PQC)
third-round standardization process has released its candidates to
be standardized and FALCON is one of them. On the other hand,
however, very few hardware implementation works for FALCON
have been released due to its very complicated computation
procedure and intensive complexity. With this background, in this
paper, we propose an efficient hardware structure to implement
residue numeral system (RNS) decomposition within NTRUSolve
(a key arithmetic component for key generation of FALCON). In
total, we have proposed three stages of coherent interdependent
efforts to finish the proposed work. First, we have identified the
necessary algorithmic operation related to RNS decomposition.
Then, we have innovatively designed a hardware structure to
realize these algorithms. Finally, field-programmable gate array
(FPGA)-based implementation has been carried out to verify the
superior performance of the proposed hardware structure. For
instance, the proposed hardware design involves at least 3.91x
faster operational time than the software implementation. To the
authors’ best knowledge, this is the first paper about the hardware
acceleration of RNS decomposition for FALCON, and we hope the
outcome of this work will facilitate the research in this area.

Index Terms—Hardware design, FALCON, post-quantum cryp-
tography, signature scheme, RNS decomposition.

I. INTRODUCTION

It is known that the existing public-key cryptography (PKC)
schemes like Rivest Shamir Adleman (RSA) and Elliptic Curve
Cryptography (ECC) are vulnerable to the attacks launched
from those well-established quantum computers [1]. Therefore,
post-quantum cryptography (PQC) has drawn significant at-
tention from various research communities recently [2]. Most
importantly, the National Institute of Standards and Technology
(NIST) PQC standardization process has just released its final
selected algorithms to be standardized last July, including one
public encryption scheme and three signature schemes [3].

Among these selected schemes, FALCON is considered quite
unique [4], partly because of its complicated algorithmic pro-
cedure and partly due to its involved super-large computational
complexity. Actually, since its initial submission, there have
been very few implementation works released for FALCON.
The software implementations can be seen in its original
submission package [4] as well as a constant-timing one of
[5]. While on the hardware implementation side, one high-
level synthesis (HLS)-based result for FALCON verification (the
simplest operation involved) was reported in [6] and then the
same arithmetic component was also implemented in [7]. These
works are the only representatives in the field.

Along with the PQC standardization process, more efforts
have been gradually switching to the hardware implementation

side [8]–[11]. Especially considering the fact that no complete
hardware implementation work for FALCON has been released,
it becomes ever more important to take the initiative to do the
implementation work for FALCON. In this paper, we follow
this direction to present a novel hardware-implemented residue
numeral system (RNS) decomposition within NTRUSolve (the
key arithmetic component for the key generation step of
FALCON [4]), which is the first try in the field. Overall, we
have carried out three layers of innovative works, including:

First of all, we have identified the key arithmetic operation
related to the RNS decomposition of NTRUSolve (of FALCON),
along with several critical algorithms that can successfully
execute the targeted operation.

Then, we have proposed a novel hardware structure to ac-
celerate the targeted operation within FALCON, based on novel
algorithm-to-architecture mapping and optimization techniques.

Finally, we have conducted a thorough implementation-
based comparison and analysis to showcase the efficiency of the
proposed hardware RNS decomposition, e.g., it involves much
less latency time than the related software implementation.

The rest of the paper is arranged as follows. Section II
gives the targeted arithmetic operation and related algorithms to
execute this operation. Section III gives a detailed description
of the proposed RNS decomposition accelerator. Section IV
presents a thorough implementation-based comparison, and
Section V delivers the final conclusions.

II. ALGORITHM

This section introduces the targeted arithmetic operation
within NTRUSolve of FALCON [4] and also the related algo-
rithms to execute this operation.

Notations. These notations are used throughout the whole
paper (interested readers may also refer to the original sub-
mission package of [4] for more details). n is the security
level of FALCON; f , g, F , and G are polynomials of degree
n with coefficients of 8 bits which solve the NTRU equation
and make up the core private key of FALCON; and f ′, g′, F ′,
and G′ are intermediate polynomials passed up or down as
NTRUSolve is called recursively. In this paper, N , V , and U are
the polynomial degree and coefficient size parameters, where
V is the degree, U is the number of 31-bit elements making up
each coefficient, and N = V ×U . Other notations in Algorithm
2 to Algorithm 5 can be seen later.

Brief Introduction of FALCON. FALCON is a lattice-
based post-quantum signature scheme, which stands for Fast
Fourier lattice-based compact signatures over NTRU (N -th
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degree truncated polynomial ring units). Overall, FALCON
is the consummated product of many previous years’ work,
including: (i) the first signature scheme NTRUSIGN [12];
(ii) a generic framework to build hash-and-sign lattice-based
signature schemes [13]; (iii) a provably secure NTRUSIGN
was then proposed in [14]; (iv) an efficient implementation of
identity-based encryption over NTRU lattices was proposed in
[15]; (v) a new algorithm was then proposed in [16] to reduce
the signing time. The current version of FALCON was invented
by a group of experts in the field and then submitted to the
NIST PQC standardization process and eventually was selected
to be standardized [3].

NTRUSolve of FALCON. NTRUSolve is a critical arithmetic
component for key generation of FALCON [4], as shown in
Algorithm 1. Basically, NTRUSolve uses Reduce (see [4]) to
reduce the size of F and G. The detailed mathematical and
algorithmic principles underlying NTRUSolve can be seen in
[4], [17]. For a successful hardware implementation of NTRU-
Solve, we observe the arithmetic operations involved within
Lines 9-10 are critical as they determine how NTRUSolve will
be carried out [4]. These two lines of operations (highlighted
in Algorithm 1), though seem to be simple, they require several
significant procedures to execute them, as discussed below.

Algorithm 1: FALCON NTRUSolve [4]
Require: f, g ∈ Z[x]/(xn + 1) with n a power of two;
Ensure : Polynomials F,G;

1 if n = 1 then
2 Compute u, v ∈ Z such that uf − vg = gcd(f, g)
3 if gcd(f, g) ̸= 1 then
4 abort and return ⊥
5 (F,G)← (vq, uq)
6 end
7 return (F,G)
8 else
9 f ′ ← N(f)

10 g′ ← N(g)
11 (F ′, G′)← NRTUSolven/2,q(f ′, q′)
12 F ← F ′(x2)g(−x)
13 G← G′(x2)f(−x)
14 Reduce(f, g, F,G)

15 end
16 return (F,G);

Overall Problem Statement. Based on the algorithmic
sequence and software source code of FALCON in [4], it is
seen that FALCON key generation requires we solve the NTRU
equation, which is shown in Algorithm 1. One core operation
of this algorithm is to find the field norm of coefficient inputs
f and g, denoted f ′ and g′ (Lines 9-10). FALCON does so by
converting the integer coefficient inputs to RNS form modulo
many prime values and then to RNS-NTT (number theoretical
transform) form using the same primes. In RNS-NTT form,
point-wise Montgomery Multiplication can be used to easily
find f ′ and g′. Further, with each recursive call of NTRUSolve,
the coefficients of f and g, and therefore also f ′ and g′, grow
large gradually and must be taken modulo more primes to be

represented accurately. As such, the conversion from RNS-NTT
back to RNS and further back to integer form is required with
each recursive call of NTRUSolve. It is evident that an efficient
RNS decomposition is an essential first step for implementing
the full NTRUSolve algorithm, as well as FALCON as a whole.

Specific Algorithms. Following the above problem state-
ment, we present here the needed Montgomery Multiplication
(and others) for the targeted operation within NTRUSolve. Note
that we describe this algorithm (as well as the following ones)
based on the source code and original documentation of [4].

Algorithm 2: Montgomery Multiplication
Input : a, b, p, and p (a and b are the multiplier and

multiplicand respectively, p and p for modular
reduction, all 31-bit values
(p = −1/p mod 231);

Output: RES = a× b mod p;

Main step
1 z = a× b
2 s = z[30..0]× p
3 w = s[30..0]× p
4 d = w[61..0] + z[61..0]

Final step
5 RES = d[61..31] mod p

Algorithm 2 describes the needed Montgomery Multiplica-
tion for Algorithm 1, which enables the multiplication of two
31-bit values with the result modulo a 31-bit value p without
the need for expensive division operations. Algorithm 2 also
calls for a 4th input p, which is the inverse of p. Note that
there occur a total of three multiplications, see Lines 1, 2, and
3, where each is implemented with a schoolbook multiplication
(multiply, shift, and accumulate), and therefore each requires 31
cycles. With 2 final cycles for modular addition and subtraction,
Algorithm 2 in total takes 95 cycles from input to output.

Algorithm 3: Normal Multiplication of Large and
Small Integers

Input : x, y, and F 0 (x is the multiplier, a large int
sectioned into U-number 31-bit values, y is
the multiplicand, a 31-bit value, and F 0 is a
31-bit RNS value;

Output: z = x× y;

Main step
1 cc = 0
2 for i = 0 to U − 1 do
3 w = x[i]× y
4 w = w + F 0

5 w = w + cc
6 cc = w[61..31]
7 z[i] = w[30..0]
8 end

Final step
9 z[U ] = cc

Algorithm 3 implements a hardware-compatible schoolbook
multiplication (multiply, shift, accumulate) of a large integer (x)
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with a smaller, 31-bit integer (y). As will be explored in more
detail later, all large values in FALCON are divided into 31-
bit elements (x[0], x[1]...x[n]). This algorithm allows for those
31-bit elements to be taken sequentially, multiplied with the
small integer, and accumulated with previous results to build a
result equivalent to x× y. On iteration i = 0, x[i] is multiplied
with y to produce a 62-bit result. Then, adding F 0, which may
be ‘0’ in some use cases. After that, adding cc, which will be
‘0’ on iteration 0. Finally, Algorithm 2 outputs the lower 31
bits to z[i] and passes the higher 31 bits to cc for the next
iteration. This process repeats until y has been multiplied with
all elements of x that the final higher 31 bits cc are outputted
to z[n]. z now contains x× y, and z is 31 bits larger than the
initial input x.

Algorithm 4: Converting from Integer to RNS
Input : F , p, p, R2, and Rx (F is a polynomial of

degree V with coefficients divided into
U -number 31-bit elements, p, p, R2, and Rx
are arrays of U -number 31-bit values);

Output: F [j][i] = F [j] mod p[i];

Main step
1 for i = 0 to U − 1 do
2 for j = 0 to V − 1 do
3 g = 0;
4 for z = U − 1 to 0 do
5 g = Monty mul(g, R2[i], p[i], p[i]) // see

Algorithm 2
6 w = F [j][z] mod p[i]
7 g = w + g mod p[i]
8 end
9 if F [j] < 0 then

10 g = g −Rx[i] mod p[i]
11 end
12 F [j][i] = g
13 end
14 end

Algorithm 4 describes the process to convert an integer poly-
nomial F to an RNS polynomial F modulo primes p[U−1..0].
Polynomials F and F are both of degree V , with coefficients
sectioned into U number of 31-bit elements. The first loop (Line
1) iterates through p values, beginning with p[0]. The second
loop (Line 2) iterates through the coefficients of F , beginning
with F [0]. The third loop (Line 4) iterates through the elements
of the current F coefficient, beginning with F [0][U − 1] and
decrements. On iteration 0, we take F [0][U − 1] mod p[0]
and set it in g (Line 6). Note that Lines 5 and 7 yield no
change since g = 0 is set as a start. With each subsequent
iteration z, we execute the Montgomery multiplication with
the previous result g × R2[0] mod p[0] and save the result
back in g (Line 5). Then, we get the next element of the
current F coefficient F [0][z], set it as mod p[0] (Line 6),
accumulate it in the previous result g, and again mod p[0]
(Line 7). This process continues until we have iterated through
all elements of the current coefficient F [0]. At this point, g
contains F [0] mod p[0]. Lastly, if the initial F [0] is a negative

value, we subtract g − Rx[0] mod p[0] from the result and
save it back in g (lines 9-11). Eventually, the RNS value is
complete and can be saved in F [0][0]. The second loop (Line
2) continues to iterate until all coefficients of F have been
reduced mod p[0]. The first loop (Line 1) continues to iterate
until all coefficients of F have been reduced mod p[U − 1..0].

Algorithm 5: Converting from RNS to Integer

Input : F , p, p, R2, and s (F is a polynomial of
degree V with coefficients divided into
U -number 31-bit elements, p, p, R2, and s are
arrays of U -number 31-bit values);

Output: F = rns to int(F );

Initial step
1 tmp[0] = p[0]

Main step
2 for i = 1 to U − 1 do
3 for j = 0 to V − 1 do
4 xp = F [j][i]
5 xq = F [j][i− 1..0] mod p[i] with p[i], R2[i]

// see Algorithm 4
6 xs = xp− xq mod p[i]
7 xr = Monty mul(s[i], xs, p[i], p[i]) // see

Algorithm 2
8 F [j][i..0] =

norm mul(tmp[i− 1..0], xr, F [j][i− 1..0]) //
see Algorithm 3

9 end
10 tmp[i..0] = norm mul(tmp[i− 1..0], p[i], 0)
11 end

Final step
12 F = F

Algorithm 5 depicts the process of converting an RNS
polynomial F to an integer polynomial F . Polynomials F and
F are both of degree V , with coefficients decomposed into U
number of 31-bit elements. The overall computation process is
supported by an array of 31-bit values tmp, which represents
all previous p values multiplied together (i.e. during iteration
i = 3 of the outer loop, tmp = p[0] × p[1] × p[2]). In the
beginning, we set p[0] in tmp[0] (Line 1). The first loop (Line
2) iterates through p values, beginning with p[1]. The second
loop (Line 3) iterates through the coefficients of F , beginning
with F [0].

On iteration 0, the algorithm takes the first element of F [0]
and saves it in xp (Line 4), and then reduces to F [j][0] mod p[1]
using p[1] and R2[1] (following the process described in
Algorithm 4, but skipping Lines 9-11 of Algorithm 4 be-
cause F values are unsigned). Next, the algorithm subtracts
xp−xs mod p[1] and saves the result in xs (Line 6). Further-
more, the algorithm multiplies s[1] × xs using Montgomery
Multiplication and saves the result in xr (Line 7). Lastly, the
algorithm multiplies all values of tmp, which is just p[0] at
this point, with xr, while also accumulating with existing value
F [j][1] (Line 8). This process continues until we have iterated
through all coefficients of F . Before the next iteration of the
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Fig. 1. The proposed architecture for RNS decomposition, during integer to RNS conversion (highlighted components and data-flow lines denote that they are
used during this process). CSR: circular shift-register.

first loop, the algorithm multiplies tmp×p[1] to yield the next
tmp value.

For subsequent iterations of the first loop (Line 2), it is
important to note that the time to complete each iteration grows
exponentially with i. The time for operations on Lines 5, 7, 8,
and 10 all grow as i increases. For example, for the operation
on Line 5, on iteration 0, we need only find F [j][1] mod p[1],
which requires a single iteration of Algorithm 4. However, on
iteration i, we need to find F [j][i] mod p[1] for all F [j][i..0],
which requires i iterations of Algorithm 4.

The above algorithms (Algorithm 2 to Algorithm 5) contain
the necessary operations to execute the targeted RNS decom-
position in Algorithm 1. The following section will present the
corresponding architecture mapped from these algorithms.

III. PROPOSED HARDWARE ARCHITECTURE

This section presents the proposed hardware-implemented
RNS decomposition for FALCON (NTRUSolve).

Overall Architecture. The overall architecture of the pro-
posed hardware design is shown in Fig. 1, 2, and 3 (various
stages of processing). The overall architecture consists of
one control unit, five circular shift registers (CSRs) for pre-
computed values p, p, Rx, R2, and s, one CSR tmp for holding
accumulated p values paired with one component tmp update
which indexes and loads tmp values, three components for
modular reduction (set mod p), addition (add mod p), and
subtraction (sub mod p), one CSR holding initial integer F
values, one CSR holding resulting RNS F values paired with a
component rns update which indexes and loads RNS values,
one 31 × 31 Montgomery Multiplier, one 31 × 31 Normal
Multiplier, and two delay shift registers holding the results mm
and cc from the multiplication components.

Functions of Components. The control unit is responsible
for generating enable signals for various sub-components of the
system. The control unit consists of a top-level state machine
as well as sub-level state machines which control data flow
throughout the system.

The p, p, Rx, R2, and s CSRs (left side of Fig. 1, 2, and 3)
hold pre-computed values that are required by Algorithms 3,
4, and 5, where each contains U 31-bit elements. Note that
the sizes of these shift registers match the sizes of F and
F coefficient values. During processing, these registers shift
such that the index of the element at their output (p0, p0, etc.)
matches the index of the F or F element being processed (i.e.,
p[i], p[i], Rx[i], R2[i], s[i] is available for processing F/F [i]).

The tmp CSR (blue in Fig. 2) is responsible for feeding
tmp values to the Normal Multiplication unit during the later
phase of RNS to integer conversion (Algorithm 5, Line 8). The
tmp update component is responsible for updating the tmp
shift register with new values, and placing them in a specific
index depending on the phase of the process (Algorithm 5, Line
10). The current values of the tmp shift register are passed to
the Normal Multiplication unit and multiplied with the current
p value to yield the new tmp value, which is then saved back
in the tmp shift register.

The set mod p, add mod p, and sub mod p components
are used to perform modular arithmetic. Component set mod p
simply takes a 31-bit element and subtracts p if the input is
greater than p (Algorithm 4, Lines 6). Component add mod p
adds two 31-bit elements and subtracts p if the result is greater
than p (Algorithm 4, Lines 7). Component sub mod p subtracts
two 31-bit elements and subtracts p if the result is greater than
p (Algorithm 4, Line 10).
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Fig. 2. The proposed architecture for RNS decomposition, during the first stage of RNS to integer conversion.
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Fig. 3. The proposed architecture for RNS decomposition, during the second stage of RNS to integer conversion.

The F data shift registers (Fig. 4) is responsible for feeding
F integer coefficient values to the system during the integer
to RNS conversion. First, during the data-shift-in state, 31-bit
elements are sequentially shifted in for N cycles until all N
initial coefficient elements are loaded in respective registers.
From this point on, F values are handled in coefficient groups,
where the N 31-bit elements are now sectioned into V groups
of U 31-bit elements. Coefficients are indexed as F [V ] and
individual coefficient elements are indexed as F [V ][U ], where
the first element shifted-in is loaded in F [0][0] (coefficient 0,
element 0). Per Algorithm 4, the read port of this shift register is
linked to register U − 1, which is F [0][U − 1] to start. During
processing, coefficient groups are shifted downward through
the shift register, where F [i][j] moves to F [i − 1][j] on each
cycle. Values of F [0] are shifted around to the other end of the
CSR. As this coefficient is shifted around, the elements within

the coefficient are also shifted downward, where F [0][U − 1]
moves to F [V − 1][0] and remaining elements F [0][i] move to
F [V −1][i+1] (see Fig. 4). This dual shifting process provides
the necessary effect to supply the correct F element to the
system for executing Algorithm 4.

The F data shift register (Fig. 5) is responsible for saving
results from the integer to RNS conversion, feeding F RNS
values to the system (during the RNS to integer conversion),
and saving results from the RNS to integer conversion (when
RNS to integer conversion is done in place). F values are orga-
nized in the same way as F values, with coefficients indexed as
F [V ] and individual coefficient elements indexed as F [V ][U ].
During integer to RNS, results are received sequentially in order
of the p value used for reduction, so the first V results will all
be reduced by p[0].

The Montgomery Multiplication component (Fig. 6) per-

23

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on January 28,2025 at 02:34:42 UTC from IEEE Xplore.  Restrictions apply. 



...

...

...

...

int_wr

0
1
2
3

0
1
2
3

0

1

2

3

4

5

6

7 255

254

253

252

251

250

249

248

247

246

245

244

int_rd
Fig. 4. The proposed architecture for Integer CSR.

...

...

...

...

rns_wr

0
1
2
3

0
1
2
3

indexval

index

rns_rd

0

1

2

3

4

5

6

7 255

254

253

252

251

250

249

248

247

246

245

244

Fig. 5. The proposed architecture for RNS CSR and RNS update.

Multiplier
(31x31)

mul1 
(s)
mul2 
(p)

res 
(w)

p_pass

z z_pass

+ -

31 31

res

Multiplier
(31x31)

mul1 
(z)

mul2 
( p )

p

res 
(s)

p_pass

z_pass

Multiplier
(31x31)

mul1 
(a)

mul2 
(b)

p

p

res 
(z)

p_pass

p_pass

31

31

31

31

62

31

31

31

62

31

31

62

31

Fig. 6. The proposed architecture for Montgomery Multiplication.

forms a multiplication of two 31-bit values mod p. This
component has been implemented as Algorithm 2, which
employs three phases of schoolbook multiplication (multiply,
shift, accumulate) and takes 95 cycles from input to output.
For efficiency and ease of implementation, this component
is designed to be fully pipelined, so new input values a, b,
p, and p can be provided on every cycle and will propagate
through the component to produce a result. The full pipelining
of values p and p come at the expense of employing many
registers whose only purpose is to pass values to a later phase
of the multiplier (p pass, p pass, z pass in Fig. 6). After
multiplication, this component performs an optional subtraction
for modular reduction and passes the result out. This component
is paired with a delay shift register mm, which saves current
multiplication results to be accumulated with later results per
Algorithms 4 and 5.

The Normal Multiplication component (blue in Figs. 2 and

3) performs a schoolbook multiplication of two 31-bit values
and produces a 62-bit result. The component is paired with two
adders and a delay shift register cc to form a multiplication unit
capable of multiplying a large integer with a small integer per
Algorithm 3. At the completion of each 31× 31 multiplication
phase, the 62-bit result is divided into its higher and lower 31
bits. The lower 31 bits are saved, and the high 31 bits are passed
around as the carry bits for the next 31 × 31 multiplication
phase. This process is repeated until all 31-bit elements of
the initial large integer have been multiplied with the 31-bit
small integer, at which point the final 62-bit result is saved
with previous results.

Data Flow – Integer to RNS. The process for converting
integer F to RNS F is shown in Fig. 1, which realizes the
operation of Algorithm 4. The process is divided into two
stages: (1) a multiplication loop (red lines in Fig. 1) and (2)
saving results (orange lines in Fig. 1).

Stage (1) implements Lines 3-8 of Algorithm 4. The F
CSR begins shifting and outputting element U − 1 of each F
coefficient. These elements are passed through set mod p with
p[0], passed to add mod p with previous result mm (All mm
are ‘0’s on iteration 0) and p[0], and passed to the Montgomery
Multiplier to be multiplied with R2[0], with p[0] and p[0].
Results of the Montgomery Multiplication are sequentially
passed to delay shift register mm. Once F [V − 1][U − 1]
has been passed to set−modp, coefficient F [0] arrives back
at its start (but now shifted such that F [0][U − 2] is at the
output). This element is passed to set mod p with p[0] and
then to add mod p where it is added with the previous result
of F [0][U − 1] (which should now be exiting the mm delay
register). The red lines in Fig. 1 show the data path for this
multiply-accumulate process. This process is repeated until all
elements U of all coefficients V have been passed through and
reduced with p[0].

Stage (2) executes Lines 9-11 of Algorithm 4. At this point,
the fully accumulated results should be sequentially exiting
in the mm delay shift register. These values are passed to
sub mod p where, if the original coefficient from which
they were generated is negative, Rx[0] is subtracted from
them. Results are now in RNS and are sequentially sent to
rns update, where they are loaded into their respective F
coefficients. For this iteration, the values are saved in F [V ][0]
since, as should be noted, they were all reduced by p[0].

Stages (1) and (2) repeat U times until all elements U of
all coefficients V have been reduced by all p values. At this
point, F registers should be occupied by RNS values, where
F [i][j] = F [j] mod p[i].

Data Flow – RNS to Integer. The process for converting
RNS F to integer F is shown in Figs. 2 and 3 (Algorithm
5). This process is divided into four stages: (1) a multiplication
loop (red and orange lines in Fig. 2); (2) updating tmp registers
(purple lines in Fig. 2); (3) Montgomery Multiplication (red and
orange lines in Fig. 3); and (4) Normal Multiplication (purple
and blue lines in Fig. 3). Note that stages (1) and (2) occur in
parallel and are represented together in Fig. 2. So these stages
occur sequentially as: (1) and (2), (3), (4).
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TABLE I
IMPLEMENTATION RESULTS OF RNS DECOMPOSITION ON THE INTEL STRATIX-V FPGA

degree ALM Fre. Latency (Int. to RNS)1 Latency (RNS to Int.)1 Delay (Int. to RNS) Delay (RNS to Int)
Polynomials of High Degree V = 64, Small Coefficient U = 4

V = 64 15,879 243.55 1,392 1,374 5.715 5.642
Polynomials of Medium Degree V = 16, Medium Coefficient U = 14

V = 16 15,241 247.46 17,360 17,636 70.153 71.268
Polynomials of Low Degree V = 4, Large Coefficient U = 53

V = 4 18,423 227.48 259,382 264,689 1140.241 1163.570

Unit for Fre. (frequency): MHz. Delay=(1/Fre.)×latency, unit for Delay: µs.
1: Latency is the major computation cycles for a given processing phase.

Stage (1) realizes Lines 5-6 of Algorithm 5, which essentially
calls Algorithm 4 (with the exception of Lines 9-11, because
F values are unsigned), and thus the process is very similar
to that of the integer to RNS conversion described above. To
begin, we perform the process from Algorithm 4 with some
key differences. In Line 2 of Algorithm 5, the iteration begins
with i = 1, and in Line 3, we reduce elements of the current
coefficient less than i. So, for iteration 0 of this stage, we
perform Algorithm 4 with p[1], p[1], and R2[1] on only F [j][0].
For subsequent iterations i we perform Algorithm 4 with p[i],
p[i], and R2[i] for all F [j][i − 1..0]. When all F [j][i − 1..0]
have been reduced with p[i], the resulting values xq are now in
mm and are passed to sub mod p component, where they are
subtracted from F [j][i] with p[i] to produce xs. At this point,
Stage (1) is completed, and values are ready to be passed to
Stage (3).

Stage (2) executes Lines 1 and 10 of Algorithm 5 and occurs
in parallel with Stage (1). While we carry out Stage (1), the
Normal Multiplier is used to multiply the existing large tmp
value with the current p value to determine the next tmp value
(that is needed for multiplication in Stage (4)). On iteration 0,
we simply set p[0] in tmp[0] per Line 1 in Algorithm 5. On
iteration 1, the lone value in tmp (which is p[0]) is multiplied
with the new p value, p[1]. The 62-bit result is separated into
31-bit elements. The lower 31 bits are saved back in tmp[0].
Since there is nothing else to accumulate with, the higher 31-
bit carry value is saved back in tmp[1] (tmp now contains
p[0] × p[1]). This process continues with each iteration i, and
tmp always contains p[0]× p[1]× ...p[i].

Stage (3) implements Line 7 of Algorithm 5. When Stages
(1) and (2) are completed, xs values, the reduced F [j] values
coming out sub mod p component, are sent to the Montgomery
Multiplier and multiplied with s[i] using p[i] and p[i]. The
results of the multiplication xr are passed to mm for the
preparation of Stage (4).

Stage (4) is the execution of Line 8 of Algorithm 5. This
final step is to multiply the 31-bit results from Stage (3) with
the large value saved in tmp from Stage (2). On iteration
0, as previously stated, tmp contains only p[0], so it is a
simple 31×31 single iteration xr and tmp[0] with the Normal
Multiplier, and addition with the original F [j][0]. This yields
a 62-bit result, where the lower 31 bits are saved in F [j][0]
and the higher 31 bits are saved in F [j][1]. For subsequent
iterations, tmp is larger and thus requires i iterations with
the Normal Multiplier. On each iteration i, we multiply xr

with the next 31-bit element of tmp. Since xr values need
to be multiplied with all tmp[i − 1..0], xr values are sent
back to mm to be delayed until they are needed for the next
tmp element. At the output of the multiplier, the 62-bit result
is added with F [j][i] as well as cc the carry 31-bits from
the previous multiplication. The lower 31 bits are saved in
F [j][i − 1], and the higher 31 bits are passed back around
through cc. This process repeats until xr has been multiplied
with all 31-bit elements of tmp. The final 62-bit result is saved
in F [j][U − 1..U − 2].

Stages (1), (2), (3), and (4) repeat U − 1 times until all
V coefficients have been processed. At this point, F register
should now be occupied by integer values. Again, note that now
RNS to integer conversion has occurred in place. An optional
final step would be to shift the resultant integer values in F
back to F .

IV. IMPLEMENTATION & COMPARISON
We have coded the proposed hardware architecture (general

architecture of Fig. 1) in VHDL (functionality verified through
ModelSim, through the checking with FALCON reference im-
plementation in [4]) and implemented it on Vivado 2021.2
(AMD-Xilinx UltraScale+ XCZU9EG-2FFVB1156 device) and
Quartus 19.7 (Intel Stratix-V 5SGXMA9N1F45C2).

The related implementation results, such as the number of
LUTs, FFs, Slices, adaptive logic modules (ALMs), and maxi-
mum frequency (Fre.), are obtained and listed in Tables 1 and
2. In a practical implementation of the targetted NTRUSolve
function and RNS decomposition by extension, the degree
of the initial polynomial V would be 1,024, and the size
of its coefficients U would be 1. With each recursive call
of NTRUSolve, V decreases by half, and U approximately
doubles. As such, the dimensions V and U of the polynomial
at each recursive call are known, and these predetermined V
and U pairs were used during implementation (see the details
in Tables I and II).

Discussion. It was found that the implemented hardware ar-
chitecture performs favorably when the degree of the processing
polynomial V is larger than the size of its coefficients U . This
is somewhat expected as the initial idea behind the architecture
targeted NTRUSolve of recursive depth as 4, where V = 64
and U = 4. Meanwhile, the pipelining of the proposed design
does not adjust for recursive depths when U is much larger
than V , which resulted in considerable dead processing time.

To demonstrate the efficiency of the proposed design, We
have also measured the performance of the software imple-
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TABLE II
IMPLEMENTATION RESULTS OF RNS DECOMPOSITION ON THE AMD-XILINX ULTRASCALE+ FPGA

degree LUT FF Slice Fre. Latency (Int. to RNS)1 Latency (RNS to Int.)1 Delay (Int. to RNS) Delay (RNS to Int.)
Polynomials of High Degree V = 64, Small Coefficient U = 4

V = 64 15,169 26,789 2,437 371.75 1,392 1,374 3.744 3.696
Polynomials of Medium Degree V = 16, Medium Coefficient U = 14

V = 16 15,276 25,281 2,620 416.67 17,360 17,636 41.664 42.3264
Polynomials of Low Degree V = 4, Large Coefficient U = 53

V = 4 20,171 27,093 3,192 387.60 259,382 264,689 669.206 682.898

Unit for Fre. (frequency): MHz. Delay=(1/Fre.)×latency, unit for Delay: µs.
1: Latency is the major computation cycles for a given processing phase.

TABLE III
SOFTWARE IMPLEMENTATION RESULTS OF RNS DECOMPOSITION

Degree Coefficient Size Delay (Int. to RNS) Delay (RNS to Int.)
V = 64 U = 4 22.363 15.306
V = 16 U = 14 66.985 44.750
V = 4 U = 53 240.398 161.649

Unit for Delay: µs.

mentation for RNS decomposition. The experimental setup
is as follows: (i) we have used the microbenchmark support
library from Google [18] as the benchmark library; (ii) we have
used an AMD Ryzen Threadripper 3960X processor running
at 3.8 GHz; (iii) the testing was carried out on the Ubuntu
20.04 LTS OS on a KVM-based virtual machine; (iv) we
have used g++ 9.4.0 to compile the code and the benchmark
running at a single-thread. Due to the data flow of the software
implementation, the RNS to Int. (integer) transfer requires the
data from the Int. to RNS function. The result of RNS to Int.
is the time difference of Int. to RNS to Int. and Int. to RNS.
The software implementations of Int. to RNS and RNS to Int.
take 22,363/66,985/44,750 ns (number of testing iterations is
31,266/10,468/2,912) and 15,306/44,750/161,649 ns (number
of testing iterations is 18,559/6,257/1,743) for V = 64, U = 4,
V = 16, U = 14, and V = 4, U = 53 respectively.

It is clear that the proposed hardware implementation has
better processing timing than the software one, e.g., for the
transferring of integer (Int.) to RNS, the proposed hardware
design (preferred parameter selection of V = 64 and U = 4)
has at least 3.91x and 5.97x than the software implementation,
respectively, on the Intel and AMD FPGA platforms.

V. CONCLUSION

This paper, for the first time, presents a novel hardware
implementation of RNS decomposition for FALCON. We firstly
presented the necessary algorithms that are essential to realize
the targeted arithmetic operation within FALCON NTRUSolve.
Then, we have presented the designed hardware architecture
in a detailed format. Finally, we have implemented the pro-
posed hardware architecture on the FPGA platform and have
compared it with the software implementations to showcase the
efficiency of the proposed design. It is expected the proposed
work can initiate further work in the FALCON implementation
as well as the ongoing NIST standardization process.
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