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SCALES: SCALable and Area-Efficient Systolic Accelerator for Ternary
Polynomial Multiplication
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Abstract—Polynomial multiplication is a key component in many post-
quantum cryptography and homomorphic encryption schemes. One recur-
ring variation, ternary polynomial multiplication over ring Zq/(x

n + 1)
where one input polynomial has ternary coefficients {−1,0,1} and the other
has large integer coefficients {0, q − 1}, has recently drawn significant at-
tention from various communities. Following this trend, this paper presents
a novel SCALable and area-Efficient Systolic (SCALES) accelerator for
ternary polynomial multiplication. In total, we have carried out three layers
of coherent interdependent efforts. First, we have rigorously derived a novel
block-processing strategy and algorithm based on the schoolbook method
for polynomial multiplication. Then, we have innovatively implemented the
proposed algorithm as the SCALES accelerator with the help of a number of
field-programmable gate array (FPGA)-oriented optimization techniques.
Lastly, we have conducted a thorough implementation analysis to showcase
the efficiency of the proposed accelerator. The comparison demonstrated
that the SCALES accelerator has at least 19.0% and 23.8% less equivalent
area-time product (eATP) than the state-of-the-art designs. We hope this
work can stimulate continued research in the field.

Index Terms—Area-efficient, block-processing, FPGA, scalable, systolic
hardware accelerator, ternary polynomial multiplication.

I. INTRODUCTION

T
ERNARY polynomial multiplication has attracted sub-
stantial attention from the research community recently as

it can be used in many critical cryptographic applications such
as the Brakerski/Fan-Vercauteren (BFV) homomorphic encryp-
tion and decryption procedures [1]. Meanwhile, the research
community is also exploring effective methods to implement
this type of polynomial multiplication on different platforms
for practical usage, particularly on hardware platforms like
field-programmable gate arrays (FPGAs) [2].

Prior/Recent Works: Indeed, efficient FPGA acceleration of
ternary polynomial multiplication has been an interesting and
hot research topic recently [2], [3]. Due to its specific parame-
ter setup, where one input polynomial has ternary coefficients
{−1,0,1} and another one involves large integer coefficients
(e.g., 32-bit, as seen in [1], [4]), there exist two types of imple-
mentation strategies, i.e., the number theoretic transform (NTT)-
based method [3], [5] and the schoolbook (or its variants)-related
approach [2], [6].

Challenge and Motivation: Each of the above-menti- oned
methods has its unique advantages over the others. The
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NTT-based method features lower time complexity, while
the schoolbook approach typically involves simpler structural
setup. Although modern FPGAs offer resources for implement-
ing computationally intensive operations, efficiently deploying
these resources to implement the accelerator according to its
parameter setting still requires further exploration. For example,
the NTT-based works often employ DSPs for multiplication,
while the schoolbook-based ones do not. Finally, as different
applications may set different resource usage requirements, a
structural- and processing-scalable (yet efficient) accelerator is
also needed.

Proposal and Major Contributions: We noticed that sys-
tolic structure represents a useful design style for the tar-
geted polynomial multiplication [2] because of its unique fea-
tures like regularity [7], [8]. On the other hand, however, sys-
tolic design typically involves large area usage, and designing
an area-efficient systolic accelerator is challenging. With this
consideration, in this paper, we propose a novel SCALable
and area-Efficient Systolic (SCALES) accelerator for ternary
polynomial multiplication. Key contributions:
� We have derived a new block-processing algorithm for

scalable and systolic polynomial multiplication.
� We have then innovatively designed the proposed algo-

rithm into a novel SCALES accelerator.
� We have finally conducted a thorough evaluation to show-

case its superior performance.
The rest of the paper is organized as follows. Preliminaries

and the algorithm are presented in Section II. The SCALES
accelerator is proposed in Section III. Evaluation and conclusion
are given in Sections IV and V, respectively.

II. PRELIMINARIES AND PROPOSED ALGORITHM

Notations: Notations used are: (i) modulus q = 2k (k: co-
efficient bit-width); (ii) n is the polynomial degree; (iii) the
scalable matrices are of size v × u; (iv) B, D, and T represent
polynomials used in ternary polynomial multiplication, with
their respective coefficients bi, di, and ti.

Targeted Ternary Polynomial Multiplication: Without loss of
generality, we use the ternary polynomial multiplication used in
the original BFV scheme [1], [4] as the study case. In particular,
one polynomial has coefficients in RingR2, and another polyno-
mial has coefficients in Ring Rq , with the product polynomial’s
coefficients also in Rq .

Consideration: As mentioned above, the two input polyno-
mials involve unequal-sized coefficients. In this situation, we
consider two strategies: (i) the widely used NTT strategy is
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applicable but requires a prime q to satisfy q ≡ 1 (mod 2n) (ac-
cording to [9]), extra resources spent on the modular reduction,
and coefficient-size extension of input B (from R2 to Rq) [3],
[5]; (ii) the schoolbook method (or similar) offers the advantage
of a power of 2 modulus (free modular reduction) [2], [6] and
cheap ternary multiplication.

Note that we do not consider traditional fast algorithms like
Karatsuba [8], [10] as it requires the splitting of the polynomials
into sub-polynomials for addition first, which may increase the
size of the small coefficient involved operations (point-wise
multiplications) and offset the original gain.

Proposed Strategy: We work from the schoolbook method and
propose to: (a) take advantage of ternary coefficients (without
extension from R2 to Rq) to design efficient multiplication
structures; (b) set modulus q as a power of 2 to utilize free
modular reduction, the same as [2]; (c) develop a novel strategy
to process multiplication in smaller sub-matrices (block-wise)
instead of by element or by column.

Definition: We define the polynomial multiplication as:

T = BD modxn + 1, (1)

where B =
∑n−1

i=0 bix
i, D =

∑n−1
i=0 dix

i, and T =
∑n−1

i=0 tix
i

(ti and di are log2q-bit integers and bi ∈ {−1, 0, 1}).
We can then have T =

∑n−1
i=0 dix

iB mod f(x) =
∑n−1

i=0 diB
(i), where B(i) = xiB mod f(x) and B(0) = B.

Define again B(i) =
∑n−1

j=0 b
(i)
j xj , we can have B(i+1) =

xi+1B mod f(x) = B(i)x = b
(i)
0 x+ b

(i)
1 x2 + · · ·+ b

(i)
n−1x

n,
which can be substituted with xn ≡ −1 to have B(i+1) =
−b

(i)
n−1 + b

(i)
0 x+ b

(i)
1 x2 + · · ·+ b

(i)
n−2x

n−1.

Meanwhile, as B(i+1) = b
(i+1)
0 + · · ·+ b

(i+1)
n−1 xn−1, which

can be used to compare with the above B(i+1) to have b(i+1)
0 =

−b
(i)
n−1, b

(i+1)
1 = b

(i)
0 , . . . b

(i+1)
n−1 = b

(i)
n−2, which can be used to

transform (1) into the form of
⎡

⎢

⎢

⎢

⎢

⎣

t0

t1
...

tn−1

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

b0 −bn−1 · · · −b1

b1 b0 · · · −b2
...

...
. . .

...

bn−1 bn−2 · · · b0

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

d0

d1
...

dn−1

⎤

⎥

⎥

⎥

⎥

⎦

,

(2)

which can be rewritten as [T ]n×1 = [B]n×n × [D]n×1.
One can transfer (2) into column-wise-based accumulation to

obtain fast computation. However, as n is very large, e.g., n =
4, 096, the accelerator will involve a large area, and meanwhile,
it is hard for further scalable processing.

Further Strategy: We thus propose to compute (2) as: (a) de-
compose the main matrix [B]n×n into a number of smaller-size
matrices (size of v × u); (b) transfer (2) into the accumula-
tion of these sub-matrix-vector products for scalable operation
(each sub-matrix is scalable); (c) execute the whole polynomial
multiplication with systolic processing.

Therefore, we can rewrite (2) as (v and u are integers)
⎡

⎢

⎢

⎢

⎢

⎣

T0

T1

...

Ts−1

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

B0,0 B0,1 · · · B0,w−1

B1,0 B1,1 · · · B1,w−1

...
...

. . .
...

Bs−1,0 Bs−1,1 · · · Bs−1,w−1

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

D0

D1

...

Dw−1

⎤

⎥

⎥

⎥

⎥

⎦

,

(3)

Algorithm 1: Proposed Algorithm for Polynomial Multipli-
cation of BFV.

where n = u× w and n = v × s; [Ti] is a v-length vector
(0 ≤ i ≤ s− 1), e.g., [T0] = [t0 t1 . . . tv−1]

T ; [Dj ] is a u-length
vector (0 ≤ j ≤ w − 1), e.g., [D0] = [d0 d1 . . . du−1]

T ; [Bi,j ] is
a v × u matrix (0 ≤ j ≤ w − 1), e.g.,

[

B0,0

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

b0 −bn−1 · · · −bn−u+1

b1 b0 · · · −bn−u+2

...
...

. . .
...

bv−1 bv−2 · · ·
. . .

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (4)

Following the proposed processing strategy, we can have

[T0] = [B0,0][D0] + [B0,1][D1] + · · ·+ [B0,w−1][Dw−1], (5)

which similarly applies to the calculation of [T1], . . ., [Ts−1].
From (5), one can see (2) is transferred into the calculation of s
number of v-length vectors of [T0], . . ., [Ts−1], where each [Ti]
can be obtained through the accumulation of w number of v × u
matrix-vector products ([Bi,j ][Dj ]).

The above process is summarized in Algorithm 1. Overall,
this algorithm fulfills the proposed strategy: (i) the elements
contained in each [Bi,j ] are ternary coefficients, which involves
small resource usage (see Section IV); (ii) the accumulation
of these matrix-vector products ([Bi,j ][Dj ]) can be realized by
systolic processing; (iii) the size of the sub-matrix is flexible for
scalable implementation.

III. PROPOSED ACCELERATOR: SCALES

Overall Design Strategy: The proposed SCALES accelerator
is shown in Fig. 1, which contains: D-Data BRAMs (D-RAM),
B-Data Shift Registers (B-REG), Processing Element Chain
(PEC), Accumulator and Data Shift-Out Component (ACC), and
Control Unit (CU). Their details and specific FPGA-oriented
design techniques are given below.

D-RAM: This component is a u-size array of BRAMs (each
BRAM is width = k, depth = n/u) responsible for storing
coefficients of D (di) and delivering the correct values to the
PEC. Each BRAM is paired with a PE, so BRAM0 is connected
to PE0 and contains d0, d0+1u, d0+2u, etc. Other BRAMs are
initialized similarly, but with their values shifted downward.
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Fig. 1. Proposed ternary polynomial multiplication accelerator: SCALES (u = 4), where B0...v−1 denotes the needed v coefficients from [B] for the related
operations and D0, D1,..., D3 represent the corresponding elements from [D].

Fig. 2. D-RAM component arrangement (case example).

Fig. 3. Circulant matrix and B-REG shifting patterns.

Fig. 2 shows how values of D are being stored for n = 8 and
n = 16, with each column representing a BRAM. Since the
values are shifted downward, read addresses simply need to
iterate from 0 to depth-1 repeatedly until the overall processing
is complete.

B-REG: This component is an n-size 2-bit shift register for
storing input ternary coefficients of B (bi) and then producing
correct signals to the PEC. During processing, there are two
shifting functions needed to derive values of the circulant matrix:
(i) Circular Shift-Forward by u and (ii) Circular Shift-Backward
by v + (u× ((n/u)− 1)), as shown in Fig. 3. During each
cycle, the B-REG component is updated with a new shifted array
of values to be fed to the PEC. Both shifting functions take one
cycle (shown in blue boxes in Fig. 3, where red elements are
being inverted).

Circular Shift-Forward. While processing through the entire
circulant matrix [B], we need to “jump ahead” to start processing
a later [Bi,j ]. To jump from column C0 to C4, we can circularly
shift forward u = 4 times (Fig. 3).

Fig. 4. Dataflow of the PEC (connecting Figs. 2 and 3).

Circular Shift-Backward. When pipelining for a given set of
rows [Bi] is complete, there is a need to “reset” the current
column to C0 and shift upward to position the next rows. To
perform this reset, we need to perform circular shift-backward
v + (u× ((n/u)− 1)) times. Fig. 3 demonstrates a reset from
C4 to C0’ when n = 8, v = 2, u = 4. Note that b2 and b3 are
now at the top, ready to be passed to the PEC.

PEC: The PEC performs the multiply-accumulate function of
the overall matrix-vector multiplication process. Overall, a set
of values pertaining to a v × u section of the circulant matrix
can be passed to PE0, and then the PEC is pipelined such that
values propagate through without the need for additional input.
On a given cycle during processing, each PE receives a v-size
array of B values (multiplier), one D value (multiplicand), and
a v-size array of T values to accumulate with (from previous
PE). Each B value in the input array is multiplied with the input
D value. Since B value is ternary {−1, 0, 1}, the result of each
multiplication is one of {-D, 0, D}, which can be done with a
MUX and is cheaper than larger DSP-based multipliers.

Fig. 4 shows the pipelining strategy within PEC, where a
sample v × u section from Fig. 3 (yellow section) is connected.
On cycle 0 (Fig. 4(a)), values from C0, namely b0 and b1, are
multiplied with d0 in PE0, while b5, b6, and b7 are passed to theAuthorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on January 28,2025 at 02:46:07 UTC from IEEE Xplore.  Restrictions apply. 



246 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 23, NO. 2, JULY-DECEMBER 2024

TABLE I
COMPARISON OF THE PERFORMANCE FOR THE EXIST DESIGNS AND THE PROPOSED DESIGN FOR THE FPGA IMPLEMENTATION

delay registers. On cycle 1 (Fig. 4(b)), C0 is shifted to C4 and
D-RAM increments address to produce the next set of D values.
Now, values from C4, namely −b4 and −b5 are multiplied with
d4 in PE0, while b1, b2, and b3 are passed to the registers. Similar
operations can be seen in Fig. 4(c) and (d), which repeats until
all rows are processed.

ACC: The ACC component accumulates PEC results of mul-
tiple sequential pipeline phases and shifts results out. While
processing, it receives a v-size array ofT values from PEu−1 and
sums with any previously accumulated values. When processing
for a given set of rows [Bi] is complete, the accumulated result
Ti values (Algorithm 1) are ready to be delivered out, and this
repeats until all T is delivered out.

Brief Summary of Key Techniques: Overall, we have:
(i) arranged the small coefficient and related signal processing
through 2-bit-size shift-register; (ii) minimized register usage
in pipelined PEC with small coefficients, and delay register
technique; (iii) implemented the point-wise multipliers with
simple MUXes; (iv) handled large values by BRAMs to avoid
register usage; (v) processed the computation in a systolic way;
(vi) equipped the accelerator with scalability.

IV. IMPLEMENTATION AND COMPARISON

Experimental Setup: The experimental setup is as follows:
(a) we have coded the accelerator with VHDL and verified its
functionality with ModelSim; (b) we have selected polynomial
size n = 4, 096/1, 024 and q = 232 (k = log2q = 32-bit). We
implemented the design with many combinations of v and u
and have presented the ones with the lowest eATP; (c) we
have implemented the accelerator through Vivado 2020.2 on
the Virtex-7 (XC7VX690TFFG1761-2) device, following [2];
(d) we have obtained the implementation results (after place &
route) including the number of LUTs, FFs, slices, BRAMs, and
maximum frequency; (e) we have followed the resource equiv-
alency calculation of [2] to calculate the equivalent area-time
product (eATP); (f) finally, results are presented in Table I for a
comprehensive comparison.

Comparison: When comparing with the most recent [2],
the proposed SCALES (v = 64, u = 16) involves 19.0% less
eATP than [2] for n = 4, 096. Further, for n = 1, 024, SCALES
(v = 64, u = 8) requires 23.8% smaller eATP compared to [2].
Though the accelerator of [2] is also a systolic structure, it does
not offer scalability as the proposed one. Thus, we can conclude

that the overall performance of the proposed design is better
than [2].

When comparing with [5], [6], and [3], we want to empha-
size that the authors of [2] have already shown their design’s
efficiency over the others. By extension, it is shown that our
accelerator also has better area-time complexities than these
ones.

V. CONCLUSION

This paper delivers a novel ternary polynomial multiplication
accelerator (SCALES) for cryptographic applications like ho-
momorphic encryption (BFV scheme). We have derived a new
block-processing strategy and algorithm for ternary polynomial
multiplication and implemented it as an FPGA-based systolic
accelerator. Taking advantage of various design optimization
strategies, SCALES offers efficient, flexible, and scalable pro-
cessing, and the resulting implementation and comparison have
confirmed the efficiency of the proposed accelerator over the
state-of-the-art designs.
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