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The adversarial risk of a machine learning model has been widely studied. Most
previous studies assume that the data lie in the whole ambient space. We
propose to take a new angle and take the manifold assumption into consideration.
Assuming data lie in a manifold, we investigate two new types of adversarial risk,
the normal adversarial risk due to perturbation along normal direction and the in-
manifold adversarial risk due to perturbation within the manifold. We prove that
the classic adversarial risk can be bounded from both sides using the normal and
in-manifold adversarial risks. We also show a surprisingly pessimistic case that
the standard adversarial risk can be non-zero even when both normal and in-
manifold adversarial risks are zero. We finalize the study with empirical studies
supporting our theoretical results. Our results suggest the possibility of improving
the robustness of a classifier without sacrificing model accuracy, by only focusing
on the normal adversarial risk.
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1 Introduction

Machine learning (ML) algorithms have achieved astounding success in multiple
domains such as computer vision (Krizhevsky et al., 2012; He et al., 2016), natural language
processing (Wu et al., 2016; Vaswani et al., 2017), and robotics (Levine and Abbeel, 2014;
Nagabandi et al., 2018). These models perform well on massive datasets but are also
vulnerable to small perturbations on the input examples. Adding a slight and visually
unrecognizable perturbation to an input image can completely change the prediction of the
model. Many studies have been published, focusing on such adversarial attacks (Szegedy
et al.,, 2013; Carlini and Wagner, 2017; Madry et al., 2017). To improve the robustness of
these models, various defense methods have been proposed (Madry et al., 2017; Shafahi et al.,
2019; Zhang et al., 2019). These methods mostly focus on minimizing the adversarial risk,
i.e., the risk of a classifier when an adversary is allowed to perturb any data with an oracle.

Despite the progress in improving the robustness of models, it has been observed
that compared with a standard classifier, a robust classifier often has a lower accuracy on
the original data. The accuracy of a model can be compromised when one optimizes its
adversarial risk. This phenomenon is called the trade-off between robustness and accuracy.
Su et al. (2018) observed this trade-off effect on a large number of commonly used
model architectures. They concluded that there is a linear negative correlation between the
logarithm of accuracy and adversarial risk. Tsipras et al. (2018) proved that adversarial risk
is inevitable for any classifier with a non-zero error rate. Zhang et al. (2019) decomposed
the adversarial risk into the summation of standard error and boundary error. The
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decomposition provides the opportunity to explicitly control the
trade-off. They also proposed a regularizer to balance the trade-off
by maximizing the boundary margin.

In this study, we investigate the adversarial risk and the
robustness-accuracy trade-off through a new angle. We follow
the classic manifold assumption, i.e., data are living in a low
dimensional manifold embedded in the input space (Cayton,
2005; Niyogi et al., 2008; Narayanan and Mitter, 2010; Rifai
et al, 2011). Based on this assumption, we analyze the adversarial
risk with regard to adversarial perturbations within the manifold
and normal to the manifold. By restricting to in-manifold and
normal perturbations, we define the in-manifold adversarial risk
and normal adversarial risk. Using these new risks, together with
the standard risk, we prove an upper bound and a lower bound
for the adversarial risk. We also show that the bound is tight by
constructing a pessimistic case. We validate our theoretical results
using synthetic and real-world datasets.

Our study sheds light on a new aspect of the robustness-
accuracy trade-off. Through the decomposition into in-manifold
and normal adversarial risks, we might find an extra margin to
exploit without confronting the trade-off.

A preliminary version of this study, which mainly focuses
on the theoretical results, was published in the study mentioned
in the reference (Zhang et al, 2022). The major differences
between this article and Zhang et al. (2022) include the adding
of experimental validation on real-world datasets to verify our
theoretical discoveries. To realize this validation process, we
employ the Tangent-Normal Adversarial Regularization algorithm
(TNAR) by Yu et al. (2019), which obtain the normal and in-
manifold directions within real data. This strategic utilization of
Tangent-Normal Adversarial Regularization algorithm not only
strengthens the empirical foundation of our research but also
indicates our commitment to bridging the gap between theoretical
insights and practical applicability. By integrating this experimental
result, we not only refines the theoretical framework but also
provides an empirical verification, enhancing the overall credibility
and relevance of our research findings.

1.1 Related works

Robustness-accuracy trade-off: It was believed that a classifier
cannot be optimally accurate and robust at the same time. Different
articles study the trade-off between robustness and accuracy (Su
etal,, 2018; Tsipras et al., 2018; Dohmatob, 2019; Zhang et al., 2019).
One main question is whether the best trade-off actually exists.
Tsipras et al. (2018) first recognized this trade-off phenomenon
by empirical results and further proved that the trade-off exists
under the infinite data limit. Dohmatob (2019) showed that a high
accuracy model can inevitably be fooled by the adversarial attack.
Zhang et al. (2019) gave examples showing that the Bayes optimal
classifier may not be robust.

However, others have different views on this trade-off or even
its existence. In contrast to the idea that the trade-off is unavoidable,
according to these studies, the drop of accuracy is not due to
the increase in robustness. Instead, it is due to a lack of effective
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optimization methods (Shaham et al., 2018; Awasthi et al., 2019;
Rice et al., 2020) or better network architecture (Fawzi et al., 2018;
Guo et al.,, 2020). Yang et al. (2020) showed the existence of both
robust and accurate classifiers and argued that the trade-off is
influenced by the training algorithm to optimize the model. They
investigated distributionally separated dataset and claimed that the
gap between robustness and accuracy arises from the lack of a
training method that imposes local Lipschitzness on the classifier.
Remarkably, in the study mentioned in the reference (Carmon
et al,, 2019; Gowal et al., 2020; Raghunathan et al., 2020), it was
shown that with certain augmentation of the dataset, one may be
able to obtain a model that is both accurate and robust.

Our theoretical results upperbound the adversarial risk using

different manifold-derived risks plus the standard Bayes risk (which
is essentially the accuracy). This quantitative relationship provides
a pathway toward an optimal robustness-accuracy trade-off. In
particular, our results suggest that, by adversarial training, the
model against perturbations in the normal direction can improve
robustness without sacrificing accuracy.
Manifold assumption: One important line of research focuses on
the manifold assumption on the data distribution. This assumption
suggests that observed data are distributed on a low dimensional
manifold (Cayton, 2005; Narayanan and Mitter, 2010; Rifai et al.,
2011), and there exists a mapping that embeds the low dimension
manifold in some higher dimension space. Traditional manifold
learning methods (Tenenbaum et al., 2000; Saul and Roweis, 2003)
that try to recover the embedding by assuming the mapping
preserves certain properties such as distances or local angles.
Following this assumption, on the topic of robustness, Tanay and
Griffin (2016) showed the existence of adversarial attack on the
flat manifold with linear classification boundary. It was proved
later (Gilmer et al., 2018) that in-manifold adversarial examples
exist. They stated that high-dimension data are highly sensitive to
I perturbations and pointed out that the nature of adversarial is
the issue with potential decision boundary. Later, Stutz et al. (2019)
showed that with the manifold assumption, regular robustness is
correlated with in-manifold adversarial examples, and therefore,
accuracy and robustness may not be contradictory goals. Further
discussion (Xie et al., 2020) even suggested that adding adversarial
examples to the training process can improve the accuracy of the
model. Lin et al. (2020) used perturbation within a latent space
to approximate in-manifold perturbation. Most existing studies
only focused on in-manifold perturbations. To the best of our
knowledge, we are the first to discuss normal perturbation and
normal adversarial risk. We are also unaware of any theoretical
results proving upper/lower bounds for adversarial risk in the
manifold setting.

We also note a classic manifold reconstruction problem,
i.e,, reconstructing a d-dimensional manifold given a set of
points sampled from the manifold. A large group of classical
algorithms (Edelsbrunner and Shah, 1994; Dey and Goswami, 2006;
Niyogi et al., 2008) are probably good, i.e., they give a guarantee of
reproducing the manifold topology with a sufficiently large number
of sample points.

Under data manifold assumption, Stutz et al. (2019) and
Shamir et al. (2021) first reconstruct the data manifold using
Generative Networks. Then, with the approximation of manifold,
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the authors explored different approaches for computing in-
manifold attack examples under manifold assumption. Stutz et al.
(2019) approximate the data manifold using VAE models and
then directly perturbed the latent space without considering the
perturbed distance in the original space, making it difficult to
bound their on-manifold examples. On the other hand, Shamir
etal. (2021) first perturbed the latent code to generate a set of basis
in the tangential space, using these basis vectors to generate on-
manifold directions and search for in-manifold attack examples. In
the study by Lau et al. (2023), the author employs generative model-
based methods to simultaneously perturb the input data in both the
original space and the latent space. This dual perturbation process
results in in-manifold perturbed data even on high-resolution
datasets.

The Tangent-Normal Adversarial Regularization (TNAR)
algorithm (Yu et al., 2019) distinguishes itself by finding tangential
directions along the data manifold through power iteration and
conjugate gradient algorithms. Subsequently, we perform a targeted
search along these tangential directions to find valid L, norm-based
adversarial examples while ensuring effective perturbation bounds
on the in-manifold examples.

2 Manifold-based risk decomposition

In this section, we state our main theoretical result
(Theorem 1), which decomposes the adversarial risk into
normal adversarial risk and in-manifold (or tangential) adversarial
risk. We first define these quantities and set up basic notations.
Next, we state the main theorem in Section 2.3. For the sake of
simplicity, we describe our main theorem in the setting of binary
labels, {—1, 1}. Informally, the main theorem states that under mild
assumptions, (1) the adversarial risk can be upper-bounded by
the sum of the standard risk, normal adversarial risk, in-manifold
adversarial risk, and another small risk called nearby-normal-risk;
(2) when the normal adversarial risk is zero, the adversarial risk
can be upper-bounded by the standard risk and the in-manifold
adversarial risk. Finally, we show in Theorem 2 that the bounds are
tight by constructing pessimistic cases.

2.1 Data manifold

Let (RP, ||.||) denote the D dimensional Euclidean space with
£,-norm, and let p be the data distribution. For x € RP, let B, (x) be
the open ball of radius € in RP with center at x. For a set A C RP,
define B (A) = {y:3x € A,d(x,y) < €}.

Let M C RP be a d-dimensional compact smooth manifold
embedded in RP. Thus, for any x € M, there is a corresponding
coordinate chart (U, g), where U > x is an open set of M and g is
a homeomorphism from U to a subset of R?. Let Ty M and N, M
denote the tangent and normal spaces at x. Intuitively, the tangent
space Ty M is the space of tangent directions or equivalence classes
of curves in M passing through x, with two curves considered
equivalent if they are tangent at x. The normal space NxM is the
set of vectors in RP that are orthogonal to any vector in Ty M.
Since M is a smooth d-manifold, Ty M and N, M are d and
(D — d) dimensional vector spaces, respectively (see Figure 1 for
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an illustration). For detailed definitions, we refer the reader to the
study mentioned in the reference (Bredon, 2013).

We assume that the data and (binary) label pairs are drawn
from M x {—1, 1}, according to some unknown distribution p(x, y).
Note that M is unknown. A score function f(x) is a continuous
function from RP to [0, 1]. We denote by 14 the indicator function
of the event A thatis 1 if A occurs and 0 if A does not occur and will
use it to represent the 0-1 loss.

2.2 Robustness and risk

Given data from M x {—1,1} drawn according to data
distribution p and a classifier f on R?, we define three types of risks.
The first, adversarial risk, has been extensively studied in machine
learning literature:

Definition 1 (Adversarial risk). Given € > 0, define the adversarial
risk of classifier f with budget € to be

Ragy(f€) 1 = Eyypl(3x € Be(x) : f(x')y < 0)

Notice that B (x) is the open ball around x in RP (the ambient
space).

Next, we define risk that is concerned only with in-manifold
perturbations. Previously, Gilmer et al. (2018) and Stutz et al.
(2019) showed that there exist in-manifold adversarial examples
and empirically demonstrated that in-manifold perturbations are
a cause of the standard classification error. Therefore, in the
following, we define the in-manifold perturbations and in-manifold
adversarial risk.

Definition 2 (In-manifold Adversarial Risk). Given € > 0, the in-
manifold adversarial perturbation for classifier f with budget € is
the set

Bl'x): ={x € M:|x— x| < ¢}
The in-manifold adversarial risk is

Rin

ady

(fhe):= E 13 € Bl (x):f(x)y <0)
Gey)~p

We remark that while the above perturbation is on the
manifold, many manifold-based defense algorithms use generative
models to estimate the homeomorphism (the manifold chart)
z = g(x) for real-world data. Therefore, instead of in-manifold
perturbation, one can also use an equivalent n-budget perturbation
in the latent space. However, for our purposes, the in-manifold
definition will be more convenient to use. Finally, we define the
normal risk:

Definition 3 (Normal adversarial risk). Given € > 0, the normal
adversarial perturbation for classifier f with budget € is be the set

BY(x): = {x":x — x € NeM, ||x — &'|| < €}
Define the normal adversarial risk as

Rnor(f,G)Z =

adv

E 13 #x € B (x):f(x)y < 0)
(xy)~p
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FIGURE 1

is an adversarial perturbation along Ny M.

Tangent and normal spaces of a manifold. Here, x is the original data point on the data manifold M. T, M is the tangent space along the data
manifold M at point x. x" is the in-manifold adversarial example on the data manifold M. N, M denotes the normal space perpendicular to T, M. x*

NeM

Notice that the normal adversarial risk is non-zero if there is an
adversarial perturbation x” # x in the normal direction at x. Finally,
we have the usual standard risk: Ryq(f) : = E(x)~p L(f(x)y < 0).

2.3 Main result: decomposition of risk

In this section, we state our main result that decomposes the
adversarial risk into its tangential and normal components. Our
theorem will require a mild assumption on the decision boundary
DB(f) of the classifier f, i.e., the set of points x where f(x) = 0.
Assumption [A]: For all x € DB(f) and all neighborhoods U > x
containing x, there exist points xg and x; in U such that f(xp) < 0
and f(x1) > 0.

This assumption states that a point that is difficult to classify
by f has points of both labels in any given neighborhood around
it. In particular, this means that the decision boundary does not
contain an open set. We remark that both Assumption A and the
continuity requirement for the score function f are implicit in
previous decomposition results such as Equation 1 in the study by
Zhang et al. (2019). Without Assumption A, the “neighborhood”
of the decision boundary in the study by Zhang et al. (2019)
will not contain the decision boundary, and it is easy to give a
counterexample to Equation 1 in the study by Zhang et al. (2019) if
f is not continuous.

Our decomposition result will decompose the adversarial risk
into the normal and tangential directions: however, as we will show,
an “extra term” appears, which we define next:

Definition 4 (NNR Nearby-Normal-Risk). Fix ¢ > 0. Denote by
A(x,y) the event that Vx' € B!*"(x),f(x')y > 0, ie., the normal
adversarial risk of x is zero.

Denote by B(x, ) the event that

I € B (x):(3z € B (¥) : f(2)f (X') < 0),

i.e., x has a point X’ near it such that x’ has non-zero normal
adversarial risk.

Denote by C(x, y) the event Vx' € B’z’; (%),f(x")y > 0, ie., x has
no adversarial perturbation in the manifold within distance 2¢.
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The Nearby-Normal-Risk (denoted as NNR) of f with budget €
is defined to be

E 1(A(x,y) A Bx,y) A Cx, ),
(xy)~p

where A denotes “and”.
We are now in a position to state our main result.

Theorem 1. [Risk Decomposition] Let M be a smooth compact
manifold in R? and let data be drawn from M x {—1,1}, according
to some distribution p. There exists a A > 0 depending only on M
such that the following statements hold for any € < A. For any
score function f satisfying assumption A,

@

Raa(fr€) < Rya(f) + R™(f,€) + R™ (f, 2€)
+ NNR(f,€). (1)

(II) If R"(f,€) = 0, then

adv
Ruan(f€) < Rya(f) + R™, (f, 2€)

Remark:

1. The first result decomposes the adversarial risk into the standard
risk, the normal adversarial risk, the in-manifold adversarial
risk, and an “extra term”—the Nearby-Normal-Risk. The NNR
comes into play when a point x does not have normal adversarial
risk, and the score function on all points nearby agrees with y(x),
yet there is a point near x that has non-zero normal adversarial
risk.

2. The second result states that if the normal adversarial risk is zero,
the e-adversarial risk is bounded by the sum of the standard risk
and the 2¢ in-manifold adversarial risk.

3. Our bound suggests that there may be “free lunch” in
robustness-accuracy trade-off. There is an extra margin one
can exploit without confronting the trade-off. Specifically,
this corollary suggests that by solely minimizing the normal
adversarial risk, we can govern the difference between
adversarial risk and standard accuracy by focusing exclusively
on in-manifold adversarial risk. This insight provides a pathway
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to navigating the trade-off under the condition of zero normal
adversarial risk, wherein the key lies in minimizing the in-
manifold risk. This strategic approach opens up ways for
fine-tuning and optimizing the robustness-accuracy trade-
off, shedding light on potential methods for achieving better
performance on robust models.

One may wonder if a decomposition of the form R,4,(f,€) <
Rya(f) + R (f, €) + R;’;V(f, 2€) is possible. We prove that this is
not possible. The complete proof of Theorem 1 is technical and is
provided in the Supplementary material. Here, we provide a sketch

of the proof first.

2.3.1 Proof sketch of theorem 1

We first address the existence of the constant A that only
depends on M in the theorem statement. Define a tubular
neighborhood of M as a set N' C RP containing M such that
any point z € A has a unique projection 7 (z) onto M such that
z — 1(2) € Ny, M. Thus, the normal line segments of length € at
any two points x,x” € M are disjoint.

By Theorem 11.4 in the study by Bredon (2013), we know that
there exists A such that N: = {y € RD:dist(y,/\/l) < A}isa
tubular neighborhood of M. The A guaranteed by Theorem 11.4 is
the A referred to our theorem, and the budget € is constrained to
be at most A.

For simplicity, we first sketch the proof of the case when y
is deterministic (the setting of Corollary 1). Considering a pair
(x,y) ~ p, x has an adversarial perturbation x” within distance .
We show that one of the four cases must occur:

o x' = x (standard risk).

o X' # x,x' € NyM, and f(x)y > 0 (normal adversarial risk).

e Let X" = m(x) (the unique projection of x’ onto M), then
d(x”, x) < 2e and either

* f(x")y < 0 and x have an 2¢ in-manifold adversarial
perturbation (in-manifold adversarial risk) or

* f(x")f(x') < 0, which implies that x is within 2¢ of a point
x” € M that has non-zero normal adversarial risk (NNR:
nearby-normal-risk).

The second of these sets is Z"°"(f,€) in the setting of
Corollary 1. One can observe that the four cases correspond to the
four terms in Equation 2.

For the proof of Theorem 1, one has to observe that since y
is not deterministic, the set Z""(f, €) is random. One then has to
average over all possible Z""(f, €) and show that the average equals
NNR.

For the second part of Theorem 1 and Corollary 1, we observed
that if the normal adversarial risk is zero, in the last case, x”
has non-zero normal adversarial risk, with normal adversarial
perturbation x’. Unless x” is on the decision boundary, by
continuity of f one can show that there exists an open set around
x” such that all points have non-zero normal adversarial risk.
This contradicts the fact that the normal adversarial risk is zero,
implying that case 4 happens only on a set of measure zero
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(recalling that by assumption A, the decision boundary does not
contain any open set). This completes the proof sketch.

Theorem 2. [Tightness of decomposition result]
For any € < 1/2, there exists a sequence {f,}52, of continuous
score functions such that

) Ryq(f) =0foralln > 1,
(I1) R;’Zv(fn,Ze) =0foralln > 1,and

(I11) R (f4,€) — 0 as n goes to infinity,

adv

but Ry4,(f,€) = 1 foralln > ﬁ

Thus, all three terms, except the NNR term, indicate zero, but
the adversarial risk (the left side of Equation 2) indicates one.

Here, we provide a sketch of the proof of Theorem 2. Then, we
give the complete proof in the Supplementary material.

2.3.2 Proof of theorem 2

Let M = [0,1] and fix e < 1/2 and n > 1. We will think of
data as lying in the manifold M and R? as the ambient space. The
true distribution is simply n(x) = 1 for all x € M, hence y = 1 (all
labels on M are 1).

Let £ = ’1(””;4_11) and £, = ,le Note that (n + 1)€1 + nly = 1.
Consider the following partition of M = AUB; UA; UB, U ---U
B, UA,, where A; (0 < i < n)isoflength £; and B; (1 <i < n)is
an interval of length €. The interval Ay, By, A1, - - - , By, A, appears
in this order from left to right.

For ease of presentation, we will consider {0,1} binary labels
and build score functions f,, taking values in [0, 1] that satisfy the
conditions of the Theorem.

For an x € A; for some 0 < i < #, define g,(x) = 1. For x € B;
for some 1 < i < n, define g, (x) = €/2. Observe that € /2 < 1/4.

We now define the decision boundary of f,, as the set of points

in R? on the “graph” of g, and —g,. That is,
DB(f,) = {(x, cgn(x)) : x € [0,1],c € {—1,1}}.

(see Figure 2 for a picture of the upper decision boundary).

Now, let f,, be any continuous function with decision boundary
DB(f,) as above. That is, f, : R? — [0, 1] is such that f,(x,t) > 1/2
if |[t] < gu(x), fuloe,t) < 1/21if |t| > gu(x) and fu(x,y) = 1/2if
1] = gu(x).
In-manifold adversarial risk is zero: Observe that since n(x) =
1 on [0,1], the in-manifold adversarial risk of f, is zero, since
fa(x,0) > 1/2, and so sign(2f, — 1) equals 1, which is the same as
the label y at x. This means that there are no in-manifold adversarial
perturbations, no matter the budget. Thus, R;"‘iv(fn, €) = 0 for all
n>1.
Normal adversarial risk goes to zero: Next, we consider the
normal adversarial risk. If x € A; for some i, a point in the normal
ball with budget € is of the form (x,t) with |t < € < 1/2 but
fa(x,t) > 1/2 for such points and thus sign (2f, — 1) = y(x).
Thus, x € A; does not contribute to the normal adversarial risk.
If x € B; for some i then f,(x,€) < 1/2 while f,(x,0) > 1/2,
and hence such x contributes to the normal adversarial risk. Thus,
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FIGURE 2
Lower bound illustration

RIS (fn€) = Y w(Bi) = Y, €, = 1/n, which goes to zero as

n goes to infinity.

Adversarial risk goes to one: Now, we show that R4, (f;, €) goes to

one. In fact, we will show that as long as n is sufficiently large, the
n—1

D) < ﬁe.

Note that such an n exists simply because £; goes to zero as n goes

adversarial risk is 1. Consider n such that ¢;: =

to infinity and n > ﬁ works.

Clearly, points in B; contribute to adversarial risk as they have
adversarial perturbations in the normal direction. However, if we
consider x € A; (which does not have adversarial perturbations
in the normal direction or in-manifold), we show that there still
exists an adversarial perturbation in the ambient space: that is, there
exists a point x’ such that a), the distance between (x’,€/2) and
(x,0) is at most € and b) sign(2f,(x, €/2)) # sign(2f,(x,0)). Let x’
be the closest point in B: = UB; to x. Then, |x' — x| < £;/2 <

ﬁe/2. Thus, the distance between (x',€/2) and (x,0) is at most
V(V/3€/2)? + (e/2)? = €. Since X' € B, f,(x',€/2) < 1/2, whereas
fa(x,0) < 1/2,(x,€/2) is a valid adversarial perturbation around x.
Thus, for all x € [0, 1], there exists an adversarial perturbation

1

within budget € and therefore R,4,(f,,€) = 1 aslong as n > e

This completes the proof.

2.4 Decomposition wheny is deterministic

Let n(x) = Pr(y = 1|x). We consider here the simplistic setting
when 7(x) is either 0 or 1, i.e., y is a deterministic function of x. In
this case, we can explain our decomposition result in a simpler way.

Let Z""(f,e): = {x € M:f(x)y > Oand3x’ # x €
BI"(x),f(x')y(x) < 0}. That is, Z""(f, €) is the set of points with
no standard risk but with a non-zero normal adversarial risk under
a positive but less than € normal perturbation. Let Z"°"(f,e) =

M\ Z"(f, €) be the complement of Z""(f, €). Fora set A C M,
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let ;1(A) denote the measure of A.

Corollary 1. Let M be a smooth compact manifold in RP, and let
n(x) € {0,1} for all x € M. There existsa A > 0 depending only on
M such that the following statements hold for any € < A. For any
score function f satisfying assumption A,

@

Raay(f,€) < Rya(f) + R, (f, 2€) + R (f €)
+ W(@ZT(f,€) N Bae (27 (f, €)) 2

(1) IfR'Y(f,€) = 0, then

Rag(f>€) < Ryq(f) + R (f, 2€).

Therefore, in this setting, the adversarial risk can be
decomposed into the in-manifold adversarial risk and the measure
of a neighborhood of the points that have non-zero normal
adversarial risk.

3 Experiment: synthetic dataset

In this section, we verify the decomposition upper bound
in Theorem 1 on synthetic data sets. We train different
classifiers and empirically verify the inequalities on these
classifiers.

In our experiments, instead of using L, norm to evaluate
the perturbation, we search the neighborhood under Lo, norm,
which would produce a stronger attack than L, norm one. The
experimental results indicate that our theoretical analysis may hold
for an even stronger attack.
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3.1 Toy data set and perturbed data

We generate four different data sets where we study both the
single decision boundary case and the double decision boundary case.
The first pair of datasets are in 2D space and the second pair is in
3D. We aim to provide empirical evidence for the claim i) in the
Theorem 1 using the single and double decision boundary data.

For the 2D case, we sample training data uniformly from a unit
circle Cy : x3 4+ x3 = 1. For the single decision boundary data set,
we set

y = 21(x; > 0) — 1 (Single Decision Boundary)
y = 21(x1x2 > 0) — 1 (Double Decision Boundary)

The visualization of the dataset is shown in Figures 3A, B). In
particular, we set unit circle C; has A = 1, we set the perturbation
budget to be ¢ € [0.01, 0.3]. Moreover, the normal direction is alone
the radius of the circle.

In the 3D case, we set the manifold to be M :x3 = 0 and
generate training data in region [—m, ] x [—m, ] on x1x;-plane.
We set

y=21 [x1 > sin(xg)] — 1(Single)
y=21 [(x1 —sin(xp))xy > 0] — 1(Double)

Figures 3C, D show these two cases. For the single decision
boundary example, due to the manifold being flat, we have A =
00, and we explore the € value in range [0.1,0.8]. For the double
decision boundary, the distance to the decision boundary is half of
the distance in the single boundary case. Therefore, we set the range
of perturbation to be [0.1, 0.4].

3.2 Algorithm for estimating different risks

To empirically estimate the decomposition of adversarial risk,
we need to estimate the normal adversarial risk R;‘%, the in-
manifold adversarial risk R!", , the classic adversarial risk Ry,
and the standard risk Ryy. The standard risk is obtained by
evaluating on the standard classifier f trained by the original
training data set. For the classic adversarial risk R,4,, we follow
the classic approach and train the adversarial classifier f*4
following the classic adversarial training Algorithm (Madry et al.,

2017). The risk is evaluated on perturbed example x*?

computed
by the classic Projected Gradient Descent Algorithm (Madry
et al, 2017). To estimate the other two risks, RZ;: and R;’;V,
we generate adversarial perturbations along normal and in-
manifold directions and use these perturbations to train different
robust classifiers.

To compute the in-manifold perturbation, we design two
methods. The first one is using grid search to go through all the
perturbations in the manifold within the € budget and return
the point with maximum loss as in-manifold perturbation x.
Although this seems to be the best solution, it is quite expensive
due to the grid-search procedure. Therefore, we resort to a second
method in our experiments using Projected Gradient Descent

adv ;

(PGD) method to find a general adversarial point x**" in ambient

space and then project x*" back to the data manifold M.
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In Supplementary material, we will further compare these two
methods.

Next, we explain how to obtain normal direction perturbations
x"°". Note that in both the 2D and 3D toy datasets, the dimension
of the normal space is 1. Therefore, the normal space at point x can
be represented by NyM = {x +t-v|0 < t < €}. Here, v is the
unit normal vector and can be computed exactly in close-form in
our toy data.

We list the R,;, and RHS value for 2D and 3D datasets for all
classifiers in Tables 1, 2.

3.3 Empirical results and discussion

2D dataset: We generate 1,000 2D training data uniformly.
The classifier is a two-layer feed-forward network. Each classifier
is trained with Stochastic Gradient Descent (SGD) with a learning
rate of 0.1 for 1,000 epochs. In addition, since A = 1
for the unit circle, the upper bound of e value is up to
1. Hence, we run experiments for ¢ from 0.01 to 0.3. We
leave more discussion and visualization of this phenomenon
in Supplementary material. The right hand side values of the
inequality for all three classifiers are presented in Table 1. We could
observe that the upper bounds hold for 2D data, at least for all
these classifiers.

3D dataset: We generate 1,000 training data from the data set.
The classifier is a four-layer feedforward network. We use SGD
with a learning rate of 0.1 and weight decay of 0.001 to train the
network. The total training epoch is 2,000. In Table 2, we list same
classifiers trained on the 3D dataset. Similar to the 2D dataset, for
all classifiers, inequality 1 holds. Due to the limit of the space, we
provide additional empirical results in Supplementary material.

4 Experiment: real-world datasets

In this section, we verify our theoretical results on real-
world dataset experiments. The challenge is to find a manifold
representation and generate in-manifold/normal perturbations.
We use an Autoencoder to represent the manifold. Next, we use
the TNAR algorithm to generate in-manifold perturbations. We
also extend TNAR to generate normal perturbations. These in-
manifold/normal perturbations allow us to estimate different risks.

In Section 4.1, we explain how to learn the manifold
representation. In Sections 4.2 and 4.3, we provide details
on finding in-manifold and normal adversarial perturbation,
respectively. Finally, in Section 4.4, we validate our theoretical
bound.

Datasets: We utilize three commonly used datasets, two of
which are grayscale: MNIST and FashionMNIST. Both of these
datasets comprise 28x28 pixel images. MNIST dataset contains
handwritten digits ranging from 0 to 9, each labeled accordingly.
The dataset is divided into 60,000 training samples and 10,000
testing samples. FashionMNIST dataset consists of images of
clothing items, with each item labeled into one of ten different
categories. It includes 60,000 training samples and 10,000 testing
samples. In addition to the grayscale datasets, we also incorporate
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FIGURE 3

In this figure, we show our four toy data set. On the left side, 2D data is set on a unit circle. The single decision boundary data are linearly separated
by the y-axis. Moreover, in the double decision boundary case, the circle is separated into four parts with x-axis and y-axis. On the right side, the 3D
data is set. The data are distributed in a square area on x1x,-plane. In the single decision boundary example, the data are divided by the curve

X1 = sin(xz). Moreover, in the double decision boundary situation, we add the y-axis as the extra boundary. (A) 2D single decision boundary. (B) 2D
double decision boundary. (C) 3D single decision boundary. (D) 3D double decision boundary.

TABLE 1 2D adversarial risk comparison.

Single boundary f”dV Double boundary

0.01 0.0110 0.022 0.0110 0.022 0.01 0.0080 0.0286 0.0060 0.0296
0.02 0.0130 0.0449 0.0130 0.0449 0.02 0.0240 0.0694 0.0230 02525
0.03 0.0230 0.063 0.0250 0.0671 0.03 0.0510 0.1333 0.0460 0.1363
0.05 0.0280 0.0794 0.0300 0.0784 0.05 0.0620 0.1810 0.0620 0.1640
0.1 0.0709 0.1652 0.0699 0.1645 0.1 0.1170 03398 0.1169 03071
0.15 0.0979 02831 0.1009 0.2886 0.15 0.1850 0.6059 0.1860 0.4895
0.2 0.128 03951 0.126 0.3971 02 0.242 0.8763 0247 0.8002
0.25 0.1660 0.4966 0.1630 0.4931 025 0.3139 i 0.3169 0.9971
03 0.1979 0.4509 0.1979 0.5613 03 0.386 0.9615 0.379 1

TABLE 2 3D adversarial risk comparison.

Single boundary

Double boundary

€ €

0.1 0.0450 0.0992 0.0410 0.092 0.1 0.0649 0.1654 0.0789 0.153

0.2 0.1139 0.2297 0.0999 0.229 0.2 0.1700 0.3858 0.1370 0.3341
0.3 0.1550 0.3106 0.136 0.3216 0.3 0.2159 0.4740 0.1810 0.4208
0.4 0.2089 0.3765 0.1680 0.3889 0.4 0.3000 0.6051 0.2069 0.5325

one color dataset. SVHN dataset contains 10 different classes of
digit images, each with 3x32x32 pixels.

Classifier: We selected ResNetl8 as our classifier and employed
the Adam optimizer with learning rate to be 0.001 for our
experiments. To train the ResNet18 network for each dataset, we
continued training until the training accuracy reached 99%. On
the MNIST dataset, our trained classifier achieved an test accuracy
of 99.24%. When applied to the FASHIONMNIST dataset, the
classifier demonstrated a test accuracy of 94.78%. Moreover, the
SVHN dataset obtain a test accuracy of 96.74%.

Classic adversarial training: To evaluate the robustness of the
classifier, we generated Projected Gradient Descent (PGD) (Madry
et al., 2017) attacks using L, norms. For creating an adversarial
attack, we set the L, attack budget to 1.5 for the MNIST and
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FASHIONMNIST datasets and 0.25 for SVHN. For L attacks, the
perturbation budget was set to 0.3 for grayscale datasets and 8/255
for color images.

4.1 Approximation of data manifold

We employed an autoencoder structure consisting of 7
VGG blocks to approximate the underlying data manifold. The
autoencoder was trained using Mean Square Loss of 400 epochs.

The output of the trained autoencoder is presented in Figure 4.
We observe that for MNIST and FASHIONMNIST datasets, the
reconstruction results are very close to the input data. For the
SVHN dataset, while the reconstruction images are reasonably close
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FIGURE 4

between them in the last row.

The manifold reconstruction from VGG-like Autoencoder Network on (A) MNST, (B) FASHIONMNST, and (C) SVHN datasets. For each dataset, we
randomly sampled 12 examples. We plot the reconstructed images in the first row, the original input images in the middle row, and the difference

to the input images, the reconstruction error is relatively large. We
provide quantitative measures of the reconstruction quality in the
Supplemental material.

4.2 Generating in-manifold perturbations

We use TNAR (Yu et al, 2019) to generate in-manifold
examples. TNAR formulates the in-manifold adversarial attack as a
linear optimization problem. Using power iteration and conjugate
gradient algorithms, the tangent direction along the data manifold
is identified. Next, a search along the tangent direction is performed
to find valid Ly-norm adversarial perturbations.

Figure 5 shows the in-manifold perturbations generated using
the TNAR method. Similar to commonly believed, the in-manifold
perturbations are mainly “semantical”. We observe that the
perturbations mainly occur at the edges of the image content for
datasets such as MNIST or inside the items to change their texture
or details, as observed in FASHIONMNIST. In the case of SVHN,
the perturbations are primarily focused on the background part of
the images to reshape the meaning of the digits.

Frontiersin Computer Science

4.3 Generating normal perturbations

We extend TNAR to compute the normal direction
perturbation. In the original TNAR, a single random normal
direction is generated without fully exploring the vast ambient
space. However, by no means, the normal space is one-dimensional.
We need to explore the whole normal space to find good normal
perturbations. To this end, we employ an iterative process to
repeatedly generate normal vectors. Along each normal vector,
we perform a search until the perturbation limit is reached.
This iterative process is crucial, and it enables us to explore
the whole normal space, test a broader range of perturbation
patterns, and increase the chance of obtaining better normal
adversarial perturbations.

Sample normal perturbations are presented in Figure 6.
Consistent with our initial expectations, the normal perturbations
do not directly modify the meaning of the image. Instead, they
add noise to various parts of the images, effectively deceiving
the classifier.

For the MNIST dataset, we observed that the normal
perturbations primarily occur in the background, an area that
in-manifold attacks would not typically alter. Similarly, in the
FASHIONMNIST dataset, the attack expands to the background
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FIGURE 5

We present the in-manifold examples in the first row, followed by the original images in the second row, and the differences are shown in the last
row. Clearly, for MNIST (A) and FASHIONMNIST (B) datasets, the attacks only affect the object part. As for SVHN (C), visualizing the difference
between attacks on the object and the background is challenging. Nonetheless, when comparing with Figure 6, we can discern that the
perturbations contain some information about the target object. For instance, in the eighth example, the attack mainly targets the object
representing the number five and modifies it to be the number three. Moreover, in cases where multiple numbers are present in the image, such as
the fifth example, the attack first merges the number two into the background and alters the appearance of the number six to be an eight

areas as well. On the other hand, for SVHN, the noise covers the
entire images, not restricted to the background of the digits as the
in-manifold perturbations.

4.4 Validate our theoretical findings

In this section, we validate the inequality on the classifiers. We
focus on L, normal attacks. We employ PGD attack with 40 search
steps. As shown in Table 3, we report in column 1 the adversarial
risk, which is the left-hand side (LHS) of Inequality 2. In columns 2,
3, and 4, we report the standard risk, in-manifold perturbation risk
(evaluated on in-manifold perturbations), and normal adversarial
risk (evaluated on normal perturbations). In column 5, we report
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their sum. Unfortunately, we have no close-form solution of the
NNR term (the forth term in RHS). So, we know that column 5 is
smaller than the actual RHS of the inequality.

Upon examining the table, we find that our theoretical findings
hold for the FASHIONMNIST and SVHN datasets; the first column
is smaller than the fifth column, which is smaller than the RHS.
These results validate our theoretical result.

We do not observe similar trend in MNIST; the fifth column is
smaller than the first column. This could be due to two potential
reasons: (1) the missing term NNR is very large, causing the fifth
column to be small while the actual RHS is still larger than LHS;
(2) we underestimated the in-manifold and normal adversarial
risks, as we are unable to find good quality in-manifold/normal
perturbations. The second potential issue might be related to the
separation of classes in MNIST.
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FIGURE 6

In this plot, we display the normal examples using the same visualization approach as the in-manifold examples. From the observation, it is evident
that the attacks primarily occur in the background and lack substantial information about the target object. (A) MNIST. (B) FASHIONMNIST. (C) SVHN

TABLE 3 In the table, we validate our theoretical findings using L, norm.

MNIST 0.856 0.0076
FASHIONMNIST 0.98 0.0522
SVHN 0.55 0.0326

0.0702 0.5109 0.5887
0.1047 0.8647 1.0216
0.1715 0.4783 0.6824

We report different risk terms in the Inequality 1 in separate columns. The first column (L, attack risk) is the adversarial risk R, corresponding to the LHS of the inequalities. In the last
column, we report RHS of 1, which is approximately the sum of the standard risk, in-manifold adversarial risk, and normal adversarial risk.

4.5 Limitations and future work

Our empirical experiments are limited to low-dimensional
datasets due to the computational complexity of the TNAR
algorithm, which is used to find the normal and in-manifold
directions. The TNAR algorithm employs power iteration to
compute the approximation of the largest eigenvector of the
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Jacobian matrix of the network. As the dimension of input images
increases, the computation complexity of generating the normal
and in-manifold directions grows quadratically. This would be
costly to compute for high-resolution datasets, as the computations
are performed on CPU instead of GPU. Therefore, addressing the
application of our approach to high-dimensional datasets is a future
direction worth exploring further.
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Extending our experiments to high-dimensional datasets
for future studies would provide valuable insights into the
generalizability and effectiveness of our approach in real-world
scenarios. Additionally, investigating the behavior of the normal
and in-manifold directions in high-dimensional spaces could shed
light on the robustness of the proposed method against more
complex and diverse adversarial attacks.

5 Conclusion

In this study, we study the adversarial risk of the machine
learning model from the manifold perspective. We report
theoretical results that decompose the adversarial risk into the
normal adversarial risk, the in-manifold adversarial risk, and the
standard risk with the additional Nearby-Normal-Risk term. We
present a pessimistic case suggesting that the additional Nearby-
Normal-Risk term can not be removed in general. Our theoretical
analysis suggests a potential training strategy that only focuses on
the normal adversarial risk.
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