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Abstract. The sparse identification of nonlinear dynamics (SINDy) algorithm can be applied to stochastic
differential equations (SDEs) to estimate the drift and the diffusion function using data from a
realization of the SDE. The SINDy algorithm requires sample data from each of these functions,
which is typically estimated numerically from the data of the state. We analyze the performance of
the previously proposed estimates for the drift and the diffusion function to give bounds on the error
for finite data. However, since this algorithm only converges as both the sampling frequency and
the length of trajectory go to infinity, obtaining approximations within a certain tolerance may be
infeasible. To combat this, we develop estimates with higher orders of accuracy for use in the SINDy
framework. For a given sampling frequency, these estimates give more accurate approximations of
the drift and diffusion functions, making SINDy a far more feasible system identification method.
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1. Introduction. For many dynamical systems, data might be abundant while there re-
main no analytic models to describe the system. These systems may be too complex, may
have too large a dimension, or may be too poorly understood to model using first principles.
For these reasons, data-driven modeling has become important for applications in science and
engineering. There are a wide variety of system identification methods, ranging from classical
methods [19] to dynamic mode decomposition and Koopman operator methods [29, 36, 23, 35]
to neural networks [25, 18] and many others. These methods vary in their complexity, train-
ing methods, model sizes, and interpretability. Sparse identification of nonlinear dynamics
(SINDy) is a method which allows for some complexity (allowing nonlinear models over only
linear ones), while the sparse solution promotes simple, interpretable models.

The SINDy algorithm, developed by Brunton, Proctor, and Kutz [3] estimates the param-
eters of an ordinary differential equation (ODE) from data. It does this by using a dictionary
of functions and finding a sparse representation of the derivative in this dictionary. The data
for the derivative can be obtained using finite differences of data from the state. For ODEs,
the performance of this algorithm has been analyzed in [37].
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SINDy has several extensions and adaptations; it has also been extended to identify control
systems [4, 14], adapted to systems with implicit solutions [20, 13], and formulated in ways
to improve its robustness to noise [9, 22, 21], to name a few. Additionally, different methods
for computing the sparse solution have been proposed, including LASSO [33], the sequential
thresholding presented in the original paper [3].

The problem of system identification can be similarly posed for stochastic differential
equations (SDEs). Many systems, due to their complexity, separation of timescales, or intrinsic
randomness, lead to data that may be better approximated as a stochastic process. However,
these systems may require more sophisticated tools of analysis [10]. In order to identify an
SDE, we need to estimate a diffusion function, which determines the nature of the random
forcing, in addition to the drift, which represents the mean dynamics. In the context of
single particle tracking, the diffusion constant is locally estimated using the mean square
displacement [26], and the uncertainty can be quantified and compared against the Cramér—
Rao bound [24, 34].

The mean square displacement can be generalized for the estimation of SDEs, where the
drift and diffusion functions may vary spatially. Local approximations for the drift and diffu-
sion functions can be obtained from data using the Kramers—Moyal expansion, and can be used
to estimate spatially varying parameters [31, 11, 7, 30]. An estimate of the diffusion parame-
ter which improves upon the Kramers—Moyal estimate is given in [27]. Further improvements
have been made, such as estimates of the diffusion that are unbiased in the presence of mea-
surement noise [34, 12] and methods which allow for the estimation of underdamped Langevin
equations [2].

The estimation of the drift and diffusion functions using these Kramers—Moyal estimates
extends naturally into the SINDy framework. Stochastic force inference, as presented in [12],
is a similar nonparametric identification method for SDEs, which differs in that it does not
use a sparse solver. In [1], the SINDy algorithm was used to estimate the parameters for
an SDE using these Kramers—Moyal estimates. This method was expanded in [8]: solution
methods based on binning and cross validation were introduced to reduce the effects of noise.
Callaham et al. [5] expanded upon this method by adapting it to applications for which the
random forcing cannot be considered white noise.

In the paper, we conduct a numerical analysis for using SINDy for stochastic systems
and introduce improved methods which give higher order convergence. As previously men-
tioned, in [1] the drift and diffusion are approximated using the Kramers—Moyal formulas. We
demonstrate the convergence rates of the algorithm with respect to the sampling period and
the length of the trajectory. The approximations given in [1] only give first order convergence
with respect to the sampling frequency. A similar analysis of the Kramers—Moyal estimates
based on binning can be found in [6]. Additionally, since they only converge in expectation,
we may require a long trajectory for the variance of the estimates to be tolerable. Com-
bined, the high sampling frequency and long trajectories can make the data requirements to
use SINDy for an SDE very demanding. To help remedy this, we demonstrate how we can
develop higher order approximations of the drift and diffusion functions for use in SINDy.

The paper is organized as follows: First, we will review the SINDy algorithm and some
concepts from SDEs which we will be using in this paper. We will then conduct a numerical
analysis of the algorithms presented in [1], using the Ito—Taylor expansion of the SDE. Next,
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we will present new, higher order methods and show the convergence rates of these methods.
Finally, we will test all of these methods on several numerical examples to demonstrate how
the new methods allow us to compute far more accurate approximations of the system for a
given sampling frequency and trajectory length.

2. Sparse identification of nonlinear dynamics (SINDy).

2.1. Overview. Consider a system governed by the ODE
(2.1) i=f(z), zeR%.

If the dynamics of the system, f, are unknown, we would like to be able to estimate the function
f using only data from the system. The SINDy algorithm [3] estimates f by choosing a
dictionary of functions, 6 = [0, 65, ..., 6], and assuming f can be expressed (or approximated)
as a linear combination of these functions. The ith component of f, f;, can then be expressed as

M»

0i(x)oy; =0(x)y,

7=1
where 0 = [0 --- 0] is a row vector containing the dictionary functions and of = [a} -+ a}]T
is the column vector of coefficients. Given data for f(z;) and 6(z;) for j =1,...,n, we can

find the coefficients «; by solving the minimization

(2.2) ;= argmmz | fi(z) — 0(x;)v]?.
7j=1

This optimization can be solved by letting

0(x1) f(z1)
0= 9(::62) , F= f(d:UQ) , and a= [041 a? ad} ,

and computing o = OTF.

2.2. Approximating f(x). Typically, data for f(z) cannot be measured directly. Instead,
it is usually approximated using finite differences. The forward difference gives us a simple,
first order approximation to f:

x(t+ At) —z(t
(2.3) flz(t) = ( Ai ®) + O(Ab).
Here O(At) is the Landau “big O” notation. The approximation (2.3) is derived from the
Taylor expansion of z,

(2.4)
2 2
e+ A8) = a(t) + B0+ 50 5+ = () + Fe)de+ IL| )G+
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for f sufficiently smooth. The Taylor expansion (2.4) is also used to derive higher order
methods, such as the central difference,

t+ At) —x(t — At
(2.5) Fla) = 2 )2 Af( ) L o(an),

We can use these finite differences to populate the matrix F' used in the optimization (2.2),
knowing that we can control the error with a small enough step size.

2.3. Sparse solutions. Since we choose an arbitrary dictionary of functions, {61,...,0;},
the conditioning of the minimization (2.2) can become very poor. Additionally, if the dictio-
nary is large and contains many redundant functions, having a solution which contains only a
few nonzero entries would help to provide a simple interpretable result. The SINDy algorithm
addresses these by using a sparse solution to (2.2). There are multiple methods for obtaining
a sparse solution such as the least absolute shrinkage and selection operator (LASSO) or the
sequentially thresholded least squares algorithm [3]. Using a sparse solution will give us a
simpler identified system and improves the performance over the least squares solution.

3. Review of SDEs. Consider the Ito SDE
(31) dXt :M(Xt)dt+U(Xt)th,

where X; € R? and W is d-dimensional Brownian motion. The function p : R? - RY is the
drift, a vector field which determines the average motion of system, while o : R? — R4 is the
diffusion function, which governs the stochastic forcing. The diffusion, o, is also assumed to
be positive definite. Motivated by SINDy, we wish to estimate 1 and ¢? from data. We note
that we are estimating 3 = %02 and not o directly. However, if ¢ is positive definite, which is
assumed, o2 uniquely determines o.

3.1. Ergodicity. Since SINDy represents functions using the data vectors evaluated along
the trajectory, we will need to relate the data vectors to the functions represented in some
function space. To do this, we will assume that the process X; has an ergodic measure p, so
that both

N-1
1T 1
62 i 5 [ i [ e im > )= [ f@pta)
hold almost surely. Some sufficient conditions that ensure that the SDE (3.1) generates a
process with a stationary or an ergodic measure are given in, e.g., [16].

With this ergodic measure, the natural function space to consider is the Hilbert space
L? (p). For any two functions f,g € L? (p), we can use time averages to evaluate inner products:

. 1 T * : 1 p * *
(3.3) TlgI;oT/O g (X)) f(Xp)dt = Jim z;g (Xt,) f(X1,) —/Rdg fdp=(f.9).
1=
For notational simplicity, we will also use the brackets (-,-) to denote the matrix of inner
products for two row vector-valued functions: if f = [ fi o fk] and g = [gl gl},
(£,9)"7 = (7,9, or equivalently, (f,9)= / g*f dp.
Rd
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3.2. lto—Taylor expansion. In order to evaluate the performance of different SINDy meth-

ods on SDEs, we will need to use the Ito—Taylor expansion of the solution. Let ¥ = %02

Following the notation of [17], let

L B 52
0= 2% )
j;,u Ox7 +;( ) OxI 0x!

be the operator for the Ito equation (3.1) and define the operators

o g
LJ:ZJ%J@
i=1

These operators will give us the coefficients for the Ito-Taylor expansion of a function f.
Denoting AW} =W/, », — W}, the first couple of terms are

d
F(Xerar) = F(X0) + LOF (XAt + > L' f(X) AW] + (L0) F(Xy) At

d t+At psy ) d . tHAt sy .
+Y LLOf(Xy) / / dWi,dsy+ Y  LOL f(Xy) / / dsodW! +
i=1 t t i—1 t t

The general Ito—Taylor expansions can be found in Theorem 5.5.1 of [17]. We will use the
Ito-Taylor expansion to develop estimates for u’ and ¢®/. For the purposes of this paper,
we will be able to specialize to a few cases, which will allow us to quantify the error in our
estimates while also being simpler to manipulate than the larger expansion.

3.2.1. Weak expansion. The first specialization of the Ito—Taylor expansion will be a
weak expansion, which will allow us to estimate the expected error in our estimate:

m

k
(3.4) E(f(Xevat)|Xt) = )+ D (L™ HX AL, + R(X3)
m=1 me:

with R(X;) = O(At™*1),

This expansion follows from Proposition 5.5.1 and Lemma 5.7.1 of [17]. Theorem 5.5.1
gives the general Ito—Taylor expansion, while Lemma 5.7.1 shows that all multiple Ito integrals
which contain integration with respect to a component of the Wiener process have zero first
moment. The remainder term is then a standard integral.

We will consider the expansion (3.4) with the functions f(z) =z’ to get

At™

(3.5) E(X], aelXe) = X} + 1 (X)) At + Z Loym-1 ’(Xt) +0(Atk+1)

m=2

to estimate the drift. To estimate the diffusion, we will let f(z) = (2 — X})(2/ — X7), with
X; held constant at the value at the beginning of the time step, to get

(3.6) E(f(Xiyar)| X)) =257 (X;) At + g(Xy) At* + O(At?),
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where
v L op o
:L ZZJ ., Zlv _r E]v _r .
g T +kz_:1< P 8xk)

3.2.2. Strong expansions. We will also use the strong Ito—Taylor expansion, which will
give a bound on the variance of our estimates. These immediately follow from Proposition
5.9.1 of [17]. First, if we apply it to f(z) = 2’, we have

d
(3.7) Xiyar— Xi=p (X)At+ ) "™ (X) AW + Ry,

m=1

where E(|R;|?| X¢)dp = O(At?). '
Similarly, we can apply the same proposition to f(z) = (2° — X})(2/ — X}), which gives us
(after moving around some of the terms)

d
(3.8) (X{yar— X)X a0 — X7) =25 (Xy) At + Z (o"ah(Xy) + oMo (X)) i 5y + Re,
k=1

where E(|R;|*|X;) = O(At*) and I(; ;) = OAt IS dede,?l. When we create estimates of
p(X;) and ¥4 (X;), the expansions (3.7) and (3.8) will be useful in bounding the variance of
these two estimates.

Remark 1. For the expansions, it is implicit that we must assume that all (up to the
necessary order) of the coefficient functions, L* L% ... L% f  satisfy the requirements with
respect to the multiple Ito integrals set forth in Chapter 5 of [17]. The conditions set forth
are necessary for the Ito—Taylor expansions to be valid locally.

Additionally, we will also need to assume that the remainder terms will be square integrable
with respect to the ergodic measure. In particular, we will assume

[ 1r@)dptz) = 0(ae )
Rd
in the weak expansion and

, Ry(x)%dp(z) = O(At) (or O(At2))
R
in the strong expansions, where Rg(z) = E(|R¢|? | X; = z). This assumption will allow us to
take time averages and expect them to be finite. Following the proofs in [17], it can be seen
that these can be guaranteed by imposing similar integrability conditions on the coefficient
functions with respect to the ergodic measure. This will often be the case, as the ergodic
measure will decay rapidly toward infinity. A sufficiently strong condition to guarantee the
integrability of the error is, for example, that both the diffusion and drift functions are smooth
and the derivatives of all orders are bounded.
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4. SINDy for stochastic systems. Given data for the drift and diffusion matrix of (3.1),
we can set up an optimization problem similar to (2.2). Similar to the deterministic case, we
can also approximate pu and X using finite differences. As before, we assume that we have a
dictionary 6 = [61,609,...,0;] and that each of the components of u and ¥ lies in the span of
the components of 6:

pt = 0ot and Nid =B

Suppose we have the data from a trajectory of length T" with sampling period At. If we
let AX; =Xj —X; ,we can approximate the drift using

. X~ X AX:
4.1 HXy,,) o —mt ==t

Similarly, we can approximate the diffusion with

(4.2) S (X, )~ (X = X)X — X3)  AX] AX]

It was shown in [1] that we can use the approximations (4.1) and (4.2) to set up the
minimization problems

2

N-1 ;

, AX)
4.3 &' = argmin o 9(Xy v
(1.3 gnin 3| 75~ 00
and

N-1 ; j 2
» ‘ AXI AX]

(4.4) B = argimnmz_:o —on; T 0(Xz,, v

Under the assumptions set forth in Remark 1, we can show that as At — 0 and T — oo, the
coefficients given by (4.3) and (4.4) converge to the true coefficients: &' — o* and g7 — g*J.
If we define the matrices

H(Xto) AXZO
G(th) . AX;1
(4.5) 0= _ and D'= : ;
Q(XtN—l) AXgN_l

we can express (4.3) and (4.4) concisely as

Kt—@v

Do DI

d %,J — 1
an B argmin | —"

(%

&' = argmin
v

—@vH.

(Here D'® D7 represents the Hadamard, or elementwise, product.) These equations are solved
by &; = At™1OTD" and §; ; = (2At)71OT (D! © DY), respectively.
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Theorem 4.1. Let X; be an ergodic drift-diffusion process generated by the SDE (3.1).
Consider the optimization problems (4.3) and (4.4) using data from a trajectory of length
T sampled with frequency At. Suppose that the components of 6 are linearly independent
and span the subspace F, and that the assumptions on the Ito—Taylor expansions outlined in
Remark 1 are met. If i or £49 lie in F, then the vectors given by corresponding optimization
converge in probability to the true coefficients as T'— oo and At — 0. That is, & — ol or
Bi,j SN ﬁi,j'

Theorem 4.1 was shown in [1] and will be implied by the stronger Theorems 5.1 and 5.2
which give rates of convergence. However, we will demonstrate the main reasoning behind the

proof, as it will be informative to our later analysis. By the assumptions of Theorem 4.1 we
have that © has full rank and p = 0o, X4 =037,

. i 1 -1 1 .
&' = (@*@)—1@*% = <N®*@> (M@*Dl> \

where N = T'/At is the number of data samples. The first quantity can be evaluated using
ergodicity as N — oo:

N-1
1 . 1 N N
O O=% Z_:Oa (X1,)0(Xy,,) = (6,0).

For the second expression, the definition of the stochastic integral gives us

. Nl . . At to+T .
O D' =" 0" (X)X . - Xi )= / 0*dX’
m=0 to

as At — 0. Finally, using (3.1) and (3.3), we can show

1 DN LA :
4.6 ——O*'D' = — 0*dX" = (u,0) = (0,6)a’

(4.6 . | (1.0) = (0.0)

as At — 0 and T'— oo. The limit as At — 0 gives the convergence of the sum to the stochastic
integral, and the limit as T — oo allows us to sample almost everywhere on the stationary
measure for the ergodic convergence. Similarly, we can use the convergence

N-1 . ) ) C A [T o
door(X, )X - XX - X)) —>/ 0*d[X*, X7,  At—0
m=0

m+
to

to show that 53 0*(D' ® DI) — (S%9,60) = (0,6)3%1. (Here [X,Y]; is the quadratic co-
variation process of Xy, and Y;.) This would establish the result, except that we used the
iterated limits At — 0 and 7' — oo in (4.6) without showing the double limit exists. This is
where we would use the integrability assumptions in Remark 1, which are used in the proofs
of Theorems 5.1 and 5.2.

Theorem 4.1 demonstrates how the least squares solutions converge to the true coefficients
of the SDE. However, the SINDy algorithm finds a sparse solution, which can greatly improve
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the accuracy of the results over the least squares solution. To set this up, the two optimizations
(4.3) and (4.4) can be summarized using the normal equations,

* ~i_i * TYi
(4.7) 0 0a' = At@ D
and
*Q AL — _— @*( Dt J
(4.8) 0*0p 2At@ (D' e D?).

We can then solve (4.7) and (4.8) using a sparse solver, such as the one proposed in [3] to
obtain a sparse solution.

5. Numerical analysis of stochastic SINDy. Theorem 4.1 claims that as At — 0 and
T — o0, the coefficients given by (4.3) and (4.4) converge to the true parameters of the SDE
(3.1) as At — 0 and T" — oco. However, for real experiments, there will be limits to the
sampling frequency and the length of trajectory for which we can acquire data. In [12], the
trajectory of the SDE was interpreted as a noisy transmission channel, and estimates on the
relative squared errors were derived based on the information content of the signal.

In this section, we will use an alternate approach of deriving the error in the estimate
based on the Ito—Taylor expansion of the SDE. We will look at both the bias and variance
of the approximations for finite At and T. In particular, we derive the error with explicit
constants (up to the leading order) in terms of the dictionary 6 and the functions p and o.

In this setting, we will be using both “big O” and “little 0” notation. The “big O” notation
will be used to denote convergence as At — 0. These terms will come from the higher order
error terms in the estimators of u*(X;) and ¥%7(X;). In particular, the constant in the “big
O” will depend only on the parameters of the SDE; it does not depend on the initial condition,
trajectory length, or realization of the trajectory.

The “little 0” will denote convergence with respect to 7. Specifically o(1) denotes a
function that goes to zero as T — oo. This will capture the ergodic convergence; the o(1)
term will be the error that comes from the finite trajectory failing to completely sample the
ergodic measure.

The SINDy algorithm will give us vectors of coefficients, & and 37, for the system. We
will be interested in the error of these vectors relative to the true coefficients a’ and 5%/,

err=a'"—a' or err=g" —g".

(We note that this error is specifically for the vector af or 8/ being estimated, even though
it is not indexed. Since each vector is estimated separately, there should be no confusion.)
This error will be a random variable depending on the realization of the system. To evaluate
the performance of the algorithms, we will use the mean and variance of this error:

errmean = ||E(err)||2 and  errye, = Var(err) =E(||err — E(err)H%).

The mean and variance of the error measure the bias and spread in the estimates & and
3. These errors in the coefficients can be quantified using the errors in the estimates of
p' and X% given in (4.1) and (4.2) at each step. We will present the analysis for the drift
coefficients, o', noting that analysis for the diffusion follows the same path.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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5.1. Drift. As mentioned, the error in & stems from the error in the approximation in
(4.1)

We can define the error

e _ Xt'n+1 - Xtin _ Z(X )

tn At H tn ).
The order of the error, e;, at each time step will directly determine the error in the coefficients
a’. We can use Ito-Taylor expansions for X; to bound both E(|e;|) and E(|e;|?). The weak

Ito—Taylor expansion (3.4) gives us
(5.1)

1 - - At
Bler| X0 = 5 (WCXA -+ LX) G-

i O(At3)) — (X)) = Loui(xt)% +O(A).

Similarly, we can use the strong truncation (3.7) to obtain

d
, AW™ R
e = Z O'z’m(Xt)iAtt + K;a
m=1

where E(|R;|?|X;) = O(At?). Then, taking the expectance of e?, we get

d O.z',m f 2 .
(5.2) E(led” | X0) =) Af”+o(mz).

Now, let E be the matrix containing the time samples of e,

T DZ i
j| —Kt—@a,

E = [eto etl e etNﬂ

using 0(X;)a! = p*(X;). Then we have

. ) Dt
(5.3) err=a"'—ao'= @+Kt —~0T0a=(0*0)"'0"E.
Using ergodicity, we have
1 -1
(5.4) <N9*9> = ((6,0) +0(1)) "' = (6,6) " + (1),

which allows us to evaluate the first term in (5.3):
1
(5.5) err = ({0,0) "1 +o(1)) <N@*E> .

Bounding the mean and variance will follow from bounds on the mean and variance of %@*E .
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Theorem 5.1. Consider the optimization problem given by (4.1) and (4.3). Then the bias
18 bounded by

€T mean < % (IL04]|2 + O(A#) + o(1)) At
and
Co (S i 1
erryar < T (Tnzﬂ lo“™||5 + O <At2> + 0(1)) ,
where
(5.6) Cr=1[(6,0) 2102 and Cy=1(6,0)"" 3160113

depend only on the choice of 6.

As stated in Theorem 5.1, in expectation, the accuracy of our estimate depends primarily
on the sampling period At, and not on the length of the trajectory. The length of the trajectory
instead controls the variance of the estimate, which is proportional to 1/T. Up to the leading
term, the variance does not depend on the sampling period. These results previously appeared
n [12, 2], although our proof is different. This pattern will persist as we develop higher order
methods for estimating the drift, where the sampling frequency determines the bias and the
length of the trajectory determines the variance.

Proof. For the mean error, we will need to bound the quantity + ||E(©*E)|. We have

N-1
1 1
E <N®*E) =E <N ZO 9*(th)€tn> = ( Z 0* Xt 675 |Xt ))
Then, using ergodicity and (5.1), we obtain

E<]1V@*E> < 29* ( L’ ’(Xt)+O<At2>>>

= A (00) 4 of1)) + OO

Finally, using (5.5), we get

[E(err)| = | (8,6 + o(1)]], (A; ((E°%,0) + o(1)) + ow?))

<1168.0) ™ (IO 2 + O(A) +0(1) 5F = G (12> + 0(a0) + 0(1)) 5

This bounds the mean error. To find the variance, we have
2
Var ( @E)<E<H@E > Ze (Xy,)
Ny
=K (Z 16(X¢,)I5E (\et,LIZIth)> :
n=0

2 N-1
<E (Z \|9*<th>r\%\etn\2u)
2 n=0
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Now, using (5.2) with this equation, we have

var (o°E) <E<§ o, ||2<Z'Um‘2 (A“l>>)
- ( (o ivm>2,ueua>+0(m%)+o<1>)

=1
d
Ljo)2 <Z lo"™ |3 + O (At%) + 0(1)) :

=

c
&HM

H \

Then

Var(err) = (1(6,6) ™1 + o(1)) 1011 ( (Z o™ 3+ 0 (att) + o1 >>)

m=1

0.6) 131613 (5~ i :
_ lie.0y el (Z”"’ ‘|3+O(At2>+0(1>)
m=1
Co (| imo :
= A0 H4+O<At2)+o(1) . -
m=1

5.2. Diffusion. The analysis of the diffusion coefficients follows the same argument. The
approximation for ¥%J given in (4.2) is

i i J J i J
g, ) Kb = XL, — X)) AN AX,

2At 2At

Then we can define the error

2At

We can use the weak Ito-Taylor expansion (3.6) to bound E(e; | X3):

d
At B3 0,0 i, op’ op
51) Bl X)=g(X05 +OAR),  g=L08 4yt + 3 (340 4 i),
k=1

Similarly, the strong Ito-Taylor expansion (3.8) gives us (see Appendix A.2)
(5.8) E(le|? | Xy) = B9(X0) 20 (Xy) + 29 (X,)% + O(At2).

Theorem 5.2. Consider the optimization problem given by (4.2) and (4.4). Then the mean
error is bounded by

C
errmean = (9] + O(A1) +o(1))At,
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where

10500 i, d Eikaﬂj Ejk;aui
9= *“H;( ok > o0 )

The variance is bounded by

C L . 1 At
erruar = = (|75 + (92| + O(A) + o(1)) .

The constants Cy and Co are the same as those given in (5.6).

Proof. The proof follows that of Theorem 5.1, except using (5.7) and (5.8) to bound
|E(e: | X¢)| and E (|es|? | X¢), respectively. [ ]

Similar to Theorem 5.1, the argument above shows that the mean error converges with
order At. However, unlike the estimate for the drift, when estimating the diffusion the variance
is proportional to both At and 1/7. Similar to the drift, these results were shown previously
in [12, 2]. Later, we will see that the higher order estimates for the diffusion will also have
variance proportional to At/T.

6. Higher order methods. From Theorems 5.1 and 5.2 we can see that the quantities At,
T, C1, and Cy will control the magnitude of the error. The constants, C; and Cs, depend
only on the choice of the dictionary 6, which determines the conditioning of the problem. The
SINDy algorithm also uses a sparsity promoting algorithm which can improve the conditioning
of the problem and force many of the coefficients to zero, which can reduce the error [3, 1].
However, even if the sparsity promoting algorithm chooses all of the correct coefficients, we
have just shown that there is still a limit to the accuracy of the estimation determined by the
sampling frequency and trajectory. The primary purpose of this section is to analyze alternate
methods of approximating u‘ and X%/ which can improve the performance of SINDy (with
respect to At).

The methods above resulted from first order approximations (4.1) and (4.2) of u#(X;) and
47 (Xy), respectively. Higher order approximations of these data points can in turn lead to
more accurate approximations of the functions in the output of SINDy. We can generate better
approximations for the drift using multistep difference methods. The use of linear multistep
methods (LMMSs) to estimate dynamics is investigated in [15] for deterministic systems. While
the estimates for the diffusion will be similar, they cannot be achieved strictly using LMMs.

In order to achieve a higher order approximation, we will need to use more data points in
the approximation at each time step. As such, we will define

0(X1,) Xi - X,
Q(th 1) . in 1 _Xl’le
(6.1) On = U and D; = *
G(XtN+n—1) X§N+n,1 - Xz‘?N,1

With this definition, ©,, contains the data of  time delayed by n steps. With the earlier
definition of ©, we have © = ©. Similarly, D! contains the data for the change in X over n
time steps, with D] = D" using the earlier definition of D".
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6.1. Drift. First, we will look to make improvements on estimating the drift. These
estimates will be simpler than those for the diffusion. As mentioned, these approximations
are directly analogous to the LMMSs used in the simulation of deterministic systems.

6.1.1. Second order forward difference. The first order forward difference, which is used
to approximate u* in Theorem 5.1, is also commonly used to approximate the derivative f(z) in
the differential equation @ = f(z). In fact, if we compare the weak Ito—Taylor expansion (3.4)
with the deterministic Taylor series for an ODE, (2.4), we see that they are almost identical.
There are many higher order methods which are used to approximate f in the simulation of
ODEs. By analogy, we can expect that these methods would give an approximation of the
same order for p’ (in expectation). One of the simplest of these would be the second order
forward difference,

4(Xt - Xt) B (th+2 - Xt) _ 73Xt7/‘n + 4X1;in+1 - Xt7:'n,+2

2At 2At

n+1

(6.2) (X))~
Similarly to before we can define the error in this approximation to be

o — —3X] +4X] n — X o _
! 20t

' (Xy).
Using the weak Ito—Taylor expansion (3.4), it is easy to see that

(L%)%p'(Xe,)

3 At? + O(At?),

(6.3) E(et,

Xi,)=—

which shows that this method does indeed give a second order approximation of y. Using this
approximation, we can set up a matrix formulation of (6.2):

. 1 . .
SN (4D} — D3).
If we set up the normal equations, this becomes

1

4 500d" =

03 (4D} - D3) .

Theorem 6.1. Consider the approzimation &' obtained from (6.4). The mean error is
bounded by

[E(err)|ly = %(II(LO)WII +O(At) +o(1))At?

and the mean squared error by

d
E (lernl) = 2 | S I3+ 0(ar) +o(1)

The constants C1 and Cy are the same as those given in (5.6).
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The proof of Theorem 6.1 is similar to that of Theorem 5.1, but requires some extra
algebraic manipulation, so it is included in Appendix A.1.

Remark 2. These methods can easily be generalized to higher order methods using higher
order finite differences, as will be done in section 6.1.3. However, the least squares solution
only yields correct results for forward differences. Other finite difference methods can cause
certain sums to converge to the wrong stochastic integral. For example, a central difference
approximation for u?,

i i
i AL T Xi_at

He ™ oAt

gives us 10 ~ ﬁDg. The normal equation for the least squares solution
* ~1 1 * 1Y
(65) @161012 == TNQID%

gives the wrong results, because as At — 0, %@’{D% converges to the Stratonovich integral
instead of the Ito integral,

T T
;@’{DQ%/ 9*(Xt)odXZ;£/ 0*(X;) dX],
0 0

and & will not converge to the correct value. To prevent this, (6.5) can instead be solved
using

1
2At

which gives the proper convergence.This amounts to using Qg as a set of instrumental variables
(see [28]).

* ~1 * 7
@0@10& = @0 2

6.1.2. Trapezoidal Method. The second order method above uses additional measure-
ments of X} to provide a more accurate estimate of u’. Alternatively, we can use multiple
measurements of y’ to better approximate the difference X/, 5, — X{. Consider the first order
forward difference given by (4.1).

(X))~ u
i At
Theorem 5.1 used this difference to give an order At approximation of u!. However, it turns
out that $(u'(X;) + p(Xitae)) gives a much better approximation of this difference:
X - an

1 7, ’L tn 1
(6.6) 3 (W' (Xe,) + ' (X, ) = +T

We will call this approximation the trapezoidal approximation, since this is exactly the trape-
zoidal method used in the numerical simulation of ODEs. If we consider the error in this
equation,

Xi,-X, 1

ntl _ (M(th) + ,ui(thH)) )

“ At 2
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we can use the weak Ito-Taylor approximations of X; and p?(X;) to show that

o A
(6.7) e | Xp) = ~(L0)2 (X)) T + O(AF).
This not only gives us a second order method, with respect to At, but the leading coefficient
for the error is much smaller (by a factor of 1/8) than the second order forward difference.

To set up the matrix formulation of (6.6), we have

1

1 i i
(6.8) 5 (Bo+01)a'~ AtDl'
We can multiply (6.8) by ©f on each side to obtain
1 * ~1 1 * 12
(69) 5@0(@0 + @1)0[ - E@()Dl.

We can use this equation analogously to the normal equation; we will solve for &' either
directly using matrix inversion or by using a sparse solver.

Remark 3. We note that we cannot solve (6.8) using least squares,
at #* i(@0 + @1)+Di
At v

Similarly to Remark 2, this leads to sums converging to the wrong stochastic integral. In
[12], a similar method was used which leverages the convergence to the Stratonovich integral
to generate an approximation which better handles noise. The authors’ method corrects for
the Ito versus Stratonovich differently from the one presented here and requires an accurate
estimate of the divergence of the diffusion function.

Theorem 6.2. Consider the estimation &' given by solving (6.9). The mean error is bounded
by

At? ,
erTmean < CIE(H(LO)QMZHQ + O(At) + 0(1))

and
c d
2 0,5 (12 1
erToar < T E 1 o ]|5 + O(Atz) + o(1)
J:

Proof. Letting E be the matrix containing the samples of e;, we have

1

1 .
—Di=2 o)
A 2(@04-@1)04 +

Using this in (6.9) gives us

1 ~ 1 ;
5@8(@0 +01)at = 5@6(@0 +01)a' + 6OyF,
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so the error is
. . 1 -1
err=a"—a'= (2@8(90 + @1)> OyE.
Since E(0(Xi1at)| Xt) = 0(Xt) + O(At), we can use ergodicity to evaluate

519360+ 61) = (6,6) + (A1) + o)

The proof of first inequality then follows from the proof of Theorem 5.1 and (6.7). The second
inequality also follows using

d
1 , .
2 _ i,m 2 =
E(lecll3 | Xe=2) < 5 D o""(@) P+ O(ALZ),
m=1
which can easily be derived using the Ito—Taylor expansions. |

6.1.3. General method for estimating drift. We have given methods which give second
order estimates of a!. To generate methods which give even higher order approximations,
we note the similarities of the above methods to LMMs used in the numerical simulation of
ODEs. Using the general LMM as a guide, we set up a general method for approximating p*:

k P
(6.10) Z ap ' (Xt,,,,) = Z b (Xy,,, —Xi,)
=0 =1

or

k p
(Z al@l) Oéi ~ ZlelZ
=0 =1

Keeping Remark 2 in mind, we can solve this using

k p
(6.11) <Z a,@;;@l> ai=b Y O;Dj.
=0 =1

The coefficients in (6.10) can be chosen to develop higher order methods. However, due to
the stochastic nature of the problem, large amounts of data may be required to achieve the
order in practice. We will need enough data to average over the randomness in the SDE,
and the higher order methods can be sensitive to noise. More detailed investigation into the
convergence of certain classes of methods for dynamics discovery can be found in [15] for
deterministic systems.

6.2. Diffusion. In this section we will discuss improvements to the estimate for the dif-
fusion. For some systems, particularly when the drift is large relative to the diffusion, the
first order approximation given above may not be sufficient to obtain an accurate estimate
of the diffusion coefficient. Using ideas similar to those in the previous section we can use
the Ito-Taylor expansions to develop more accurate estimates of ¥/ (X;). However, these
methods will be more complex; in addition to samples of X;, some of these methods may also
require data from the drift, u*(X;) and p/(X;).
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6.2.1. Drift subtraction. Before discussing the higher order methods, we can make an
improvement upon the first order method. In [27], Ragwitz and Kantz noted that by correcting
for the effects of the drift in (4.2), we can make significant improvements to the estimate. To
derive their estimate, we use the Ito—Taylor expansion for X, which gives us

d
Xioae— Xi=p(X)At+ Y o(X) AW + Ry,
m=1
where AW, = Wiiar — W, is the increment of a d-dimensional Wiener process and Ry is
the remainder term. This equation, with the remainder term excluded, actually gives the
Euler-Marayama method for simulating SDEs. In essence, the approximation (4.2) uses

d
Xiar = Xim Yo" (X)AW"
m=1
to approximate the increment of the Wiener process. However, (4.2) tosses out the p(X;)At
term because it is of a higher order. If we include it, we get the more accurate

d
(6.12) S G AW = (X}, a — XJ) — (XAt - Ry,
m=1

We can use this to generate a better approximation of X%,
(6.13) Ei,j(Xt) ~ (XZJrAt - Xy - MZ(Xt)At)(XtJJrAt - Xt] — ! (Xp)At)

2At
(We note that the estimate derived here is in slightly different form from that derived in [27],
but will have a similar effect.) This approximation will be more accurate than (4.2), but it
will be of same order with respect to At. Letting e; be the error in (6.13), we can use the
weak Ito—Taylor expansion to show

At 2 0y i,j : i,m 8:“’] 7,m 8H1
m=1

This gives an improvement over (5.7) by removing the p‘y/ term in f (compared to Theo-
rem 5.2). We note that this correction does not cancel all of the O(At) terms in the error
and thus does not improve the order of convergence. However, in systems where the drift
dominates the diffusion the contributions of u‘y? will be large. For these systems, such as
the Van der Pol (7.2) and Lorenz (7.3) examples presented in section 7, the improvement will
be large. In systems where the drift is typically small, such as the system with a double well
potential (7.1), the improvement will be modest.

In order to implement this method, we will need an approximation of pu’. However, we
can use the methods above to represent the drift as pu*(X;) ~ 6(X;)a*. We can use this to set
up the matrix equations

1

(6.14) CHENCRES E(Di — ©0d") © (D] — Od)

and solve for B”
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Remark 4. Equation (6.14) assumes that the same dictionary 6 is used to estimate u’, y/,
and X"/, In general, we could use separate dictionaries to estimate each of the parameters,
since all we need are the approximations of the samples of p#(X;) and 1/ (X;) to estimate 557,

6.3. Second order forward difference. While subtracting the drift from the differences
Xf LA X} gives marked improvements, we can also generate a higher order method using
a two step forward difference, similar to the drift. The analysis for the estimation of the
diffusion constant using the two step forward difference is essentially identical to that of the
drift, so we will go through it briefly. Define the approximation

4( ti+At - Xg)(Xg-f—At Xg) - ( ti+2At - Xti)(Xg+2At - Xg)
4At '

As usual, letting e; be the error in this approximation, we can use the Ito—Taylor expansions
(3.4) and (3.8) to show that

(6.15) DI

E(e;) =O(At?)  and  E(|e?) = O(Ab).

This will gives us a second order method for the diffusion coefficients. We did not include the
constants for the order At? for the sake of brevity, since the number of terms in the expressions
can get quite large. We can use the approximation (6.15) to set up the matrix equations

(6.16) 03008 = - A o <4DZ ©Di - D;@Dg),

which we can solve for §"7.

Theorem 6.3. Consider the estimate 3% given by solving (6.16). Then we have

ermean = O(AL?) 4 0(1)

and

erTyar = %O(At) + o<;,> .

The proof of Theorem 6.3 is similar to the previous proofs. Additionally, we only give the
leading order of the error, so deriving the bounds for E(es| X;) and E(|es|?| X;) is simpler than
the previous methods.

6.3.1. Trapezoidal method. Extending the trapezoidal approximation to estimating the
d1ffus1on coefficient is slightly trickier. Let AX} = X/ LA — X}. If we attempt use the analogue
to (6.6), we get

AX] AX]

SH(X,,..,) + 59 (X) = Sohs

+ Rtn 9

with

out
E(Ry, ) = f(X;. )At + O(A#2 kb O\ w01
(i) = F(X0 )AL+ O(A®),  f=puipd +Z( )
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which is still only an order At method. However, we already demonstrated in (6.12) that
correcting the difference A X} for the drift can improve our approximation of ngﬂ oM AWM,
We will use the same trick here, except we will improve upon (6.12) by using the average values
of ' and y/ instead of the value at the left endpoint:

At

d
Z O'i’mAth ~ (Xepar — Xt) — T(N(Xt) + 1(Xegar))-
m=1

If we use these differences to generate the trapezoidal method, we get

(6.17)

(AX =51 (X (X a0) (AX] = 509 () + 1 (Xiar))
At '

If we consider the error in (6.17), using the appropriate Ito-Taylor expansions we can show
(see Appendix A.3)

Ei’j (Xt+At)+Zi’j (Xt) =~

IE(e; | X41)| :O(AtQ) and E(\et|2) =O(At).
Then, using the usual matrix notation, we can set up the equation
~. . 1 ) At . At )
(6.18)  ©3(00 +O1)5" = (Di — < (Go+ 91)6“@) ” (D{ — < G0+ @1>O‘j> ‘
We can solve this equation to get an order At? approximation of 3%7.

Theorem 6.4. Consider the estimate 3% given by solving (6.18). Then we have

erTmean = O(AtQ) +o(1)

and

erryar = %O(At) + 0(%) .

The proof of Theorem 6.4 is similar to the previous proofs, using the appropriate error bounds.
Although the order of the error is identical to that of Theorem 6.3, we will see that this method
tends to have lower error. We did not include the constant terms for these errors for the sake
of brevity, since the higher order Ito—Taylor expansions involve many terms.

7. Numerical examples. In this section, we demonstrate the performance of the methods
presented above on numerical examples. For each example, we will generate approximations
&'~ a' and BN” ~ 4. However, to present the data more simply, instead of computing the
mean and mean squared error for each vector & and 3%, we will be aggregating the errors
across all the coefficients. We will compute the mean error, normalized for the norms of o
and % using

P

. _(zizlrm(al)—wu%>

Trm = a —
>z le?]]3

=

4 L N L
21‘2]21 [E(B"7) — B ||%
or FErr,= ~ — .
>izj>1 183
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Table 7.1 ' N
Summary of the methods for estimating the drift (u*) and the diffusion (X*7).

Drift Diffusion
Name Equation Leading error term Equation Error
FD-Ord 1 (4.7) SLLOpf |2 At (4.8) O(At)
FD-Ord 2 (6.4) 26%||(L0)2M||2At2 (6.16) O(At?)
Trapezoidal (6.9) SLI(LO)? ||l At (6.18) O(At?)
Drift-Sub - - (6.14) O(At)

Similarly, we will calculate the normalized variance

d ~i d  Var (B
! Var (& S o Var (84)
Brp,, — iz Var(@) o iz -

d ; d .
> i ladll3 D>l 165713

Since these errors are based on aggregating the errors for all of the components of o’ or 3%/,
they will demonstrate the same convergence rates as in Theorems 5.1, 5.2, and 6.1-6.4. The
constants, however, may be different.

For each example, we will estimate the drift and diffusion using each of the methods
described (see Table 7.1). The drift will be estimated using the first and second order forward
differences, as well as the trapezoidal approximation. For the diffusion, we will use the first and
second order forward differences, the drift-subtracted first order difference, and the trapezoidal
method. For the drift-subtracted estimation, we will use the estimation for y generated by
the first order forward difference. Similarly, for the trapezoidal approximation for X, we will
use the estimate generated by the trapezoidal approximation for pu.

7.1. Double well potential. Consider the SDE
3 1 1 2
(7.1) dXy=-X;+ §Xt dX;+ [ 1+ ZXt dWy.

This equation represents a diffusion in the double well potential U(z) = %1}4 — %.7}2. This
example is similar to one considered in [1]. Without the diffusion, the trajectories of this
system will settle toward one of two fixed points, depending on which basin of attraction
it started in. With the stochastic forcing, a trajectory will move around in one basin of
attraction until it gets sufficiently perturbed to move to the other basin. We also note that
for the majority of the trajectory, the state will be near the point where the drift is zero, so
the dynamics will be dominated by the diffusion. At these points, the trajectory will behave
similarly to Brownian motion.
For the SINDy algorithm, we will use a dictionary of monomials in  up to degree 14:

O(z)=[1 = - zM].

This basis will be used to estimate both the drift and the diffusion. To generate the data for
the algorithm, we simulated (7.1) using the Euler-Maruyama method 1,000 times with a time
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Figure 7.1. (Left) The mean error in the estimation of the drift coefficients for the double well system
(7.1) is plotted as a function of At. The error is approzimated using 1,000 trajectories of length T = 20,000.
(Center, right) The variance for each method is plotted against the sampling period, At, and the trajectory
length, T'. The trajectory length is fized at T' = 20,000 for the center plot, while the sampling period is fized at
At=0.004=4 x 1072 for the rightmost plot.

step of 2 x 10™* and a duration of 20,000. The initial condition was drawn randomly for each
simulation from the standard normal distribution. The SINDy methods were then run on the
data from each simulation for different sampling periods, At, and lengths of the trajectory, T
We use a minimum At of 0.002 so the simulation has a resolution of at least 10 steps between
each data sample. The truncation parameters for the sparse solver were set at A = 0.005 for
the drift and A =0.001 for the diffusion.

As can be seen from Figure 7.1, the expected errors in all three methods for the drift were
converging to zero as At — 0. For small At, the expected estimate was within 1% of the true
value. Additionally, the two higher order methods showed that, in expectation, they produce
more accurate results and appear to converge more quickly, in line with Theorems 5.1, 6.1,
and 6.2. For these methods, the expected error was as much as an order of magnitude smaller,
depending on the size of At. The convergence rate for the first order method scales linearly
with At, while the higher order methods appear to scale quadratically until At = 0.02, at
which point there is likely not enough data to overcome the variance in the estimate.

The variance, however, is rather large relative to the size of the expected error for all three
methods. This is likely due to the system tending to settle toward the points 2 = 4-1/v/2 where
the drift is zero. Near these points, the dynamics are dominated by the diffusion, making it
difficult to estimate the drift. As can be seen (noting the scale of the center plot), the
variance does not change a great amount as At decreases, as is predicted for the estimates of
the drift. As shown in the rightmost plot, the variance decreases as the length of the trajectory
increases, slightly faster than linearly in 1/7. In order to more fully benefit from using the
higher order methods to the full extent, we would need a long enough trajectory to control
the variance.
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Figure 7.2. (Left) The mean error in the estimation of the diffusion coefficients for the double well system
(7.1) is plotted as a function of At. The error is approzimated using 1,000 trajectories of length T = 20,000.
(Center, right) The variance for each method is plotted against the sampling period, At, and the trajectory
length, T. The trajectory length is fized at T = 20,000 for the center plot, while the sampling period is fized at
At=0.04=4x 1072 for the rightmost plot.

For the diffusion, Figure 7.2 shows again that, as At — 0, all of the methods do indeed
converge in expectation. The Drift-Sub method slightly outperforms FD-Ord 1; the error
is typically reduced by about 20%-30%. Of the two higher order methods, the trapezoidal
method typically yields the best results, often an order of magnitude better than FD-Ord 1,
although it does not appear to scale quadratically in At as predicted by the theorem. This is
likely due to a lack of sufficient data to average over the noise. FD-Ord 2 also gives substantial
improvements for small At. In contrast to the drift, the variance in the estimate of the diffusion
does decrease as At goes to zero. The decrease appears to be proportional to At and slightly
faster than linear in 1/7", which is roughly in line with Theorems 5.2, 6.3, and 6.4.

7.2. Noisy Van der Pol oscillator. Consider the ODE

] =@ a]

This is the Van der Pol equation, which describes a nonlinear oscillator. We can perturb this
equation by adding noise. We get the SDE

1 2
(7.2) [dXt X

2] = - g g oo

where W; is a two-dimensional Wiener process. For the simulations, we let

o(2) _ 17140327 0
2 0 0.5+0.221 |
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Figure 7.3. (Left) The mean error in the estimation of the drift coefficients for the Van der Pol system
(7.2) is plotted as a function of At. The error is approzimated using 1,000 trajectories of length T = 1,000.
(Center, right) The variance for each method is plotted against the sampling period, At, and the trajectory
length, T. The trajectory length is fized at T = 1,000 for the center plot, while the sampling period is fived at
At =0.008 =8 x 10~2 for the rightmost plot.

We chose this system to represent a different type of limiting behavior, and the estimation of a
stochastic Van der Pol oscillator was also considered in [2]. For this system, the dynamics settle
around a limit cycle. While they will have a certain amount of randomness, the trajectories
will demonstrate an approximately cyclic behavior. In particular, this also means that the
drift will rarely be near zero, as opposed to the previous example where the drift was often
small.

The dictionary we will use for the SINDy algorithm consists of all monomials in 2! and
z? up to degree 6:

0(1’):[1 xl x2 xle (1’1)2(1:2)4 xl(x2)5 (1’2)6].

This basis will be used to estimate both the drift and diffusion. To generate the data for the
algorithm, we simulated (7.2) using the Euler—-Maruyama method 1,000 times with a time
step of 2 x 107° and a duration of 1,000. Each component of the initial condition was drawn
randomly for each simulation from the standard normal distribution. The SINDy methods
were then run on the data from each simulation for different sampling periods, At, and lengths
of the trajectory, T. As before, we use At > 2 x 107 to ensure that sampling period is at
least 10 times the simulation time step. The truncation parameters for the sparse solver were
set at A =0.05 for the drift and A =0.02 for the diffusion.

In Figure 7.3, we first note that the variance very quickly drops to about 5x 107> and stays
roughly constant as At decreases. This falls very much in line with Theorems 5.1, 6.1, and 6.2
which assert that the variance does not depend on the sample frequency, it only decreases
with the trajectory length T'. For the expected error, the FD-Ord 2 and trapezoidal methods
show drastic improvements over FD-Ord 1, with the trapezoidal method reducing the error
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Figure 7.4. (Left) The mean error in the estimation of the diffusion coefficients for the Van der Pol system
(7.2) is plotted as a function of At. The error is approzimated using 1,000 trajectories of length T = 1,000.
(Center, right) The variance for each method is plotted against the sampling period, At, and the trajectory
length, T'. The trajectory length is fized at T = 1,000 for the center plot, while the sampling period is fized at
At=0.008=8 x 1072 for the rightmost plot.

by almost two orders of magnitude on some values of At. For the larger At, the slopes of the
graphs demonstrate that these methods are converging at twice the order of the first order
forward difference, as predicted by Theorems 5.1, 6.1, and 6.2. However, both second order
methods quickly reach a point where the performance remained constant at about 2 x 1074,
This is due to the lack of data to average over the random variation to sufficient precision.
With sufficient data, we would expect the performance to continue to improve proportionally
to At2.

For the diffusion, Figure 7.4 demonstrates a greater separation in the performance of
the different methods compared to the double well system. Here, the FD-Ord 1 and drift-
subtracted methods both demonstrate the same first order convergence, as predicted in
Theorem 5.2, but the drift-subtracted method demonstrates a substantially lower error, rang-
ing from half an order to almost a full order of magnitude better. FD-Ord 2 begins at roughly
the same error as FD-Ord 1 for large At, but convergences faster, as predicted by Theorem 6.3,
until it gives more than an order of magnitude improvement for small A¢. Finally, although
it is difficult to judge the speed of convergence for the trapezoidal method, it gives the most
accurate results across all At. The variances for all of the methods behave similarly to the
double well example and as expected, decreasing as At — 0 and T — oo.

7.3. Noisy Lorenz attractor. Consider the ODE

x 10(2? — 2t)
b= |3?| = |21 (28 — 23) — 2% | = f(2).
i‘3 x1x2—%x3
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This is the Lorenz system, which is famously a chaotic system exhibiting a strange attractor.
If we perturb this equation by adding noise, we get the SDE

(73) dX; = f(Xt)dt + O'(Xt)th,

where W, is a three-dimensional Wiener process. The stochastic Lorenz process was also
previous studied in the context of SDE identification in [12]. For this example, we let

1+ sin(2?) 0 sin(x!)
o(x)= 0 1+ sin(2?) 0
sin(x!) 0 1 — sin(z?)

To generate the data for the algorithm, we simulated (7.3) using the Euler-Maruyama
method 1,000 times with a time step of 2 x 107® and a duration of 1,000. Each component
of the initial condition was drawn randomly for each simulation from the standard normal
distribution. The SINDy methods were then run on the data from each simulation for different
sampling periods, At, and lengths of the trajectory, 7. The truncation parameters for the
sparse solver were set at A = 0.05 for the drift and A =0.02 for the diffusion.

We will use different dictionaries to estimate the drift and diffusion. For the drift, the
dictionary consists of all monomials in z', z2, and 23 up to degree 4:

H(x):[l xl x2 x1$2($3)3 (x2)2($3)3 x2($3)4 (x3)5].

As before, Figure 7.5 shows that the variance of the estimate for the drift decreases steadily
as T — oo, while it approaches a minimum value as At decreases and remains constant

16" Drift Mean Error 160 Drift Variance 100 Drift Variance
FD Ord-1 5
FD Ord-2 )
Trapezoidal
107! 107!
5D -2
o 10 o 10
o Q
= e
o ®
10 10°
N
4
104 1074
107 - : 10° ! 10 . |
107 107 1072 107 107 102 10° 10" 102 10°
At At T

Figure 7.5. (Left) The mean error in the estimation of the drift coefficients for the Lorenz system (7.3) is
plotted as a function of At. The error is approzimated using 1,000 trajectories of length T = 1,000. (Center,
right) The variance for each method is plotted against the sampling period, At, and the trajectory length, T. The
trajectory length is fized at T = 1,000 for the center plot, while the sampling period is fived at At =0.08 =8x 1072
for the rightmost plot.
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Figure 7.6. (Left) The mean error in the estimation of the diffusion coefficients for the Lorenz system
(7.3) is plotted as a function of At. The error is approzimated using 1,000 trajectories of length T = 1,000.
(Center, right) The variance for each method is plotted against the sampling period, At, and the trajectory
length, T'. The trajectory length is fized at T = 1,000 for the center plot, while the sampling period is fized at
At=0.02=2 x 1072 for the rightmost plot.

after reaching that minimum. In terms of the mean error, this example gives the clearest
confirmation of the convergence rates demonstrated in Theorems 5.1, 6.1, and 6.2. The slopes
of the plots show that the error with FD-Ord 1 is roughly proportional to At, while the FD-
Ord 2 and trapezoidal methods converge at double the rate. For small At, the second order
methods do not seem to improve, due to the lack of sufficient data to compute the averages
to high enough precision.

To estimate the diffusion, we used a dictionary consisting of all monomials in sin(z!),
sin(2?), and sin(z?) up to degree 4:

6(z)=[1 sin(z') sin(z?) --- sin(z!)sin(z?)sin®(z?) sin(z?)sin’®(z?) sin?(2?)].

The error plot in Figure 7.6 provides the most compelling example of the improvements of the
higher order methods for estimating the diffusion. FD-Ord 1 clearly demonstrates its order
one convergence as At — 0 (Theorem 5.2), but the error is quite large compared to the other
methods. Even at our highest sampling frequency, At =2x10~%, we only get slightly accurate
results, with an error over 20%. For this system, the drift-subtracted method, although still
first order, provides great improvements over FD-Ord 1, nearly two orders of magnitude better
for most At. FD-Ord 2 also demonstrates the second order convergence given in Theorem 6.3,
giving very accurate results for small At. Finally, the best performance again comes from
the trapezoidal method, which gives the best performance across all At. As expected from
Theorem 6.4, we can see that it converges faster than FD-Ord 1, but the convergence rate is
not as clear as that of the other methods.
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As for the variance, for all four methods it was roughly linear in 1/7. It also decreased
linearly with A; once At was small enough to give accurate estimates overall. However, the
trapezoidal and drift-subtracted methods both showed a substantially lower variance for larger
At. This is likely because the drift tends to dominate the diffusion in this system. Both the
drift-subtracted and trapezoidal methods correct for this, preventing the drift from having an
effect on the estimate of the diffusion.

8. Measurement noise. As demonstrated in the numerical examples above, the estimates
for the drift and diffusion can yield accurate results provided the sampling frequency is high
enough and the length of the trajectory is long enough. However, all of the numerical examples
presented assumed ideal data (i.e., there was no measurement noise in the observation of the
state). For real systems, this is rarely the case.

For the estimates presented above, the errors introduced by nonideal data can be par-
ticularly large for high sampling frequencies due to the measurement noise being divided by
At. The effects of noise on diffusion estimates have been studied especially in the context
of single particle tracking [26, 24, 34]. Local estimates of the diffusion function which ac-
count for the noise have been presented [34, 12, 2], which can further be used to estimate the
drift.

In this section, we will demonstrate how the methods presented above can be adapted to
processes with measurement noise. For the drift, we will see that the approximations above
can be directly adapted to handle noise using instrumental variables. For the diffusion, the
approximation presented in [34] gives an unbiased estimate and can be extended by methods
similar to those in section 6.2 for more accurate approximations.

For the duration of this section, we will assume that the measurement noise can be modeled
as an independent and identically distributed (i.i.d.) Gaussian random vector with zero mean.
Letting Y; be the noisy measurement and d; be the noise, we have

Y, =X, +6;, & iid.

Further, we will also assume the noise is small enough that we can evaluate our dictionary
functions accurately. More precisely, for any dictionary function 6, we will assume

d
0, (Y2) = 0(X¢ + 61) = 0k(Xe) + Y (V)6 + O([|6:]]),
i=1
and we can neglect the second order terms.

8.1. Stochastic force inference. In [12], the stochastic force inference (SFI) methodology
estimates the drift and diffusion functions of an SDE with both ideal and noisy data. When
using noisy data, SFI first estimates the diffusion using the local estimate in [34]. Then, to
measure the drift, SFI approximates a Stratonovich integral, which is unbiased with noise,
and uses the estimate of the diffusion to correct the Stratonovich integral to the Ito one.

Letting AY} = t"+ A — Yi, SFI approximates the diffusion using

(AY/ + AV 0 )(AY] + AV 5) | AVIAY] 5, + AV 5 AY)

irj ~
(8.1) 2H(X) N N
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This approximation gives an estimate that converges with order At. Using the notation of
(6.1) with the matrices populated using the noisy data Y, we can set up the normal equation
to solve for /%7 as

(8.2) 010,84 = ——0% | Dy ® D} + D} © (D} — D}) + (Dy — Di) ® D}

4A
When estimating the drift, errors arise from the interaction of the noise in the approximation
of p and the effects of the noise on the dictionary function. To combat this, SFI evalu-
ates a discretized Stratonovich integral and uses an estimate of the diffusion to convert the
Stratonovich integral to an Ito one. The symmetry of the Stratonovich integral removes the
bias introduced by the noise. The normal equations to summarize this method are

N-1 d

Q¢+ 61)*Di + E ZEW (Xt,) (Xt )-

=0 j=1

(8.3) 930001 = 5 A —

For the evaluation $%7(X;) in this equation we can use the approximation (8.1). The first term
on the right-hand side of this equation approximates the Stratonovich integral fOT fod Xy, while
the second term corrects it to the Ito integral. For more detailed analysis of these methods,
see [12]. While this estimate is unbiased, it does have the disadvantages of requiring the
differential of # and using an estimate of X, which will also have some error.

8.2. Instrumental variables for estimating drift. While the SFI method is unbiased, it
does have the disadvantages of using an estimate of 3, which will also have some error, and
requiring knowledge of the differential of . However, we can adapt the estimates in section 6.1
to be unbiased. These methods will realize the same order of convergence (with respect to At)
as the methods with ideal data in the large data limit. Additionally, they have the advantage
of being simple to implement and do not require the differential of 6.

Consider the first order forward difference in the presence of noise

Yien: — Vi _ Xeyar — Xy n Or4at — 0t
At At At ’

p(Xe) ~

Since this approximation is linear in the noise d;, its expected value is unaffected by the noise.
All of the difference methods presented in section 6.1 have this property, since they are linear.
The bias only comes from the interaction of the noise in the numerical derivatives and the
noise in the dictionary. The bias is given by

E <9k(yt)5t+AAtt_5t> ~E [(Gk(X) - (V0)T5,) <W>] — Cov(8,) V0,

where Cov(d;) = E(6;6]) is the covariance matrix of 6;. However, if we use the previous
dictionary values, 0(Y;_a¢), we have

Y; -Y;
E (WK&—ADHAA:':) = Q(Xt—At)T
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since the realizations of the noise in Y;_ay, Yz, and Yy are all independent. This amounts
to using O(Y;_a¢) as a set of instrumental variables (see [32]). The normal equation for this
regression is

1
At
Similar to the first order method above, we can find a set of normal equations for the trape-
zoidal method for drift using instrumental variables:
1
AL

8.3. Improving the diffusion estimate?. Equation (8.1) gives an O(At) approximation of

¥ (Xy) in expectation. We can improve this estimate in a similar manner to the trapezoidal
method for diffusion. Let

(8.4) 0501G' = —0yD!.

1 » .
(8.5) 5@0 (@1 + @2) at @oDi.

i i i At i i i i i i
(0 =Yiar =Y, =5 (W) + 1/ (YVeyar)) s ¢'(8) = Viione =Yy = AL (1 (Ye) + 1" (Yigonr)) -

Then we can use the approximation

1

8.6 YHI(X,) + 24 (X ~
(8.6) (Xt) + X" (Xey2at) SAL

(€O (1) + 5 (D) +1) + 50+ 1) (1))

Letting

. . . . T ) . . . T
Sy, = [Sl(tn) 8 (tny1) "'Sl(tN—i—n—l)] and Q;, = [ql(tn) q' (thy1) “‘qz(tN-i-n—l)] )
we can set up the instrumental variables regression
1

* 3t
(87) O4(01+03)5 =

o (Qi@Q{+S{@S§+S§®S{)
to solve for 547,

8.4. Van der Pol oscillator. We now consider the stochastic Van der Pol oscillator given
by (7.2) with measurement noise on the state X;. Each component of the noise 6} is drawn
from a normal distribution with zero mean and a standard deviation of 0.02. The system was
simulated 1,000 times with a time step of 4 x 107 and a duration of 1,000. As before, we use
At >4x10* to ensure that the sampling period is at least 10 times the simulation time step.
The truncation parameters for the sparse solver were set at A = 0.05 for both the drift and
the diffusion. Using this data, we test the noise-corrected methods presented in this section
along with the first order and trapezoidal methods tested in section 7.

As can be seen from the error plots, while the methods which don’t account for noise may
be somewhat accurate estimates for large At, as At — 0 they diverge from the true values of
o' and B%. For the drift estimate (see Figure 8.1), the SFI and methods using instrumental
variables improve as At — 0. The instrumental variables methods, however, tend to give more
accurate results, with the trapezoidal IV method greatly outperforming the others for larger
At. For the diffusion (see Figure 8.2), the estimate in SFI converges toward the true values
of %9 as A; — 0. The trapezoidal method, however, reaches the same level of accuracy for
much larger At.
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Figure 8.1. (Left) The mean error in the estimation of the drift coefficients for the Van der Pol system
(7.2) with measurement noise is plotted as a function of At. The error is approzimated using 1,000 trajectories
of length T =1,000. (Center, right) The variance for each method is plotted against the sampling period, At,
and the trajectory length, T'. The trajectory length is fixed at T = 1,000 for the center plot, while the sampling
period is fized at At =0.008 =8 x 1072 for the rightmost plot.

Diffusion Meap Error

Diffusion Variance Diffusion Variance

102 102 107!
FD Ord-1
Trapezoidal
SFI 10
Trap. IV 10
10"
100
S S S
= 0 = 1 =
o 10 & 10 &
1072
107
107
1072 : 107 : 10 :
10 1072 107 1072 102 10°
At At T

Figure 8.2. (Left) The mean error in the estimation of the diffusion coefficients for the Van der Pol system
(7.2) with measurement noise is plotted as a function of At. The error is approzimated using 1,000 trajectories
of length T =1,000. (Center, right) The variance for each method is plotted against the sampling period, At,
and the trajectory length, T. The trajectory length is fixed at T = 1,000 for the center plot, while the sampling
period is fized at At =0.008 =8 x 1072 for the rightmost plot.

9. Conclusion. As was shown in this and previous papers [1, 8, 5], the SINDy algorithm
can be used to accurately estimate the parameters of a stochastic differential equation. How-
ever, the significant amount of noise involved requires one to use either a great deal of data
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(i.e., a long time series) and/or methods which improve the robustness of SINDy to noise.
Unfortunately, even if SINDy should identify all of the correct dictionary functions present
in the dynamics, we showed that the sampling frequency limits the accuracy of the results
when using the first order Kramers—Moyal formulas to estimate the drift and diffusion. The
necessity for high sampling frequencies, combined with long trajectories, makes SINDy a data
hungry algorithm.

The higher order estimates presented in this paper allow us to overcome the O(At) conver-
gence given in [1, 12]. With the higher order methods we can compute accurate estimations of
the SDEs using far lower sampling frequencies. In addition to making SINDy a more accurate
system identification tool, these improvements also greatly reduce the data requirements to
feed the algorithm. By achieving accurate results at lower sampling frequencies we can re-
duce the data acquisition constraint, which makes SINDy a more feasible system identification
method for SDEs.

Appendix A. Error derivations for section 5. In Theorems 5.1-5.2 and 6.1-6.4, we used
estimates of the drift and diffusion based on finite differences. Most of the derivations are
straightforward and follow almost immediately from the Ito—Taylor expansions. However,
bounding the estimate for the variance in the second order difference for the drift and bounding
the first order estimate for the diffusion require a little extra work, so we include them here.

A.1l. Drift: Second order forward difference. The error in the second order forward
difference estimate (6.2) for the drift is given by

. -3X] +4X] - X] |
etn:/’Ll(th)_ 2At+ = °

Using (3.5) in the estimate above gives us

At ;
(A1) E(e: | X¢) = —?(Lo)zu’ +0(At%).
Proof of Theorem 6.1. The proof of the estimate on the mean error follows from (A.1)

and the proof of Theorem 5.1. Now, Let

Q(Xto) €0
H(th) (&)
O = . and FE=
O(XtN—l) EN-1

To estimate the variance, we need to find E(||303E|3). To do this, we will use the strong
expansion (3.7) and obtain

d
1 4
€t = YN < E oM (BAW — AW ) + Rt>
m=1
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with E(|R¢|?) = O(At?). Then we use

SAth - Ath+1 Rt )

1 1 N-1 1 N-1 d
. *E:i * X — * X i7m X n n n
N@O Nzg (Xt )es, NZOG (Xt,) (WLZIU (Xt,) OAL +2At

2T Z o* Xt (Z( z,m(th) o O'i’m(th,l))AWtT + Rtn> + Ry

m=1

— ZG* Xt <Z( ( t”)_’_R;:)AWtT'f‘Rtn) +Rla

m=1

where

d
1 ] J
= 3 (07 (Xa )0 (X )AWE = 0" (X )™ (X ) AWE)

m=1

and E(|R}"|?) = O(At). The second line comes from rearranging the indices of the sum, which
gives the remainder Rj, and the last line uses the Ito—Taylor expansion of ¢*"" which gives
the remainder Ry. Combining all of the errors gives us

N—-1 d
GOE—TZZG* Yo ( Xy, JAW" + R

n=0 m=1

with E(R?) = O(At?). Taking the expectance of the square of this last equation gives us

= oF * 2 2 3
" (HN90 ) T2 Z Z 16 (X, ) 150" (X4, )? At + O(At=).
n=0m=1
Using this, the rest of the proof follows that of Theorem 5.1. -

A.2. Diffusion: First order forward difference. For Theorem 5.2, we use (4.2) to approx-
imate the diffusion matrix elements. We need to bound the errors to give (5.7) and (5.8) for
the proof. From the approximation (4.2), the error is

i v J J
2At
The expected error, E(e;|X:), is easy to bound using (3.6). To calculate the squared error,
E(|e¢|?| X¢), we will use the strong expansion (3.8). This gives us

d
Z (o™it (Xy) + oMo (X)) + Ry
k=1

1

A2 _ b
(A-2) T oA

with E(|R;|?|X;) = O(At®). From Lemma 5.7.2 of [17], we have

0, k,l) # (m,n),
E(I(k,Z)I(m,n)):{At? (k,0) # (m. )

5, k=m,l=n.
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Then, squaring (A.2), we get

o At?

BP0 = g 3 (M40 + abot (220 1 oar
k=1
d
1 . . 1
Z 2( ki l,] )) —i—UklUl’]Uk’JUl’l(Xt)) —i—O(AtE)

8 k,l=1
= S (X,) D5 (X)) + B0 (X)% + O(At%),
which gives us (5.8).

A.3. Trapezoidal approximation for diffusion. The trapezoidal method to approximate
the diffusion is given by (6.17):

(A.3)

(AX] =51 (X0 ' (Xieea)) (AX] =510 (X)) +00 (X))
At '

We claim that the error in this approximation can be bounded by

s (Xtvat) +5% (X))~

|E(e;| X;)| =O(At?)  and  E(|eg]?) = O(AL).
To achieve this, we let Al = (X a¢) — ' (X¢) and rewrite the right-hand side of (A.3) as

(A.4)
(AX? — i (Xp) At — AL A (Axg' — (X)) AL — %Aﬂg)
At

=5 (Xy) + 5 (Xpgar) + e

We will look at several of the cross terms separately on the left-hand side. Using (3.6) and
(3.5), we can see that the first term will be

(AX] - i (X)AL) (AX] — i (X))

£ At

‘Xt — 9% (X,) + h(X;) At + O(A#2),

where

d i ;
h=105 4+ 3" sk O ik O
p Oxk oxk

Next we will consider the AXZA,u{ terms. If we use the weak Ito—Taylor expansion of
f(z)=(z' — X)) (i’ (z) — i/ (X})), holding X; fixed, we see that

o’

d
E (AXZAMﬂXt) = E(f(Xira0)|X1) = L'f(X0) At + O(A) =2y wih b,

k=1
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These
order.

will cancel the last terms in A. All other terms on the left-hand side will be of higher
For the right-hand side of (A.4), we can use the Ito-Taylor expansion of ¥/ to show

E (2 (Xpp a0) [ X0) = 59(X,) + LOSW AL+ O(AP).

Combining all of these together, we see that

E%]

(AX] = i (X)AL - 5Ap) (AX] - i (X)AL - 5L )
At

(Xi) + 5 (Xppnd) = + ey

with E(e¢|z:) = O(At?). The bound for the squared error, E(|e¢|? | X;) = O(At), follows easily

from (

] L.

3.8), since the correction terms added are all of higher order.

REFERENCES

BONINSEGNA, F. NUSKE, AND C. CLEMENTI, Sparse learning of stochastic dynamical equations,
J. Chem. Phys., 148 (2018), 241723.

[2] D. B. BRUCKNER, P. RONCERAY, AND C. P. BROEDERSZ, Inferring the dynamics of underdamped sto-

3] S.

chastic systems, Phys. Rev. Lett., 125 (2020), 058103.
L. BrunTON, J. L. PROCTOR, AND J. N. KUTZ, Discovering governing equations from data by sparse
identification of nonlinear dynamical systems, Proc. Natl. Acad. Sci. USA, 113 (2016), pp. 3932-3937.

. L. BRUNTON, J. L. PROCTOR, AND J. N. KuTz, Sparse identification of monlinear dynamics with

control (SINDYc), IFAC-PapersOnLine, 49 (2016), pp. 710-715.

. L. CaLLanAM, J.-C. Loiseau, G. Rigas, AND S. L. BRUNTON, Nonlinear stochastic modelling with

Langevin regression, Proc. A, 477 (2021), 20210092.
. CHEN AND I. TIMOFEYEV, Non-parametric estimation of stochastic differential equations from station-
ary time-series, J. Stat. Phys., 186 (2022), 1.

. COMTE, V. GENON-CATALOT, AND Y. ROZENHOLC, Penalized nonparametric mean square estimation

of the coefficients of diffusion processes, Bernoulli, 13 (2007), pp. 514-543.

[8] M. Da1, T. Gao, Y. Lu, Y. ZHENG, AND J. DUAN, Detecting the mazimum likelihood transition path

[10] R.

[11] R.

[12] A.

[13] K.

[14] E.
[15]
[16]

[17] P.

from data of stochastic dynamical systems, Chaos, 30 (2020), 113124.
. Faser, J. N. Kurz, B. W. BRUNTON, AND S. L. BRUNTON, Ensemble-SINDy: Robust sparse model
discovery in the low-data, high-noise limit, with active learning and control, Proc. A, 478 (2022),
20210904.
FrIEDRICH, J. PEINKE, M. SanmMi, AND M. R. R. TABAR, Approaching complexity by stochastic
methods: From biological systems to turbulence, Phys. Rep., 506 (2011), pp. 87-162.
FRIEDRICH, S. SIEGERT, J. PEINKE, ST. LUckK, M. SIEFERT, M. LINDEMANN, J. RAETHJEN,
G. DEUSCHL, AND G. PFISTER, Eztracting model equations from experimental data, Phys. Lett. A,
271 (2000), pp. 217-222.
FRISHMAN AND P. RONCERAY, Learning force fields from stochastic trajectories, Phys. Rev. X, 10
(2020), 021009.
KanEMAN, J. N. Kutz, AND S. L. BRUNTON, SINDy-PI: A robust algorithm for parallel implicit
sparse identification of nonlinear dynamics, Proc. A, 476 (2020), 20200279.
KAIsEr, J. N. Kutz, AND S. L. BRUNTON, Sparse identification of nonlinear dynamics for model
predictive control in the low-data limit, Proc. A, 474 (2018), 20180335.
. T. KELLER AND Q. DU, Discovery of dynamics using linear multistep methods, STAM J. Numer. Anal.,
59 (2021), pp. 429-455, https://doi.org/10.1137/19M130981X.
. KHASMINSKII, Stochastic Stability of Differential Equations, Stoch. Model. Appl. Probab. 66, Springer-
Verlag, Berlin, Heidelberg, 2011.
E. KLOEDEN AND E. PLATEN, Stochastic differential equations, in Numerical Solution of Stochastic
Differential Equations, Springer, 1992, pp. 103—160.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/19M130981X

Downloaded 08/21/24 to 128.111.180.39 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STOCHASTIC SINDy 1539

18] E.

9] L.

[20] N.

21] D.

[22] D.

23] I.

[24] X.
25] K.

[26] H.

28]
[29] P.
30] F.

31] S.

32] T.
33] R.

34] C.

[35]

37) L.

[27] M.
0

M
[36] M.

B. KosmaTorouLos, M. M. PorLycarrou, M. A. CHRISTODOULOU, AND P. A. IoaNNoOU, High-
order neural network structures for identification of dynamical systems, IEEE Trans. Neural Netw.,
6 (1995), pp. 422-431.

LiuNg, System Identification: Theory for the User, Pearson Education, 1998.

M. MANGAN, S. L. BRUNTON, J. L. PROCTOR, AND J. N. KuTz, Inferring biological networks by
sparse identification of nonlinear dynamics, IEEE Trans. Mol. Biol. Multi-Scale Commun., 2 (2016),
pp. 52-63.

A. MESSENGER AND D. M. Borrz, Weak SINDy for partial differential equations, J. Comput. Phys.,
443 (2021), 110525.

A. MESSENGER AND D. M. Borrz, Weak SINDy: Galerkin-based data-driven model selection, Multi-
scale Model. Simul., 19 (2021), pp. 1474-1497, https://doi.org/10.1137/20M1343166.

MEz1¢, Spectral properties of dynamical systems, model reduction and decompositions, Nonlinear Dy-
nam., 41 (2005), pp. 309-325.

MICHALET AND A. J. BERGLUND, Optimal diffusion coefficient estimation in single-particle tracking,
Phys. Rev. E, 85 (2012), 061916.

S. NARENDRA AND K. PARTHASARATHY, Identification and control of dynamical systems using neural
networks, IEEE Trans. Neural Netw., 1 (1990), pp. 4-27.

QIAN, M. P. SHEETZ, AND E. L. ELSON, Single particle tracking. Analysis of diffusion and flow in
two-dimensional systems, Biophys. J., 60 (1991), pp. 910-921.

RacwiTtz AND H. KANTZ, Indispensable finite time corrections for Fokker-Planck equations from time
series data, Phys. Rev. Lett., 87 (2001), 254501.

. REIERSOL, Confluence Analysis by Means of Instrumental Sets of Variables, Ph.D. thesis, Almqvist &

Wiksell, 1945.

J. ScHMID, Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech., 656
(2010), pp. 5-28.

SICARD, V. KOSKIN, A. ANNIBALE, AND E. ROSTA, Position-dependent diffusion from biased simula-
tions and Markov state model analysis, J. Chem. Theory Comput., 17 (2021), pp. 2022-2033.
SIEGERT, R. FRIEDRICH, AND J. PEINKE, Analysis of data sets of stochastic systems, Phys. Lett. A,
243 (1998), pp. 275-280.

SODERSTROM AND P. SToICA, Instrumental Variable Methods for System Identification, Lect. Notes
Control Inf. Sci. 57, Springer-Verlag, Berlin, New York, 1983.

TIBSHIRANI, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B, 58 (1996),
pp. 267-288.

L. VESTERGAARD, P. C. BLAINEY, AND H. FLYVBJERG, Optimal estimation of diffusion coefficients
from single-particle trajectories, Phys. Rev. E, 89 (2014), 022726.

. WANNER AND I. MEZI¢, Robust approximation of the stochastic Koopman operator, SIAM J. Appl.

Dyn. Syst., 21 (2022), pp. 1930-1951, https://doi.org/10.1137/21M1414425.

O. WiLLiams, I. G. KEVREKIDIS, AND C. W. ROWLEY, A data—driven approrimation of the Koopman
operator: Extending dynamic mode decomposition, J. Nonlinear Sci., 25 (2015), pp. 1307-1346.
ZHANG AND H. SCHAEFFER, On the convergence of the SINDy algorithm, Multiscale Model. Simul.,
17 (2019), pp. 948-972, https://doi.org/10.1137/18M1189828.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/20M1343166
https://doi.org/10.1137/21M1414425
https://doi.org/10.1137/18M1189828

	Introduction
	Sparse identification of nonlinear dynamics (SINDy)
	Overview
	Approximating <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	f(x)?></0:tex-math></0:inline-formula>
	Sparse solutions

	Review of SDEs
	Ergodicity
	Ito&#x2013;Taylor expansion
	Weak expansion
	Strong expansions


	SINDy for stochastic systems
	Numerical analysis of stochastic SINDy
	Drift
	Diffusion

	Higher order methods
	Drift
	Second order forward difference
	Trapezoidal Method
	General method for estimating drift

	Diffusion
	Drift subtraction

	Second order forward difference
	Trapezoidal method


	Numerical examples
	Double well potential
	Noisy Van der Pol oscillator
	Noisy Lorenz attractor

	Measurement noise
	Stochastic force inference
	Instrumental variables for estimating drift
	Improving the diffusion estimate?
	Van der Pol oscillator

	Conclusion
	References
	Appendix A. Error derivations for section 5
	Drift:&#x00A0;Second order forward difference
	Diffusion: First order forward difference
	Trapezoidal approximation for diffusion


