Check for
Updates

The Case for Co-Designing Model Architectures with Hardware

Quentin Anthony Jacob Hatef Deepak Narayanan
Ohio State University Ohio State University NVIDIA
EleutherAl hatef.4@osu.edu dnarayanan@nvidia.com
anthony.301@osu.edu
Stella Biderman Stas Bekman Jungqi Yin
EleutherAl Contextual Al Oak Ridge National Lab
stella@eleuther.ai stas@stason.org yinj@ornl.gov
Aamir Shafi Hari Subramoni Dhabaleswar K. Panda

Ohio State University
shafi.16@osu.edu

ABSTRACT

While GPUs are responsible for training the vast majority of state-of-
the-art deep learning models, the implications of their architecture
are often overlooked when designing new deep learning (DL) mod-
els. As a consequence, modifying a DL model to be more amenable
to the target hardware can significantly improve the runtime per-
formance of DL training and inference. In this paper, we provide a
set of guidelines for users to maximize the runtime performance
of their transformer models. These guidelines have been created
by carefully considering the impact of various model hyperparam-
eters controlling model shape on the efficiency of the underlying
computation kernels executed on the GPU. We find the throughput
of models with “efficient” model shapes is up to 39% higher while
preserving accuracy compared to models with a similar number of
parameters but with unoptimized shapes.

ACM Reference Format:

Quentin Anthony, Jacob Hatef, Deepak Narayanan, Stella Biderman, Stas
Bekman, Junqi Yin, Aamir Shafi, Hari Subramoni, and Dhabaleswar K. Panda.
2024. The Case for Co-Designing Model Architectures with Hardware. In
The 53rd International Conference on Parallel Processing (ICPP °24), August
12-15, 2024, Gotland, Sweden. ACM, New York, NY, USA, 13 pages. https:
//doi.org/lO.1145/3673038.3673136

1 INTRODUCTION

Transformer-based [35] language models have become widely pop-
ular for language and sequence modeling tasks. Consequently, it is
extremely important to train and serve large transformer models
such as GPT-3 [8] and Codex as efficiently as possible given their
scale and wide use. At the immense scales that are in widespread

This research is supported in part by NSF grants #1818253, #1854828, #2007991,
#2018627, #2311830, #2312927, and XRAC grant #NCR-130002.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICPP ’24, August 12-15, 2024, Gotland, Sweden

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1793-2/24/08

https://doi.org/10.1145/3673038.3673136

Ohio State University
subramoni.l@osu.edu

84

Ohio State University
panda.2@osu.edu

use today, efficiently using computational resources becomes a
complex problem and small drops in hardware utilization can lead
to enormous amounts of wasted compute, funding, and time. In this
paper, we tackle a frequently ignored aspect of training large trans-
former models: how the shape of the model can impact runtime
performance. We use first principles of GEMM optimization to op-
timize individual parts of the transformer model (which translates
to improved end-to-end runtime performance as well). Throughout
the paper, we illustrate our points with extensive computational ex-
periments demonstrating how low-level GPU phenomenon impact
throughput throughout the language model architecture.

Many of the phenomena remarked on in this paper have been
previously documented, but continue to plague large language
model (LLM) designers to this day. We hypothesize that there are
three primary causes of this:

(1) Few resources trace the performance impacts of a trans-
former implementation all the way to the underlying com-
putation kernels executed on the GPU.

(2) The existing documentation on how transformer hyperpa-
rameters map to these kernels is not always in the most
accessible formats, including tweets [17, 18], footnotes [31],
and in comments in training libraries [5].

(3) It is convenient to borrow architectures from other papers
and researchers rarely give substantial thought to whether
those choices of model shapes are optimal.

This work attempts to simplify performance tuning for trans-
former models by carefully considering the architecture of modern
GPUs. This paper is also a demonstration of our thesis that model
dimensions should be chosen with hardware details in mind
to an extent far greater than is typical in deep learning research
today.

As shown in Figure 1, the runtimes of models with a nearly iden-
tical number of parameters but different shapes can vary wildly. Un-
fortunately the knowledge of how to optimally shape transformer
architectures is not widely known, resulting in people often making
sub-optimal design decisions. This is exacerbated by the fact that
researchers often deliberately copy hyperparameters from other pa-
pers for cleaner comparisons, resulting in these sub-optimal choices
becoming locked in as the standard. As one example of this, we
show that the 2.7 billion parameter model described in Brown et al.


https://doi.org/10.1145/3673038.3673136
https://doi.org/10.1145/3673038.3673136
https://doi.org/10.1145/3673038.3673136
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3673038.3673136&domain=pdf&date_stamp=2024-08-12

ICPP °24, August 12-15, 2024, Gotland, Sweden

[8] can be trained almost 20% faster than the default architecture
through minor tweaking of the model shape.

180 165.741

160
140 140.695
= 119.37
108.505
2
~ J I I
c1 @

Standard Ours 2
Architecture

Throughput (TFLOP,
Boe

N B O ®O N
S 8338383

o

Ours 1

Figure 1: Transformer single-layer throughput of various
architectures for a 2.7 billion parameter model (C1 and C2
are defined by this paper as C1: h = 2560,a = 64, C2: h =
2560, a = 40).

Our analysis makes use of the fact that General Matrix Multipli-
cations (GEMMs) are the lifeblood of modern deep learning. Most
widely-used compute-intensive layers in deep learning explicitly
use GEMMs (e.g., linear layers or attention layers) or use opera-
tors that are eventually lowered into GEMMs (e.g., convolutions).
For transformer models, our experiments from Figure 2 show that
GEMM kernels regularly account for 68.3% and 94.9% of the total
model latency for medium- and large-sized models, respectively.
As a result, understanding the performance of GEMMs is crucial to
understanding the runtime performance of end-to-end models; this
only becomes more important as model size increases.

[1GEMMs (IFlash (ISoftmax [IDR [ILN @ Other

100

80

60

40

20

Percentage of Latency (%)

Small (h=2560, a=20) Large (h=16384, a=128)  Large + Flash (h=16384, a=128)
Figure 2: The proportion of latency from each transformer

component for one layer of a medium-sized model

On account of their parallel architecture, GPUs are a natural
hardware platform for GEMMs. However, the observed throughput
for these GEMMs depends on the matrix dimensions due to how
the computation is mapped onto the execution units of the GPU
(called streaming multiprocessors or SMs for short). As a result, GPU
efficiency is sensitive to the model depth and width, which control
the arithmetic efficiency of the computation, SM utilization, kernel
choice, and the usage of tensor cores versus slower cuda cores. This
work tries to determine how best to size models to ensure good
performance on GPUs, taking these factors into account. Optimizing
model shapes for efficient GEMMs will increase throughput for the
entire lifetime of the model, decreasing training time and inference
costs! for production models.

'We expect best results when the inference GPU is the same as the training GPU, but
the guidelines we present could also be useful when the two are different.

85

Q. Anthony, ). Hatef, D. Narayanan, S. Biderman, S. Bekman, J. Yin, A. Shafi, H. Subramoni, and DK Panda

1.1 Contributions
QOur contributions are as follows:

e We map the transformer model to its underlying matrix
multiplications / GEMMs, and show how each component
of the transformer model can suffer from using sub-optimal
transformer dimensions.

e We compile a list of GPU performance factors into one docu-
ment and explain how to choose optimal GEMM dimensions.

e We define rules to ensure transformer models are composed
of efficient GEMMs.

2 RELATED WORK
2.1 GPU Characterization of DNNs

DL model training involves the heavy use of GPU kernels, and the
characterization of such kernel behavior constitutes a large body
of prior work that this paper builds upon. GPU kernels, especially
GEMM kernels, are key to improving DL training and inference
performance. Therefore, characterizing [19] and optimizing [1, 4, 15,
40] these kernels have received a lot of attention in recent work [21].

Beyond GPU kernels, new algorithms and DL training techniques
have been developed to optimize I/O [11, 12] and leverage hardware
features like Tensor Cores [29, 38] as efficiently as possible. In
addition to the above studies for DL training, exploiting Tensor
Core properties has also shown excellent speedups for scientific
applications such as iterative solvers [16] and sparse linear algebra
subroutines [34].

2.2 Comparison Across DL Accelerators

In recent years, there has emerged a range of acceleration strategies
such as wafer-scale (Cerebras), GPUs (AMD and NVIDIA), and
tensor processing units (Google). Given this diverse array of new
AT accelerators, many pieces of work perform cross-generation
and cross-accelerator comparison that have helped elucidate the
strengths and weaknesses of each accelerator. Cross-accelerator
studies such as mlp [3], Emani et al. [14], Wang et al. [37] enable
HPC and cloud customers to choose an appropriate accelerator for
their DL workload. We seek to extend this particular line of work
by evaluating across two datacenter-class NVIDIA GPUs (V100 and
A100), and will explore NVIDIA H100 and AMD MI250X GPUs in
future work.

2.3 DL Training Performance Guides

The most similar effort to our work is a GPU kernel characteriza-
tion study for RNNs and CNNs performed in Yin et al. [39]. Since
the transformer architecture differs greatly compared to RNNs and
CNNs, we believe that our work provides a timely extension. Fur-
ther, our focus on creating a practical performance guide is similar
in nature to the 3D-parallelism optimization for distributed GPU
architectures presented in Narayanan et al. [23].

From the above discussion, one can posit that while many papers
exist to optimize DL performance on GPUs [21], such papers tend
to neglect the fundamental effects that GPU properties (e.g. Ten-
sor Cores, tiling, wave quantization, etc.) have on model training.
Because of this omission, many disparate DL training groups have
rediscovered a similar set of model sizing takeaways [5, 17, 18, 31].



The Case for Co-Designing Model Architectures with Hardware

We seek to provide explanations for these takeaways from the
perspective of fundamental GPU first-principles, and to aggregate
these explanations into a concise set of takeaways for efficient
transformer training and inference.

3 BACKGROUND

We will now discuss some of the necessary prerequisite material
to understand the performance characteristics of the GPU kernels
underlying transformer models.

3.1 GPU Kernels

General Matrix Multiplications (GEMMs) serve as a crucial com-
ponent for many functions in neural networks, including fully-
connected layers, recurrent layers like RNNs, LSTMs, GRUs, and
convolutional layers. If A is an m X k matrix and B is a k X n matrix,
then the matrix product AB is a simple GEMM. We can then gener-
alize this to C = aAB + C (in the previous example, « is 1, and f
is 0). In a fully-connected layer’s forward pass, the weight matrix
would be argument A and input activations would be argument B
( and f would typically be 1 and 0 as before; f can be 1 in certain
scenarios, such as when adding a skip-connection with a linear
operation).

Matrix-matrix multiplication is a fundamental operation in nu-
merous scientific and engineering applications, particularly in the
realm of deep learning. It is a computationally intensive task that re-
quires significant computational resources for large-scale problems.
To address this, various algorithms and computational techniques
have been developed to optimize matrix-matrix multiplication op-
erations.

Matrix multiplication variants like batched matrix-matrix (BMM)
multiplication kernels have also been introduced to improve the
throughput of certain common DL operators like attention [35]. A
general formula for a BMM operation is given by Equation 1 below,
where {A;} and {B;} are a batch of matrix inputs, « and f are scalar
inputs, and {C;} is a batch of output matrices.

Ci = aA;B; + pCi,

i=1,..N 1)

3.2 NVIDIA GEMM Implementation and
Performance Factors

There are a number of performance factors to consider when analyz-
ing GEMMs on NVIDIA GPU architectures. NVIDIA GPUs divide
the output matrix into regions or tiles as shown in Figure 3 and
schedule them to one of the available streaming multiprocessors
(SM) on the GPU (e.g., A100 GPUs have 108 SMs). Each tile or thread
block is processed in a Tensor Core, which NVIDIA introduced for
fast tensor operations. NVIDIA Tensor Cores are only available for
GEMMs with appropriate dimensions. Tensor Cores can be fully
utilized when GEMM dimensions m, k, and n are multiples of 16
bytes and 128 bytes for V100 and A100 GPUs, respectively. Since a
FP16 element is 2 bytes, this corresponds to dimension sizes that are
multiples of 8 and 64 elements, respectively. If these dimension sizes
are not possible, Tensor Cores perform better with larger multiples
of 2 bytes.

There are multiple tile sizes that the kernel can choose from. If
the GEMM size does not divide evenly into the tile size, there will

86

ICPP °24, August 12-15, 2024, Gotland, Sweden

N
B matrix
} Ktile
K —
Ntile
K
A matrix C matrix
M
Blockm_,1
} Mtile } Mtile
— —
Ktile Ntile

Figure 3: GEMM tiling [24].

be wasted compute, where the thread block must execute fully on
the SM, but only part of the output is necessary. This is called the
tile quantization effect, as the output is quantized into discrete tiles.

Another quantization effect is called wave quantization. As the
thread blocks are scheduled to SMs, only 108 thread blocks at a
time may be scheduled. If, for example, 109 thread blocks must be
scheduled, two rounds, or waves, of thread blocks must be sched-
uled to GPU. The first wave will have 108 thread blocks, and the
second wave will have 1. The second wave will have almost the
same latency as the first, but with a small fraction of the useful
compute. As the matrix size increases, the last or tail wave grows.
The throughput will increase, until a new wave is required. Then,

the throughput will drop.

3.3 Transformer Models

In this study, we examine a decoder-only transformer architecture
popularized by GPT-2 [27]. We focus on this architecture due to
its popularity for training very large models [8, 9, 32] , but most of
our conclusions also apply to encoder-only models [13, 20]. Due to
the nature of the transition between the encoder and decoder, our
analysis will largely not apply to encoder-decoder models [28, 35].

For a mapping from variables to their definitions, see Table 1.
Initially, the network takes in raw input tokens which are then fed
into a word embedding table of size v X h. These token embeddings
are then merged with learned positional embeddings of size s X h.
The output from the embedding layer, which serves as the input for
the transformer block, is a 3-D tensor of size s X b X h. Each layer
of the transformer comprises a self-attention block with attention
heads, followed by a two-layer multi-layer perceptron (MLP) that
expands the hidden size to 4h before reducing it back to A. The input
and output sizes for each transformer layer remain consistent at
sXbxh. The final output from the last transformer layer is projected
back into the vocabulary dimension to compute the cross-entropy
loss.

Each transformer layer consists of the following matrix multipli-
cation operators:



ICPP °24, August 12-15, 2024, Gotland, Sweden

A A
S G
~—»| Add & Norm Unembedding
—
N
Decoder
MLP
—
~—»| Add & Norm 1
J;
MHA
W w— Embedding
[

—

Transformer Layer Decoder-only LLM

Figure 4: The transformer architecture [27].

a | Number of attention heads s | Sequence length

b | Microbatch size t | Tensor-parallel size
h | Hidden dimension size v | Vocabulary size

L | Number of transformer layers

Table 1: Variable names.

(1) Attention key, value, query transformations: These can be
expressed as a single matrix multiplication of size: (b - s, h) X
(h, %). Output is of size (b - s, %).

(2) Attention score computation: b - a/t batched matrix multi-
plications (BMMs), each of size (s, %) X (% s). Output is of
size (bfa, 5,8).

(3) Attention over value computation: b—t“ batched matrix mul-

tiplications of size (s,s) X (s, %) Output is of size (b%’ s, %)
(4) Post-attention linear projection: a single matrix multiplica-
tion of size (b - s, h) X (%, h). Output is of size (b - s, h).

(5) Matrix multiplications in the MLP block of size (b - s, h) X
(h, ﬂ) and (b-s, ﬂ) X (%, h). Outputs are of size (b - s, 4—h)
and (b - s, h).

The total number of parameters in a transformer can be cal-
culated using the formula P = 12hL + 13hL + (v + s)h. This is
commonly approximated as P = 12h%L, omitting the lower-order
terms.

Here, we make the assumption that the projection weight dimen-
sion in the multi-headed attention block is h/a, which is the default
in existing implementations like Megatron [31] and GPT-NeoX [5].

The total number of compute operations needed to perform a

forward pass for training is then 24bsh? + 4bs®h = 24bsh? (1 + 6—3}1)

Parallelization Across GPUs. Due to the extreme size of mod-
ern transformer models, and the additional buffers and activations
needed for training, it is common to split transformers across multi-
ple GPUs using tensor and pipeline parallelism [23, 31]. This paper
focuses on optimizing the GEMMs that a transformer is composed

87

Q. Anthony, ). Hatef, D. Narayanan, S. Biderman, S. Bekman, J. Yin, A. Shafi, H. Subramoni, and DK Panda

Module GEMM Size Figure
Input Embedding — -
Layer Norm 1 - -
QKYV Transform (b-s,h) x (h, %) 16
Attention Score (b%, s, %) X (b;,a, %, s) 7a 8
Attn over Value (b;t“, s,8) X (b;t“, s, %) 7b 9
Linear Projection (b-s, h) X (h, h) 19
Layer Norm 2 — —
MLP h to 4h (b-s,h) x (h ) 10a
MLP 4h to h (b-s, 2y x (4 p) 10b
Linear Output (b -s,0) X (v, h) 20

Table 2: Summary of operators in the transformer layer con-
sidered in this paper, along with the size of the GEMMs used
to execute these operators.

of. Since Data Parallelism and Pipeline Parallelism do not change
the size of the GEMMs, only Tensor Parallelism will be investigated
in this work. However, our results should apply directly to Data
and Pipeline Parallelism as well.

4 EXPERIMENTAL SETUP
4.1 Hardware Setup

All experimental results were measured on one of the systems
described in Table 3. We used compute from a wide variety of
sources such as Oak Ridge National Laboratory (ORNL), the San
Diego Supercomputing Center (SDSC), and cloud providers such
as AWS and Cirrascale. In order to increase the coverage of our
takeaways as much as possible, we have included a diverse range
of systems in this study.

4.2 Software Setup

Each hardware setup has used slightly different software. For the
V100 experiments, we used PyTorch 1.12.1 and CUDA 11.3. For
the A100 experiments, we used PyTorch 1.13.1, CUDA 11.7. All
transformer implementations are ported from GPT-NeoX [5].

5 GEMM RESULTS

Figure 5 shows the throughput (in teraFLOP/s) of matrix multiplica-
tion computations of various sizes on two types of NVIDIA GPUs.
As the GEMM size increases, the operation becomes more com-
putationally intensive and uses memory more efficiently (GEMMs
are memory-bound for small matrices). As shown in Figure 5a,
throughput of the GEMM kernel increases with matrix size as the
kernel becomes compute-bound. However, wave quantization in-
efficiencies reduce the throughput when the GEMM size crosses
certain thresholds. The effects of wave quantization can be seen
clearly in Figure 5b. Additionally, when the size of the GEMM is
sufficiently large, PyTorch may automatically choose a tile size
that decreases quantization effects. In Figure 5c, the effects of wave
quantization are lessened, as PyTorch is able to better balance the
improvements from GEMM parallelization and inefficiencies from
wave quantization to improve throughput.



The Case for Co-Designing Model Architectures with Hardware

ICPP °24, August 12-15, 2024, Gotland, Sweden

GPU Vendor GPU CPU

Inter-node Interconnect Intra-node Interconnect

AWS pad NVIDIA  8x(A100 40GB)

Intel Cascade Lake 8275CL

Amazon EFA [400 Gbps] NVLINK [600 GBps]

ORNL Summit NVIDIA 6x(V100 16GB)

IBM POWER9

InfiniBand EDR [200 Gbps]  NVLINK (2x3) [100 GBps]

SDSC Expanse NVIDIA 4x(V100 32GB)

AMD EPYC 7742

InfiniBand HDR [200 Gbps] NVLINK [100 GBps]

Table 3: Hardware systems used in this paper.

200

—e— A100
V100

Throughput
(TFLOP/s)
=
o
o

o
A

0 2000 4000

m

6000 8000

(a) (m,4096) x (4096, m)

=
w
o

—e— A100
V100

Throughput
(TFLOP/s)
=
w1 o
Q o

Q
c

200 300 400 500

k
(b) (27648,4096) x (4096, k)

150+

—e— Al00
V100

Throughput
(TFLOP/s)
=
o
o

L]

4000 6000

k
(c) (2304, 4096) X (4096, k).

2000 3000 5000

Figure 5: Throughput (in teraFLOP/s) for matrix multiplica-
tion computations of various sizes.

Figure 6 shows the throughput (in teraFLOP/s) of batched matrix
multiplication (BMMs) computations of various sizes. Since BMMs
are composed of GEMMs, the same wave quantization effects would
apply (though they do not for these BMM sizes and on these GPU
architectures). BMM throughput also increases as the size of the
BMM and arithmetic intensity increases.

88

6 TRANSFORMER RESULTS
6.1 Transformer as a Series of GEMMs

The settings of the various hyperparameters in the transformer
layer controlling its shape all have an impact on its observed end-to-
end throughput. Some of these hyperparameters can affect perfor-
mance in subtle ways. The purpose of this section is to map GEMM
performance to transformer throughput, use these mappings to
explain the performance effects of relevant hyperparameters, and
finally to boil down these effects into a series of practical takeaways.

For example, let us consider the attention block on an A100 GPU.
The number of attention heads affects the number of independent
matrix multiplications in the BMM, as well as the size of each matrix
multiplication computation. Figure 6 shows the effect of the number
of attention heads and the hidden size on the throughput of the
BMM used in attention key-query score computation and attention
over value computation. NVIDIA Tensor Cores are more efficient
when the dimensions of the matrices m, n, and k are multiples of
128 bytes for A100 GPUs. Therefore, efficiency is maximized when
matrix sizes are multiples of 64 FP16 elements. If this cannot be
achieved, sizes that are multiples of larger powers of 2 perform
better, as shown in Figures 7a and 7b, where the matrix dimension
of interest is of size h/a. Figures 8 and 9 show how decreasing the
number of attention heads for any given hidden size results in more
efficient GEMMs. Because a decrease in a is an increase in h/a and
these two GEMMs are memory bound, an increase in component
matrices size creates much more efficient GEMMs. Figure 9 also
clearly shows the effects of wave quantization in the peaks and
valleys within any given line. Since each line moves in steps of
64h/a, the BMMs corresponding to each line grow at different rates.
This causes the period of the wave quantization effect to appear
different for each a value.

Figure 11 shows the proportion of latency spent in each trans-
former GEMM; consequently, it also shows the most relevant GEMMs
to optimize in the transformer module. As the size of the model
grows, it is even more important to optimize GEMM operations.
For the largest models, the QKV transformation in the attention
block along with the MLP block are the most prevalent GEMMs.
Therefore, the overall latency of the model would benefit most from
optimizing these kernels. Attention over value (AOV) computation
is the smallest GEMM computation in large transformer models;
however, optimizing attention key-query score computation will
have similar benefits to attention over value computation, so both
can be optimized at the same time.

6.2 Analysis

To recap, we have the following requirements to efficiently run
GEMMs on NVIDIA GPUs:



ICPP °24, August 12-15, 2024, Gotland, Sweden

1001 \

—— > < A\

—o— m=1024 —e— m=4096

—e— m=2048 —e— m=8192

~
(6]

Throughput
(TFLOP/s)
N (8]

L{'I o

o

2‘1 23 2‘5
b

(a) (b,m,m) x (b, m, m) BMM on V100 GPU.

100

—— b=16

~
ul

Throughput
(TFLOP/s)
U1
i

(c) (b, m, 4096) X (b, 4096, m) BMM on V100 GPU.

Q. Anthony, J. Hatef, D. Narayanan, S. Biderman, S. Bekman, J. Yin, A. Shafi, H. Subramoni, and DK Panda

300,
& 250 =~ o
242001
%‘g 150
= ElOO- —— m=4096
= 501 —— m=2048 —e— m=8192
0 51 53 55
b
300,
o 2501
2 ©200/
£
20150
o
£ 1004
- 50
0 2‘6 2’8 210 212
m

(d) (b, m, 4096) x (b, 4096, m) BMM on A100 GPU.

Figure 6: Throughput (in teraFLOP/s) for batched matrix multiplication (BMM) computations with various dimensions.

Attention Key Query Score, a=32

200 o

w h/a

§150 — 1

t —_— 2

E — 4

=

3.100 — 8

% — 16
3 — 2
£ 50 — 64

0

Hidden Size

(a) Attention key-query score GEMM throughput for 32 attention heads.

Attention over Values, a=32

" \ 4 ﬁ
g / h/a
9 — 1
t 150 — 2
— — 4
3 8
3 J—
100
% — 16
3 — 3
£ s0 — 64
0
Q © v ) v Q © v >
Y o o) > g A A ©
O N v > > \e) © A\
L A
Hidden Size

(b) Attention over value GEMM throughput for 32 attention heads.

Figure 7: Attention GEMM performance on A100 GPUs. Each plot is a single series (i.e. if we didn’t split, there would be
three regions with spikes), but split by the largest power of two that divides //a to demonstrate that more powers of two

leads to better performance up to h/a = 64.

e Tensor Core Requirement: Ensure the inner and outer
dimension of the GEMM is divisible by 128 bytes (64 FP16
elements).

o Tile Quantization: To use the most efficient tile size ensure
that the output matrix is divisible into 128 X 256 blocks.

e Wave Quantization: Ensure that the number of blocks that
the output matrix is divided into is divisible by the number

89

of streaming multiprocessors (80 for V100s, 108 for A100s,
and 144 for H100s).

While tile quantization is relevant to GEMM performance, tile
quantization is hard to observe by the user. If the GEMM does not
divide evenly into the tile size, a tile without a full compute load
will execute. However, this tile will execute concurrently with other



The Case for Co-Designing Model Architectures with Hardware

Attention Key Query Score (h/a = 64)

= N N
~ o N
wv o w

Throughput
(TFLOP/s)
=
(9,
o

125
100
75
50
N ”P&b V&Qa @yb‘ %\& @/@ \:O/%fb x&b’bb \/&%v
Hidden Size

Figure 8: Attention key-query score GEMM throughput as-
suming fixed ratio of % = 64 on A100 GPU

Attention over Values (h/a = 64)

Throughput
(TFLOP/s)
= = N N
w ~ o N
o w o w

fary
N
wv

Jary
o
o

~
v

Hidden Size

Figure 9: Attention over value GEMM throughput assuming
fixed ratio of % = 64 on A100 GPU.

tiles in the same wave. In effect, the kernel will run with the same
latency as a kernel with a larger problem size.

Wave quantization is more easily observable. There will be no
wave quantization inefficiency when a matrix of size (X, Y) satisfies
the following constraints on its size (assuming a tile size of #; X t2):

HiH

Assuming a tile size of 128 X 256 which is the most efficient, there
is not a transformer configuration with GEMMs that fill tensor
core requirements without wave quantization inefficiency. Further,
PyTorch’s linear algebra backend can use different tile sizes for
each GEMM. Therefore, PyTorch is unable to efficiently overcome
the effects of wave quantization.

0 or F—ﬂ . [Z} =0 (mod #SMs)
to t1

90

ICPP °24, August 12-15, 2024, Gotland, Sweden

Therefore to ensure the best performance from transformer mod-
els, ensure:

e The vocabulary size should be divisible by 64.

o The microbatch size b should be as large as possible [22].

o b-s, %, and % should be divisible by a power of two, though
there is no further benefit to going beyond 64.

e (b-a)/t should be an integer.

e t should be as small as possible [23].

Importantly, the microbatch size b does not itself need to be
divisible by a large power of 2 since the sequence length s is a large
power of two.

Whether it is optimal to train using pipeline parallelism depends
on additional details of the computing set-up, most notable the
speed and bandwidth of internode connections. We note that this
is further evidence for our thesis that model dimensions should
be chosen with hardware details in mind, but leave an analysis of
this phenomenon to future work. In all cases it is optimal for the
number of layers to be divisible by the number of pipeline parallel
stages.

Using these recommendations we can achieve a 1.18X speed-up
on a widely used model architecture introduced by Brown et al.
[8]. GPT-3 2.7B’s architecture was copied for many other models
including GPT-Neo 2.7B [7], OPT 2.7B [41], RedPajama 3B [10],
and Pythia 2.8B [6], but possesses an inefficiency. It features 32
attention heads and a hidden dimension of 2560, resulting in a head
dimension of h/a = 2560/32 = 80 which is not a multiple of 64.
This can be addressed either by increasing the side of the hidden
dimension to 4096 or by decreasing the number of heads to 20.
Increasing the hidden dimension to 4096 doubles the number of
parameters to 6.7 billion, so instead we decrease the number of
heads. These results are shown in Figure 1.

To raise h/a, the easiest solution is to decrease a, but decreasing
a may lead to a drop in model accuracy. Fortunately, as shown in
Figure 11, only a small portion of the latency of large models is the
attention score computation and attention over value computation
GEMMs, so an increase in the latency of these components will have
only a small effect on the end-to-end model performance. Therefore,
we recommend either using FlashAttention v2 (see Section 6.3.3) for
small models to mitigate these effects, or increasing h as much as
possible to reach the saturation point shown in Figures 10a and 10b.

6.3 Architectural Modifications

While decoder-only architectures are largely standardized and fol-
low the GPT-2 architecture [27] described in the previous section,
there are some architectural modifications that are popular in re-
cent work. Here we briefly describe them and how they affect our
overall discussion.

6.3.1 Parallel Layers. Parallel attention and MLP layers were intro-
duced by Wang and Komatsuzaki [36]. Instead of computing atten-
tion and MLPs sequentially (y = x+MLP(Norm(x+Attn(Norm(x))))),
the transformer block is formulated as:

y = x + MLP(Norm(x)) + Attn(Norm(x)).

While this computation is represented as being in parallel, in prac-
tice the two branches are not computed simultaneously. Instead, a
speed-up is achieved by fusing the MLP and Attention blocks into a



ICPP °24, August 12-15, 2024, Gotland, Sweden

250
200
150

Throughput
(TFLOP/s)
=
o
o

ul
o

o

Hidden Size
(a) MLP h to 4h Block

Q. Anthony, ). Hatef, D. Narayanan, S. Biderman, S. Bekman, J. Yin, A. Shafi, H. Subramoni, and DK Panda

2504
5 —~200
22
5,06 150
3_1
O | 1001
e
- 50
OQ%Qb"LQ%bb&’L‘Q%‘ov’LQ%
R AR A A A U WAV A
NI NN o LR X PR NO A RS AP A
VN7V ANNOND A AV AR AO AR AP R
Hidden Size
(b) MLP 4h to h Block

Figure 10: Throughput (in teraFLOP/s) for multilayer perceptrons (MLP) for each transformer layer as a function of hidden

dimension for a = 128.

1QKV [1Flash [1Score ©1AOV (]Linproj [1MLP hto4h [IMLP4htoh mNon-GEMM
100

[
% - ‘

60

40

20

Percentage of Latency (%)

Small (h=2560, a=20) Large (h=16384, a=128) Large + Flash (h=16384, a=128)

Figure 11: The proportion of latency of each GEMM module
in a medium sized transformer model.

single kernel. We recommend using parallel attention as the default
best practice, though it does not impact our analysis at all.

6.3.2 Alternative Positional Embeddings. While the original posi-
tional embeddings used in transformers are pointwise operations
[35], today other approaches such as Rotary [33] and ALiBi [26]
embeddings are more popular. While point-wise operations are
slightly faster than the GEMM necessary for Rotary and ALiBi
embeddings, the improved model accuracy that Rotary or ALiBi
embeddings bring are generally considered well worth it. Recently,
custom kernels for rotary embeddings have been introduced, fur-
ther reducing their costs. We recommend using rotary or ALiBi
embeddings as best practice. Using these embeddings again does
not impact our analysis.

6.3.3  FlashAttention. FlashAttention [12] and FlashAttention 2
[11] are novel attention kernels that are widely popular for training
large language models. In order to see its impact on the attention
calculation sizing, we set a = 128 and sweep over the hidden dimen-
sion in Figure 12. We find that FlashAttention follows a roofline
model, which simplifies our attention takeaways to only require
that h be as large as possible; the takeaways for MLPs remain un-
changed.

6.3.4 SwiGLU and 8h/3 MLPs. Models such as PaLM, LLaMA, and
Mistral use the SwiGLU [30] activation function in place of the more
common GLU activation function. While the choice of activation

91

250
—e— a:128

=R N
U O
o o

Throughput
(TFLOP/s)
o
o

U
o

o

Hidden Si

N

e

Figure 12: Sweep over hidden dimension for FlashAttention
(v2) [11] on NVIDIA A100 GPU.

function is generally irrelevant to our analysis, this activation func-
tion has an extra parameter compared to other commonly used op-
tions. Consequently, it’s common to adjust the projection factor for
the MLP block from dimpp = 4-dimayn to dimpypp = % -diMmAgtn
to preserve the ratio of the total number of parameters in the atten-
tion and MLP blocks. This change has substantial implications for
our analysis, which we discuss it detail in Section 7.3.

7 CASE STUDIES

Finally, we present a series of case studies illustrating how we use
the principles described in this paper in practice. These demon-
strate real-world challenges we have encountered in training large
language models with tens of billions of parameters.

7.1 Tensor Parallelism [31]

Tensor parallelism [31] divides the MLP and attention GEMM di-
mensions by a factor of the tensor-parallel degree t. Therefore, the
proper GEMM size is scaled by t. As will be discussed in subsection
7.2, this introduces two additional considerations when choosing
efficient transformer sizes:

o Non-standard parallelism topologies during pretraining may
make efficient sizes difficult to choose (see subsection 7.2).



The Case for Co-Designing Model Architectures with Hardware

o Model weights sharded with tensor-parallelism are first merged

before being disseminated open-source or deployed in infer-
ence. Therefore GEMM sizes for pretraining will differ from
those in finetuning or inference.

250

Throughput
(TFLOP/s)
= =N
o U o
o O o

w1
o

0
Q @ m O ox A D B
vquq 2° S (DY D LV
'L’L'b'bvv‘o
mvb%gmvb@qp,{}
Hidden Size

Figure 13: Attention QKV transform with different tensor
parallel sizes on NVIDIA A100 GPU.

7.2 6-GPU Nodes

While the most common data-center scale computing set-up is to
have 8 GPUs per node, some machines such as Oak Ridge National
Lab’s Summit supercomputer feature six. This presents a multi-layer
challenge to training language models when the tensor parallel
degree is equal to the number of GPUs on a single node, which
is commonly the most efficient 3D-parallelism scheme [23]. This
often causes h/t to no longer have a factor of some power of two,
which greatly improves performance as we demonstrated above.
Therefore:

(1) Model architectures common on 8-GPU nodes may not be
possible on 6-GPU nodes.

(2) Even when they are possible, model architectures common
on 8-GPU nodes may not be efficient on 6-GPU nodes.

(3) If concessions are made to ameliorate #1 and #2, they may
cause problems in deployment if downstream users wish
to use the model designed for a 6-GPU node on a 2-GPU,
4-GPU, or 8-GPU node.

Several large transformers on Summit have been trained, such as
the INCITE RedPajama 3B and 7B [10], and such model designers
must make a choice. Does one choose the most efficient hyperparam-
eters for pretraining only (which would involve a tensor-parallel
degree of 6 and therefore a hidden dimension divisible by 6 and 64),
or should the pretraining team choose a set of hyperparameters
that are more amenable to the node architectures commonly used
for finetuning or inference?

7.3 SwiGLU Activation Functions

Recently the SwiGLU activation function has become popular for
training language models. The SwiGLU function contains an ad-
ditional learned matrix in its activation function, so that now the
MLP block contains 3 matrices instead of the original 2. To preserve
the total number of parameters in the MLP block the paper that
introduces SwiGLU proposes to use df = %h instead of the typical
d fF = 4h.

If you followed the recommendations in this paper for finding
the value of h that would lead to the best matmul performance, you

92

ICPP °24, August 12-15, 2024, Gotland, Sweden

will realize that %h is likely to result in a much slower MLP block,
because % will break all the alignments.

In order to overcome this problem one only needs to realize that
the % coefficient is only a suggestion and thus it’s possible to find
other coefficients that would lead to better-shaped MLP matrices.
In fact if you look at the publicly available LLama-2 models, its 7B

Varlant uses L1008 _ 9 6875 as a coefficient, which is quite close

4096
to & 3 = 2.667, and its 70B variant uses a much larger 288169722 =35

coefficient. Here the 70B variant ended up with an MLP block that
contains significantly more parameters than a typical transformer
block that doesn’t use SwiGLU.

Now that we know the recommended coefficient isn’t exact and
since a good h has already been chosen, one can now search for a
good nearby number that still leads to high-performance GEMMs
in the MLP. Running a brute-force search reveals that Llama-2-7B’s
intermediate size is indeed one of the best performing sizes in its
range.

7.4 Inference

In order to demonstrate that 1) models trained efficiently on a given
GPU will also infer efficiently on the same GPU, since the underly-
ing forward-pass GEMMs are the same, and 2) our sizing recommen-
dations are kernel-invariant, we have run inference benchmarks
using DeepSpeed-MII [2] and the Pythia [6] suite. We show in Fig-
ure 14 that Pythia-1B is significantly more efficient at inference
time than Pythia-410M due to its fewer attention heads and layers
than Pythia-410M, and a larger hidden dimension. Despite these
architectural changes, the test loss of Pythia-1B is on-trend with
the rest of the suite while having significantly higher training and
inference throughput.

2 Pythia-2.88

1.6

Pythia-410m

1.2

08 Pythia-18

Inference Latency (s)

0.4

Pythia-160m
Pythia-70m
0 0.4 0.8 1.2 1.6 2

24 2.8

#Params (B)

Figure 14: Inference latency of Pythia suite using DeepSpeed-
MII [2]. Pythia-410M / Pythia-1B are off-trend due to their
sizing.

8 DISCUSSION

In the current landscape of Al hardware, Transformer workloads
stand out as a pivotal target. They constitute a significant compo-
nent (e.g., BERT, GPT-3) of the MLCommons benchmarks, capturing
the attention of major hardware vendors and data centers. Notably,
these benchmarks have been integrated as a crucial metric for pro-
curement [25] in the upcoming Exascale supercomputer at Oak



ICPP °24, August 12-15, 2024, Gotland, Sweden

Ridge Leadership Computing Facility. Our analysis strongly sug-
gests that leveraging representative GEMM kernels holds promise
as a reliable performance indicator for Transformer-based work-
loads. Consequently, these kernels should be embraced as a bench-
marking tool for hardware co-design. The advantages stem from
several key points:

(1) The optimizations made at the GEMM level exhibit a demon-
strable transferability to various applications, as evidenced
in Sec.6.

(2) Benchmarking at the kernel level proves to be more cost-
effective and time-efficient.

(3) This approach remains model-agnostic, accommodating di-
verse architectures like GPT-NeoX, Pythia, and OPT, as long
as they are based on the Transformer architecture.

This assertion finds partial validation in the observed correlation
between MLCommons benchmarks and our findings.

9 CONCLUSION

State-of-the-art deep learning (DL) models are driving breakthroughs
in existing fields and paving the way towards new areas of study.
However, while the transformer model is at the forefront of this

DL explosion, few transformer architectures consider their under-
lying hardware. We believe that instead of creating new designs

to improve efficiency, many practitioners would be better served

by slightly modifying their existing architectures to maximally

utilize the underlying hardware. Well informed hyperparameter

choices improve training and inference throughput throughout a

model’s lifetime. We demonstrate that minor modifications to the

model architecture improve GPU throughput by up to 38.9% while

maintaining accuracy. Since we have explained how to motivate

model hyperparameters from a GPU architecture standpoint, this

paper can be used to guide future model design while clarifying the

relevant first principles necessary to extend such hyperparameter

choices to future architectures.

REFERENCES

[1] 2021. FasterTransformer. https://github.com/NVIDIA/FasterTransformer.

[2] 2022. DeepSpeed-MIL https://github.com/microsoft/DeepSpeed-MIIL.

[3] 2023. MLPerf. https://mlperf.org/. Accessed: July 10, 2024.

[4] Reza Yazdani Aminabadi, Samyam Rajbhandari, Minjia Zhang, Ammar Ahmad
Awan, Cheng Li, Du Li, Elton Zheng, Jeff Rasley, Shaden Smith, Olatunji Ruwase,
and Yuxiong He. 2022. DeepSpeed Inference: Enabling Efficient Inference of
Transformer Models at Unprecedented Scale. arXiv:2207.00032 [cs.LG]

Alex Andonian, Quentin Anthony, Stella Biderman, Sid Black, Preetham Gali, Leo
Gao, Eric Hallahan, Josh Levy-Kramer, Connor Leahy, Lucas Nestler, Kip Parker,
Michael Pieler, Jason Phang, Shivanshu Purohit, Hailey Schoelkopf, Dashiell
Stander, Tri Songz, Curt Tigges, Benjamin Thérien, Phil Wang, and Samuel
Weinbach. 2023. GPT-NeoX: Large Scale Autoregressive Language Modeling in
PyTorch. GitHub Repo. https://www.github.com/eleutherai/gpt-neox

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley,
Kyle O’Brien, Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023. Pythia: A suite for analyzing
large language models across training and scaling. In International Conference on
Machine Learning. PMLR, 2397-2430.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. 2021. GPT-
Neo: Large scale autoregressive language modeling with mesh-tensorflow. If you
use this software, please cite it using these metadata 58 (2021).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and

(5

=

l6

=

~
[

8

=

93

=
2

—_
_

=
)

ey
&

[14

[15

[16

[17

(18]

[20

[21

[22

~
&

[29

Q. Anthony, ). Hatef, D. Narayanan, S. Biderman, S. Bekman, J. Yin, A. Shafi, H. Subramoni, and DK Panda

Dario Amodei. 2020. Language Models are Few-Shot Learners. In Advances in
Neural Information Processing Systems, Vol. 33. 1877-1901.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gau-
rav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sut-
ton, Sebastian Gehrmann, et al. 2022. PaLM: Scaling Language Modeling with
Pathways. Computing Research Repository (2022). arXiv:2204.02311 [cs.CL]
https://arxiv.org/abs/2204.02311v5 Version 5.

Together Computer. 2023. RedPajama: an Open Dataset for Training Large Lan-
guage Models. https://github.com/togethercomputer/RedPajama-Data

Tri Dao. 2023. Flashattention-2: Faster attention with better parallelism and work
partitioning. arXiv preprint arXiv:2307.08691 (2023).

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022. Flashat-
tention: Fast and memory-efficient exact attention with io-awareness. Advances
in Neural Information Processing Systems 35 (2022), 16344-16359.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:1810.04805 [cs.CL]

Murali Emani, Zhen Xie, Siddhisanket Raskar, Varuni Sastry, William Arnold,
Bruce Wilson, Rajeev Thakur, Venkatram Vishwanath, Zhengchun Liu, Michael E.
Papka, Cindy Orozco Bohorquez, Rick Weisner, Karen Li, Yongning Sheng, Yun
Du, Jian Zhang, Alexander Tsyplikhin, Gurdaman Khaira, Jeremy Fowers, Ra-
makrishnan Sivakumar, Victoria Godsoe, Adrian Macias, Chetan Tekur, and
Matthew Boyd. 2022. A Comprehensive Evaluation of Novel AI Accelerators for
Deep Learning Workloads. In 2022 IEEE/ACM International Workshop on Perfor-
mance Modeling, Benchmarking and Simulation of High Performance Computer
Systems (PMBS). 13-25.

Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou. 2021. TurboTransformers: An
Efficient GPU Serving System for Transformer Models. In Proceedings of the 26th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (Vir-
tual Event, Republic of Korea) (PPoPP °21). Association for Computing Machinery,
New York, NY, USA, 389-402. https://doi.org/10.1145/3437801.3441578

Azzam Haidar, Stanimire Tomov, Jack Dongarra, and Nicholas J. Higham. 2018.
Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-
Precision Iterative Refinement Solvers. In SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis. 603-613.

Horace He. 2023. Let’s talk about a detail that occurs during PyTorch 2.0’s
codegen - tiling. https://x.com/cHHillee/status/1620878972547665921

Andrej Karpathy. 2023. The most dramatic optimization to nanoGPT so far ( 25%
speedup) is to simply increase vocab size from 50257 to 50304 (nearest multiple
of 64). https://x.com/karpathy/status/1621578354024677377

C. Li, A. Dakkak, J. Xiong, W. Wei, L. Xu, and W. Hwu. 2020. XSP: Across-Stack
Profiling and Analysis of Machine Learning Models on GPUs. In 2020 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS). IEEE Computer
Society, Los Alamitos, CA, USA, 326-327. https://doi.ieeecomputersociety.org/
10.1109/IPDPS47924.2020.00042

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Dangi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

Sparsh Mittal and Shraiysh Vaishay. 2019. A survey of techniques for optimizing
deep learning on GPUs. Journal of Systems Architecture 99 (2019), 101635.
Zachary Nado, Justin M. Gilmer, Christopher J. Shallue, Rohan Anil, and George E.
Dahl. 2021. A Large Batch Optimizer Reality Check: Traditional, Generic Opti-
mizers Suffice Across Batch Sizes. arXiv:2102.06356 [cs.LG]

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, et al. 2021. Efficient Large-Scale Language
Model Training on GPU Clusters using Megatron-LM. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis.

NVIDIA. 2023. Matrix Multiplication Background. User’s Guide | NVIDIA
Docs.  https://docs.nvidia.com/deeplearning/performance/dl-performance-
matrix-multiplication/index.html

OLCF. 2023. OLCF6 Technical Requirements and Benchmarks.

Ofir Press, Noah Smith, and Mike Lewis. 2021. Train Short, Test Long: Atten-
tion with Linear Biases Enables Input Length Extrapolation. In International
Conference on Learning Representations.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAlI blog
1,8 (2019), 9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yangi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits of
transfer learning with a unified text-to-text transformer. The Journal of Machine
Learning Research 21, 1 (2020), 5485-5551.

Md Aamir Raihan, Negar Goli, and Tor M. Aamodt. 2018. Modeling Deep
Learning Accelerator Enabled GPUs. 2019 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS) (2018), 79-92. https:
//api.semanticscholar.org/CorpusID:53783076


https://github.com/NVIDIA/FasterTransformer
https://github.com/microsoft/DeepSpeed-MII
https://arxiv.org/abs/2207.00032
https://www.github.com/eleutherai/gpt-neox
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311v5
https://github.com/togethercomputer/RedPajama-Data
https://arxiv.org/abs/1810.04805
https://doi.org/10.1145/3437801.3441578
https://x.com/cHHillee/status/1620878972547665921
https://x.com/karpathy/status/1621578354024677377
https://doi.ieeecomputersociety.org/10.1109/IPDPS47924.2020.00042
https://doi.ieeecomputersociety.org/10.1109/IPDPS47924.2020.00042
https://arxiv.org/abs/2102.06356
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://api.semanticscholar.org/CorpusID:53783076
https://api.semanticscholar.org/CorpusID:53783076

The Case for Co-Designing Model Architectures with Hardware

[30

]

[31]

[32]

[33

[34

[35

[36

[37

[38

[39

[40

(41

]

]
]

]

]

Noam Shazeer. 2020. Glu variants improve transformer. arXiv preprint
arXiv:2002.05202 (2020).

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. 2019. Megatron-LM: Training Multi-Billion Parameter
Language Models using GPU Model Parallelism. arXiv preprint arXiv:1909.08053
(2019).

Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam
Rajbhandari, Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay
Korthikanti, et al. 2022. Using deepspeed and megatron to train megatron-turing
nlg 530b, a large-scale generative language model. arXiv preprint arXiv:2201.11990
(2022).

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu.
2021. Roformer: Enhanced transformer with rotary position embedding. arXiv
preprint arXiv:2104.09864 (2021).

Yuhsiang Mike Tsai, Terry Cojean, and Hartwig Anzt. 2020. Evaluating the Perfor-
mance of NVIDIA’s A100 Ampere GPU for Sparse Linear Algebra Computations.
arXiv:2008.08478 [cs.MS]

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
You Need. Advances in Neural Information Processing Systems 30 (2017).

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-6B: A 6 Billion Parameter Au-
toregressive Language Model.

Yu Emma Wang, Gu-Yeon Wei, and David M. Brooks. 2019. Benchmarking
TPU, GPU, and CPU Platforms for Deep Learning. ArXiv abs/1907.10701 (2019).
https://api.semanticscholar.org/CorpusID:198894674

Da Yan, Wei Wang, and Xiaowen Chu. 2020. Demystifying Tensor Cores to
Optimize Half-Precision Matrix Multiply. In 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). 634-643.

Jungi Yin, Aristeidis Tsaris, Sajal Dash, Ross Miller, Feiyi Wang, and Mallikar-
jun (Arjun) Shankar. 2021. Comparative evaluation of deep learning workloads
for leadership-class systems. BenchCouncil Transactions on Benchmarks, Standards
and Evaluations 1, 1 (2021), 100005. https://www.sciencedirect.com/science/
article/pii/S2772485921000053

Y. Zhai, C. Jiang, L. Wang, X. Jia, S. Zhang, Z. Chen, X. Liu, and Y. Zhu. 2023.
ByteTransformer: A High-Performance Transformer Boosted for Variable-Length
Inputs. In 2023 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE Computer Society, Los Alamitos, CA, USA, 344-355.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui
Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022. Opt:
Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068
(2022).

94

ICPP °24, August 12-15, 2024, Gotland, Sweden


https://arxiv.org/abs/2008.08478
https://api.semanticscholar.org/CorpusID:198894674
https://www.sciencedirect.com/science/article/pii/S2772485921000053
https://www.sciencedirect.com/science/article/pii/S2772485921000053

ICPP °24, August 12-15, 2024, Gotland, Sweden

A MISC

When using PyTorch to invoke GEMMs, we use
torch.nn.functional.linear. This function accepts 2 tensors as
parameters, where one tensor can be 3 dimensional. Figure 15 shows
how the ordering of a tensor’s dimensions impacts performance.
We benchmark GEMMs of size (2048, 4,n) X (n, 3n), (4, 2048, n) X
(n,3n), and (8192,n) X (n,3n). This shows that the ordering of
the batched dimension does not affect performance. The batched
implementation is also the same speed as a 2-dimensional GEMM, so
these implementation details do not affect performance. Therefore
we can represent GEMMs between 3 and 2 dimensional tensors as
GEMMs between two 2-dimensional tensors.

300

N
o un
o o

—e— m=4, b=2048
—e— m=2048, b=4
—— m=8192, b=0

Throughput
(TFLOP/S)
= =N

u o u

o O o

o

28 210 212 214

Figure 15: GEMMs with different ordering of dimensions.

A series of benchmarks are shown in Figure 16 through Figure
20. These figures show the performance of transformer GEMMs
listed in Table 2. In each of the figures, throughput for a transformer
with 128 attention heads is plotted against hidden size. Performance
generally increases with hidden size, as the size of each GEMM is
growing. However, in GEMMs where one dimension is of size h/a,
Attention Score Computation and Attention Over Value, through-
put depends on the highest power of 2 that divides h/a, as described
in secion VLA.

= NN
u o wu
o ©o ©

=
o
o

Throughput
(TFLOP/s)

w
o

0
O R WX GV O o0

™ ) 0D AD A0 AX AV A (D

OO I AN AV S

Q" Y Y VD 2 50 DB RO A Y 0\ A YA

VN 07RO AN X A AV AN RO AR HO SV
Hidden Size

Figure 16: Attention QKV transform.

Figure 20 shows how the size of the vocab and the hidden di-
mension affects the logit layer, which is a linear layer at the end
of the transformer model. The performance of the logit layer is
maximized when v is a multiple of 64, therefore it is best to pad
the vocab size to the nearest multiple of 64. Likewise, the layer also
performs best with a hidden size that is a multiple of 64.

B A100 RESULTS

Figures 21 through 24 show the performance of the Attention Key-
Query Score and Attention Over Value computations for various
numbers of attention heads. In each of these figures, we highlight

95

Q. Anthony, J. Hatef, D. Narayanan, S. Biderman, S. Bekman, J. Yin, A. Shafi, H. Subramoni, and DK Panda

150

"
f

" “‘”\“\H\”\‘v“‘"“‘\‘v“,hu\w\mm'\“

Throughput
(TFLOP/s)

2001 —e— A100
—e— V100

"5’»«
wn
-%g 150
S 100
£E :
= 50 I
0
Q @ 00 W* &V 4 oD 10 o> L 6D AD A AX AV O (D
MDA X O 0750570  HUD VN A AVAC
QN NV AVID D oX B0 (000 (VN
7% o ‘b,\/0.\/’1/.\/&,\/6.\/%%0,}’1,%&,}@,}%%0%’1/
Hidden Size

Figure 18: Attention score times values.

250
551200
2
30150 —e— A100
—
5&100 —e— V100
e
= 50
0
Q R0 WV \Q 6D 5,0 o SV 0O AD A© AX AV O (D
DO \W O X7 85757." BBV N N AVAC
QW & VAV o X X A0 50 L0 VAN
v b‘Q)‘b,»Q,Q/,\'V,\b,\’%,ﬁfﬁwb‘wb,}%ap,b’b

Figure 19: Post-attention linear projection.

the trend observed when using tensor cores. Each color is repre-
sented in the legend as a power of 2, which designates the highest
power of 2 that divides h/a. This shows how using a value of h/a
where the highest power of 2 multiple is 3 or less can impact perfor-
mance greatly. Figures 25 and 9 show that in general, throughput
increases with hidden size and decreases with the number of at-
tention heads. Some of these figures also show the effects of wave
quantization.



The Case for Co-Designing Model Architectures with Hardware ICPP °24, August 12-15, 2024, Gotland, Sweden

Attention Key Query Score, a=16
250+

300
~ S — 1
-S.,% 150 .%150' o
g ulrlulrlvlw'l\u'lvle;l = -
2 £ 100| JTMOTRANHGE I E —
= 50 3 — 32
'f — 64
051150 51175 51200 51325 51350 ?
% ol
(a) Sweep over vocabulary size ° @qb %\9’1, \:fv%‘b \,65%& ,9“%0 ,,/b?’xb ,‘33;0’ 4&@
Hidden Size
300

N
u
o

Figure 23: Attention key-query score GEMM throughput for

16 attention heads.
Attention Key Query Score, a=20

o
o

[

'H

I

m
| |

Il
I

i

l

== N
Ul
o

II’I'IWIWI I‘lllwrl 1'1“'1’1’fi'|’1'1’l nW llll‘lll'l'lll“ll'l'l‘l Wl‘l,i

ll

Throughput
(TFLOP/s)

200-
50 @ h/a
0 g e
14275 14300 14325 14350 14375 14400 21507 I
h = — 4
> — 8
(b) Zoomed-in sweep over vocabulary size 5:100' — 16
3 —
. . . F 50 ——
Figure 20: Vocabulary embedding transformation.
Attention Key Query Score, a=8 o1 . .
Q 5V D o Q v D
250 REM & \’@% "9@ W&O« ”&@ “;9@
Hidden Size
5200
g e
£ 150 — 2 Figure 24: Attention key-query score GEMM throughput for
= . 20 attention heads.
Q
§,100 — 16 Attention Key Query Problem (h/a = 64)
o — 32
£ - 225
200
0
N P @ P o A & 175
R S R

Hidden Size

=
w
o

Figure 21: Attention key-query score GEMM throughput for
8 attention heads.

Throughput
(TFLOP/s)
-

N
w

Attention Key Query Score, a=12 100
250
75
5200 h/a
g —1 50
s — 2
E 150 _ .
3 — 8 Hidden Size
5,100 — 16
3 — 3
£
= — 64 . .
%0 Figure 25: Attention key-query score GEMM throughput as-
0 suming fixed ratio of % = 64.
N P ® P S L A&
N "~ > ) o A
VA G S S

Hidden Size

Figure 22: Attention key-query score GEMM throughput for
12 attention heads.

96



	Abstract
	1 Introduction
	1.1 Contributions

	2 Related Work
	2.1 GPU Characterization of DNNs
	2.2 Comparison Across DL Accelerators
	2.3 DL Training Performance Guides

	3 Background
	3.1 GPU Kernels
	3.2 NVIDIA GEMM Implementation and Performance Factors
	3.3 Transformer Models

	4 Experimental Setup
	4.1 Hardware Setup
	4.2 Software Setup

	5 GEMM Results
	6 Transformer Results
	6.1 Transformer as a Series of GEMMs
	6.2 Analysis
	6.3 Architectural Modifications

	7 Case Studies
	7.1 Tensor Parallelism shoeybi2019megatron
	7.2 6-GPU Nodes
	7.3 SwiGLU Activation Functions
	7.4 Inference

	8 Discussion
	9 Conclusion
	References
	A Misc
	B A100 Results

