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Abstract
Markov chain Monte Carlo (MCMC) provides asymptotically consistent estimates of in-

tractable posterior expectations as the number of iterations tends to infinity. However, in large

data applications, MCMC can be computationally expensive per iteration. This has catalyzed

interest in approximating MCMC in a manner that improves computational speed per iteration

but does not produce asymptotically consistent estimates. In this article, we propose estimators

based on couplings of Markov chains to assess the quality of such asymptotically biased sampling

methods. The estimators give empirical upper bounds of the Wasserstein distance between

the limiting distribution of the asymptotically biased sampling method and the original target

distribution of interest. We establish theoretical guarantees for our upper bounds and show

that our estimators can remain e!ective in high dimensions. We apply our quality measures to

stochastic gradient MCMC, variational Bayes, and Laplace approximations for tall data and to

approximate MCMC for Bayesian logistic regression in 4500 dimensions and Bayesian linear

regression in 50000 dimensions.

1 Introduction

1.1 Quality of asymptotically biased Monte Carlo methods

Markov chain Monte Carlo (MCMC) methods are commonly used for the approximation of intractable
integrals arising in Bayesian statistics, probabilistic inference, machine learning, and other fields
[Brooks et al., 2011]. They are based on a transition kernel K1 which is invariant with respect to a
target distribution of interest P . MCMC methods are asymptotically unbiased in that they generate
Markov chains with marginal distributions that asymptotically converge to P as the number of
iterations tend to infinity. However, in modern applications with a large number of data points or
high dimensions, evaluating the transition kernel K1 at each iteration can incur high computation
cost. This has catalyzed the use of asymptotically biased sampling methods such as approximate
MCMC and variational inference. Approximate MCMC [e.g., Welling and Teh, 2011, Bardenet
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et al., 2017, Narisetty et al., 2019, Johndrow et al., 2020] is based on a transition kernel K2 which
is an approximation of K1 with low computation cost; these approximate Markov chains typically
converge to a distribution Q that di!ers from the target P . Variational inference [Blei et al., 2017,
e.g.,] alternatively uses optimization to inexactly approximate P with a surrogate distribution Q.

Assessing the quality of such asymptotically biased samplers is of great interest for researchers
who develop new approximate inference methods. Standard MCMC diagnostic tests [e.g., Johnson,
1998, Biswas et al., 2019, Vats and Knudson, 2021, Vehtari et al., 2021] are not directly suitable for
such settings as they do not account for asymptotic bias. Researchers often resort to comparing
summary statistics or marginal univariate traceplots of samples from such methods with samples
from an asymptotically unbiased Markov chain. However, such marginal traceplots and summary
statistics may fail to capture higher order moments and dependencies between di!erent components.
Moreover, in high-dimensional settings, visualizing all marginal traceplots may not even be feasible.
In this manuscript, we develop generic upper bound estimates of the Wasserstein distance, an
appealing measure of distance between distributions discussed in Sec. 1.2. Our estimates are then
applied to assess the quality of asymptotically biased samplers.

1.2 Couplings and Wasserstein distances

Consider a complete, separable metric space (X , c) where c is a metric. For each p → 1, let Pp(X )
denote the set of all probability measures P on (X , c) which have finite moments of order p, i.e.,
for which

´
X c(x0, x)pdP (x) < ↑ for some x0 ↓ X . Then the p-Wasserstein distance is a metric on

Pp(X ), defined for any probability measures P and Q in Pp(X ) as

Wp(P, Q) = ( inf
ω→!(P,Q)

´
X ↑X c(x, y)pdω(x, y))1/p (1)

where !(P, Q) is the set of probability measures on X ↔ X with marginal measures P and Q
respectively. Any probability measure in !(P, Q) is called a coupling of P and Q, and any coupling
which attains the infimum in (1) is called p-Wasserstein optimal.

The Wasserstein distance has many advantageous properties. Here we note those most relevant
for this work and refer to Villani [2008] for more details. First, it allows comparison between
mutually singular distributions that may have disjoint supports, unlike common alternatives like the
total variation distance, Kullback–Leibler (KL) divergence and Rényi’s ε-divergences [van Erven
and Harremos, 2014]. Moreover, it captures geometric properties induced by the metric c and
di!erences between moments of distributions. For example when X = Rd and c(x, y) = ↗x ↘ y↗p =
(
∑d

j=1
|xi ↘ yi|

p)1/p, Jensen’s inequality and the triangle inequality imply

max
{

↗E[X ↘ Y ]↗p, |E[↗X↗
p
p]1/p

↘E[↗Y ↗
p
p]1/p

|
}

≃ Eω→(P,Q)[↗X ↘ Y ↗
p
p]1/p = Wp(P, Q) (2)

for any P, Q ↓ Pp(X ) and random variables (X, Y ) jointly distributed according to a p-Wasserstein
optimal coupling ω↓(P, Q). Equation (2) shows that p-Wasserstein distances can control the di!erence
between moments of order p. Indeed, Huggins et al. [2020, Thm. 3.4, Rem. 3.5, and Prop. 3.6] showed
that explicit bounds on Wasserstein distances translate into explicit guarantees for a variety of
downstream inferential tasks including mean estimation, covariance estimation, numerical integration
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of Lipschitz functions, and prediction accuracy. Meanwhile, these guarantees are not implied by a
small KL or ε-divergence [Huggins et al., 2020].

Popular approaches to estimating Wp(P, Q) involve drawing independent samples from P and Q
and then computing the Wasserstein distance between the corresponding empirical distributions.
Such approaches produce estimates that are consistent as the number of samples tend to infinity
but can su!er from the curse of dimensionality and give loose upper bounds of Wp(P, Q) when the
number of samples does not increase exponentially with dimension [e.g., Weed and Bach, 2019].
They also incurs prohibitive computational costs which scale at a cubic rate with the number of
samples [Orlin, 1988]. Entropy-regularized variants of the Wasserstein distance such as Sinkhorn
distances [Cuturi, 2013] o!er computational costs which scale at a quadratic rate with the number
of samples but produce estimates that are not consistent [Altschuler et al., 2017].

This manuscript develops consistent upper bound estimates for Wasserstein distances. The
developed algorithms and estimators are then used to assess the quality of approximate MCMC and
certain variational inference methods. Specifically, we use couplings of Markov chains to estimate
upper bounds on the Wasserstein distance between the limiting distribution of the asymptotically
biased sampling method and the original target distribution of interest. As we cover in Sec. 3.4,
our work provides an appealing alternative to estimates based on empirical Wasserstein distances
and Sinkhorn distances and to the upper bound estimates of Huggins et al. [2020], which are based
on worst-case divergence bounds and rely on e"cient importance sampling. In addition, our upper
bound estimates provably improve upon those of Dobson et al. [2021] which rely on challenging
contraction-constant estimation.

In related work, measures of asymptotic bias based on Stein discrepancies have been developed,
which do not require sampling from the target distribution of interest. For example, Gorham et al.
[2019] established a near-linear relationship between Stein discrepancies and standard Wasserstein
distances, but the constants in these results rely on specific knowledge of the gradient of the log
target density that must be derived for each new target distribution. Our upper bound estimates of
the Wasserstein distance apply to any distributions that can be targeted with Markov chains and do
not require any additional distributional knowledge.

1.3 Our contributions

We introduce new tools for method developers to assess the quality of their approximate inference
procedures. Our primary contributions are summarized below.

In Sec. 2, we first introduce algorithms for coupling two Markov chains with distinct stationary
distributions. Our approach generalizes recent e!orts to couple Markov chains with identical
transition kernels [see, e.g., Glynn and Rhee, 2014, Heng and Jacob, 2019, Middleton et al., 2019,
Jacob et al., 2020, Biswas et al., 2019, 2022]. We then introduce estimators based on our coupled
chains that consistently upper bound the Wasserstein distance between their stationary distributions.
This enables us to assess the asymptotic bias of approximate MCMC methods and certain variational
inference procedures.

Sec. 3 provides a theoretical analysis of our upper bound estimates. We first establish the
consistency and unbiasedness of our upper bound estimates and then derive interpretable analytic
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upper bounds on our estimates in terms of the mixing rate of one chain and the closeness of the two
transition kernels. These analytic bounds provide su"cient conditions for our upper estimates to be
informative in high dimensions.

In Sec. 4, we demonstrate the favorable empirical performance of our upper bound estimates on
modern applications. We first consider datasets with a large number of data points to assess the
quality of stochastic gradient MCMC, variational Bayes, and Laplace approximations for Bayesian
logistic regression. We then consider high-dimensional datasets to assess the quality of approximate
MCMC for high-dimensional linear regression with continuous shrinkage priors (d ⇐ 50000) and
high-dimensional logistic regression with spike-and-slab priors (d ⇐ 4500). Finally, we discuss our
results and directions for future work in Sec. 5. Open-source R code recreating all experiments in
this paper can be found at github.com/niloyb/BoundWasserstein.

2 Bounding Wasserstein distance with couplings

Given distributions P and Q in Pp(X ) for some p → 1, we wish to estimate upper bounds on
Wp(P, Q). Our estimates are based on Markov chains (Xt)t↔0 and (Yt)t↔0 with marginal transition
kernels K1 and K2 invariant for P and Q respectively. Specifically, we construct a Markovian kernel
K̄ on the joint space X ↔ X such that for all x, y ↓ X ,

K̄
(
(x, y), (·, X )

)
= K1(x, ·) and K̄

(
(x, y), (X , ·)

)
= K2(y, ·). (3)

Given the kernel K̄, we generate a coupled Markov chain (Xt, Yt)t↔0 using Alg. 1, a generalization
of existing coupling constructions [Johnson, 1998, Glynn and Rhee, 2014, Heng and Jacob, 2019,
Middleton et al., 2019, Jacob et al., 2020, Biswas et al., 2019, 2022]. While prior work focused on
K1 = K2 and Xt

d= Yt to establish convergence to a single stationary distribution P , our work uses
distinct kernels K1 and K2 to bound the distance between distinct stationary distributions P and
Q. Algorithms to sample from K̄ are covered in Sec. 3.2.

Algorithm 1: Coupled Markov chain Monte Carlo for bounding Wasserstein distances
Input: Initial distribution Ī0 on X → X , joint kernel K̄, number of iterations T
Initialize: Sample (X0, Y0) ↑ Ī0

for t = 1, ..., T ↓ 1 do Sample (Xt+1, Yt+1)|(Xt, Yt) ↑ K̄
(
(Xt, Yt), ·

)

return Markov chain (Xt, Yt)
T
t=0

For a Markov chain (Xt, Yt)t↔0 from Alg. 1, suppose the marginal distributions of Xt and Yt con-
verge in p-Wasserstein distance to P and Q respectively as t tends to infinity. Informally, the coupling
representation of the Wasserstein distance implies Wp(P, Q)p

≃ lim inf
S↗↘,T ≃S↗↘

∑T
t=S+1

E[c(Xt,Yt)
p

]

T ≃S .
This motivates our coupling upper bound (CUB) estimate

CUBp ↭ ( 1

I(T ≃S)

∑I
i=1

∑T
t=S+1

c(X(i)
t , Y (i)

t )p)1/p, (4)

where (X(i)
t , Y (i)

t )T
t=0

are sampled using Alg. 1 independently for each i, with burn-in S → 0 and
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trajectory length T > S. We prove the consistency of this and related upper bound estimators
in Sec. 3. We now consider the empirical performance of this estimator on two stylized examples,
working with the Euclidean metric c(x, y) = ↗x ↘ y↗2 on Rd.

2.1 Upper bound on Wasserstein distance

We consider the performance of CUB2 (4) for two Gaussian distributions on Rd, given by

P = N (0, ”) where ”i,j = 0.5|i≃j| for 1 ≃ i, j ≃ d and Q = N (0, Id). (5)

Here we use the marginal kernels K1 and K2 of the Metropolis–adjusted Langevin algorithm (MALA)
with step sizes ϑP = ϑQ = 0.5d≃1/6 targeting P and Q respectively, following existing guidance
for step size choice [Roberts and Rosenthal, 1998]. The joint kernel K̄ is based on a common
random numbers (CRN, also called “synchronous”) coupling of both the proposal step and the
accept-reject step of the MALA algorithm, as detailed in Alg. 4 of App. F. Each chain is initialized
with independent draws of X(i)

0
⇒ P and Y (i)

0
⇒ Q, and the choice of initialization is covered in

Sec. 3. Throughout, we will also compare to an independent coupling obtained by sampling the
(Xt)t↔0 and (Yt)t↔0 chains independently using the K1 and K2 kernels respectively.

Fig. 1 (Left) compares several upper bound estimates of W2(P, Q) for dimension d = 100. The
solid line ( ) is CUB2 based on I = 5 independent chains, burn-in S = 0 and varying trajectory
length 1 ≃ T ≃ 1000, and the grey error bands represent 95% confidence intervals arising from
Monte Carlo error. As the marginal chains are initialized at their respective stationary distributions,
here CUB2 produces valid upper bounds for all trajectory lengths T with zero burn-in S = 0. The
values of T and I are chosen based on upper bound estimates and error bands of initial runs, and this
choice is further discussed in Sec. 3.2. The dotted line ( ) plots the independent coupling upper
bound E

Y ⇐Q,X⇐P
[↗X ↘ Y ↗

2

2
]1/2 = (2d)1/2 with X and Y independent. The dot-dashed line ( )

plots an estimate based on empirical Wasserstein distances, given by
∑I

i=1
W2(P̂ (i)

T , Q̂(i)
T )/I where

each P̂ (i)
T and Q̂(i)

T are the empirical distributions of T = 1000 points sampled independently from P

and Q respectively and W2(P̂ (i)
T , Q̂(i)

T ) is calculated exactly by solving a linear program [Orlin, 1988,
see also App. A.1]. In Sec. 3.4 we examine the upper- and lower-bounding properties of this common
Wasserstein distance estimate and observe that its convergence can be slow in high dimensions due
to substantial bias. Finally, the dashed line ( ) shows the true Wasserstein distance W2(P, Q),
which is known for this stylized example [see, e.g., Peyré and Cuturi, 2019, Rem. 2.23] and is given
by the coupling E

Y ⇐Q,X=”1/2Y ⇐P
[↗X ↘ Y ↗

2

2
]1/2 where ”1/2 is the positive matrix square root of ”.

At initialization (T = 0) CUB2 matches the equivalent independent coupling bound. For greater
trajectory lengths T , CUB2 o!ers a significant improvement over the independent bound and the
popular empirical Wasserstein estimate.

Fig. 1 (right) considers W2(P, Q) for higher dimensions. The solid line now plots CUB2 based
on I = 5, S = 0, and T = 1000. Fig. 1 (right) highlights that, unlike the independent and empirical
Wasserstein estimates, CUB2 o!ers bounds that remain informative even in higher dimensions. Such
dimension-free properties of our upper bounds are investigated in Sec. 3. Sec. 3.4 provides a further
comparison of our CUB bounds with empirical Wasserstein and Sinkhorn distances, which can have
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Figure 1: Upper bound estimates for W2(P, Q) with P = N (0, ”) where ”i,j = 0.5|i≃j| for 1 ≃

i, j ≃ d, Q = N (0, Id), and metric c(x, y) = ↗x ↘ y↗2. See Sec. 2.1.

prohibitive computational cost for larger sample sizes and su!er from the curse of dimensionality.

2.2 Bias of approximate MCMC methods

The unadjusted Langevin algorithm (ULA) is a popular approximate MCMC counterpart to MALA.
It has the same proposal step as MALA but now all proposed states are accepted. The lack of a
Metropolis–Hastings accept-reject step leads to ULA having a lower computation costs per iteration
than MALA, which is beneficial for applications with large datasets [e.g., Nemeth and Fearnhead,
2021]. On the other hand, ULA is asymptotically biased [Durmus and Moulines, 2019]. In this
section, we consider upper bounds of the Wasserstein distance between the limiting distribution of
ULA and the original target distribution of interest on a stylized example.
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Figure 2: Upper bound estimates for the 2-Wasserstein distance with c(x, y) = ↗x ↘ y↗2 between
the limiting distributions of ULA and MALA targeting P = N (0, ”) where ”i,j = 0.5|i≃j| for 1 ≃

i, j ≃ d on Rd. See Sec. 2.2.

Fig. 2 shows the performance of CUB2 (4) when the marginal kernels K1 and K2 are based,
respectively, on the MALA and ULA Markov chains targeting the distribution N (0, ”) on Rd defined
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in (5). The MALA kernel K1 produces an exact Markov chain which is N (0, ”) invariant, and the
ULA kernel K2 produces an approximate Markov chain which is not N (0, ”) invariant. The joint
kernel K̄ is based on a CRN coupling of the proposal steps of MALA and ULA, and is given in Alg. 5
of App. F. We again use a step size of ϑP = ϑQ = 0.5d≃1/6 for both marginal chains (following
existing guidance for step size choice [Roberts and Rosenthal, 1998]) and initialize X(i)

0
⇒ N (0, Id)

and Y (i)
0

⇒ N (0, Id) independently for each coupled chain i. Let Pt and Qt denote the marginal
distribution of X(i)

t and Y (i)
t respectively. We show in App. A.2 that Pt

t↗↘
⇑ P ↭ N (0, ”),

Qt = N
(
0, ϑ2

Q

∑t≃1

j=0
B2j

)
, and Qt

t↗↘
⇑ Q ↭ N (0, ϑ2

Q(Id ↘ B2)≃1), where B ↭ (Id ↘ (ϑ2

Q/2)”≃1)
and the weak convergence of Qt to Q holds for ϑQ su"ciently small.

Fig. 2 compares several approaches to bounding the asymptotic W2(P, Q) bias of ULA. The solid
line ( ) displays our coupling upper bound estimate. For each dimension d, it is calculated using
CUB2 (4) with I = 10, S = 1000, and T = 3000. The dashed line ( ) shows the true asymptotic
bias W2(P, Q) and the dotted ( ) line shows the independent coupling upper bound, both of
which can be computed exactly in this example. The dot-dashed line ( ) plots the analytic ULA
bias upper bounds of Durmus and Moulines [2019, Cor. 9] (see App. A.2 for more details). The
tailored Durmus-Moulines bounds are significantly tighter than the convenient independent coupling
bound, but CUB2 is tighter still, o!ering significantly improved estimates for all dimensions.

3 Properties and Implementation

In this section we establish the consistency of the estimators in Sec. 2, describe how to sample from
the joint kernel K̄ in Alg. 1, investigate the theoretical properties of our upper bounds, and compare
to alternative approaches. All proofs are in App. B.

3.1 Consistency of coupling upper bounds

We begin by establishing the consistency of coupling upper bound estimators. Our first result bounds
the Wasserstein distance between coupled chains in terms of an instantaneous CUB estimator related
to the time-averaged estimator in (4).

Proposition 3.1 (Consistency of instantaneous CUB). Let (X(i)
t , Y (i)

t )t↔0 for i = 1, ..., I denote
coupled chains generated independently from Algorithm 1 with marginal distributions X(i)

t ⇒ Pt and
Y (i)

t ⇒ Qt at time t. For each t → 0, define the instantaneous CUB estimator

CUBp,t ↭
(

1

I

∑I
i=1

c(X(i)
t , Y (i)

t )p
)1/p

. (6)

If Ps and Qs have finite moments of order p for all s ≃ t, then CUBp,t has finite moments of order
p, and, as I ⇓ ↑,

CUBp
p,t

a.s., L1
⇓ E[CUBp

p,t] → Wp(Pt, Qt)p.

Our next result shows that the estimator CUBp (4) consistently bounds the Wasserstein distance
between time-averaged marginal distributions.
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Corollary 3.2 (Consistency of CUB for time-averaged marginals). Under the assumptions and
notation of Prop. 3.1, consider the estimator CUBp (4) with any number of independent chains
I → 0, and trajectories with burn-in S → 1 and length T → S. Then CUBp has finite moments of
order p, and as I ⇓ ↑,

CUBp
p

a.s., L1
⇓ E[CUBp

p] → Wp( 1

T ≃S

∑T
t=S+1

Pt,
1

T ≃S

∑T
t=S+1

Qt)p.

An important implication of Cor. 3.2 is that CUBp (4) consistently bounds the Wasserstein
distance between stationary distributions whenever its chains are marginally initialized at stationarity.

Corollary 3.3 (Consistency of CUB with stationary initialization). Under the assumptions and
notation of Prop. 3.1, suppose kernels K1 and K2 have stationary distributions P and Q respectively,
where P and Q have finite moments of order p. Suppose we initialize (X0, Y0) ⇒ Ī0 such that X0 ⇒ P
and Y0 ⇒ Q marginally. Then for any number of independent chains I → 0, trajectories with burn-in
S → 1 and length T → S, the estimator CUBp (4) has finite moments of order p, and as I ⇓ ↑,

CUBp
p

a.s., L1
⇓ E[CUBp

p] → Wp(P, Q)p.

We may not always be able to initialize using the marginal stationary distributions P and Q.
To obtain upper bounds on Wp(P, Q) without starting at the marginal stationary distributions P
and Q, we make an assumption related to convergence of the Markov chain marginals (Pt)t↔0 and
(Qt)t↔0.

Assumption 3.4 (Convergence of marginal chains). As t ⇓ ↑, Pt and Qt converge in p-Wasserstein
distance respectively to P and Q with finite moments of order p.

Proposition 3.5 (Consistency when chain marginals converge). Under Assump. 3.4 and the
assumptions and notation of Prop. 3.1, for all ϖ > 0 there exists S → 1 such that for all T → S, the
estimator CUBp (4) has finite moments of order p, and as I ⇓ ↑,

CUBp
p

a.s., L1
⇓ E

[
CUBp

p

]
→ Wp(P, Q)p

↘ ϖ.

Prop. 3.5 establishes that CUBp with any initialization (X0, Y0) ⇒ Ī0 consistently bounds
Wp(P, Q) as I and S grow. In practice, we can use standard MCMC burn-in diagnostics to select
an appropriate burn-in level for our marginal chains of interest [e.g., Johnson, 1998, Biswas et al.,
2019, Vats and Knudson, 2021, Vehtari et al., 2021]. Alternatively, for p = 1, we can avoid burn-in
removal and instead directly correct our bound for non-stationarity using the recent L-lag coupling
approach of Biswas et al. [2019] (see App. A.3 for details).

We emphasize that the results of this section hold for any coupled chain sampled using Alg. 1
with joint kernel K̄ satisfying (3). For example, this includes both the CRN coupled chains and the
independently coupled chains from Sec. 2, where the CRN coupled chains produced more informative
upper bounds empirically as shown in Figures 1 and 2. We now consider how to sample from K̄ and
investigate when our upper bounds are informative.
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3.2 Algorithms to sample from the coupled kernel K̄

In this section, we develop algorithms to sample from the joint kernel K̄ such that the estimators
from Sec. 3.1 can produce informative upper bounds. Our construction decomposes the overall
coupling into two convenient coupling steps based on a same-chain coupling kernel !1 on X ↔ X

and a perturbative coupling kernel !# on X :

1. !1 is a Markovian coupling of the kernel K1 with itself: for all x, x̃ ↓ X , !1(x, x̃) is a coupling
of the distributions K1(x, ·) and K1(x̃, ·).

2. !# is coupling of kernels K1 and K2 from the same point: for all z ↓ X , !#(z) is a coupling
of the distributions K1(z, ·) and K2(z, ·).

This decomposition allows us to exploit the extensive and growing literature on same-chain coupling
kernels and their properties (see Section 3.3) and to analyze the targeting of two distinct stationary
distributions as a simple perturbation to well-studied same-chain couplings. For example, when
K1 is a Metropolis–Hastings kernel, !1 can be a CRN coupling of both the proposal step and the
accept-reject step. Indeed, we often make use of CRN couplings as a default choice in this work due
to their broad applicability and straightforward implementation. When the Metropolis–Hastings
proposal is based on a spherically symmetric distribution such as a Gaussian—as in random walk
Metropolis–Hastings or the momentum component in Hamiltonian Monte Carlo (HMC)—!1 can
be a reflection coupling of the proposal step and a CRN coupling of the accept-reject step [e.g.
Bou-Rabee et al., 2020, Wang et al., 2021]. The kernel !# characterizes the perturbation between
the marginal kernels K1 and K2. For example, when K1 and K2 are MALA and ULA kernels
respectively, !# can be a CRN coupling of the proposal step. This leads to identical proposals when
MALA and ULA have the same step size, but the MALA chain will have a further accept-reject step
while the ULA chain will always accept the proposal. We discuss the choice of !1 and !# further in
Sec. 3.3. Given !1 and !#, we sample from the joint kernel K̄ using Alg. 2.

Algorithm 2: Joint kernel K̄ which couples the marginal kernels K1 and K2

Input: Chain states Xt→1 and Yt→1, kernels K1 and K2, coupled kernels !1 and !!
Sample (Xt, Zt, Yt)|Xt→1, Yt→1 such that (Xt, Zt) ↑ !1(Xt→1, Yt→1), (Zt, Yt) ↑ !!(Yt→1)

return (Xt, Yt)

Alg. 2 gives the conditional marginal distributions Xt|Xt≃1, Yt≃1 ⇒ K1(Xt≃1, ·), Zt|Xt≃1, Yt≃1 ⇒

K1(Yt≃1, ·), Yt|Xt≃1, Yt≃1 ⇒ K2(Yt≃1) so that K̄ satisfies (3). Often Alg. 2 can be implemented
without explicitly sampling Zt. As an example, consider when K1 and K2 are MALA and ULA
kernels with step sizes ϑP and ϑQ, target distributions P and Q, and !1 and !# are CRN coupled
kernels. Given (Xt≃1, Yt≃1), we sample ϖCRN ⇒ N (0, Id) and calculate the proposals X↓ =
Xt≃1 + (ϑ2

P /2)⇔ log P (Xt≃1) + ϑP ϖCRN , Z↓ = Yt≃1 + (ϑ2

P /2)⇔ log P (Yt≃1) + ϑP ϖCRN , and Y ↓ =
Yt≃1 + (ϑ2

Q/2)⇔ log Q(Yt≃1) + ϑQϖCRN . Then we accept or reject proposals X↓ and Z↓ based on a
Metropolis–Hastings correction with a common random number UCRN ⇒ Uniform(0, 1) to obtain
Xt equal to X↓ or Xt≃1, Zt equal to Z↓ or Yt≃1, and always accept Y ↓ to obtain Yt = Y ↓. Notably,
Zt need not be explicitly sampled to perform this update of (Xt, Yt). This CRN coupling of MALA
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(c) Impact of coupling choice on bound
quality.

Figure 3: Impact of multiple trajectories, ergodic averaging, and coupling choice on coupling bound
quality for the 1-Wasserstein distance with c(x, y) = ↗x ↘ y↗2. See Sec. 3.2.

and ULA is included in Alg. 5 of App. F. App. F also details general CRN and reflection couplings
between two Metropolis–Hastings kernels.

We now cover implementation practicalities and potential limitations.
Number of coupled chains and chain length to simulate. We first highlight the value of

averaging over time and over independent coupled chains when producing upper bound estimates.
Figures 3a and 3b examine the performance of the CUB1 (4) and instantaneous CUB1,t (6) estimators
when bounding the 1-Wasserstein distance with c(x, y) = ↗x ↘ y↗2 between P = 1

2
N (1d, Id) +

1

2
N (↘1d, Id) and Q = N (1d, Id) with d = 4 so that one of the marginal target distributions is

bimodal with well-separated modes. We simulate the coupled chains (X(i)
t , Y (i)

t )t↔0 independently
for each i using Alg. 1, where the joint kernel K̄ is based on a CRN coupling of MALA kernels
K1 and K2 targeting distributions P and Q respectively. The MALA kernels have a common step
size d≃1/6 (following existing guidance for step size choice [Roberts and Rosenthal, 1998]), and we
initialize X(i)

0
= 1d and Y (i)

0
= 1d such that both marginal chains start at the common mode. Fig. 3a

isolates the impact of averaging over multiple chains when computing the CUB1,t estimate (6). The
grey dotted line shows the single trajectory (c(X(1)

t , Y (1)

t ))1000

t=1
and the black solid line shows the

averaged trajectory (c̄(Xt, Yt))1000

t=1
where c̄(Xt, Yt) ↭

∑I
i=1

c(X(i)
t , Y (i)

t )/I for I = 100 independent
chains. The grey dotted line alternates between values close to 0 or 4, corresponding to when the
marginal chains from a single trajectory are both near the common mode (1d) or near di!erent
modes (↘1d and 1d) respectively. This illustrates that instantaneous upper bound estimator CUB1,t

(6) based on only a single trajectory of short chain length can have high variance. For multiple
independent coupled chains, the averaged trajectory has lower variance and higher precision as
shown by the grey confidence bands and the black solid line which remains close to the true W1(P, Q)
distance (shown by black dotted line). Conveniently, these multiple chains can be simulated in
parallel. Also even for upper bound estimates based on a single chain, the CUB1 estimator with
I = 1 and a su"ciently large chain length T can produce estimates with low variance, as shown by
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the grey confidence bands and the black solid line in Fig. 3b. The optimal choice between number of
independent coupled chains and chain length, given a certain coupled kernel K̄ and a fixed number
of parallel processors is an open area for further investigation. Jacob et al. [2020] contains related
motivating discussions for unbiased estimation with couplings.

Choice of coupled kernel. Secondly, we highlight the importance of the choice of the
coupled kernel K̄. Fig. 3c examines the performance of the CUB1 (4) estimator when bounding
the 1-Wasserstein distance with c(x, y) = ↗x ↘ y↗2 between P = 1

2
N (2, 1) + 1

2
N (↘2, 1) and Q =

1

2
N (1, 1) + 1

2
N (↘1, 1), so that now both the marginal target distributions are bimodal. Under this

setup, we simulated coupled chains based on both a CRN coupling and a reflection coupling of
MALA kernels K1 and K2 targeting distributions P and Q respectively. The MALA kernels have a
common step size 2, and we initialize such that each X(i)

0
⇒ P and Y (i)

0
⇒ Q are independent. In

Fig. 3c, the grey and black solid lines show averaged trajectories from I = 1000 independent coupled
chains based on CRN and reflection coupling respectively. It highlights that reflection coupling
gives tighter upper bounds compared to CRN for this example. In general, the choice of coupling
can have an impact on the tightness of our upper bounds. We emphasize that any choice of such
couplings still produces consistent upper bounds (as shown in Sec. 3.1). In practice, one can simulate
di!erent coupling algorithms to empirically assess which choice produces the tightest upper bounds
and even select the smallest of multiple coupling bounds. Finally, Fig. 3c highlights that our upper
bounds may not always be very close to the true Wasserstein distance when the marginal Markov
chains have slow mixing rates or when the coupling of the marginal transition kernels is not close to
optimal. Alternative coupling algorithms and tailored Wasserstein distance upper bounds between
mixtures of distributions could give further improvements for this example.

3.3 Interpretable upper bounds for CUB

So far we have established that CUB (4) consistently upper bounds Wasserstein distances (Sec. 3.1)
and developed algorithms to compute CUB in practice (Sec. 3.2). We next derive upper bounds on
the size of CUB to provide interpretable su"cient conditions under which CUB is guaranteed to be
small. We emphasize that it is possible for CUB to be significantly smaller than these interpretable
bounds and for CUB to be small even when the assumptions of the interpretable bounds are not
met. Hence, when bounding Wasserstein distances in practice, we would not recommend computing
these intepretable bounds but rather computing the even tighter CUB Wasserstein bound directly.

Our analysis is based on Markov chain perturbation theory for W1 [Pillai and Smith, 2015,
Johndrow and Mattingly, 2018, Rudolf and Schweizer, 2018], which we generalize to Wp for all p → 1.
This is a useful extension, as W2 in particular is believed to better reflect geometric features and
adapt to geometric structure than W1 [Villani, 2008, Rem. 6.6]. We also discuss examples where
the Wp upper bounds do not explicitly depend on the state space dimension and are stable up to a
coupling of the one-step marginal kernels.

To establish our CUBp upper bounds, we assume that the Markovian coupling !1 in Alg. 2 gives
uniform contraction in Wasserstein distance. Recall that !1 is a coupling of the marginal kernel
K1 with itself, so Assump. 3.6 concerns only the single kernel K1 targeting the single stationary
distribution P .
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Assumption 3.6 (Uniform contraction). There exists ϱ ↓ (0, 1) such that for all Xt, X̃t ↓ X and
(Xt+1, X̃t+1)|(Xt, X̃t) ⇒ !1(Xt, X̃t), E[c(Xt+1, X̃t+1)p

|Xt, X̃t]1/p
≃ ϱc(Xt, X̃t).

Assump. 3.6 is stronger than the convergence assumption of the marginal chain corresponding to
kernel K1 (Assump. 3.4 for (Pt)t↔0). For many popular MCMC algorithms, Assump. 3.6 has been
established under certain metrics c and coupled kernels !1 to give contraction rates ϱ that do not
explicitly depend on the dimension of the state space X . This includes MALA [Eberle, 2014] and
HMC [Bou-Rabee et al., 2020]. When the target distributions are log-concave, these algorithms
satisfy Assump. 3.6 with c(x, y) = ↗x ↘ y↗2 and the coupled kernel !1 based on a CRN coupling.
For target distributions satisfying a weaker distant dissipativity condition [Eberle, 2016, Gorham
et al., 2019] (including, for example, multimodal distributions with Gaussian tails), these algorithms
satisfy Assump. 3.6 with !1 based on a combination of CRN and reflection coupling and a metric c̃
satisfying rc̃(x, y) ≃ ↗x ↘ y↗2 ≃ R c̃(x, y) for some 0 < r ≃ R < ↑.

Furthermore, we can weaken Assump. 3.6 to a geometric ergodicity condition as in [Rudolf and
Schweizer, 2018], where for some constants C → 1, ϱ ↓ (0, 1), and for all L → 1, E[c(Xt+L, Yt+L)p

|Xt, Yt]1/p
≃

CϱLc(Xt, Yt) for (Xt+L, Yt+L)|(Xt, Yt) ⇒ !L
P (Xt, Yt) where !L

P (Xt, Yt) denotes a coupling of L-steps
of the kernel K1 marginally starting from states Xt and Yt. Our analysis then is based on the
construction of a multi-step coupling kernel. This may be of independent interest and is included in
App. D for completeness.

Under Assump. 3.6, we can upper bound the distance from our coupled chains explicitly in
terms of the initial distribution Ī0, contraction constant ϱ, and coupled kernel !# corresponding to
perturbations between the marginal kernels K1 and K2.

Theorem 3.7 (CUB upper bound). Let (Xt, Yt)t↔0 denote a coupled Markov chain generated using
Alg. 1 with initial distribution Ī0 and joint kernel K̄ from Alg. 2. Suppose the coupled kernel !1

satisfies Assump. 3.6 for some ϱ ↓ (0, 1). Then

E[CUBp
p,t]1/p = E[c(Xt, Yt)p]1/p

≃ ϱtE[c(X0, Y0)p]1/p +
∑t

i=1
ϱt≃iE[#p(Yi≃1)]1/p

for all t → 0, where (X0, Y0) ⇒ Ī0 and #p(z) := E[c(X, Y )p
|z] for (X, Y )|z ⇒ !#(z).

For CUBp,t based on a metric c, one obtains an analogous bound if Assump. 3.6 instead holds for
a dominating metric c̃, i.e., for c̃ satisfying c(x, y) ≃ R c̃(x, y) for some constant R ↓ (0, ↑). Then
E[c(Xt, Yt)p]1/p

≃ RE[c̃(Xt, Yt)p]1/p. Also, when the marginal distributions (Qt)t↔0 converge, we
can obtain a simpler expression for the upper bound.

Corollary 3.8 (CUB upper bound under marginal convergence). Under the notation and assump-
tions of Thm. 3.7, suppose that the marginal distributions Qt converge in p-Wasserstein distance to
some distribution Q as t ⇓ ↑. Then for each ϖ > 0, there exists S → 1 such that for all t → S,

E[CUBp
p,t]1/p = E[c(Xt, Yt)p]1/p

≃ ϱtE[c(X0, Y0)p]1/p + (1 ↘ ϱt)E[#p(Y →
)]

1/p

1≃ε + ϖ.

where (X0, Y0) ⇒ Ī0, #p(z) ↭ E[c(X, Y )p
|z] for (X, Y ) ⇒ !#(z), and Y ↓

⇒ Q.

Cor. 3.8 gives Wp(P, Q) ≃ lim inft↗↘ E[CUBp
p,t]1/p

≃ E[#p(Y ↓)]1/p/(1 ↘ ϱ), implying that CUB
estimators may give informative empirical upper bounds when the expected perturbation E[#p(Y ↓)]
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for Y ↓
⇒ Q is small. Further if the contraction rate ϱ does not explicitly depend on the dimension,

then our upper bounds do not increase unfavorably with dimension and remain informative in high
dimensional settings. Hence Cor. 3.8 provides interpretable su"cient conditions for CUB to be
dimension-free, as in Figs. 1 and 2.

Our next result covers the case in which the marginals (Qt)t↔0 do not converge to any limiting
distribution in p-Wasserstein distance. In this case, our upper bound is in terms of perturbations
between the marginal kernels weighted by a Lyapunov function of K2.

Proposition 3.9 (CUB upper bound weighted by a Lyapunov function). Under the notation and
assumptions of Thm. 3.7, let V : X ⇓ [0, ↑) satisfy E[V (Yt+1)p

|Yt = z] ≃ ωV (z)p + L for some
fixed constants ω ↓ [0, 1) and L ↓ [0, ↑) and all z ↓ X . Define ς ↭ supz→X

(
#p(z)

1+V (z)p

)1/p and

φ ↭
(
1 + max

{
E[V (Y0)p], L

1≃ω

})1/p, where #p(z) ↭ E[c(X, Y )p
|z] for (X, Y ) ⇒ !#(z). Then for all

t → 0,

E[CUBp
p,t]1/p = E[c(Xt, Yt)p]1/p

≃ ϱtE[c(X0, Y0)p]1/p + (1 ↘ ϱt) ϑϖ
1≃ε .

In the case p = 1, Prop. 3.9 recovers Thm. 3.1 of Rudolf and Schweizer [2018]. For such result
to be informative, we require functions V such that ςφ is small. An application of these results to
three simple examples based on MALA, ULA, and stochastic gradient Langevin dynamics (SGLD)
[Welling and Teh, 2011] chains is given in App. C.

3.4 Comparison with alternative Wasserstein bounds

In this section, we compare our coupling-based Wasserstein bounds with alternatives.
Empirical Wasserstein and Sinkhorn distances. A common approach to estimating

Wp(P, Q) is to draw independent samples from P and Q and then exactly compute the Wp distance
between the empirical distributions. This is precisely the empirical Wasserstein estimate that
appeared in Fig. 1. As our next proposition, proved in App. B.3, demonstrates, this empirical
Wasserstein approach consistently upper bounds Wp(P, Q).

Proposition 3.10 (Empirical Wasserstein distance bounds). For P and Q in Pp(X ), let P̂n,
P̃n, Q̂n, and Q̃n denote empirical distributions of the samples (Xi)n

i=1
, (X̃i)n

i=1
, (Yi)n

i=1
, and

(Ỹi)n
i=1

respectively, where Xi, X̃i
i.i.d.
⇒ P and, independently, Yi, Ỹi

i.i.d.
⇒ Q for all i = 1, ..., n. Then,

Wp(P̂n, Q̂n) a.s.
⇓ Wp(P, Q) as n ⇓ ↑, and

0 ≃ E[Wp(P̂n, Q̂n)p]1/p
↘ Wp(P, Q) ≃ E[Wp(P̂n, P̃n)p]1/p + E[Wp(Q̂n, Q̃n)p]1/p.

However, there are two downsides to the empirical Wasserstein approach. The first is statistical.
The di!erence between E

[
Wp(P̂n, Q̂n)p

]1/p and Wp(P, Q) can be quite large and decay very slowly in
n. For example, for some d-dimensional target distributions, E[Wp(P̂n, Q̂n)] converges to Wp(P, Q)
at rate $(n≃1/d) when d > 2p [Weed and Bach, 2019]. This can lead to the empirical Wasserstein
distance giving loose upper bounds on Wp(P, Q) when the number of samples does not increase
exponentially with dimension. The example in Fig. 1 illustrates this curse of dimensionality, where
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the estimator CUBp (4) with CRN coupling gives tighter upper bounds of Wp(P, Q) than the
empirical Wasserstein estimates.

The second downside is computational. Calculating Wp(P̂n, Q̂n) amounts to solving an uncapac-
itated minimum cost flow problem with O(n3 log n) computational cost [Orlin, 1988], prohibitive
cost for large sample sizes. A popular alternative is to compute an entropy-regularized Wasserstein
distance instead using the Sinkhorn algorithm [Cuturi, 2013]. A larger value of the regularization
parameter ↼ > 0 leads to faster computation but also introduces an additional bias that can
compromise bound accuracy. A smaller ↼ leads to more expensive O(n2/(↼ϖ)) computation time for
ϖ-accurate solutions [Altschuler et al., 2017] and potential instability of the Sinkhorn algorithm in
practice. See App. A.4 for simulations illustrating these issues.

In comparison, our coupling estimators run in time linear in the sample size n and do not require
the solution of any expensive optimization problems. On the other hand, empirical Wasserstein
estimates will eventually converge to the true Wasserstein distance given su"ciently (perhaps
exponentially) large sample sizes, so the empirical Wasserstein approach can lead to tighter bounds
if one has a substantial computational budget.

The approach of Huggins et al. Huggins et al. [2020] derive upper bounds for Euclidean
Wasserstein distances in terms of KL or ε-divergences. To estimate their upper bounds of Wp(P, Q)
for P and Q in Pp(Rd) and P absolutely continuous with respect to Q, Huggins et al. propose
importance sampling based estimates which require samples from Q, evaluations of the normalized
density of Q, and evaluations of the unnormalized density of P . Fig. 4 (left) plots the performance
of the W2 bounds of Huggins et al. for the example in Sec. 2.1. The dot-dashed line represents the
mean of I = 20 independent Huggins et al. importance-sampling estimators, each with 2T = 3000
samples from Q. The CUB2 estimator plotted for comparison uses I independent CRN coupled
chains with trajectory length T and burnin S = 500. In this example, the Huggins et al. bounds are
significantly looser than both our CRN coupling bound and the independent coupling upper bound.
Furthermore, the Huggins et al. estimates exhibit an increasing variance in higher dimensions, as
shown by the large grey error bands. One advantage of the Huggins et al. estimates over CUB2

is that samples from P are not required. On the other hand, unlike the Huggins et al. estimates,
CUBp remains applicable even when the density of Q cannot be evaluated. This case arises for many
approximate MCMC algorithms such as ULA in Sec. 2.2, the stochastic gradient-based samplers in
Sec. 4.1, and the matrix approximation-based sampler in Sec. 4.2.

The approach of Dobson et al. Dobson et al. [2021] apply couplings to assess the quality
of numerical approximation of stochastic di!erential equations. Specifically, they focus on the
1-Wasserstein distance with the capped metric c(x, y) = min{1, ↗x ↘ y↗2} on Rd and derive upper
bounds in terms of the contraction constant of one of the marginal chains which are then estimated
using couplings. Our next result, proved in App. B.4, shows that E[CUB1] with the same coupling
provides a tighter upper bound than the proposal of Dobson et al. [2021].

Proposition 3.11 (CUB lower bounds Dobson et al.). Consider the 1-Wasserstein distance with
metric c(x, y) = min{1, ↗x ↘ y↗2} on Rd. Then, for any coupling and su!ciently large burn-in,
E[CUB1] (4) lower bounds the estimated upper bound of Dobson et al. [2021].

Fig. 4 (right) plots the 1-Wasserstein upper bounds of Dobson et al. and CUB1 for the example
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Figure 4: (Left) Upper bound estimates for W2 with c(x, y) = ↗x ↘ y↗2 between P = N (0, ”) and
Q = N (0, Id) for [”]i,j = 0.5|i≃j| for 1 ≃ i, j ≃ d. The Huggins et al. [2020] bound is looser than
CUB2 and has larger variance as the dimension grows. See Sec. 3.4 for more details. (Right) Upper
bound estimates for W1 with c(x, y) = min{1, ↗x ↘ y↗2} between ULA and MALA chains targeting
P = N (0, ”). In line with Prop. 3.11, the CUB1 (4) estimate is tighter than the Dobson et al. [2021]
bound employing the same CRN coupling. See Sec. 3.4 for more details.

in Sec. 2.2 with the capped metric c(x, y) = min{1, ↗x ↘ y↗2} on Rd. We use I = 100 independent
coupled chains with trajectory length T = 3000 and burnin S = 1000 to estimate both the upper
bounds of Dobson et al. and CUB1. The figure shows that, in line with Prop. 3.11, the upper
bounds of Dobson et al. are looser than CUB1.

4 Applications

We now illustrate the value of our methods for three practical applications. We focus on the
2-Wasserstein distance with c(x, y) = ↗x ↘ y↗2 on Rd, which by (2) controls first and second order
moments and captures geometric features induced by the Euclidean norm ↗·↗2. In this case a tractably
estimated lower bound on the Wasserstein distance is also available. For any P, Q ↓ P2(Rd), let Pi

and Qi denote the marginal distributions of the ith component of P and Q respectively. Let NP

and NQ denote Gaussian distributions on Rd with the same means and covariance matrices as P
and Q respectively. Then,

max
{ ∑d

i=1
W2(Pi, Qi)2 , W2(NP , NQ)2

}
≃ W2(P, Q)2. (7)

Here,
∑d

i=1
W2(Pi, Qi)2

≃ W2(P, Q)2 follows from the coupling representation of W2(P, Q), and
W2(NP , NQ) ≃ W2(P, Q) is the lower bound of Gelbrich [1990, Thm. 2.1]. Each one-dimensional
Wasserstein distance W

2

2
(Pi, Qi) admits a convenient representation for estimation, given by´

1

0
(F ≃1

Pi
(u) ↘ F ≃1

Qi
(u))2du where F ≃1

Pi
and F ≃1

Qi
are the inverse cumulative distribution functions of

Pi and Qi respectively, while W2(NP , NQ) has the closed form
(
↗µP ↘ µQ↗

2

2
+ Trace

(
”P + ”Q ↘

2(”1/2

P ”Q”1/2

P )1/2
))1/2 in terms of the means µP , µQ and covariances ”P , ”Q of P and Q [Peyré

and Cuturi, 2019, Rem. 2.23]. Since the true Wasserstein distances are unknown in our applications
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to follow, we will assess the tightness of our coupling-based upper bounds by estimating the lower
bound (7). Details of all the datasets, algorithms, and specific estimator parameters used in this
section can be found in App. E.

4.1 Approximate MCMC and variational inference for tall data

Our first application concerns Bayesian inference for tall datasets [Bardenet et al., 2017], where
the number of observations n is large compared to the dimension d. In such settings, exact MCMC
can be computationally expensive with $(n) cost per iteration. This computational bottleneck and
the prevalence of tall datasets has catalyzed much interest in approximate MCMC and variational
approximation based algorithms. Approximate MCMC algorithms include ULA and stochastic
gradient MCMC (see [Nemeth and Fearnhead, 2021] for a review) such as SGLD [Welling and Teh,
2011]. Popular variational approximation methods include Laplace approximation [e.g., Tierney and
Kadane, 1986] and variational Bayes (VB, see [Blei et al., 2017] for a review).

In this section, we assess the quality of these sampling algorithms. We consider ULA, SGLD,
Laplace approximation, and mean field VB applied to Bayesian logistic regression with a Gaussian
prior for the Pima diabetes dataset [Smith et al., 1988] and the DS1 life sciences dataset [Komarek
and Moore, 2003]. For each sampling algorithm, Fig. 5 plots CUB2 (4) upper bounds and W2 lower
bounds estimated using (7). We simulate the coupled chains (X(i)

t , Y (i)
t )t↔0 independently for each

i, where each (X(i)
t )t↔0 is a MALA chain targeting the posterior P and each (Y (i)

t )t↔0 is linked to
an approximate MCMC or a variational procedure. In particular, we consider (Y (i)

t )t↔0 to be an
ULA chain, SGLD chains based on sub-sampling 10% and 50% of the observations, a MALA chain
targeting N (µL, ”L) where µL ↓ Rd and ”L ↓ Rd↑d are from a Laplace approximation of P , and a
MALA chain targeting N (µV B , ”V B) where µV B ↓ Rd and ”V B ↓ Diag(Rd↑d) are from a Gaussian
mean field VB approximation of P . In each case, we use a CRN coupling between the marginal
kernels of (X(i)

t )t↔0 and (Y (i)
t )t↔0. App. E.1 contains details about the datasets, algorithms and

estimator parameters used.
Fig. 5 shows that Laplace approximation has the smallest asymptotic bias for both datasets.

This promising Laplace performance can be linked to posterior concentration and accuracy of the
corresponding Bernstein-von Mises approximation [Bardenet et al., 2017, Chopin and Ridgway,
2017]. Our bounds also show how the Metropolis–Hastings correction and stochastic gradients a!ect
the quality of ULA and SGLD. Overall, this application illustrates the e!ectiveness of our proposed
quality measures for comparing approximate inference algorithms in the tall data setting.

4.2 Approximate MCMC for high-dimensional linear regression

We now consider high-dimensional Bayesian linear regression, where the dimension d is larger than
the number of observations n. The likelihood for the response vector y ↓ Rn is a Gaussian density
with mean X↽ and covariance matrix ϑ2In, where X ↓ Rn↑d is the design matrix, ↽ ↓ Rd is an
unknown signal vector, and ϑ2 > 0 is the unknown noise variance. We consider a class of global-local
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Figure 5: Bounds on the Euclidean W2 bias of approximate MCMC and variational inference
procedures for Bayesian logistic regression. We consider the DS1 dataset (n = 26732 observations,
d = 10 covariates) and the Pima dataset (n = 768, d = 8). See Sec. 4.1 for more details.

mixture priors, given by

⇀≃1/2
⇒ C+(0, 1), ⇁≃1/2

j
i.i.d.
⇒ t+(ν), ϑ≃2

⇒ Gamma
(

a0
2

, b0
2

)
, ↽j |⇁, ⇀, ϑ2 ind.

⇒ N

(
0, ϱ2

ςφj

)

where C+(0, 1) is the half-Cauchy distribution on [0, ↑) and t+(ν) is the half-t distribution on [0, ↑)
with ν degrees of freedom. When ν = 1, this corresponds to the popular Horseshoe prior [Carvalho
et al., 2010]. This setting di!ers considerably from the log-concave tall data example of Sec. 4.1, as
now the posterior distribution is multi-modal, has polynomial tails, and has infinite density about
the origin [Biswas et al., 2022]. Johndrow et al. [2020] have developed exact and approximate Gibbs
samplers for the Horseshoe prior in this setting, which involves an approximation parameter ϖ → 0.
Biswas et al. [2022] extended the sampler of Johndrow et al. to all ν → 1 and showed that using
larger values of ν could improve mixing times in high dimensions.

In this section, we use couplings to assess the quality of such approximate MCMC algorithms.
Following Biswas et al., we consider ν = 2 applied to a genome-wide association study (GWAS)
dataset [Bühlmann et al., 2014] and a synthetic dataset. We use a CRN coupling with the marginal
chains corresponding to the exact and the approximate MCMC kernel. App. E.2 contains details
about the datasets, algorithms, and estimator parameters used.

Fig. 6 plots upper and lower bounds on the 2-Wasserstein distance, illustrating how asymptotic
bias of the approximate Gibbs sampler varies with the approximation parameter ϖ → 0. The
upper bounds are given by our estimator CUB2 (4), and the lower bounds are estimated using (7).
For developers of such high-dimensional approximate MCMC samplers, these bounds provide an
empirical assessment of the trade-o! between improved quality and higher computational cost. In
particular, the bounds enable a developer to assess the computational cost of an approximation
procedure as a function of the bias introduced (and vice-versa). For example, for any maximum
acceptable bias level, one can identify the largest approximation parameter ϖ with a CUB interval
below the acceptable level and assess the computational savings delivered relative to an exact
sampler.

Often one will choose an acceptable level of Wasserstein bias based on the direct implications
for downstream inferential tasks (e.g., based on tolerable discrepancies in predictive accuracy or
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(b) Synthetic dataset (n = 500, d = 50000)

Figure 6: Bounds on the Euclidean W2 bias of an approximate MCMC Gibbs sampler for high-
dimensional Bayesian regression with half-t(2) prior, n observations, and d covariates. We consider
both a bacteria GWAS dataset and a synthetic dataset. See Sec. 4.2 for more details.

numerical integration, as discussed in Section 1.2). When it is otherwise di"cult for a user to select
an acceptable level of Wasserstein bias on an absolute scale, we would recommend normalizing each
CUB estimate based on the coupled chains (X(i)

t , Y (i)
t )T

t=0
by a second, independent-coupling CUB

estimate based on the chains (X(i)
t , X̃(i)

t )T
t=0

, where (X̃(i)
t )T

t=0
is sampled independently of (X(i)

t )T
t=0

using the P -invariant K1 kernel. This enables Wasserstein bias to be assessed relative to a measure
of the intrinsic variability or noise level in the target distribution P .

4.3 Approximate MCMC for high-dimensional logistic regression

We now consider high-dimensional Bayesian logistic regression with spike and slab priors, a popular
choice for Bayesian variable selection [Tadesse and Vannucci, 2021]. Narisetty et al. [2019] recently
developed an approximate MCMC algorithm called Skinny Gibbs, to sample from posteriors in this
setting. Here, we assess the quality of the Skinny Gibbs algorithm applied to a malware dataset [Dua
and Gra!, 2017] and a lymph node GWAS [Narisetty et al., 2019] dataset using a CRN coupling
between the exact MCMC kernel and the Skinny Gibbs kernel. App. E.3 contains further details
about spike and slab priors and the datasets, algorithms, and estimator parameters used.

Fig. 7 displays CUB2 (4) upper bounds and lower bounds estimated using (7) on the Euclidean
2-Wasserstein distance between the limiting distributions of the exact and Skinny Gibbs chains for ↽.
We display these bounds not to draw comparisons across the datasets but rather to exemplify the
level of precision provided by CUB when applied to real high-dimensional logistic regression tasks.
For researchers developing approximate samplers, these bounds provide an empirical assessment of
asymptotic bias for di!erent datasets and posteriors under the spike and slab prior.

5 Discussion

We have introduced new estimators to assess the quality of approximate inference procedures. The
estimators consistently bound the Wasserstein distance between the limiting distribution of the
approximation and the original target distribution of interest. The proposed estimators can be
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Figure 7: Bounds on the Euclidean W2 bias of the Skinny Gibbs sampler [Narisetty et al., 2019]
for Bayesian logistic regression with a spike and slab prior; see Sec. 4.3 for details. We consider
a malware dataset (n = 373 observations; d = 503 covariates) and a lymph node GWAS dataset
(n = 148, d = 4514).

applied to approximate MCMC and certain variational inference methods in practical settings,
including Bayesian regression in 50000 dimensions.

The following questions arise from our work.
Alternative coupling algorithms. We have chosen CRN coupling as a practical default for our

experiments due to its broad applicability, but a growing inventory of alternative coupling strategies
is available [Heng and Jacob, 2019, Lee et al., 2020, Xu et al., 2021, Wang et al., 2021, Biswas et al.,
2022], and, as evidenced in Sec. 3.2, alternative couplings tailored to the problem can yield tighter
upper bounds. An important open question is how to best identify or construct a better coupling
for a given problem at hand.

Avoiding sampling from an asymptotically unbiased Markov chain. Our proposed upper bounds
require sampling from a P -invariant Markov chain (Xt)t↔0. This raises the question: can one
construct a Markov chain (Y ⇒

t , Yt)t↔0 such that (i) (Y ⇒
t )t↔0 and (Yt)t↔0 are identically distributed

according to the same asymptotically biased chain marginally and (ii) E[c(Xt, Y ⇒
t )p] = E[c(Xt, Yt)p] ≃

E[c(Y ⇒
t , Yt)p] for all t → 0, where (Xt)t↔0 is an asymptotically unbiased chain? Then we could sample

from the computationally less expensive chain (Y ⇒
t , Yt)t↔0 to obtain an upper bound of E[c(Xt, Yt)p]1/p

which is only loose by a constant factor of 2, as E[c(Y ⇒
t , Yt)p]1/p

≃ E[c(Xt, Yt)p]1/p+E[c(Xt, Y ⇒
t )p]1/p =

2E[c(Xt, Yt)p]1/p. We hope to investigate such coupling constructions in follow-up work.
Upper bounds for total variation distance. The 1-Wasserstein distance with metric c(x, y) =

I{x ↖= y} gives the popular total variation (TV) distance, which always takes values in [0, 1] and
is invariant to reparameterization. To obtain upper bounds of TV strictly less than 1 using our
estimators, we require couplings which allow exact meetings between the two marginal chains. Our
initial attempts at using maximal couplings [Johnson, 1998, Jacob et al., 2020, Wang et al., 2021]
have not been e!ective in high dimensions and suggest a need for further methodological work.

Spot checking. Finally, an anonymous associate editor suggested the following additional appli-
cation. Often one is interested in approximating an entire family of target distributions Pφ with
approximations Qφ indexed by a parameter ⇁ taking a large number of distinct values in R. When
it is feasible to run a Pφ-invariant Markov chain only for a small number of ⇁ values but infeasible
to run these exact chains for all target ⇁ values, CUB can be used to spot check Wasserstein quality
at a small set of representative ⇁ values and drive decision making around the degree or type of
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approximation used for the full collection of ⇁ values.
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A Additional figures and discussion

A.1 Calculation of empirical Wasserstein bounds in Figure 1.

In this section we note how the empirical Wasserstein upper bounds and error bands in Figure 1 are
generated. Our upper bounds are based on Proposition 3.10, which gives

Wp(P, Q)p
≃ E

[
Wp(P̂T , Q̂T )p

]

where P and Q are distributions on the metric space (X , c) with finite moments of order p, and P̂T

and Q̂T denote empirical distributions of the samples (X1, ..., XT ) and (Y1, ..., YT ) where Xi ⇒ P
and Yi ⇒ Q for all i = 1, ..., T . For p = 2 and P ↖= Q, the dot-dashed lines in Figure 1 plots the
corresponding estimate of this upper bound, given by

(1
I

I∑

i=1

W2(P̂ (i)
T , Q̂(i)

T )2

)1/2

(8)

where P̂ (i)
T and Q̂(i)

T are empirical distribution of P and Q respectively based on T samples. For
each i = 1, ..., I, such empirical distributions P̂ (i)

T and Q̂(i)
T are generated independently and then

W2(P̂ (i)
T , Q̂(i)

T ) is calculated by solving a linear program. The error bands plot 95% confidence

intervals given by
[

1

I

∑I
i=1

W2(P̂ (i)
T , Q̂(i)

T )2
± 1.96ϑ̂/

↙
I
]1/2

where ϑ̂2 is the empirical variance of
(
W2(P̂ (i)

T , Q̂(i)
T )2

)I

i=1
.

Instead of (8), one could alternatively use the estimator W2(P̂IT , Q̂IT ) where P̂IT and Q̂IT are
empirical distribution of P and Q respectively based on IT samples. Using W2(P̂IT , Q̂IT ) produces
a tighter upper bound estimate compared to using (8), which is linked to consistency of empirical
Wasserstein distance based estimates covered in Proposition 3.10 of Section 3.4. However, this
numerical improvement is minor; for example in Figure 1 (Left) with dimension d = 100, a tighter
empirical upper bound of 11.35 is obtained using this estimator compared to the upper bound of
11.83 using (8) and both these upper bound estimates are looser than the coupling based upper
bound estimate of 5.78. Such minor numerical improvement is linked to the curse of dimensionality
for empirical Wasserstein distances, as discussed in Sections 1.2 and 3.4. Furthermore, calculating
W2(P̂IT , Q̂IT ) for this example requires approximately 10 times greater numerical runtimes compared
to calculating (8).

A.2 Section 2.2 calculations.

As kernel K1 is P invariant, Xt ⇒ Pt
t↗↘
⇑ P for all t → 0 [e.g. Roberts and Tweedie, 1996]. The

ULA chain (Yt)t↔0 corresponds to an auto-regressive AR(1) model, where

Yt = (Id ↘ (ϑ2

Q/2)”≃1)Yt≃1 + ϑQZt = BYt≃1 + ϑQZt
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for all t → 0, where Y0 ⇒ N (0, Id), Zt
i.i.d.
⇒ N (0, Id) and Z0 ↭ Y0, and B = (Id ↘ (ϑ2

Q/2)”≃1). By
induction,

Yt = BtZ0 + ϑQ

(
Bt≃1Z1 + Bt≃2Z2 + ... + Zt

)

= BtZ0 + ϑQ

t≃1∑

j=0

BjZt≃j

⇒ N
(
0, B2t + ϑ2

Q

t≃1∑

j=0

B2j
)

=: Qt

as required. Finally, note that for ϑQ = 0.5d≃1/6 su"ciently small such that ↗B↗op < 1 (where
↗·↗op is the matrix operator norm), lim

t↗↘

(
B2t +

∑t≃1

j=0
B2j

)
= (Id ↘ B2)≃1 (see, e.g. Shumway

and Sto!er [2000] for su"cient conditions for the convergence AR(1) models). This gives Qt
t↗↘
⇑

N (0, ϑ2

Q(Id ↘ B2)≃1) =: Q.

ULA asymptotic bias upper bound calculation for Figure 2. We recall a result of Durmus
and Moulines [2019] on the asymptotic bias of ULA.

Proposition A.1. [Durmus and Moulines, 2019, Corollary 9] Consider an ULA Markov chain
targeting the distribution π on Rd with un-normalized density exp(↘U(x)). For ↗ · ↗2 the Euclidean
norm on Rd, assume:

1. U is continuously di"erentiable and lipschitz: there exists some L → 0 such that for all
x, y ↓ Rd,

↗⇔U(x) ↘ ⇔U(y)↗ ≃ L↗x ↘ y↗2.

2. U is m-strongly convex for some m > 0: there exists some m > 0 such that for all x, y ↓ Rd,

U(x) ≃ U(y) + ∝⇔U(x), y ↘ x′ + (m/2)↗x ↘ y↗
2

2

3. U is three times continuously di"erentiable and there exists some L̃ > 0 such that for all
x, y ↓ Rd,

↗⇔
2U(x) ↘ ⇔

2U(y)↗2 ≃ L̃↗x ↘ y↗2.

Let the step size ϑ of the Markov chain be su!ciently small such that ω ↭ ϑ2/2 < 1/(m + L). Then
the ULA Markov chain converges to some distribution πω , and

W2(π, πω)2
≃ 2φ≃1ω2d

(
2L2 + ωL4

(ω

6 + 1
m

)
+ φ≃1

(4dL̃2

3 + ωL4 + 4L4

3m

))
(9)

where φ = 2mL/(m + L).

The dotted line in Figure 2 is plotted by applying (9) for π = N (0, ”), where L = ↼min(”)≃1,
m = ↼max(”)≃1 and L̃ = 0. Here ↼max(”) and ↼min(”) are the largest and smallest eigenvalue of
” respectively.
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A.3 Non-asymptotic upper bounds using L-Lag coupling

In this section, we discuss how to avoid burn-in removal and instead directly correct our bound for
non-stationarity using the recent L-lag coupling approach of Biswas et al. [2019] in the case of the
1-Wasserstein distance.

We first informally outline the approach of Biswas et al. [2019]. Consider a Markov chain on (X , c)
with transition kernel K1, marginal distributions (Pt)t↔0 and a unique stationary distribution P .
Consider a joint kernel K̄1 on X ↔ X such that K̄1((x, y), (·, X )) = K1(x, ·) and K̄1((x, y), (X , ·)) =
K1(y, ·) for all x, y ↓ X . Then the L-lag coupling chain (X̃t≃L, Xt)t↔L is generated by sampling X0

and X̃0 independently from a common initial distribution P0, sampling Xt|Xt≃1 ⇒ K1(Xt≃1, ·) for
t = 1, ..., L, and generating (X̃t≃L, Xt)|X̃t≃L≃1, Xt≃1 ⇒ K̄1((X̃t≃L≃1, Xt≃1), ·) for t > L. Crucially,
the joint kernel K̄1 is designed such that: (i) the marginal chains (X̃t≃L)t↔L and (Xt)t↔0 exactly
meet such that the random meeting time ▷ ↭ inf{t > L : X̃t≃L = Xt} is almost surely finite and (ii)
the chains remain faithful after meeting such that X̃t≃L = Xt for all t → ▷ . Suppose the coupled
chain (X̃t≃L, Xt)t↔L satisfies Assumptions A.2, A.3 and A.4 [Biswas et al., 2019, Jacob et al., 2020]
(see Middleton et al. [2020] for the use of polynomially-tailed meeting times).

Assumption A.2 (Marginal convergence and uniformly bounded moments). Marginal distributions
(Pt)t↔0 converge to P in 1-Wasserstein distance, and for all t → L, E[c(X̃t≃L, Xt)2+φ] ≃ D for some
constants ⇁ > 0 and D < ↑.

Assumption A.3 (Sub-exponentially tailed meeting times). The meeting times ▷ ↭ inf{t > L :
Xt = X̃t≃L} satisfies P( ↼≃L

L > t) ≃ Cςt for some constants C < ↑ and ς ↓ (0, 1) and all t → 0.

Assumption A.4 (Faithfulness after meeting). Xt = X̃t≃L for all t → ▷ .

Under Assumptions A.2, A.3 and A.4, Biswas et al. [2019] obtain

W1(Pt, P ) ≃

↘∑

j=1

W1(Pt+jL≃L, Pt+jL) (10)

≃

↘∑

j=1

E[c(X̃t+jL≃L, Xt+jL)] (11)

= E
[ ↘∑

j=1

c(X̃t+jL≃L, Xt+jL)
]

(12)

= E
[ ⇑(↼≃L≃t)/L⇓∑

j=1

c(X̃t+jL≃L, Xt+jL)
]
, (13)

where (10) follows from the triangle inequality using Assumption A.2, (11) follows from the coupling
representation of the Wasserstein distance, and (12) follows from interchanging the summation
and expectation using the dominated convergence theorem under Assumptions A.2 and A.3, and
(13) follows as c(X̃t+jL≃L, Xt+jL) = 0 for all j > ∞(▷ ↘ L ↘ t)/L∈ under Assumption A.4. Note
that ▷ has finite expectation under Assumption A.3, which means the upper bound in (13) can be
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estimated in finite time. We can estimate this upper bound by simulating multiple L-lag coupled
chains (X̃t≃L, Xt)↼↔t↔L independently and using the empirical average

1
I

I∑

i=1

⇑(↼(i)≃L≃t)/L⇓∑

j=1

c(X̃(i)
t+jL≃L, X(i)

t+jL)

where I → 1 is the number of independent coupled chains.
The following Proposition employs this upper bound alongside CUB1 (4) to obtain a non-

asymptotic upper bound on W1(P, Q).

Proposition A.5 (Non-asymptotic upper bound). For any lag L → 1, consider the coupled
chain (X̃t≃L, Xt, Yt, Ỹt≃L)t↔L such that (X̃t≃L, Xt)t↔L is an L-lag coupling chain for the kernel
K1, (Ỹt≃L, Yt)t↔L is an L-lag coupling chain for the kernel K2, and (Xt, Yt)t↔L is a coupled chain
sampled using Algorithm 1. Under Assumption 3.4 with p = 1 and Assumptions A.2, A.3 and A.4
for the coupled chains (X̃t≃L, Xt)t↔L and (Ỹt≃L, Yt)t↔L,

W1(P, Q) ≃ E[CUB1,t] + E[
⇑(↼P ≃L≃t)/L⇓∑

j=1

c(X̃t+(j≃1)L, Xt+jL)] + E[
⇑(↼Q≃L≃t)/L⇓∑

j=1

c(Ỹt+(j≃1)L, Yt+jL)]

(14)
for all t → 0, where ▷P ↭ inf{t > L : X̃t≃L = Xt} and ▷Q ↭ inf{t > L : Ỹt≃L = Yt}.

A.4 Sinkhorn algorithm simulations for Section 3.4

In this section we consider the impact of the regularization parameter of the Sinkhorn algorithm.
Figure 8a of this section plots the Wasserstein distance upper bounds for the stylized example in
Section 2.1. In particular, we consider the 2-Wasserstein distance with Euclidean norm on Rd, and
the distributions P = N (0, ”) where ”i,j = 0.5|i≃j| for 1 ≃ i, j ≃ d and Q = N (0, Id) in the case of
dimension d = 10.

The CUB2 (4) estimate (black line) in Figure 8a is based a CRN coupling of marginal MALA
kernels, with I = 10 independent coupling chains and trajectories of length T = 500 with a burn-in
of S = 100 for each chain. The true Wasserstein (black dot-dashed line) distance and the upper
bound from indepdendent coupling (black dotted line) are analytically tractable, as given in Section
2.1. For di!erent values of the entropic regularization parameter ↼, the grey solid line plots the
induced distance of the optimal matching obtained from the Sinkhorn algorithm. For each ↼, we
implement the Sinkhorn algorithm on empirical distributions with IT = 5000 sample points from
P and Q. Figure 8a shows that we require a small entropic regularization parameter ↼ to obtain
informative upper bounds using the Sinkhorn algorithm. On the other hand, Figure 8b shows that
the runtime for the Sinkhorn algorithm increases dramatically for smaller values of ↼. This example
illustrates that the Sinkhorn algorithm has expensive runtime precisely for the smaller values of ↼
that give tighter upper bounds to the Wasserstein distance. In comparison, the CUB2 (4) estimate
does not require solving any expensive optimization problem.
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Figure 8: Figure 8a plots upper bound estimates for W2(P, Q) with P = N (0, ”) where ”i,j =
0.5|i≃j| for 1 ≃ i, j ≃ d, Q = N (0, Id), metric c(x, y) = ↗x ↘ y↗2 and dimension d = 10. Figure 8b
plots the runtime of the Sinkhorn algorithm.

B Proofs

B.1 Consistency proofs

Technical Results. We first collect some technical results for reference.

Lemma B.1. Let (aj)j↔0 be a real sequence with aj
j↗↘
⇓ 0, and let ϱ ↓ (0, 1). Then

∑t
j=1

ϱt≃jaj
t↗↘
⇓

0.

Proof of B.1. As aj
j↗↘
⇓ 0, the sequence (aj)j↔0 is bounded by some M ↓ (0, ↑). Also for all ϖ > 0,

there exists some j0 → 1 such that |aj | < ϖ for all j → j0. For all t > j0, this gives


t∑

j=1

ϱt≃jaj

 ≃

j0∑

j=1

ϱt≃j
|aj | +

t∑

j=j0+1

ϱt≃j
|aj | ≃ Mϱt≃j0 1 ↘ ϱj0

1 ↘ ϱ
+ ϖ

1 ↘ ϱt≃j0

1 ↘ ϱ
.

Taking t ⇓ ↑, we obtain limt↗↘


∑t

j=1
ϱt≃jaj

 ≃ ϖ/(1↘ϱ), where ϖ/(1↘ϱ) can be made arbitrarily
small.

Lemma B.2. Let (⇀i)i↔0 be independent and identically distributed non-negative random variables
with E[⇀1] < ↑, and let Sn =

∑n
i=1

⇀i. Then as n ⇓ ↑, Sn/n
a.s., L1

⇓ E[⇀1] and for any p → 1,
(Sn/n)1/p a.s., L1

⇓ E[⇀1]1/p.

Proof of B.2. As n tends to infinity, Sn/n
a.s., L1

⇓ E[⇀1] follows from the proof of the Strong law of
large numbers using backwards martingales (see, e.g., Durrett [2019, Theorem 4.7.1 and Example
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4.7.4]). (Sn/n)1/p a.s.
⇓ (E[⇀1])1/p follows from Sn/n

a.s.
⇓ E[⇀1] by continuous mapping theorem on

[0, ↑). Finally, for p → 1,

E[|(Sn/n)1/p
↘ (E[⇀1])1/p

|] ≃ E[|(Sn/n) ↘ E[⇀1]|1/p] ≃ E[|(Sn/n) ↘ E[⇀1]|]1/p n↗↘
⇓ 0

where the first inequality follows as |a1/p
↘ b1/p

| ≃ |a ↘ b|
1/p for all a, b → 0 and p → 1, the second

inequality follows from Jensen’s inequality and the limit follows as Sn/n
L1
⇓ E[⇀1]. Therefore,

(Sn/n)1/p L1
⇓ E[⇀1]1/p.

Proof of Proposition 3.1: Consistency of instantaneous CUB . Note that Wp(Pt, Qt) is well-defined
and E[c(Xt, Yt)p] is finite as distributions P and Q have finite moments of order p. We obtain

Wp(Pt, Qt)p
≃ E[c(Xt, Yt)p] = E[CUBp

p,t],

where the inequality follows from the coupling representation of Wasserstein distance, and the equality
follows from the definition of CUBp,t. As E[CUBp

p,t] < ↑, by Lemma B.2, CUBp
p,t

a.s., L1
⇓ E[CUBp

p,t]
as I ⇓ ↑.

Proof of Corollary 3.2: Consistency of CUB for time-averaged marginals. We first show that

Wp( 1
T ↘ S

T∑

t=S+1

Pt,
1

T ↘ S

T∑

t=S+1

Qt)p
≃

1
T ↘ S

T∑

t=S+1

Wp(Pt, Qt)p.

Let ωt denote the p-Wasserstein optimal coupling between distributions Pt and Qt for t = S +1, ..., T .
Sample the coupling (X↓, Y ↓) such that (X↓, Y ↓)|U↓ = t ⇒ ωt for U↓

⇒ Uniform({S + 1, ..., T}).
Then X↓

⇒
1

T ≃S

∑T
t=S+1

Pt and Y ↓
⇒

1

T ≃S

∑T
t=S+1

Qt marginally, and

Wp

( 1
T ↘ S

T∑

t=S+1

Pt,
1

T ↘ S

T∑

t=S+1

Qt

)p
≃ E[c(X↓, Y ↓)p] by the coupling representation of Wp

= 1
T ↘ S

T∑

t=S+1

E[c(X↓, Y ↓)p
|U↓ = t]

= 1
T ↘ S

T∑

t=S+1

Wp(Pt, Qt)p.

Now by Proposition 3.1 and definition (4),

1
T ↘ S

T∑

t=S+1

Wp(Pt, Qt)p
≃ E

[ 1
T ↘ S

T∑

t=S+1

CUBp
p,t

]
= E[CUBp

p].

As E[CUBp
p] < ↑, by Lemma B.2 CUBp

p
a.s., L1

⇓ E[CUBp
p] as I ⇓ ↑.

Proof of Corollary 3.3: Consistency of CUB with stationary initialization. Note that Wp(P, Q) is
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well-defined and
∑T

t=S+1
E[c(Xt, Yt)p]/(T ↘S) is finite as distributions Pt and Qt have finite moments

of order p. We obtain,

Wp(P, Q)p = 1
T ↘ S

T∑

t=S+1

Wp(Pt, Qt)p
≃

1
T ↘ S

T∑

t=S+1

E[c(Xt, Yt)p] = E[CUBp
p].

where the first equality follows as Pt = P and Qt = Q for all t → 0, the inequality follows Proposition
3.1, and the last equality follows from the definition of CUBp. As E[CUBp

p] < ↑, by Lemma B.2

CUBp
p

a.s., L1
⇓ E[CUBp

p] as I ⇓ ↑.

Proof of Proposition 3.5: Consistency when chain marginals converge. Let (Pt)t↔0 and (Qt)t↔0 de-
note the marginal distributions of Markov chains (Xt)t↔0 and (Yt)t↔0 respectively. By Assumption
3.4, distributions (Pt)t↔0, (Qt)t↔0, P and Q all have finite moments of order p. Then for all t → 1,

Wp(P, Q) ≃ Wp(P, Pt) + Wp(Pt, Qt) + Wp(Qt, Q) (15)
≃ Wp(P, Pt) + E[c(Xt, Yt)p]1/p + Wp(Qt, Q), (16)

where (15) follows by the triangle inequality as Wp is a metric on the space of measure on X with
finite moments of order p , and (16) follows from the coupling representation of Wp. By Assumption
3.4, limt↗↘ Wp(P, Pt) = 0 and limt↗↘ Wp(Qt, Q) = 0. Taking the limit infimum in (16) and raising
to the pth exponent gives Wp(P, Q)p

≃ lim inft↗↘ E[c(Xt, Yt)p]. Therefore for all ϖ > 0, there exists
S → 1 such that for all t → S, Wp(P, Q)p

≃ ϖ + E[c(Xt, Yt)p], and

Wp(P, Q)p
≃ ϖ + 1

T ↘ S

T∑

t=S+1

E[c(Xt, Yt)p] = ϖ + E[CUBp
p]

for all T → S. As E[CUBp
p]p < ↑, by Lemma B.2 CUBp

p
a.s., L1

⇓ E[CUBp
p] as I ⇓ ↑.

Proof of Proposition A.5: Non-asymptotic upper bound. By the triangle inequality,

W1(P, Q) ≃ W1(Pt, Qt) + W1(Pt, P ) + W1(Pt, P ).

By Proposition 3.1, W1(Pt, Qt) ≃ E[CUB1,t]. Under assumptions A.2, A.3 and A.4, by Biswas et al.
[2019, Theorem 2.5]

W1(Pt, P ) ≃ E
[ ⇑(↼P ≃L≃t)/L⇓∑

j=1

c(X̃t+(j≃1)L, Xt+jL)
]

and

W1(Qt, Q) ≃ E
[ ⇑(↼Q≃L≃t)/L⇓∑

j=1

c(Ỹt+(j≃1)L, Yt+jL)
]
.

Equation (14) now directly follows. As the meeting times ▷P and ▷Q have sub-exponential tails by
Assumption A.3, the L-lag upper bounds can be estimated in finite time.
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B.2 Wasserstein upper bound proofs

Proof of Theorem 3.7: CUB upper bound. Under the coupled kernel K̄ from Algorithm 2, for each
t → 1 we have the coupling (Xt, Zt, Yt) where (Xt, Zt)|Xt≃1, Yt≃1 ⇒ !1(Xt≃1, Yt≃1) and (Zt, Yt)|Xt≃1, Yt≃1 ⇒

!#(Yt≃1). This gives

E[c(Xt, Yt)p]1/p = E[E[c(Xt, Yt)p
|Xt≃1, Yt≃1]]1/p

≃ E[E[
(
c(Xt, Zt) + c(Zt, Yt)

)p
|Xt≃1, Yt≃1]]1/p (17)

≃ E[E[c(Xt, Zt)p
|Xt≃1, Yt≃1]]1/p + E[E[c(Zt, Yt)p

|Xt≃1, Yt≃1]]1/p (18)
≃ ϱE[c(Xt≃1, Yt≃1)p]1/p + E[#p(Yt≃1)]1/p (19)

where (17) follows as c is a metric, (18) follows by Minkowski’s inequality, and (19) follows by
Assumption 3.6 with #p(z) ↭ E[c(X, Y )p

|z] for (X, Y ) ⇒ !#(z). By induction, (19) implies

E[c(Xt, Yt)p]1/p
≃ ϱtE[c(X0, Y0)p]1/p +

t∑

i=1

ϱt≃iE[#p(Yi≃1)]1/p.

Proof of Corollary 3.8: CUB upper bound under marginal convergence. Denote a ↭ E[#p(Y ↓)]1/p

for Y ↓
⇒ Q and ak ↭ E[#p(Yk)]1/p for k → 0. Then ak

k↗↘
⇓ a, because Qt converges in p-Wasserstein

distance to Q as t ⇓ ↑. By Lemma B.1, this implies

t∑

i=1

ϱt≃iai≃1

t↗↘
⇓

t∑

i=1

ϱt≃ia = 1 ↘ ϱt

1 ↘ ϱ
a.

Therefore, for all ϖ > 0 there exists S → 1 such that for all t → S,
∑t

i=1
ϱt≃i

|ai ↘ a| < ϖ. By Theorem
3.7,

E[c(Xt, Yt)p]1/p
≃ ϱtE[c(X0, Y0)p]1/p +

t∑

i=1

ϱt≃iai≃1

≃ ϱtE[c(X0, Y0)p]1/p +
t∑

i=1

ϱt≃ia +
t∑

i=1

ϱt≃i
|ai≃1 ↘ a|

= ϱtE[c(X0, Y0)p]1/p + 1 ↘ ϱt

1 ↘ ϱ
a + ϖ.

Proof of Proposition 3.9: CUB upper bound weighted by a Lyapunov function. As V is a a pth-order
Lyapunov function of K2, by induction

E[V (Yi)p] ≃ ωiE[V (Y0)p] + (1 ↘ ωi) L

1 ↘ ω
for all i → 0. (20)
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for all i → 0. Therefore,

E[#p(Yi)] ≃ ςE[1 + V (Yi≃1)p] ≃ ςp
(

1 + ωi≃1E[V (Y0)p] + (1 ↘ ωi≃1) L

1 ↘ ω

)
≃ ςpφp

for all i → 1, where the first inequality follows from the definition of ς, second inequality from (20),
and the second inequality from the definition of φ. By Theorem 3.7, we obtain

E[c(Xt, Yt)p]1/p
≃ ϱtE[c(X0, Y0)p]1/p +

t∑

i=1

ϱt≃iE
[
#p(Yi≃1)

]1/p

≃ ϱtE[c(X0, Y0)p]1/p + ςφ
t∑

i=1

ϱt≃i

= ϱtE[c(X0, Y0)p]1/p + (1 ↘ ϱt) ςφ

1 ↘ ϱ
.

B.3 Wasserstein distances of empirical distributions proofs

To prove Proposition 3.10, we first record a technical result.

Lemma B.3. Suppose S and T are distributions on the metric space (X , c) with finite moments
of order p, and n → 1 is an integer. Given Ui ⇒ S for i = 1, ..., n, let Ŝn denote the empirical
distribution of (U1, ..., Un). Then,

Wp(S, T )p
≃ E[Wp(Ŝn, T )p].

Proof. Our proof follows a coupling construction. Define random variables V ⇒ T and Ui ⇒ S
for i = 1, ..., n such that V and (U1, ..., Un) are independent. Then V |U1, ...Un ⇒ V ⇒ T by
independence. Let Ŝn denote the empirical distribution of (U1, ..., Un). Define a random variable
U such that U |U1, ...Un ⇒ Ŝn and (U, V )|U1, ...Un is a Wasserstein optimal coupling of Ŝn and T .
Note that unconditionally V ⇒ T and U ⇒ S as Ui ⇒ S for all i = 1, ..., n. Therefore (U, V ) is a
coupling of S and T . We obtain,

Wp(S, T )p
≃ E[c(U, V )p] by the coupling representation of Wasserstein distance
= E[E[c(U, V )p

|U1, ...Un]]

= E[Wp(Ŝn, T )p].

Proof of Proposition 3.10: Empirical Wasserstein distance bounds.

Upper bound. Let P̂n and Q̂n denote the empirical distributions of the samples (X1, ..., Xn) and
(Y1, ..., Yn) respectively, where Xi ⇒ P , Yi ⇒ Q for all i = 1, ..., n, and (X1, ..., Xn) and (Y1, ..., Yn)
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are independent. By Lemma B.3 with S = P , Ui = Xi and T = Q,

Wp(P, Q)p
≃ E[Wp(P̂n, Q)p].

As (X1, ..., Xn) and (Y1, ..., Yn) are independent, Yi|(X1, ..., Xn) ⇒ Yi ⇒ Q for all i = 1, ..., n.
We can therefore apply Lemma B.3 conditional on (X1, ..., Xn) now with S = Q, Ui = Yi and
T = P̂n to obtain

Wp(P̂n, Q)p
≃ E[Wp(P̂n, Q̂n)p

|X1, ..., Xn]

almost surely for all X1, ..., Xn. Overall, this gives

Wp(P, Q)p
≃ E[Wp(P̂n, Q)p] ≃ E[E[Wp(P̂n, Q̂n)p

|X1, ..., Xn]] = E[Wp(P̂n, Q̂n)p]

as required.

Lower bound. Let P̂n and Q̂n denote empirical distributions of the samples (X1, ..., Xn) and
(Y1, ..., Yn) respectively, where Xi ⇒ P , Yi ⇒ Q for all i = 1, ..., n. Given (X1, ..., Xn) and
(Y1, ..., Yn), by the triangle inequality we obtain

Wp(P̂n, Q̂n) ≃ Wp(P̂n, P ) + Wp(P, Q) + Wp(Q, Q̂n).

By Minkowski’s inequality, this gives

E[Wp(P̂n, Q̂n)p]1/p
≃ E

[(
Wp(P̂n, P ) + Wp(P, Q) + Wp(Q, Q̂n)

)p]1/p

≃ E[Wp(P̂n, P )p]1/p + E[Wp(P, Q)p]1/p + E[Wp(Q, Q̂n)p]1/p

= E[Wp(P̂n, P )p]1/p + Wp(P, Q) + E[Wp(Q, Q̂n)p]1/p (21)

Let P̃n denote empirical distributions of the samples (X̃1, ..., X̃n), where X̃i ⇒ P for all i = 1, ..., n
and (X̃1, ..., X̃n) and (X1, ..., Xn) are independent. Independence implies X̃i|(X1, ..., Xn) ⇒ X̃i ⇒ P
for all i = 1, ..., n. We can therefore apply Lemma B.3 conditional on (X1, ..., Xn), with S = P ,
T = P̂n and X̃i = Ui to obtain

Wp(P̂n, P )p
≃ E[Wp(P̂n, P̃n)p

|X1, ..., Xn].

Similarly,
Wp(Q, Q̂n)p

≃ E[Wp(Q̃n, Q̂n)p
|Y1, ..., Yn]

where Q̃n denotes empirical distributions of the samples (Ỹ1, ..., Ỹn), where Ỹi ⇒ Q for all i = 1, ..., n
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and (Ỹ1, ..., Ỹn) and (Y1, ..., Yn) are independent. By (21), we obtain

E[Wp(P̂n, Q̂n)p]1/p
≃E[Wp(P̂n, P )p]1/p + Wp(P, Q) + E[Wp(Q, Q̂n)p]1/p

=E[E[Wp(P̂n, P )p
|X1, ..., Xn]]1/p + Wp(P, Q)+

E[E[Wp(Q, Q̂n)p
|Y1, ..., Yn]]1/p

≃E[E[Wp(P̂n, P̃n)p
|X1, ..., Xn]]1/p + Wp(P, Q)+

E[E[Wp(Q̃n, Q̂n)p
|Y1, ..., Yn]]1/p

=E[Wp(P̂n, Pn)p]1/p + Wp(P, Q) + E[Wp(Q̃n, Q̂n)p]1/p

as required.

Consistency. By triangle inequality,

|Wp(P̂n, Q̂n) ↘ Wp(P, Q)| ≃ Wp(P̂n, P ) + Wp(Q, Q̂n).

Note that P , Q, (P̂n)n↔0 and (Q̂n)n↔0 all have finite moments of order p, and that P̂n ⇑ P and
Q̂n ⇑ Q almost surely by the Glivenko–Cantelli theorem, where the empirical distribution moments
of order p also converge weakly. By completeness of the p-Wasserstein distance on the space of
probability measures with finite moments of order p [Villani, 2008, Theorem 6.9], Wp(P̂n, P ) a.s.

⇓ 0
and Wp(Q, Q̂n) a.s.

⇓ 0 as n ⇓ ↑.

B.4 Proofs for comparison with the approach of Dobson et al.

To prove Proposition 3.11, we first outline the setup of Dobson et al. [2021]. Consider a continuous
time di!usion with a unique stationary distribution P on Rd. Let K1 and K2 denote the Markov
chain transition kernels corresponding to a discretization of this di!usion with and without an
accept-reject bias correction step respectively. For example, K1 and K2 can be the (single or multiple
step) transition kernels of an MALA and an ULA Markov chain respectively. Suppose the marginal
Markov chains with kernels K1 and K2 converge in distribution to the unique invariant distributions
P and Q respectively.

For some small ϖ > 0, suppose there is a compact subset $ of Rd such that P ($c) < ϖ and
Q($c) < ϖ. For the capped metric c(x, y) = min{1, ↗x ↘ y↗2} on Rd, suppose there exists a
Markovian coupling !1 of the kernel K1 such that for some constant ε$ ↓ (0, 1) and all Xt, X ⇒

t ↓

$, E[c(Xt+1, X ⇒
t+1

)|Xt, X ⇒
t] ≃ ε$c(Xt, X ⇒

t) for (Xt+1, X ⇒
t+1

)|(Xt, X ⇒
t) ⇒ !2(Xt, X ⇒

t). Under such
assumptions, Dobson et al. [2021] show

W1(P, Q) ≃
E[E[c(X1, Y1)|Y ↓]] + 2ϖ

1 ↘ ε$

(22)

where Y ↓
⇒ Q and (X1, Y1)|Y ↓

⇒ !#(Y ↓) for some fixed coupling !#(Y ↓) such that X1|Y ↓
⇒

K1(Y ↓, ·) and Y1|Y ↓
⇒ K2(Y ↓, ·) marginally. Dobson et al. [2021] then estimate the quantities

E[E[c(X1, Y1)|X↓]] and ε$ separately using couplings to obtain a final upper bound estimate.
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Given this setup, we can show that our upper bound estimator CUB1 (4) constructed using such
couplings !1 and !# has a smaller expected value than the upper bound of (22).

Proof of Proposition 3.11: CUB lower bounds Dobson et al. We proceed as in the proofs of Theo-
rem 3.7 and Corollary 3.8. Consider the coupling based estimator in (4) for the 1-Wasserstein
distance with metric c(x, y) = min{1, ↗x ↘ y↗2} on Rd. Under the coupled kernel K̄ from Algorithm
2, for each t → 1 we have the coupling (Xt, Zt, Yt) where (Xt, Zt)|Xt≃1, Yt≃1 ⇒ !1(Xt≃1, Yt≃1) and
(Zt, Yt)|Xt≃1, Yt≃1 ⇒ !#(Yt≃1). This gives

E[c(Xt, Yt)] ≃E[c(Xt, Zt)] + E[c(Zt, Yt)] (23)
=E[c(Xt, Zt)I{Xt↑1→$,Yt↑1→$}c ] + E[c(Xt, Zt)I{Xt↑1→$,Yt↑1→$}] + E[c(Zt, Yt)]
≃P({Xt≃1 ↓ $c

} ∋ {Yt≃1 ↓ $c
}) + E[c(Xt, Zt)I{Xt↑1→$,Yt↑1→$}]+

E[c(Zt, Yt)] (24)
≃P(Xt≃1 ↓ $c) + P(Yt≃1 ↓ $c) + ε$E[c(Xt≃1, Yt≃1)] + E[c(Zt, Yt)] (25)

where (23) follows by the triangle inequality, (24) follows as c is bounded by 1, and (25) follows by
the union bound and the definition of ε$. Denote #(z) ↭ E[c(X, Y )p

|z] for (X, Y ) ⇒ !#(z), such
that E[c(Zt, Yt)] = E[E[c(Zt, Yt)|Yt≃1]] = E[#(Yt≃1)]. Then by induction, (25) implies

E[c(Xt, Yt)] ≃ εt
$
E[c(X0, Y0)] +

t∑

i=1

εt≃i
$

(
P(Xt≃1 ↓ $c) + P(Yt≃1 ↓ $c) + E[#(Yi≃1)]

)
.

As Xt≃1 and Yt≃1 converges to P and Q respectively in distribution, P(Xt≃1 ↓ $c) t↗↘
⇓ P ($c) < ϖ,

P(Yt≃1 ↓ $c) t↗↘
⇓ Q($c) < ϖ and E[#(Yt)]

t↗↘
⇓ E[#(Y ↓)] for Y ↓

⇒ Q. Following the argument in
Corollary 3.8 we obtain that for all ϖ⇒ > 0, there exists some S → 1 such that for all t → S,

E[c(Xt, Yt)] ≃ εt
$
E[c(X0, Y0)] +

t∑

i=1

εt≃i
$

(
E[#(Y ↓)] + 2ϖ

)
+ ϖ⇒.

Therefore as ε$ ↓ (0, 1), lim inft↗↘ E[c(Xt, Yt)] ≃
E[#(Y →

)]+2↽
1≃⇀!

where #(Y ↓) = E[c(X1, Y1)|Y ↓] and
Y ↓

⇒ Q from (22) as required.

C Example applications of theoretical results

In this section we consider the theoretical results of Section 3.3 applied to three simple examples,
working with the metric c(x, y) = ↗x ↘ y↗2.

MALA and ULA. Consider a MALA chain and an ULA chain with a common step size ϑ both
targeting a distribution P . Assume the negative log density of P is gradient Lipschitz and strongly
convex. In this setting, let (Xt, Yt)t↔0 be a CRN coupling of ULA and MALA simulated using
Algorithm 1, such that the Markov chains (Xt)t↔0 and (Yt)t↔0 marginally correspond to ULA and
MALA respectively. For ϑ su"ciently small, the marginal ULA chain (Xt)t↔0 converges to some
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distribution Pϱ and satisfies Assumption 3.6 for p = 2 under a CRN coupling [Durmus and Moulines,
2019, Proposition 3], giving a contraction rate ϱ such that 1 ↘ ϱ = Cϑ2/2 for some constant C which
depends on the gradient Lipschitz constant and convexity of the negative log density of P rather
than depending explicitly on the dimension of the state space. By Corollary 3.8,

W2(Pϱ, P ) ≃ lim inf
t↗↘

E[CUB2

2,t]1/2
≃

E
[
↗Y ↘ Y ⇒

↗
2
(
1 ↘ εϱ

(
Y, Y ⇒))]1/2

Cϑ2/2 , (26)

where Y ⇒ P is the limiting distribution of the MALA chain, Y ⇒
|Y ⇒ N (Y + ϱ2

2
⇔ log P (Y ), ϑ2Id)

corresponds to the Euler–Maruyama discretization based proposal, and εϱ

(
Y, Y ⇒)

↓ [0, 1] is the
Metropolis–Hastings acceptance probability. As the step size ϑ tends to zero, the upper bound in
(26) require further analysis of the MALA acceptance probabilities [Bou-Rabee and Hairer, 2012,
Eberle, 2014] and could degenerate. Recently, discrete sticky couplings [Durmus et al., 2021] have
been developed for perturbed functional autoregressive processes, which produce stable upper bounds
on total variation and the Wasserstein distance in such limiting regimes.

ULA and ULA. We can similarly consider two ULA chains with a common step size ϑ targeting
di!erent distributions P and Q. As above, assume both log P and log Q are gradient Lipschitz and
strongly convex. In this setting, let (Xt, Yt)t↔0 be a CRN coupling of two ULA chains simulated
using Algorithm 1, such that the Markov chains (Xt)t↔0 and (Yt)t↔0 marginally correspond to ULA
targeting distributions P and Q respectively. For ϑ su"ciently small, the marginal chains (Xt)t↔0

and (Yt)t↔0 converge to some distributions Pϱ and Qϱ respectively. Both marginal chains also
satisfy Assumption 3.6 for p = 2 under a CRN coupling, with contraction rates ϱP and ϱQ such that
1 ↘ ϱP = CP ϑ2/2 and 1 ↘ ϱQ = CQϑ2/2 respectively for some constants CP and CQ that do not
explicitly depend on the dimension. By Corollary 3.8, this gives

W2(Pϱ, Qϱ) ≃ lim inf
t↗↘

E[CUB2(Pt, Qt)2]1/2
≃

E
[
↗⇔ log P (Yϱ) ↘ ⇔ log Q(Yϱ)↗2

]1/2

CP
(27)

where Y ⇒ Qϱ. By symmetry, we can obtain a similar bound in terms of some random variable
X ⇒ Pϱ and CQ. As ϑ approaches zero, the numerator in (27) approaches the square root of the
Fisher divergence between distributions Q and P , given by F (Q, P ) ↭ E[↗⇔ log P (Y )↘⇔ log Q(Y )↗2]
for Y ⇒ Q. Such link between the Fisher divergence and the Wasserstein distance has been noted
previously by considering continuous-time Langevin di!usions (e.g., Huggins et al. [2019]). Finally,
note that the upper bound in (27) does not explicitly depend on dimension, highlighting that
estimators based on our coupled chains may give upper bounds that remain informative in high
dimensions.

ULA and SGLD. Consider an ULA chain and a Stochastic gradient Langevin dynamics (SGLD)
[Welling and Teh, 2011] chain with a common step size ϑ and both targeting a distribution P .
The SGLD chain is based on unbiased estimates of the gradient of the log density of P , such that
⊋⇔ log P SGLD(z) = ⇔ log P (z) + eSGLD(z) for all z ↓ X , where eSGLD(z) is mean zero error. We

assume this error is bounded such that ς2 ↭ supz→X eSGLD(z)/(1 + V (z)2) < ↑, for some 2nd-order
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Lyapunov function V as in Proposition 3.9 and that the negative log density of P is gradient Lipschitz
and strongly convex. In this setting, let (Xt, Yt)t↔0 be a CRN coupling of ULA and SGLD simulated
using Algorithm 1, such that the Markov chains (Xt)t↔0 and (Yt)t↔0 marginally correspond to
ULA and SGLD with marginal distributions (P (ULA)

t )t↔0 and (P (SGLD)

t )t↔0 respectively. For ϑ
su"ciently small, the marginal ULA chain (Xt)t↔0 satisfies Assumption 3.6 for p = 2 under a CRN
coupling, giving a contraction rate ϱ such that 1↘ϱ = Cϑ2/2 for constants C that does not explicitly
depend on the dimension. Then by Proposition 3.9,

lim sup
t↗↘

W2

(
P (ULA)

t , P (SGLD)

t

)
≃ lim inf

t↗↘
E

[
CUB2

(
P (ULA)

t , Q(ULA)

t

)2
]1/2

≃
ςφ

C
. (28)

Note that the upper bound in (28) does not explicitly depend on dimension, and approaches zero
as ς approaches zero. This shows that estimators based on our coupled chains give upper bounds
which may remain informative in high dimensions and are tight with respect to the error from the
stochastic gradients. This example also highlights the stability of our upper bounds even when one
of the marginal chains (SGLD) may not converge to a limiting distribution.

D Multi-step couplings

In this section, we consider coupling algorithms for multi-step kernels and investigate their theoretical
properties.

D.1 Coupling algorithms for multi-step kernels

Consider the L-step Markov chains (XLt)t↔0 and (YLt)t↔0 for L → 1, corresponding to marginal
multi-step Markov kernels KL

P and KL
Q respectively. Following (3) and Section 3.2, we now construct

a kernel K̄L≃step on the joint space X ↔ X such that for all x, y ↓ X and all A ↓ B(X ),

K̄L≃step

(
(x, y), (A, X )

)
= KL

P (x, A) and K̄L≃step

(
(x, y), (X , A)

)
= KL

Q(y, A). (29)

Given coupled kernels !1 and !#, Figure 9 illustrates how to sample from the joint kernel K̄L≃step.
By construction, this gives the marginal distributions Xs|X0, Y0 ⇒ Ks

P (X0, ·) and Ys|X0, Y0 ⇒

Ks
Q(Y0, ·) for all s = 1, ..., L, such that Equation (29) is satisfied. Algorithm 3 samples from this

coupled kernel K̄L≃step. It characterizes the dependency between XLt and YLt such that

XLt|XL(t≃1), YL(t≃1) ⇒ KL
P (XL(t≃1), ·)

Z(j)

L |YL(t≃1)+(j≃1) ⇒ KL≃(j≃1)

P (YL(t≃1)+(j≃1), ·)
YLt|XL(t≃1), YL(t≃1) ⇒ KL

Q(YL(t≃1), ·)

for s = 1, ..., L ↘ 1. When L = 1, we obtain K̄L≃step = K̄ from Algorithm 2. Note that K̄1≃step is
the single-step kernel K̄ from Algorithm 2, but K̄L≃step and K̄L are not equivalent in general.

We give concrete implementations of Algorithm 3 for the ULA and MALA Markov chain with
common random numbers and reflection couplings. These are based on common random numbers
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X0 Y0

X1 Z(1)

1
Y1

X2 Z(1)

2
Z(2)

2
Y2

...
...

...
...

. . .
XL≃1 Z(1)

L≃1
Z(2)

L≃1
. . . Z(L≃1)

L≃1
YL≃1

XL Z(1)

L Z(2)

L
. . . Z(L≃1)

L Z(L)

L
YL

!1 !#

!1 !1 !#

!1 !1 !1 !1 !1 !#

Figure 9: Joint kernel K̄L≃step on X ↔ X , which couples the marginal kernels KL
P and KL

Q

Algorithm 3: Joint kernel K̄L≃step on X ↔ X , which couples the marginal kernels KL
P and KL

Q

Input: chain states X0 and Y0, kernels K1 and K2, coupled kernels !1 and !#

for s=1,...,L do

Sample
(Xs, Z(1)

s , ..., Z(s)

s , Ys)|(Xs≃1, Z(1)

s≃1
, ..., Z(s≃1)

s≃1
, Ys≃1)

jointly such that

(Xs, Z(1)

s ) ⇒ !1(Xs≃1, Z(1)

s≃1
) (30)

(Z(j)

s , Z(j+1)

s ) ⇒ !1(Z(j)

s≃1
, Z(j+1)

s≃1
) for j = 1, ..., s ↘ 1 (31)

(Z(s)

s , Ys) ⇒ !#(Ys≃1) (32)

end

return (XL(t≃1)+s, YL(t≃1)+s) for s = 1, ..., L.
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and reflection couplings for the single-step coupling kernels included in Appendices F.

ULA with common random numbers coupling. For each s = 1, . . . , L in Algorithm 3, sample
ϖs ⇒ N (0, Id) and

• Sample (Xs, Z(1)

s ) ⇒ !1(Xs≃1, Z(1)

s≃1
) in (30) such that Xs = Xs≃1 + 1

2
ϑ2

P ⇔ log p(Xs≃1) + ϑP ϖs

and Z(1)

s = Z(1)

s≃1
+ 1

2
ϑ2

P ⇔ log q(Z(1)

s≃1
) + ϑP ϖs.

• Sample (Z(j)

s , Z(j+1)

s ) ⇒ !1(Z(j)

s≃1
, Z(j+1)

s≃1
) for each j = 1, ..., s ↘ 1 in (31) such that Z(j)

s =
Z(j)

s≃1
+ 1

2
ϑ2

P ⇔ log q(Z(j)

s≃1
) + ϑP ϖs and Z(j+1)

s = Z(j+1)

s≃1
+ 1

2
ϑ2

P ⇔ log q(Z(j+1)

s≃1
) + ϑP ϖs.

• Sample (Z(s)

s , Ys) ⇒ !#(Ys≃1) in (32) such that Z(s)

s = Z(s)

s≃1
+ 1

2
ϑ2

P ⇔ log q(Z(s)

s≃1
) + ϑP ϖs and

Ys = Ys≃1 + 1

2
ϑ2

Q⇔ log p(Ys≃1) + ϑQϖs.

MALA with common random numbers coupling. For s = 1, . . . , L in Algorithm 3, sample
ϖs ⇒ N (0, Id) and generate proposals X↓

s , Z(1),↓
s , . . . , Z(s),↓

s , Y ↓
s using the steps for ULA with common

random numbers coupling given above. Then sample U (s)
⇒ Uniform([0, 1]) and accept each of

these proposals if U (s) is less than the respective Metropolis-Hastings acceptance probabilities.

ULA with reflection coupling. For each s = 1, . . . , L in Algorithm 3, sample ϖs ⇒ N (0, Id) and

• Sample (Xs, Z(1)

s ) ⇒ !1(Xs≃1, Z(1)

s≃1
) in (30) such that Xs = Xs≃1 + 1

2
ϑ2

P ⇔ log p(Xs≃1) + ϑP ϖs

and Z(1)

s = Z(1)

s≃1
+ 1

2
ϑ2

P ⇔ log q(Z(1)

s≃1
) + ϑP (Id ↘ e(1)e(1)⇔)ϖs for e(1) = Xs↑1≃Z(1)

s↑1

↖Xs↑1≃Z(1)
s↑1↖

.

• Sample (Z(j)

s , Z(j+1)

s ) ⇒ !1(Z(j)

s≃1
, Z(j+1)

s≃1
) for each j = 1, ..., s ↘ 1 in (31) such that Z(j)

s =
Z(j)

s≃1
+ 1

2
ϑ2

P ⇔ log q(Z(j)

s≃1
) + ϑP ϖs and Z(j+1)

s = Z(j+1)

s≃1
+ 1

2
ϑ2

P ⇔ log q(Z(j+1)

s≃1
) + ϑP (Id ↘

e(j+1)e(j+1)⇔)ϖs for e(j+1) = Z(j)
s↑1≃Z(j+1)

s↑1

↖Z(j)
s↑1≃Z(j+1)

s↑1 ↖
.

• Sample (Z(s)

s , Ys) ⇒ !#(Ys≃1) in (32) such that Z(s)

s = Z(s)

s≃1
+ 1

2
ϑ2

P ⇔ log q(Z(s)

s≃1
) + ϑP ϖs and

Ys = Ys≃1 + 1

2
ϑ2

Q⇔ log p(Ys≃1) + ϑQ(Id ↘ e(s+1)e(s+1)⇔)ϖs for e(s+1) = Z(s)
s↑1≃Ys↑1

↖Z(s)
s↑1≃Ys↑1↖

.

MALA with reflection coupling. For s = 1, . . . , L in Algorithm 3, sample sample ϖs ⇒ N (0, Id)
and generate proposals X↓

s , Z(1),↓
s , . . . , Z(s),↓

s , Y ↓
s using the steps for ULA with reflection coupling

given above. Then sample U (s)
⇒ Uniform([0, 1]) and accept each of these proposals if U (s) is less

than the respective Metropolis-Hastings acceptance probabilities.

Having developed algorithms to sample from the coupled kernels K̄ and K̄L≃step, we now investigate
theoretical properties our upper bounds.
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D.2 Theoretical properties of couplings of multi-step kernels

To establish theoretical guarantees of coupled Markov chains based on the coupled kernel K̄L≃step,
we assume the Markovian coupling !1 in Algorithm 3 satisfies a geometric ergodicity condition.

Assumption D.1. There exists constants C ↓ [1, ↑) and ϱ ↓ (0, 1) such that for all L → 1,

E[c(Xt+L, Yt+L)p
|Xt, Yt]1/p

≃ CϱLc(Xt, Yt) for (Xt+L, Yt+L)|(Xt, Yt) ⇒ !L
P (Xt, Yt).

Assumption D.1 is weaker than uniform contraction in Wasserstein’s distance as in Assumption
3.6. Under Assumption D.1, we now characterize the distance from our coupled chains based on
the coupled kernel K̄L≃step explicitly in terms of the initial distribution Ī0 and the coupled kernel
!# corresponding to perturbations between the marginal kernels K1 and K2. At the heart of our
analysis is the construction of the coupled kernel K̄L≃step given in Figure 9 and Algorithm 3. When
the coupled kernel !# characterizing the perturbation between the marginal kernels K1 and K2 is
Wasserstein optimal, our analysis is linked to Rudolf and Schweizer [2018], which only considers
the 1-Wasserstein distance and establishes similar results using analytic rather than probabilistic
arguments.

Theorem D.2. Let (Xt, Yt)t↔0 denote a coupled Markov chain generated using Algorithm 1 with
initial distribution Ī0 and joint kernel K̄ on X ↔ X from Algorithm 2. Suppose the coupled kernel !1

satisfies Assumption D.1 for some C → 1 and ϱ < 1. Fix some L → 1 such that ϱ̃ = CϱL < 1, and
consider the coupled chain (Xt, Yt)t↔0 generated using Algorithm 3 with the L-step coupled kernel
K̄L≃step. Then for all t → 0,

E[c(XLt, YLt)p]1/p
≃ ϱ̃tE[c(X0, Y0)p]1/p +

t∑

i=1

ϱ̃t≃i
( L∑

j=1

CϱL≃jE
[
#p(YL(i≃1)+j)

]1/p)

where (X0, Y0) ⇒ Ī0 and #p(z) := E[c(X, Y )p] for (X, Y )|z ⇒ !#(z).

Corollary D.3. Under the setup and assumptions of Theorem D.2, consider when the marginal
distributions Qt converge in p-Wasserstein distance to some distribution Q with finite moments of
order p as t ⇓ ↑. Then for all ϖ > 0, there exists some S → 1 such that for all t → S,

E[c(XLt, YLt)p]1/p
≃ (CϱL)tE[c(X0, Y0)p]1/p + C

(1 ↘ (CϱL)t

1 ↘ CϱL

)(1 ↘ ϱL

1 ↘ ϱ

)
E[#p(Y ↓)]1/p + ϖ.

where (X0, Y0) ⇒ Ī0, #p(z) ↭ E[c(X, Y )p
|z] for (X, Y ) ⇒ !#(z) and Y ↓

⇒ Q.

As in Section 3.3, we can also upper bound the limiting distance from our coupled chains in
terms of the perturbations between the marginal kernels weighted by a Lyapunov function of K2.

Proposition D.4. Under the setup and assumptions of Theorem D.2, let V : X ⇓ [0, ↑) be a
pth-order Lyapunov function of K2 such that

E[V (Yt+1)p
|Yt = z] ≃ ωV (z)p + L
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for all z ↓ X , where ω ↓ [0, 1) and L ↓ [0, ↑) are constants. Define

ς ↭ sup
z→X


#p(z)

1 + V (z)p

1/p

φ ↭ 1 + max
{
E[V (Y0)p]1/p,

( L

1 ↘ ω

)1/p})
.

where #p(z) ↭ E[c(X, Y )p
|z] for (X, Y ) ⇒ !#(z). Then for all t → 0,

E[CUBp
p,t]1/p = E[c(Xt, Yt)p]1/p

≃ (CϱL)tE[c(X0, Y0)p]1/p + C
(1 ↘ (CϱL)t

1 ↘ CϱL

)(1 ↘ ϱL

1 ↘ ϱ

)
ςφ.

D.3 Proofs

Proof of Theorem D.2. Under the coupled kernel K̄L≃step from Algorithm 2, for each t → 1 we
obtain

(XLt, Z(1)

L , ..., Z(L)

L , YLt)

where

(XLt, Z(1)

L )|XL(t≃1), YL(t≃1) ⇒ !L
P (XL(t≃1), YL(t≃1))

(Z(j)

L , Z(j+1)

L )|YL(t≃1)+j≃1 ⇒ !#(YL(t≃1)+j≃1)!L≃j
1

for j = 1, ..., L ↘ 1

(Z(L)

L , YLt)|YL(t≃1)+L≃1 ⇒ !#(YL(t≃1)+L≃1).

As (XLt, Z(0)

t )|XL(t≃1), YL(t≃1) ⇒ !L
1

(XL(t≃1), YL(t≃1)), we obtain

E[c(XLt, YLt)p]1/p =E[E[c(XLt, YLt)p
|XL(t≃1), YL(t≃1)]]1/p

≃E[E[
(
c(XLt, Z(1)

L ) + c(Z(1)

L , YLt)
)p

|XL(t≃1), YL(t≃1)]]1/p (33)

≃E[E[c(XLt, Z(1)

L )p
|XL(t≃1), YL(t≃1)]]1/p+

E[E[c(Z(1)

L , YLt)p
|XL(t≃1), YL(t≃1)]]1/p (34)

≃ϱ̃E[c(XL(t≃1), YL(t≃1))p]1/p + E[c(Z(1)

L , YLt)p]1/p (35)
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where (33) follows as c is a metric, (34) follows by Minkowski’s inequality, and (35) follows by
Assumption D.1. Denote #p(z) ↭ E[c(X, Y )p

|z] for (X, Y ) ⇒ !#(z). Then,

E[c(Z(1)

L , YLt)p]1/p
≃ E

[(
c(Z(L)

L , YLt) +
L≃1∑

j=1

c(Z(j)

L , Z(j+1)

L )
)p]1/p

as c is a metric

≃ E
[
c(Z(L)

L , YLt)p
]1/p

+
L≃1∑

j=1

E
[
c(Z(j)

L , Z(j+1)

L )p
]1/p

by Minkowski’s inequality

= E
[
E

[
c(Z(L)

L , YLt)p
|YL(t≃1)+L≃1

]]1/p
+

L≃1∑

j=1

E
[
E

[
c(Z(j)

L , Z(j+1)

L )p
|YL(t≃1)+j≃1

]]1/p

= E[#p(YL(t≃1)+(L≃1))]1/p +
L≃1∑

j=1

E
[
E

[
c(Z(j)

L , Z(j+1)

L )p
|YL(t≃1)+j≃1

]]1/p

≃ E[#p(YL(t≃1)+(L≃1))]1/p +
L≃1∑

j=1

CϱL≃jE
[
#p(YL(t≃1)+j≃1)

]1/p
by Assumption D.1

≃

L∑

j=1

CϱL≃jE
[
#p(YL(t≃1)+j)

]1/p
as C → 1.

Equation (35) now gives

E[c(XLt, YLt)p]1/p
≃ ϱ̃E[c(XL(t≃1), YL(t≃1))p]1/p +

L∑

j=1

CϱL≃jE
[
#p(YL(t≃1)+j)

]1/p
(36)

By induction, (36) implies

E[c(XLt, YLt)p]1/p
≃ ϱ̃tE[c(X0, Y0)p]1/p +

t∑

i=1

ϱ̃t≃i
( L∑

j=1

CϱL≃jE
[
#p(YL(i≃1)+j)

]1/p)

as required.

Proof of Corollary D.3. Denote a ↭ E[#p(Y ↓)]1/p for Y ↓
⇒ Q and ak ↭ E[#p(Yk)]1/p for k → 0.

Then ak
k↗↘
⇓ a, because Qt converges in p-Wasserstein distance to Q as t ⇓ ↑. This implies

t∑

i=1

ϱ̃t≃i
( L∑

j=1

CϱL≃jaL(i≃1)+j

)
t↗↘
⇓

t∑

i=1

ϱ̃t≃i
( L∑

j=1

CϱL≃ja
)

.

Therefore, for all ϖ > 0 there exists S → 1 such that for all t → S,
∑t

i=1
ϱ̃t≃i

∑L
j=1

CϱL≃j
|aL(i≃1)+j ↘
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a| < ϖ. By Theorem D.2,

E[c(XLt, YLt)p]1/p
≃ ϱ̃tE[c(X0, Y0)p]1/p +

t∑

i=1

ϱ̃t≃i
( L∑

j=1

CϱL≃jaL(i≃1)+j

)

≃ ϱ̃tE[c(X0, Y0)p]1/p +
t∑

i=1

ϱ̃t≃i
L∑

j=1

CϱL≃ja +
t∑

i=1

ϱ̃t≃i
( L∑

j=1

CϱL≃j
|aL(i≃1)+j ↘ a|

)

≃ ϱ̃tE[c(X0, Y0)p]1/p +
t∑

i=1

ϱ̃t≃i
L∑

j=1

CϱL≃ja + ϖ

= (CϱL)tE[c(X0, Y0)p]1/p + C
(1 ↘ (CϱL)t

1 ↘ CϱL

)(1 ↘ ϱL

1 ↘ ϱ

)
a + ϖ

as required.

Proof of Proposition D.4. As V is a a pth-order Lyapunov function of K2, by induction

E[V (Yj)p] ≃ ωjE[V (Y0)p] + (1 ↘ ωt) L

1 ↘ ω

for all j → 0. This gives

E
[
#p(Yj)

]1/p
≃ ςE[1 + V (Yj≃1)p]1/p

≃ ς(1 + E[V (Yj≃1)p]1/p)

≃ ς


1 +

(
ωt≃1E[V (Y0)p] + (1 ↘ ωt≃1) L

1 ↘ ω

)1/p


≃ ς


1 + max

{
E[V (Y0)p]1/p,

( L

1 ↘ ω

)1/p}

= ςφ

for all j → 0. By Theorem D.2, we obtain

E[c(XLt, YLt)p]1/p
≃ ϱ̃tE[c(X0, Y0)p]1/p +

t∑

i=1

ϱ̃t≃i
( L∑

j=1

CϱL≃jE
[
#p(YL(i≃1)+j)

]1/p)

≃ ϱ̃tE[c(X0, Y0)p]1/p +
t∑

i=1

ϱ̃t≃i
( L∑

j=1

CϱL≃jςφ
)

≃ ϱ̃tE[c(X0, Y0)p]1/p + C
(1 ↘ (CϱL)t

1 ↘ CϱL

)(1 ↘ ϱL

1 ↘ ϱ

)
ςφ
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E Details for the practical applications in Section 4

In this section, we provide details of the datasets, algorithms and parameters used for the three
practical applications in Section 4. Open-source R code [R Core Team, 2013] recreating all
experiments in this paper can be found at github.com/niloyb/BoundWasserstein.

E.1 Approximate MCMC and variational inference for tall data

Section 4.1 considers Bayesian logistic regression with a Gaussian prior applied to the Pima Diabetes
dataset [Smith et al., 1988] and the DS1 life sciences dataset [Komarek and Moore, 2003]. The
Pima Diabetes dataset has n = 768 binary observations (corresponding to the presence of diabetes),
and d = 8 covariates (containing information such as body mass index, insulin level and age),
and is publicly available on kaggle.com/uciml/pima-indians-diabetes-database. The DS1 life
sciences dataset has n = 26732 binary observations (corresponding to reactivity of the compound
observed in a life sciences experiment), and d = 10 covariates (containing information about the
inputs to the life sciences experiment), and is publicly available on komarix.org/ac/ds/ (ds1.10
file).

In Figure 5, the upper bounds are given by our estimator CUB2 (4) with S = 1000, T = 2000,
and I = 100 for the Pima dataset and S = 500, T = 100, and I = 40 for the DS1 dataset, where
these values were chosen based on initial runs. The lower bounds are estimated using (7) based
on the same samples from the coupled chains used to calculate the upper bound estimate. For all
the cases considered in Figure 5, we use a CRN coupling of the marginal kernels with a common
step-size of 0.05 for the Pima dataset and a common step-size of 0.05 for the DS1 dataset. We also
considered switching between CRN and reflection couplings based on the Euclidean norm between
the two chains. This did not produce tighter upper bounds than CRN in our experiments, but it
may be e!ective in other examples, so we have included this option in our released code.

E.2 Approximate MCMC for high-dimensional linear regression

Section 4.2 considers Bayesian linear regression with the half-t global-local shrinkage prior applied to
a bacteria genome-wide association study (GWAS) dataset [Bühlmann et al., 2014] and a synthetically
generated dataset. The GWAS dataset has n = 71 observations (corresponding to production of
the vitamin riboflavin) and d = 4088 covariates (corresponding to single nucleotide polymorphisms
(SNPs) in the genome) and is publicly available. The synthetically generated dataset has n = 500
observations and d = 50000 covariates. For the synthetic dataset, we generate [X]i,j

i.i.d.
⇒ N (0, 1)

and y ⇒ N (X↽↓, ϑ2

↓In), where ϑ↓ = 2 and ↽↓ ↓ Rd is chosen to be sparse such that ↽↓,j = 2(9≃j)/4

for 1 ≃ j ≃ 20 and ↽↓,j = 0 for all j > 20.
The state-of-the-art exact MCMC algorithms to sample from posteriors corresponding to the

half-t prior are Gibbs samplers which cost O(n2d) per iteration. This computation cost arises from
a weighted matrix product calculation of the form X Diag(⇁t)≃1X⇔ where ⇁t ↓ [0, ↑)p corresponds
to the local scale parameters which take di!erent values at each iteration t. For the Horseshoe prior
(degrees of freedom ν=1), approximate MCMC methods have been developed by Johndrow et al.
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[2020] based on approximations of the form

X Diag(⇀⇁t)≃1X⇔
⇐ X Diag((⇀≃1⇁≃1

j I{ς↑1φ↑1
j >↽})p

j=1
) X⇔ (37)

for some small threshold ϖ > 0. Biswas et al. [2022] extended the exact marginal chain of [Johndrow
et al., 2020] to all degrees of freedom ν → 1.

In Section 4.2, we use couplings to assess the quality of the approximate MCMC algorithm
characterized by the approximation in (37) for ν = 2. The upper bounds in Figure 6 are given by
our estimator CUB2 (4). We take S = 1000, T = 3000, and I = 100 for both datasets, where these
values were chosen based on initial runs and the coupling-based convergence assessment of the exact
chain from Biswas et al. [2022]. The lower bounds in Figure 6 are estimated using (7) based on same
samples from the coupled chains used to calculate the upper bound estimate. We consider a CRN
coupling with one marginal chain corresponding to the exact MCMC kernel and the other chain
corresponding to the approximate MCMC kernel. The CRN coupled kernel is given in Algorithm 4.

E.3 Approximate MCMC for high-dimensional logistic regression

Section 4.3 considers Bayesian logistic regression with spike and slab priors applied to a malware
detection dataset and a lymph node GWAS dataset. The Malware detection dataset from the UCI
machine learning repository [Dua and Gra!, 2017] has n = 373 observations (corresponding to a
binary response vector indicating whether a file is malicious or non-malicious) and d = 503 covariates
(corresponding to features of the files), and is publicly available on kaggle.com/piyushrumao/

malware-executable-detection. The lymph node GWAS dataset [Hans et al., 2007, Liang et al.,
2013, Narisetty et al., 2019] has n = 148 observations (corresponding to a binary response vector
indicating high or low risk status of the lymph node that is related to breast cancer) and d = 4514
covariates (corresponding to SNPs in the genome) is not publicly available.

The logistic regression likelihood is given by L(↽; y, X) =
n

i=1
(1 + exp(↘yix⇔

i ↽))≃1 where
y ↓ {↘1, 1}

n is the response vector, X ↓ Rn↑d is the scaled design matrix with rows x⇔
i , and ↽ ↓ Rd

is an unknown signal vector. The spike and slab prior is given by

Zj
i.i.d.
⇒ Bernoulli(q), ↽j |Zj = 0 ⇒ N (0, ▷2

0
), ↽j |Zj = 1 ⇒ N (0, ▷2

1
) (38)

for j = 1, ..., d where q ↓ (0, 1), ▷0 > 0, and ▷1 > 0 are hyper-parameters with ▷0 △ ▷1 such that
Zi = 0 and Zi = 1 correspond to null and non-null components of ↽j respectively. By considering
the posterior distribution of each variable Zj on {0, 1}, spike and slab priors provide an interpretable
method for Bayesian variable selection [e.g. George and McCulloch, 1993, Ishwaran and Rao, 2005,
Narisetty and He, 2014].

The state-of-the-art exact MCMC algorithms to sample from posteriors corresponding to the prior
in (38) are Gibbs samplers which cost O(n2d) per iteration [Bhattacharya et al., 2016]. Narisetty et al.
[2019] have recently developed approximate MCMC methods for this setting. Their approximate
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Algorithm 4: Common random numbers coupling of an exact and an approximate Markov
chain for Bayesian regression with half-t priors.
Input: exact chain current state Ct ↭ (↽t, ⇁t, ϑ2

t , ⇀t) ↓ Rd
↔ Rd

>0
↔ R>0 ↔ R>0, approximate

chain current state C̃t ↭ (↽̃t, ⇁̃t, ϑ̃2

t , ⇀̃t) ↓ Rd
↔ Rd

>0
↔ R>0 ↔ R>0 and approximation

threshold ϖ > 0.
1. Sample (⇁t+1, ⇁̃t+1)

⇀t, ⇀̃t, ϑ2

t , ϑ̃2

t , ↽t, ↽̃t component-wise, for each component j targeting

π(⇁t+1,j |...) ▽
e≃mt,jφt+1,j

⇁
1↑ω

2
t+1,j(1 + ν⇁t+1,j) ω+1

2

and π(⇁̃t+1,j |...) ▽
e≃m̃t,jφt+1,j

⇁
1↑ω

2
t+1,j(1 + ν⇁t+1,j) ω+1

2

for mt,j ↭
(
⇀t↽2

t,j

)
/
(
2ϑ2

t

)
and m̃t,j ↭

(
⇀̃t↽̃2

t,j

)
/
(
2ϑ̃2

t

)
respectively using common random

numbers. This can be done using the slice sampler of Biswas et al. [2022].

2. Sample (⇀t+1, ⇀̃t+1, ϑ2

t+1
, ϑ̃2

t+1
, ↽t+1, ↽̃t+1) given ⇁t+1 and ⇁̃t+1 as follows:

(a) Sample (⇀t+1, ⇀̃t+1) via Metropolis-Hastings with step size ϑMH = 0.8:
Propose log(⇀↓) = log(⇀t) + ϑMHZ↓ and log(⇀̃↓) = log(⇀̃t) + ϑMHZ↓ for Z↓

⇒ N (0, 1).
Calculate acceptance probabilities

q = L(y|⇀↓, ⇁t+1)πς(⇀↓)
L(y|⇀t, ⇁t+1)πς(⇀t)

⇀↓

⇀t
and q̃ = L(y|⇀̃↓, ⇁̃t+1)πς(⇀̃↓)

L(y|⇀̃t, ⇁̃t+1)πς(⇀̃t)
⇀̃↓

⇀̃t

where πς(·) is the prior density of ⇀, M ↭ In + ⇀≃1

t X Diag(⇁≃1

j,t ) X⇔,
M̃ ↭ In + X Diag((⇀̃≃1

t ⇁̃≃1

j,t I{ς̃↑1
maxφ̃↑1

j,t >↽})p
j=1

) X⇔ for ⇀̃max = max{⇀̃t, ⇀̃↓
},

log(L(y|⇀, ⇁)) = ↘
1
2 log(|M |) ↘

a0 + n

2 log(b0 + y⇔M≃1y) and

log(L(y|⇀, ⇁)) = ↘
1
2 log(|M̃ |) ↘

a0 + n

2 log(b0 + y⇔M̃≃1y).

Sample U↓
⇒ Uniform([0, 1]). Set ⇀t+1 ↭ ⇀↓ if U↓

≃ min(1, q), else set ⇀t+1 ↭ ⇀t. Set
⇀̃t+1 ↭ ⇀̃↓ if U↓

≃ min(1, q̃), else set ⇀̃t+1 ↭ ⇀̃t.
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Algorithm 2: continued
2. [(a)]

Sample (ϑ2

t+1
, ϑ̃2

t+1
)
⇀t+1, ⇀̃t+1, ⇁t+1, ⇁̃t+1 using common random numbers, marginally

targeting

ϑ2

t+1
|⇀t+1, ⇁t+1 ⇒ InvGamma

(a0 + n

2 ,
y⇔M≃1

ςt+1,φt+1
y + b0

2

)
and

ϑ̃2

t+1
|⇀̃t+1, ⇁̃t+1 ⇒ InvGamma

(a0 + n

2 ,
y⇔M≃1

ς̃t+1,φ̃t+1
y + b0

2

)
.

(b)(c) Sample (↽t+1, ↽̃t+1)|ϑ2

t+1
, ϑ̃2

t+1
, ⇀t+1, ⇀̃t+1, ⇁t+1, ⇁̃t+1 with common random numbers and

the fast sampling algorithms of Bhattacharya et al. [2016], marginally targeting

↽t+1|ϑ2

t+1
, ⇀t+1, ⇁t+1 ⇒ N

(
”≃1X⇔y, ϑ2

t+1
”≃1

)
for ” = X⇔X + ⇀t+1Diag(⇁t+1)

↽̃t+1|ϑ̃2

t+1
, ⇀̃t+1, ⇁̃t+1 ⇒ N

(
”̃≃1X⇔y, ϑ̃2

t+1
”̃≃1

)
for ”̃ = X⇔X + ⇀̃t+1Diag(⇁̃t+1)

return Ct+1 ↭ (↽t+1, ⇁t+1, ϑ2

t+1
, ⇀t+1) and C̃t+1 ↭ (↽̃t+1, ⇁̃t+1, ϑ̃2

t+1
, ⇀̃t+1).

MCMC algorithm, called Skinny Gibbs, is based on matrix approximations of the form


X⇔
A XA + ▷≃2

1
I X⇔

A XAc

X⇔
AcXA X⇔

AcXAc + ▷≃2

0
I


⇐


X⇔

A XA + ▷≃2

1
I 0

0 ((n ↘ 1) + ▷≃2

0
)I



where A = {j : Zj = 1}, XA is an n ↔ |A| matrix corresponding to the active columns j ↓ A of the
design matrix, and XAc is an n ↔ (d ↘ |A|) matrix corresponding to the inactive columns j /↓ A.
This gives an overall computation cost of O(n min{d, |A|

2
}) per iteration.

In Section 4.3, we use couplings to assess the quality of the Skinny Gibbs algorithm. The upper
bounds in Figure 6 are given by our estimator CUB2 (4) with S = 1000, T = 3000, and I = 100 for
both the malware and lymph node GWAS datasets, where these values were chosen based on initial
runs. The lower bounds in Figure 6 are estimated using (7) based on the same samples from the
coupled chains used to calculate the upper bound estimate. We consider a CRN coupling between
one marginal chain corresponding to the exact MCMC kernel and another corresponding to the
Skinny Gibbs kernel. The CRN coupled kernel is given in Algorithm 3.
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Algorithm 3: Common random numbers coupling of an exact and an approximate Markov
chain for Bayesian logistic regression with spike and slab priors.
Input: exact chain current state Ct ↭ (↽t, zt, et, wt) ↓ Rd

↔ {0, 1}
d

↔ Rn
↔ Rn and

approximate chain current state C̃t ↭ (↽̃t, z̃t, ẽt, w̃t) ↓ Rd
↔ {0, 1}

d
↔ Rn

↔ Rn.
1. Sample (↽t+1, ↽̃t+1)|zt, et, wt, z̃t, ẽt, w̃t with common random numbers and the fast sampling

algorithms of Bhattacharya et al. [2016], marginally targeting

(↽A,t+1, ↽Ac,t+1)|zt, et, wt ⇒ N
(
”≃1X⇔Wy, ”≃1

)
for ” =

(
X↓

A W XA + ↼↑2
1 I X↓

A W XAc

X↓
Ac W XA X↓

Ac W XAc + ↼↑2
0 I

)
,

(↽̃Ã,t+1
, ↽̃Ĩ,t+1

)|z̃t, ẽt, w̃t ⇒ N
(
”̃≃1X⇔W̃y, ”̃≃1

)
for ”̃ =

(
X↓

Ã
W̃ XÃ + ↼↑2

1 I 0

0 ((n ≃ 1) + ↼↑2
0 )I

)

where W = Diag(wt) and W̃ = Diag(w̃t), A = {j : zj,t = 1} and Ã = {j : z̃j,t = 1} are the
index sets of active components, XA and XÃ are matrices corresponding to the active (or
inactive) columns of X with columns j ↓ A and j ↓ Ã respectively, ↽A,t+1 and ↽̃Ã,t+1

are
vectors of active components of ↽t+1 and ↽̃t+1 respectively.

2. Sample (zt+1, z̃t+1) given ↽t+1, ↽̃t+1, et, ẽt, wt, w̃t with common random numbers sequentially
in order for j = 1, ..., p such that each zj,t+1 and z̃j,t+1 are Bernoulli random variables with
odds

qN (↽j,t+1, 0, ▷2

1
)

(1 ↘ q)N (↽j,t+1, 0, ▷2

0
) and

qN (↽̃j,t+1, 0, ▷2

1
)

(1 ↘ q)N (↽̃j,t+1, 0, ▷2

0
)

exp
(

↽̃j,t+1X⇔
j W̃ (Y ↘ XCj ↽Cj ,t+1) + 1

2X⇔
j (I ↘ W̃ )Xj↽2

j,t+1

)

respectively where N (·; µ, ”) is the probability density of the normal distribution with mean
µ and variance ”, Cj ↭ {k : z̃k,t+1 = 1 for k < j or z̃k,t = 1 for k > j} is the index set of
active components in {1, ..., p}\{j}, XCj is a matrix of the columns of X which correspond to
indices in Cj , and ↽̃Cj ,t+1 is a vector of the components of ↽̃t+1 which correspond to indices
in Cj .
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Algorithm 3: continued

3. Sample (et+1, ẽt+1)|↽t+1, ↽̃t+1, zt+1, z̃t+1, wt, w̃t with common random numbers
component-wise independently such that for each i = 1, ..., n

ei,t+1 ⇒


N (x⇔

i ↽t+1, w≃1

i,t )I[0,↘) if yi = 1
N (x⇔

i ↽t+1, w≃1

i,t )I(≃↘,0) if yi = 0 and

ẽi,t+1 ⇒


N (x⇔

Ã,i
↽̃Ã,t+1

, w̃≃1

i,t )I[0,↘) if yi = 1
N (x⇔

Ã,i
↽̃Ã,t+1

, w̃≃1

i,t )I(≃↘,0) if yi = 0

where x⇔
i and x⇔

Ã,i
are the ith row of the X and XÃ respectively.

4. Sample (wt+1, w̃t+1)|↽t+1, ↽̃t+1, zt+1, z̃t+1, et+1, ẽt+1. We take this variable to be fixed, and
set wi,t = w̃i,t = 3/π2 for all i = 1, ..., n and t → 0, where 3/π2 is the precision of the logistic
distribution. In the case this variable can vary, they can be sampled using common random
numbers such that for each i = 1, ..., n,

wi,t+1 ⇒ !


ν + 1
2 ,

K(yi ↘ x⇔
i ↽t+1)2

2


and w̃i,t+1 ⇒ !


ν + 1

2 ,
K(yi ↘ x⇔

Ã,i
↽̃Ã,t+1

)2

2



where ν = 7.3, K ↭ (π2(ν ↘ 2)/3) are fixed constants as given in Narisetty et al. [2019].

return Ct ↭ (↽t, zt, et, wt) and Ct ↭ (↽̃t, z̃t, ẽt, w̃t).
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F Additional Algorithms

Algorithm 4: Common random numbers coupling of two MALA kernels marginally targetting
distributions P and Q respectively
Input: (Xt, Yt), unnormalized densities p and q of P and Q respectively, step sizes ϑP and ϑQ

Sample ϖCRN ⇒ N (0, Id). Calculate proposals

X↓ ↭ Xt + 1
2ϑ2

P ⇔ log p(Xt) + ϑP ϖCRN and Y ↓ ↭ Yt + 1
2ϑ2

Q⇔ log q(Yt) + ϑQϖCRN

Sample UCRN ⇒ Uniform([0, 1])
if UCRN ≃

p(X→
)N (X→

;Xt+
1
2 ϱ2

P ↙ log p(Xt),ϱ2
P Id)

p(Xt)N (Xt;X→+
1
2 ϱ2

P ↙ log p(X→),ϱ2
P Id)

, then set Xt+1 = X↓ ; else set Xt+1 = Xt

if UCRN ≃
q(Y →

)N (Y →
;Yt+

1
2 ϱ2

Q↙ log q(Yt),ϱ2
QId)

q(Yt)N (Yt;Y →+
1
2 ϱ2

Q↙ log q(Y →),ϱ2
QId)

, then set Yt+1 = Y ↓ ; else set Yt+1 = Yt

return (Xt+1, Yt+1)

Algorithm 5: Common random numbers coupling of a MALA kernel and an ULA kernel
marginally targeting distributions P and Q respectively
Input: (Xt, Yt), unnormalized densities p and q of P and Q respectively, step sizes ϑP and ϑQ

Sample ϖCRN ⇒ N (0, Id). Calculate proposals

X↓ ↭ Xt + 1
2ϑ2

P ⇔ log p(Xt) + ϑP ϖCRN and Y ↓ ↭ Yt + 1
2ϑ2

Q⇔ log q(Yt) + ϑQϖCRN .

Sample U ⇒ Uniform([0, 1])
if U ≃

p(X→
)N (X→

;Xt+
1
2 ϱ2

P ↙ log p(Xt),ϱ2
P Id)

p(Xt)N (Xt;X→+
1
2 ϱ2

P ↙ log p(X→),ϱ2
P Id)

, then set Xt+1 = X↓ ; else set Xt+1 = Xt

Set Yt+1 = Y ↓

return (Xt+1, Yt+1)
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Algorithm 6: Reflection coupling of two MALA kernels marginally targetting distributions P
and Q respectively [see, e.g. Bou-Rabee et al., 2020].
Input: (Xt, Yt), unnormalized densities p and q of P and Q respectively, step sizes ϑP and ϑQ

Sample ϖ ⇒ N (0, Id). Calculate proposals

X↓ ↭ Xt + 1
2ϑ2

P ⇔ log p(Xt) + ϑP ϖ

Y ↓ ↭ Yt + 1
2ϑ2

Q⇔ log q(Yt) + ϑQ(Id ↘ ee⇔)ϖ for e = Xt ↘ Yt

↗Xt ↘ Yt↗2

.

Sample UCRN ⇒ Uniform([0, 1]).
if UCRN ≃

p(X→
)N (X→

;Xt+
1
2 ϱ2

P ↙ log p(Xt),ϱ2
P Id)

p(Xt)N (Xt;X→+
1
2 ϱ2

P ↙ log p(X→),ϱ2
P Id)

, then set Xt+1 = X↓ ; else set Xt+1 = Xt.

if UCRN ≃
q(Y →

)N (Y →
;Yt+

1
2 ϱ2

Q↙ log q(Yt),ϱ2
QId)

q(Yt)N (Yt;Y →+
1
2 ϱ2

Q↙ log q(Y →),ϱ2
QId)

, then set Yt+1 = Y ↓ ; else set Yt+1 = Yt.
return (Xt+1, Yt+1)

Algorithm 7: Reflection maximal coupling of two MALA kernels marginally targetting distribu-
tions P and Q respectively [see, e.g. Bou-Rabee et al., 2020].
Input: (Xt, Yt), unnormalized densities p and q of P and Q respectively, step sizes ϑP and ϑQ

Sample ϖ ⇒ N (0, Id), U↓
⇒ Uniform([0, 1]). Calculate proposals

X↓ ↭ Xt + 1
2ϑ2

P ⇔ log p(Xt) + ϑP ϖ

Y ↓ ↭


X↓ if U↓
≃

N (X→
;Yt+

1
2 ϱ2

P ↙ log p(Yt),ϱ2
P Id)

N (X→;Xt+
1
2 ϱ2

P ↙ log p(Xt),ϱ2
P Id)

Yt + 1

2
ϑ2

Q⇔ log q(Yt) + ϑQ(Id ↘ ee⇔)ϖ otherwise for e = Xt≃Yt
↖Xt≃Yt↖2

.

Sample UCRN ⇒ Uniform([0, 1]).
if UCRN ≃

p(X→
)N (X→

;Xt+
1
2 ϱ2

P ↙ log p(Xt),ϱ2
P Id)

p(Xt)N (Xt;X→+
1
2 ϱ2

P ↙ log p(X→),ϱ2
P Id)

, then set Xt+1 = X↓ ; else set Xt+1 = Xt.

if UCRN ≃
q(Y →

)N (Y →
;Yt+

1
2 ϱ2

Q↙ log q(Yt),ϱ2
QId)

q(Yt)N (Yt;Y →+
1
2 ϱ2

Q↙ log q(Y →),ϱ2
QId)

, then set Yt+1 = Y ↓ ; else set Yt+1 = Yt.
return (Xt+1, Yt+1)
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