Check for
Updates

Infer-HiRes: Accelerating Inference for High-Resolution Images
with Quantization and Distributed Deep Learning

Radha Gulhane
The Ohio State University
Columbus, Ohio, USA
gulhane.2@osu.edu

Hari Subramoni
The Ohio State University
Columbus, Ohio, USA
subramon@cse.ohio-state.edu

ABSTRACT

High-Resolution Images are being used in various applications, in-
cluding Medical Imaging, Satellite Imagery, and Surveillance. Due
to the evolution of Deep Learning (DL) and its widespread usage,
it has also become a prominent choice for high-resolution image
applications. But, large image sizes and denser convolutional neural
networks pose limitations over computation and memory require-
ments. To overcome these challenges, several studies have discussed
efficient approaches to accelerate training, but the inference of
high-resolution images with deep learning and quantization tech-
niques remains unexplored. In this paper, we propose accelerated
and memory efficient inference techniques leveraging quantization
techniques to reduce the memory and computation requirements
while maintaining accuracy. Furthermore, we utilize different par-
allelism for Distributed DL to enable inference for high-resolution
images on out-of-core models. We demonstrate an average 6.5X
speedup and 4.55X memory reduction with a single GPU using
INT8 quantization. By utilizing Distributed DL, we enabled infer-
ence for scaled images, achieving an average 1.58X speedup and
1.57x memory reduction using half-precision. To the best of our
knowledge, this paper is the first in the literature to focus on high-
resolution image inference using quantization with the support of
Distributed DL.

CCS CONCEPTS

« Computing methodologies — Object recognition; Neural
networks; Distributed computing methodologies.

KEYWORDS

Inference, Quantization, High-Resolution Images, Distributed Deep
Learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PEARC 24, July 21-25, 2024, Providence, RI, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0419-2/24/07

https://doi.org/10.1145/3626203.3670548

Quentin Anthony
The Ohio State University
Columbus, Ohio, USA
anthony.301@osu.edu

Aamir Shafi
The Ohio State University
Columbus, Ohio, USA
shafi.16@osu.edu

Dhabaleswar K. Panda
The Ohio State University
Columbus, Ohio, USA
panda@cse.ohio-state.edu

ACM Reference Format:

Radha Gulhane, Quentin Anthony, Aamir Shafi, Hari Subramoni, and Dha-
baleswar K. Panda. 2024. Infer-HiRes: Accelerating Inference for High-
Resolution Images with Quantization and Distributed Deep Learning. In
Practice and Experience in Advanced Research Computing (PEARC ’24), July
21-25, 2024, Providence, RI, USA. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3626203.3670548

1 INTRODUCTION

The high-resolution images have a vast range of applications, in-
cluding in sectors such as medical imaging, satellite imagery, and
surveillance. Typically, images used in these applications range in
gigapixels, with dimensions of 100,000x100,000 pixels and even
above. As an example, the digital pathology dataset CAMELYON16
[2] consists of whole-slide images (WSI) with an approximate reso-
lution of 100,000x200,000 pixels at its maximum 40X magnification.

With the evolution of Deep Learning (DL) and its proven effi-
ciency in various sectors, it has also become a prominent choice for
High-Resolution image applications to solve problems such as im-
age classification and segmentation. Few popular DL models choices
for such applications are ResNet [12], U-Net [26], and AmoebaNet
[24], which consist of deep conventional layers. However, consid-
ering the large size of the image and several convolution layers, it
provides challenges due to memory and computation limitations,
as it cannot be accommodated in a single GPU memory.

Several studies [14][19][10] have adopted patch-based approach,
where each whole slide image (WSI) is split into small patches
with image size such as 256x256. This approach further requires
pixel-wise annotation or classification mechanism to classify each
patch to well-suited classes. But use of deep convolutions neural
networks, restricts the patch size due to memory limitation. For
instance, image size of 8192x8192 with ResNet101 model and batch
size as one becomes out-of-core model on NVIDIA-A100-40 GB
GPU. To facilitate scaled image sizes and improve performance,
Hy-Fi [16] and GEMS [15] have made significant contributions
by enabling training using Spatial Parallelism for image sizes up
to 16384x16384. It further improved performance by integrating
different parallelism techniques. While most studies have primarily
focused on efficient deep learning training approaches for high-
resolution images, optimizing inference in the context of high-
resolution images remains unexplored.

https://doi.org/10.1145/3626203.3670548
https://doi.org/10.1145/3626203.3670548
https://doi.org/10.1145/3626203.3670548
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626203.3670548&domain=pdf&date_stamp=2024-07-17

PEARC ’24, July 21-25, 2024, Providence, RI, USA

In this paper, we propose and evaluate quantization approach to
accelerate Deep Learning inference for high-resolution images to
reduce memory and computation requirement while maintaining
accuracy. Quantization is a technique where model parameters are
converted to low-precision such as 16-bit floating point or 8-bit
integer from 32-bit floating point. This results in reducing memory
utilization and latency and its proven efficiency for DL inference
has been evaluated in recent surveys [11][29]. We leverage the ben-
efits of quantization to accelerate high-resolution image inference
for deep learning models. Furthermore, to enable scaled image in-
ference, further enhance acceleration, and harness the memory and
compute-efficient benefits of different parallelism, we introduce
quantization support for Spatial, Layer, and Pipeline parallelism in
Distributed DL.

The source code is made available at https://github.com/OSU-
Nowlab/Infer-HiRes.

1.1 Motivation

While research in high-resolution images with DL remains essential
due to its applicability, several studies have been conducted for
efficient training, whereas, very few have delved into the inference
for high-resolution images. The studies focusing on inference with
high-resolution images primarily involve a single-processing unit
and are limited to small-scale images. The exploration of inference
with quantization in the context of high-resolution images in Deep
Learning and Distributed DL for scaled images is yet to be pursued.

Precision Memory Memory Throughput Speedup
Utilization =~ Reduction (Img/Sec)
(GB)
FP32 12.48 Baseline 145.22 Baseline
FP16 7.64 1.63% 224.85 1.55%
BFLOAT16 5.28 2.36% 226.12 1.56Xx
INT8 2.39 5.23% 903.35 6.22X%

Table 1: Memory and Throughput evaluation with different
precision quantization using ResNet101 for 256x256 image
size and 64 Batch size on NVIDIA A100-40 GB

We evaluated the quantization effects on latency and memory
footprint for an image size of 256x256 using ResNet101. Table 1
provides the memory and speedup evaluation by comparing quan-
tization with baseline full-precision (FP32), half-precision (FP16,
BFLOAT16), and integer-only precision (INT8). Results show a sig-
nificant reduction in latency and memory utilization, with the best
performance observed for INTS8, reducing memory requirements
by 5.23% while improving speedup by 6.22x. Further, as ResNet101
can not scale beyond 2048x2048 or 4096x4096 image size on sin-
gle GPU, to support larger images and slide level inference, we
studied different parallelism implemented in Hy-fi and GEMS to
enable image-sizes such as 8192x8192 and 16384 x16384 and support
quantization.

Consider the real-world application of digital pathology images,
where inference for one whole slide image (WSI) contains an aver-
age of 500 patches, each of size 256x256. The inference time on a

Radha Gulhane, Quentin Anthony, Aamir Shafi, Hari Subramoni, and Dhabaleswar K. Panda

CPU [4][17] can take several minutes, while on a GPU, it reduces
to seconds. Utilizing GPU-enabled quantization further minimizes
this time to just 1-2 seconds.

1.2 Proposed Solution

We propose efficient inference for high-resolution images using
DL on a single GPU, as well as in Distributed DL settings, leverag-
ing post training quantization. We exploit the quantization preci-
sion range of 16-bit floating point, with both FP16 and BFLOAT16
datatypes, and 8-bit integer. As of today, 8-bit integer is the lowest
precision for GPUs supported through PyTorch.

We provide quantization support for single GPU inference, specif-
ically to facilitate patch-based inference, a widely used approach
where patch sizes are small-scale images. Furthermore, to enable
scaled images, slide-level inference, and improve performance, we
enable quantization for Distributed DL. We utilized Spatial, Layer,
and Pipeline Parallelism for Distributed DL from the Hy-Fi [16]
implementation.

We implement our solution in PyTorch [21] and provide an in-
ference pipeline for high-resolution images, supporting different
precision quantization and Distributed DL. We evaluated our work
with respect to computation, memory utilization, and accuracy, as
discussed in detail in Section 5.

1.3 Contributions

We list our contributions as follows:

(1) Implemented GPU-enabled Post Training quantization for
Distributed DL to enable inference for high-resolution im-
ages with less computational resources (specifically, the par-
allelism techniques used are Spatial and Layer/Pipeline Par-
allelism) (Section 4)

(2) Provided thorough evaluation of quantization for single
GPU and multi-GPU using Distributed DL with respective
to throughput, memory utilization, and accuracy on differ-
ent datasets, including CAMELYON16 (2], digital pathology
dataset (Section 5)

(3) Achieved the average speedup of 1.58x and memory reduc-
tion of 1.57X with FP16 Distributed DL compared with base-
line FP32 ResNet101 model (Section 5.3)

(4) With a Single GPU, we achieved speedup by an average of
6.5% while reducing memory utilization by 4.55x with INT8
ResNet101 quantized model when compared with baseline
FP32 (Section 5.2)

2 BACKGROUND

2.1 Distributed DL for High Resolution Images

2.1.1 Layer and Pipeline Parallelism. Large Deep Neural Networks
are memory and computation-intensive, thus it restricts to the
smaller image size and batch size on a single GPU. As we scale with
image size, it cannot be trained or inferred with a single GPU as
memory requirements to accommodate model parameters exceed
the available GPU memory. For such scenarios, Layer Parallelism
(LP) [16][15] is employed. LP distributes one or more layers of DL
model on different GPUs that can fit into GPU memory. However,
distributing layers serialize the computation of GPUs, as input to a

Infer-HiRes

PEARC 24, July 21-25, 2024, Providence, RI, USA

| Spatial Parallelism ‘

‘ Layer Parallelism

] AT

Digital Pathology
Whole Slide Image

Convolutional
[& Pooling
Input Layer Layers

Output Layer

—— .
|
|

|
|
|
|
|
|

JER—

(b) Halo-exchange Communication

(a) Implementation of Spatial and Layer parallelism with spatial partition factor is 4 and model
split factor is 2. The first model partition contains convolution and pooling layers, while the

second and last model partitions contain the output layer

Figure 1: Overview of Spatial and Layer parallelism

layer present on one GPU will depend on output of previous layer
present on different GPU. Consequently, at any given instance, only
one GPU will be performing computations, while the rest remain
idle. To improve computation and memory efficiency and address
the limitation of LP, Pipeline Parallelism (PP) [13] is utilized. In this
approach, each layer is distributed similarly to LP, but the input
batch size is divided into micro-batches, and each micro-batch size
is executed in a pipeline manner.

However, the significantly large memory requirement for model
parameters at each layer in Layer and Pipeline Parallelism restricts
the batch size to 1 or 2, causing increased latency. Furthermore, if
image sizes are scaled further to 4098x4098 and 8192x8192, even a
single layer cannot fit into a single GPU memory. Therefore, LP or
PP still has limitations when it comes to scaling image sizes and
batch size.

2.1.2 Spatial Parallelism. Spatial Parallelism (SP) [16][27] over-
comes the limitation of LP and PP by enabling training or inference
for larger images and higher batch sizes. In Spatial Parallelism, the
whole image is partitioned into smaller non-overlapping spatial
parts and distributed across different GPUs. Further, convolution
and pooling layers of the DL model are replicated on GPUs contain-
ing spatial parts and lastly, output layer will be replicated on single
GPU undergoing LP. Figure 1(a) shows the overview of Spatial and
Layer Parallelism. The digital pathology image is partitioned into
4 spatial parts, and the model is split into 2 parts. The first model

split consists compute and memory-intensive convolution and pool-
ing layers, while the second and final model partitions contain the
output layer. Each spatial part performs convolution and pooling
operations given by first model split, and finally, the outputs are
aggregated by second model split.

Halo-Exchange Communication Convolution and pooling oper-
ations require information about adjacent pixels. For pixels located
on the boundaries of the spatial segment, their adjacent pixels will
be on different GPUs. Figure 1(b) illustrates the halo-exchange
required by the first spatial part with different GPUs. Therefore,
when using SP, each GPU needs to communicate with different
GPUs to obtain adjacent pixels. We refer such communication as
halo-exchange.

2.2 Quantization

Quantization is a technique use to reduce number of bits to repre-
sent a value, thereby reducing memory usage and latency signifi-
cantly for a given problem. In context of Deep Learning, quantiza-
tion is applied to model weights and activations by converting it to
low-bit precision such as half-precision (16-bit floating point) or
integer precision (8-bit or 4-bit integer) from default 32-bit floating
point. Quantization is being widely used in training and inference
in deep learning requires additional design efforts to carefully quan-
tize gradients and activations in order to minimize accuracy errors

PEARC ’24, July 21-25, 2024, Providence, RI, USA

[30][8]. Recent studies have tended to be more inclined towards
inference and have shown successful results [3][11].

2.2.1 Comparison: Integer-Only vs. Floating-Point Quantization.
Floating-point conversion, i.e., converting 32-bit floating point to
half-precision floating point is relatively simple, as both are floating
point data types and follow same scheme representation. On con-
trast, converting 32-bit floating point to 8-bit integer significantly
reduces value range to 256 values and requires to use new scheme
representation to map 32-bit float value to integer [29]. This new
representation scheme uses the range of floating-point values ([a,
p] from Figure 2) in its representation to represent 32-bit floating
point to integer values. Figure 2 shows mapping of floating-point
range to b-bit integer values range. Further, Equation 3 provides
conversion calculation to represent b-bit integer value relative to
floating-point, where x4 is b-bit quantized value of floating-point

value x.
0

Figure 2: Mapping of floating-point values to 8-bit values[29]

—128 127

N

2b 1
= 1
= &
z=—-round(a-s— Zb_l) (2)
xq = clip(round(x - s + 2), b1 gb=1_ 1) 3)

Equations 1 and 2 provides quantization parameters required in
equation 3 scale factor (s) and zero-point value (z) respectively. Scale
factor is floating-point value and zero-point is b-bit integer value
corresponding to the zero value in the floating-point representation.
clip() maps values outside range to nearest integer representable
value. To determine floating-point value range i.e. [@, ff] calibration
step is used which is done by performing forward pass with few
given samples for particular model.

2.2.2 Post-Training Quantization (PTQ). Post-Training Quantiza-
tion converts the weights and activations of a pre-trained unquan-
tized model to low-bit precision, thereby reducing memory and
computation requirements for inference. PTQ is categorized into
two different modes, namely dynamic quantization and static quan-
tization. Dynamic Quantization converts weights into low-precision
values beforehand but converts activation dynamically at runtime
depending observed data range. On other hand, in static quantiza-
tion, the weights and activation are both quantize into low-precision
values and requires calibration step to determine these values. How-
ever, for GPUs, PTQ with PyTorch is limited to Static Post-Training
Quantization mode via TensorRT, and for our work, we have used
Static Post-Training Quantization. Figure 3(b) provides the overview
of Post-Training Quantization Inference Pipeline.

Radha Gulhane, Quentin Anthony, Aamir Shafi, Hari Subramoni, and Dhabaleswar K. Panda

3 RELATED WORK
3.1 Deep Learning for High-Resolution Images

Due to the challenges posed by large image size of high-resolution
images, several research studies have discussed efficient method-
ologies for improving accuracy using deep learning for training
[18][28][10]. However, training these images considerably increases
the training time to several hours. To accelerate training, [15][16]
propose a Distributed DL approach that reduces training time
from several hours to few minutes. For inference, recent work
[19][22][25] has been done to make deep learning models acces-
sible for high-resolution images inference. These works use deep
learning models with a single processing unit, restricting to smaller
image sizes, while Distributed DL for scaled image sizes remains
unexplored for inference.

3.2 Quantization in Deep Learning

Quantization is utilized in deep learning to minimize memory and
computation expenses. It has been widely adopted for inference
tasks to achieve less accuracy degradation while lowering memory
and computation resource requirements [3][11][20]. For compute
and memory intensive large deep models, recent work [23][31]
also shows quantization applicability with multi-GPU inference for
transformer-based models. However, quantization for for scaled
images requiring multi-GPU Distributed DL hasn’t been evaluated.

Our proposed work leverages quantization for high-resolution
image inference with Deep Learning. We further accelerate and
scale image sizes with Distributed DL, utilizing different parallelism
techniques for multi-GPU inference.

4 QUANTIZATION IN DISTRIBUTED DEEP
LEARNING

Figure 3(b) illustrates a general quantization pipeline, and we follow
the same pipeline when dealing with Distributed DL models. How-
ever, it’s important to note that model quantization is performed
separately on each GPU. In Distributed DL, model is distributed
among different parallelism strategy and it can be big enough to
not fit into memory. Thus, we perform model quantization for each
distributed part of model. In terms of Spatial Parallelism, for each
spatial part, after initialization of model with given weights, we
perform model quantization independently at each GPU device.
Similar is the case with Layer parallelism. Figure 3(a) shows imple-
mentation pipeline for quantization in Distributed DL.

Spatial parallelism requires to perform halo-exchange, as shown
in Figure 1(b), where each convolutional and pooling operation,
it perform point-to-point communication as part of the forward
pass. In PyTorch, for GPUs, Integer-Only quantization is done via
TensorRT. TensorRT takes the Deep Learning (DL) model defined in
PyTorch and compiles it to support integer quantization specifically
for NVIDIA GPUs. This compilation supports DL layers, such as
convolutional, normalization, pooling, etc., but it does not cover
collective communication function calls. Since spatial parallelism
requires point-to-point communication for halo-exchange in the
forward pass, TensorRT cannot resolve such communication calls
during compilation, limiting INT8 quantization supported for spa-
tial parallelism.

Infer-HiRes

‘ Model Distribution ‘ Model Quantization

\ 4

FY VW
A A A 4

\
)
)
J

D Y -

_ D (O GPU2] &) !
@) T @ <7<
V@ am) X
@ '\/U‘\/\"’.- ! <’< /\ N (\/ !

@<X TN X | K = A\ &
N/ N\ -4 YAY Wi
I AR 4V 4 I A AV%
\\/\ o/ . | k) L %04
\@®/ \ @/ | \@h \@) |
o W | \ 4 @ |
T J
: i
Pre-trained Model‘ :
'
'
o B
w
A /&
X :
O\%. 4
DY@
A4 A
wn W
A

Testing Data

(a) Inference pipeline for quantization in Distributed DL

PEARC °24, July 21-25, 2024, Providence, RI, USA

Pretrained Model

Calibration Calibration Dataset

=) Inference

Model Quantization

Quantized Model Test Dataset

Inference

(b) Overview of Post Training Quantization Pipeline

Figure 3: Quantization in Deep Learning

5 EVALUATION

We conducted our experiments on NVIDIA A100-40 GB GPUs (2
GPUs per node) with AMD EPYC 7713 64-Core Processor. We used
PyTorch v1.13.1 [21] as a Deep Learning framework and TensorRT
[7] through Torch-TensorRT API for Integer-Only quantization.
For collective communication in Distributed DL, we used NCCL
(NVIDIA Collective Communications Library) [6] communication
backend.

This section is divided into three parts. First, we understand the
different precision quantization effects on accuracy in Section 5.1.
Second, we evaluate quantization on a Single-GPU for small-scale
images in Section 5.2. Finally, we discuss quantization with Spatial,
layer, and Pipeline Parallelism, enabling large-scale images and
higher batch sizes in Section 5.3.

5.1 Effect of quantization on accuracy for
Inference

For accuracy evaluation, we used ResNet101 and performed model
quantization with different precisions. We conducted our accuracy
evaluation on various datasets and compared quantization results
with the baseline inference accuracy using FP32 precision.

5.1.1 Dataset Description. We used following datasets: CAME-
LYON16 [2], ImageNet [5], CIFAR-10 [1], and Imagenette [9]. CAME-
LYONT16 is real-world digital pathology dataset from competition
held by International Symposium on Biomedical Imaging (ISBI)
to detect metastatic breast cancer in whole slide images (WSI). It
consists of 400 WSI images categorized into two classes: normal

and tumor. ImageNet, CIFAR-10, and Imagenette are object detec-
tion datasets containing 1,431,167 images with 1000 object classes,
60,000 images with 10 classes, and 13,394 images with 10 classes,
respectively.

5.1.2 Evaluation Methodology. For the CAMELYON16 Dataset, the
total size is 300GB, and each image is around 5GB with an ap-
proximate image resolution of 100,000x200,000. Since these images
cannot fit into memory, for accuracy evaluation, we used a patch-
based approach. We extracted patches of size 256x256 containing
the tissue region and labeled each patch based on the slide label.

To evaluate the quantization effect on each dataset, we trained
ResNet101 for a few epochs to achieve the desired training accuracy,
applied PTQ to obtain a quantized model with various precision
levels, and then tested the accuracy for inference on either the
testing or validation dataset.

Precision

FP32 FP16 BFLOAT16 INTS8

Dataset

CAMELYON16 70.27 70.26 70.32 70.26

ImageNet 77.62 77.57 78.41 76.85
CIFAR-10 86.02 86.05 86.04 85.99
Imagenette 75.87 75.87 75.90 75.13

Table 2: Inference Accuracy (%) with Different Precision
Quantized Models on the NVIDIA A100-40 GB GPU

PEARC ’24, July 21-25, 2024, Providence, RI, USA

% FP32

FP16 = BFLOAT16 = INT8

1100
1000
900
800
700
ge
S
8 400
&
E 300
200
100

fe] R

512 1024
Image Size

(a) Throughput Evaluation on Single GPU

Radha Gulhane, Quentin Anthony, Aamir Shafi, Hari Subramoni, and Dhabaleswar K. Panda

= Y
%
%
ERT %

Image Size

(b) Memory Utilization Evaluation on Single GPU

Figure 4: Throughput and Memory Evaluation on a single GPU for the ResNet101 model with different image sizes and batch
size 32. The speedup and memory reduction is shown in respective colored boxes for FP16, BFLOAT16, and INT8 when compared

to baseline FP32

5.1.3 Result Evaluation. Table 2 shows accuracy evaluation with
quantization on different datasets. We observed negligible varia-
tions in accuracy while using different precision and demonstrates
the accuracy degradation less than 1%.

5.2 Quantization with Single GPU

We evaluate quantization effects for throughput and memory uti-
lization on different image sizes to understand the benefits of quan-
tization on small-scale image size. Figures 4(a) and 4(b) shows
perform evaluation on different image sizes, 256x256 , 512x512,
and 1024x1024 with batch size of 32 on ResNet101 model, and we
compare our results with baseline FP32 precision.

Figure 4(a) illustrates the throughput evaluation. FP16 improved
performance by an average of 1.54x, BFLOAT16 by 1.45%, and INT8
by 6.5x. As shown in Figure 4(b), we achieved an average memory
reduction of 1.77%, 1.47X, and 4.55X with FP16, BFLOAT16, and
INTS precision, respectively. Overall, INT8 quantization appears
to be the optimal choice for small-scale images with a Single-GPU.
Additionally, with an image size of 1024x1024, we observed a 6.29x
memory reduction with a speedup improvement of 6.72x. It is im-

Quantization with Calibration
——— Quantization with Pre-Quantized Model

#— Overhead
20 4

o a —
e g
5 15 n 3 k]
F=]
= >
5 e}
= fl
G 5 18
5 B 3
2 0 — || || 0

256 512 1024

Image Size

Figure 5: Calibration Overhead

portant to note the overhead incurred due to calibration with INT8

quantization the very first time we perform model quantization.
Figure 3(b) and Section 2.2.1 illustrate the need for the calibration
step. To note, for any new model and dataset, it is necessary to per-
form calibration the first time to obtain an INT8 quantized model.
The quantized model’s weights can be stored and restored at a later
stage. Figure 5 shows the overhead due to calibration. Although
we observed a significant calibration overhead of an average of
2.89x, it still outperforms the unquantized FP32 precision model
by average speedup of 1.54X%.

5.3 Distributed DL Quantization Performance
Evaluation

In this section, first, we evaluate the performance benefits of us-
ing quantization in Distributed DL with respect to memory and
throughput. Further, we evaluate benefits of spatial parallelism by
enabling inference for very-high resolution images and accelerat-
ing performance. We will discuss each of these benefits in specific
sections as outlined below.

5.3.1 Memory Evaluation. We profiled memory footprints for an
image size of 4096x4096 to analyze spatial parallelism with quanti-
zation.

Figure 6 illustrates the memory distribution on different GPUs.
We perform an experiment configuration with 4 and 8 spatial parts,
as shown in Figures 6(a) and 6(b), where one additional GPU is
used for layer parallelism. Through quantization, we are able to
reduce memory requirements on each GPU by half compared to
the memory required with a full-precision FP32 model. Overall, we
achieve a memory reduction of 1.57x with FP16 and 1.40X with
BFLOAT16 when compared to the baseline FP32.

5.3.2 Throughput Evaluation. We experimented with image sizes
image sizes of 2048x2048 and 4096x4096, employing Spatial and
layer Parallelism. We scaled the experiment with the number of
spatial parts, ranging from 2, 4, to 8, where each part was distributed
on a different GPU. It is important to note that an additional GPU
was utilized to perform layer Parallelism for the last output layer, as
depicted in Figure 1(a). For this experiment, we chose the maximum

Infer-HiRes PEARC 24, July 21-25, 2024, Providence, RI, USA

5 mm Convolutional layers mm Output layer —4— Mem reduce = Convolutional layers == Output layer —aA—Mem reduce
1.59 1.41 45 5
Baseline N - 1.54 1.40
A40 —_— - A 0 40 - — A o
@ o
O 35 © 35
= 5§ = . 5 €
630 B &30 7 GPu o %
E 25) f/z,nV n GPU S _10% ‘E 25 GPU 8 10 %
5 Gy S S 2 = v 8
- Sy =
520 WG"UA’ -15 o, 520 @6 15 Z
g 15 B = S g 15 GPUS S
£ annGPU3 20 £ £ W Gpun 20 &
: il I s,
K a2l -
: : W o
0 g 30 0 sl 6 30
FP16 BFLOAT16 FP32 FP_].§ BFLOAT16
Precision Precision
(a) Memory footprints on 5 GPUs for SP+LP (b) Memory footprints on 9 GPUs for SP+LP

Figure 6: Overview of ResNet101 model and image size 4096x4096 distribution with respective memory and evaluation with
SP+LP on multi-GPUs for the ResNet101 model. The evaluation is done by comparing memory utilization by FP16, BFLOAT16
quantization with FP32 as the baseline.

NFP32 =FP16 = BFLOAT16 wFP32 =FP16 =BFLOAT16
. s 3 # B
b 26 11 S
g7 412 ==
~ Ll b — = e
7 e gl Sl GEN (S0
i Ll NS \E
3 0.8 § — ¥7 \ = \ =2a
2 2 NE. NS =
; 2 N=% N=2~ N=x
2 4 8
Number of GPUs Number of GPUs
(a) Throughput Evaluation for 2048x2048 Image Size (b) Throughput Evaluation for 4096x4096 Image Size

Figure 7: Throughput Evaluation using SP+LP for ResNet101 model with image sizes of 2048x2048 and 4096x4096. The speedup
is shown in respective colored boxes for FP16, BFLOAT16, and INT8 when compared to baseline FP32.

wFP32 =FP16 = BFLOAT16 s FP32 ==FP16 w7 BFLOAT16
05 —+—FP32 speedup +-FP16 speedup ~=-BFLOAT16 speedup
05
04 =g . 20
N=% —] Y
& o3 =% %E% 25 ‘@ =% "
T o3 =9 §§@ 8., =1 =0 g
oo - - ~) N % = A 1.0
® 02 N=& \E% 8 =& =" N=" s ©
£ o %g@ §§w 2s =/ =2 NS2 \=© ui
oom \=" = E =SV S0 \EL \EY «°®
01 \=Y = v NS0 \E2 \EZ =T
01 §§§ %E% 5 %i% %E% %E% %E% 00
0 , NSRS REE .. =g, NS4 \E& S8 &
Single GPU Distributed DL (SP+MP) . ! : - ¢ :
N b £ GPU Single GPU DL Distributed DL (SP+MP)
umber o s Number of GPUs
(a) Enabling inference for 8192x8192 with FP16 (b) Accelerating performance with SP

Figure 8: Enabling scaled images and accelerating performance using SP

PEARC ’24, July 21-25, 2024, Providence, RI, USA

batch size supported for different GPU counts to utilize memory to
its maximum extent. Due to partitioning into a higher number of
parts across different GPUs, we were able to enable a higher batch
size. For example, with a resolution of 2048x2048, we could not
scale beyond a batch size of 16 as it would become out-of-core on a
single GPU, but the batch size can be increased when we partition
images using SP.

Figure 7(a) shows throughput for 2048x2048 with batch sizes of
16, 32, and 64, on spatial parts 2, 4, and 8, respectively. Similarly,
Figure 7(b) shows throughput for 4096x4096 with batch sizes of 16,
32, and 64, on spatial parts 4, 8, and 16, respectively. We compared
the results with the baseline FP32. For 2048x2048, we achieved
up to a 1.9x speedup with FP16 and 1.6x with BFLOAT16. For
4096x4096, we achieved up to a 1.55X speedup with FP16 and 1.65%
with BFLOAT16.

5.3.3 Enabling very high-resolution images. The ResNet101 model,
initialized with FP32 precision, requires approximately 87GB of
memory for image size 8192x8192. Consequently, it becomes out-
of-core even with the smallest batch size of 1 when running on a
single GPU with 40GB of memory. It requires to split image into
number of spatial parts to enable inference for 8192x8192. We en-
abled inference for an image size of 8192x8192 with 4 GPUs for
spatial partitioning. Figure 8(a) shows the overview and perfor-
mance for image size 8192x8192 with 4 and 8 GPUs. We further
evaluate Spatial Parallelism to accelerate performance while scal-
ing with respect to the number of GPUs. Figure 8(b) shows the
performance comparison of SP on different GPUs (2, 4, and 8) with
a baseline of a Single GPU. We achieve linear scaling, attaining up
to a 1.8 and 2X speedup on 4 and 8 GPUs with BFLOAT16.

6 CONCLUSION

High-resolution images with Deep Learning come with their own
set of challenges due to the large size of the image and deep net-
worked DL models, making it compute and memory-intensive. How-
ever, research in high-resolution images in DL is crucial due to its
applicability and efficiency, for instance, in digital pathology. Our
efforts are focused on making trained DL models accessible for
high-resolution image inference by reducing computation time and
resource requirements.

We proposed accelerated inference for high-resolution images
utilizing quantization technique while reducing memory and com-
putation and without accuracy degradation. We provided support
for single GPU as well as multi-GPU Distributed DL inference. We
achieved overall 6.5X speedup and 4.55X memory reduction with
single GPU with INT8 quantization. With Distributed DL, we en-
abled inference for scaled images. We achieved 1.58X speedup and
1.57X memory reduction using half-precision Distributed DL. We
further accelerate performance by 2x using SP compared to single
GPU.

We hope that our work will facilitate researchers in achieving
accessibility and efficiency in Deep Learning inference while reduc-
ing computational costs for their innovative research in the field of
high-resolution images.

Radha Gulhane, Quentin Anthony, Aamir Shafi, Hari Subramoni, and Dhabaleswar K. Panda

ACKNOWLEDGMENTS

We thank Arpan Jain et al. for providing access to their Hy-fi work
[16]. This research is supported by NSF grants #1818253, #1854828,
#2007991, #2018627, #2311830, #2312927, and XRAC grant #NCR-
130002, which were instrumental for this research.

REFERENCES

[1] 2014. The CIFAR-10 Dataset. https://www.cs.toronto.edu/~kriz/cifarhtml. Ac-
cessed: 2024-01-31.

[2] 2016. Camelyon 2016. https://camelyon16.grand-challenge.org/. Accessed:
2024-01-31.

[3] Hyunho Ahn, Tian Chen, Nawras Alnaasan, Aamir Shafi, Mustafa Abduljabbar,
Hari Subramoni, Dhabaleswar K., and Panda. 2023. Performance Characterization
of using Quantization for DNN Inference on Edge Devices: Extended Version.
arXiv:2303.05016 [cs.PF]

[4] Jon Braatz, Pranav Rajpurkar, Stephanie Zhang, Andrew Y. Ng, and Jeanne Shen.
2022. Deep Learning-Based Sparse Whole-Slide Image Analysis for the Diagnosis
of Gastric Intestinal Metaplasia. arXiv:2201.01449 [eess.IV]

[5] JiaDeng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. leee, 248-255.

[6] NVIDIA Developer. 2016. Nvidia Collective Communications Library (NCCL).
https://developer.nvidia.com/nccl. Accessed: 2024-01-31.

[7] NVIDIA Developer. 2019. NVIDIA TensorRT. https://developer.nvidia.com/
tensorrt/. Accessed: 2024-01-31.

[8] Yinpeng Dong, Renkun Nij, Jianguo Li, Yurong Chen, Jun Zhu, and Hang Su. 2017.

Learning Accurate Low-Bit Deep Neural Networks with Stochastic Quantization.

arXiv:1708.01001 [cs.CV]

Fastai. [n.d.]. GitHub - fastai/imagenette: A smaller subset of 10 easily classified

classes from Imagenet, and a little more French. https://github.com/fastai/

imagenette

Ruiwei Feng, Xuechen Liu, Jintai Chen, Danny Z. Chen, Honghao Gao, and Jian

Whu. 2021. A Deep Learning Approach for Colonoscopy Pathology WSI Analysis:

Accurate Segmentation and Classification. IEEE Journal of Biomedical and Health

Informatics 25, 10 (2021), 3700-3708. https://doi.org/10.1109/JBHI.2020.3040269

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney,

and Kurt Keutzer. 2021. A Survey of Quantization Methods for Efficient Neural

Network Inference. arXiv:2103.13630 [cs.CV]

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual

Learning for Image Recognition. arXiv:1512.03385 [cs.CV]

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao

Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng

Chen. 2019. GPipe: Efficient Training of Giant Neural Networks using Pipeline

Parallelism. arXiv:1811.06965 [cs.CV]

Osamu lizuka, Fahdi Kanavati, Kei Kato, Michael Rambeau, Koji Arihiro, and

Masayuki Tsuneki. 2020. Deep learning models for histopathological classification

of gastric and colonic epithelial tumours. Scientific reports 10, 1 (2020), 1504.

[15] Arpan Jain, Ammar Ahmad Awan, Asmaa M. Aljuhani, Jahanzeb Magbool
Hashmi, Quentin G. Anthony, Hari Subramoni, Dhableswar K. Panda, Raghu
Machiraju, and Anil Parwani. 2020. GEMS: GPU-Enabled Memory-Aware Model-
Parallelism System for Distributed DNN Training. In SC20: International Confer-
ence for High Performance Computing, Networking, Storage and Analysis. 1-15.
https://doi.org/10.1109/SC41405.2020.00049

[16] Arpan Jain, Aamir Shafi, Quentin Anthony, Pouya Kousha, Hari Subramoni,
and Dhableswar K. Panda. 2022. Hy-Fi: Hybrid Five-Dimensional Parallel DNN
Training on High-Performance GPU Clusters. In High Performance Computing,
Ana-Lucia Varbanescu, Abhinav Bhatele, Piotr Luszczek, and Baboulin Marc
(Eds.). Springer International Publishing, Cham, 109-130.

[17] Jakub R. Kaczmarzyk, Alan O’Callaghan, Fiona Inglis, Swarad Gat, Tahsin Kurc,
Rajarsi Gupta, Erich Bremer, Peter Bankhead, and Joel H. Saltz. 2024. Open and
reusable deep learning for pathology with WSInfer and QuPath. npj Precision
Oncology 8, 1 (Jan. 2024). https://doi.org/10.1038/541698-024-00499-9

[18] Mahendra Khened, Avinash Kori, Haran Rajkumar, Balaji Srinivasan, and Ganap-

athy Krishnamurthi. 2020. A Generalized Deep Learning Framework for Whole-

Slide Image Segmentation and Analysis. arXiv:2001.00258 [eess.IV]

Weizhe Li, Mike Mikailov, and Weijie Chen. 2023. Scaling the Inference of

Digital Pathology Deep Learning Models Using CPU-Based High-Performance

Computing. IEEE Transactions on Artificial Intelligence 4, 6 (2023), 1691-1704.

https://doi.org/10.1109/TAIL2023.3246032

Zhikai Li and Qingyi Gu. 2023. I-ViT: Integer-only Quantization for Efficient

Vision Transformer Inference. arXiv:2207.01405 [cs.CV]

[21] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith

—
L

[10

[11

=
&

(13

[14

[19

[20

https://www.cs.toronto.edu/~kriz/cifar.html
https://camelyon16.grand-challenge.org/
https://arxiv.org/abs/2303.05016
https://arxiv.org/abs/2201.01449
https://developer.nvidia.com/nccl
https://developer.nvidia.com/tensorrt/
https://developer.nvidia.com/tensorrt/
https://arxiv.org/abs/1708.01001
https://github.com/fastai/imagenette
https://github.com/fastai/imagenette
https://doi.org/10.1109/JBHI.2020.3040269
https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1811.06965
https://doi.org/10.1109/SC41405.2020.00049
https://doi.org/10.1038/s41698-024-00499-9
https://arxiv.org/abs/2001.00258
https://doi.org/10.1109/TAI.2023.3246032
https://arxiv.org/abs/2207.01405

Infer-HiRes

Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett (Eds.). Cur-
ran Associates, Inc., 8024-8035. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

André Pedersen, Marit Valla, Anna M. Bofin, Javier Pérez de Frutos, Ingerid
Reinertsen, and Erik Smistad. 2020. FastPathology: An open-source platform
for deep learning-based research and decision support in digital pathology.
arXiv:2011.06033 [cs.LG]

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Brad-
bury, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. 2023. Efficiently
scaling transformer inference. Proceedings of Machine Learning and Systems 5
(2023).

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. 2019. Regularized
Evolution for Image Classifier Architecture Search. arXiv:1802.01548 [cs.NE]
Ruichen Rong, Hudanyun Sheng, Kevin W Jin, Fangjiang Wu, Danni Luo, Zhuoyu
Wen, Chen Tang, Donghan M Yang, Liwei Jia, Mohamed Amgad, et al. 2023. A
Deep Learning Approach for Histology-Based Nucleus Segmentation and Tumor
Microenvironment Characterization. Modern Pathology 36, 8 (2023), 100196.
Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional
Networks for Biomedical Image Segmentation. arXiv:1505.04597 [cs.CV]

PEARC °24, July 21-25, 2024, Providence, RI, USA

[27] Aristeidis Tsaris, Josh Romero, Thorsten Kurth, Jacob Hinkle, Hong-Jun Yoon,

Feiyi Wang, Sajal Dash, and Georgia Tourassi. 2023. Scaling Resolution of Gi-
gapixel Whole Slide Images Using Spatial Decomposition on Convolutional
Neural Networks. In Proceedings of the Platform for Advanced Scientific Com-
puting Conference (Davos, Switzerland) (PASC "23). Association for Computing
Machinery, New York, NY, USA, Article 2, 11 pages. https://doi.org/10.1145/
3592979.3593401

[28] Jason Wei, Laura Tafe, Yevgeniy Linnik, Louis Vaickus, Naofumi Tomita, and

Saeed Hassanpour. 2019. Pathologist-level classification of histologic patterns
on resected lung adenocarcinoma slides with deep neural networks. Scientific
Reports 9 (03 2019). https://doi.org/10.1038/s41598-019-40041-7

Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius.
2020. Integer Quantization for Deep Learning Inference: Principles and Empirical
Evaluation. arXiv:2004.09602 [cs.LG]

Shuang Wu, Guogqi Li, Feng Chen, and Luping Shi. 2018. Training and Inference
with Integers in Deep Neural Networks. arXiv:1802.04680 [cs.LG]

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song
Han. 2023. SmoothQuant: Accurate and Efficient Post-Training Quantization for
Large Language Models. arXiv:2211.10438 [cs.CL]

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/2011.06033
https://arxiv.org/abs/1802.01548
https://arxiv.org/abs/1505.04597
https://doi.org/10.1145/3592979.3593401
https://doi.org/10.1145/3592979.3593401
https://doi.org/10.1038/s41598-019-40041-7
https://arxiv.org/abs/2004.09602
https://arxiv.org/abs/1802.04680
https://arxiv.org/abs/2211.10438

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Proposed Solution
	1.3 Contributions

	2 Background
	2.1 Distributed DL for High Resolution Images
	2.2 Quantization

	3 Related Work
	3.1 Deep Learning for High-Resolution Images
	3.2 Quantization in Deep Learning

	4 Quantization in Distributed Deep Learning
	5 Evaluation
	5.1 Effect of quantization on accuracy for Inference
	5.2 Quantization with Single GPU
	5.3 Distributed DL Quantization Performance Evaluation

	6 Conclusion
	Acknowledgments
	References

