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ABSTRACT

Standard modern machine-learning-based imaging methods have
faced challenges in medical applications due to the high cost of
dataset construction and, thereby, the limited labeled training data
available. Additionally, upon deployment, these methods are usu-
ally used to process a large volume of data on a daily basis, imposing
a high maintenance cost on medical facilities. In this paper, we in-
troduce a new neural network architecture, termed LoGoNet, with
a tailored self-supervised learning (SSL) method to mitigate such
challenges. LoGoNet integrates a novel feature extractor within a U-
shaped architecture, leveraging Large Kernel Attention (LKA) and a
dual encoding strategy to capture both long-range and short-range
feature dependencies adeptly. This is in contrast to existing meth-
ods that rely on increasing network capacity to enhance feature
extraction. This combination of novel techniques in our model is
especially beneficial in medical image segmentation, given the dif-
ficulty of learning intricate and often irregular body organ shapes,
such as the spleen. Complementary, we propose a novel SSL method
tailored for 3D images to compensate for the lack of large labeled
datasets. Our method combines masking and contrastive learning
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techniques within a multi-task learning framework and is compat-
ible with both Vision Transformer (ViT) and CNN-based models.
We demonstrate the efficacy of our methods in numerous tasks
across two standard datasets (i.e., BTCV and MSD). Benchmark com-
parisons with eight state-of-the-art models highlight LoGoNet’s
superior performance in both inference time and accuracy. Code
available at: https://github.com/aminK8/Masked-LoGoNet.
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1 INTRODUCTION

Accurate medical image segmentation can facilitate disease diagnosis and
treatment planning [14, 50]. One of the fundamental difficulties in this task
is the presence of organs or structures that span a large receptive field.
These structures may have irregular shapes, complex boundaries, or signifi-
cant variations in appearance, making the segmentation task particularly
demanding. Additionally, the high cost of expert annotation in this domain
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restricts the availability of large-scale labeled datasets. Consequently, it
limits the applicability of general domain computer vision methods [3, 13].
Furthermore, deployed systems usually process a large volume of images
on a daily basis, which demands a substantial computational resources and
leaves a large carbon footprint [27]. In the present work, we propose a
fast and accurate image segmentation architecture for the medical domain.
We also propose a pre-training algorithm to exploit unlabeled images, and
therefore, alleviate the demand for human annotation.

Our architecture is based on the widely adopted U-shaped model. We
particularly employ two strategies to enhance the inference speed, and si-
multaneously, maintain the prediction accuracy. First, in contrast to existing
models that rely on Convolutional Neural Networks (CNNs) and Vision
Transformers (ViTs) as encoders [10, 22], we employ the large-kernel atten-
tion model (LKA) [12] in our feature extractor, which we term ULKANet
(Unet Large Kernel Attention Network). As we discuss in the next section,
CNN and ViTs-based models suffer from a high memory complexity, are
slower during inference, and lack a proper strategy to process image se-
quences.! On the other hand, our method is demonstrably more efficient
due to the presence of LKA in the encoder.

Our second strategy is to enhance feature extraction through an inductive
bias. Learning short-range and long-range dependencies is essential in
medical image segmentation due to the large receptive field of organs.
Existing studies employ U-Net with the attention mechanism, and vertically
scale up their architecture to increase the network capacity for handling
feature dependencies [4, 31]. In contrast to these methods, we incorporate
our encoder (ULKANet) into a dual encoding algorithm to learn local (short-
range) as well as global (long-range) features. This enables us to keep the
network size manageable, and at the same time, maintain the prediction
accuracy. We term this model LoGoNet (Local and Global Network)?.
Our model is particularly advantageous for segmenting organs such as the
spleen, which has an elongated shape and irregular corners. Such body
organs demand the extraction of global and local features for segmentation.

Finally, we propose a novel self-supervision technique for 3D images
to address the lack of labeled training data. Our self-supervision method
combines masking and multi-task learning. Using a multi-clustering algo-
rithm, we generate a list of pseudo-labels for each unlabeled image. We
then methodically mask selected parts of these images to implicitly feed
the structural information of the unlabeled data into our model. A prop-
erty of our proposed SSL technique lies in its versatility, as it seamlessly
supports both CNN and ViT-based models. This flexibility sets our strategy
apart from conventional SSL approaches, which often cater to a specific
architecture [16, 24, 49]. Furthermore, our strategy leverages the inherent
characteristics of 3D medical images, specifically embracing the concept of
sequential images and neighborhood information of voxels in 3D images.

We evaluate our techniques on numerous tasks across two datasets, i.e.,
the BTCV dataset [11] for segmenting body organs, and the MSD dataset
[34] that encompasses diverse tasks in medical imaging, ranging from liver
tumors to cardiac and lung segmentation. Additionally, we benchmark our
method against eight state-of-the-art baseline models. The results demon-
strate the effectiveness and efficiency of our techniques. To offer a thorough
insight into the attributes of our approach, we undertook extensive experi-
ments, meticulously showcasing our model’s features and capabilities. To
summarize, our contributions are threefold:

e We propose a resource-efficient model based on the commonly used

U-shaped architecture. Our model has a short inference time and, at

the same time, outperforms state-of-the-art methods. We achieve this

The term "sequence” in 3D medical imaging refers to a series of volumetric data that
can be either a temporal sequence, capturing changes over time in a specific anatomical
region, or a spatial sequence, consisting of different slices from a 3D volume to provide
a comprehensive view of the anatomy from various angles.
2This work was supported by an NSF MRI Grant #2018627
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by employing two strategies: first, instead of relying on CNN or ViT-
based techniques, we utilize the large-kernel attention method to reduce
computational complexity. Second, instead of vertically scaling up our
network to improve feature extraction, we use a dual encoding algorithm
to facilitate the task. We empirically demonstrate that our strategies
combined achieve the best inference time and the highest precision.

e We propose a multi-task self-supervision technique to exploit unlabeled
images, and to overcome the lack of labeled data by employing a new
masking approach specifically designed for 3D images.

e We evaluate the efficacy of our model on numerous tasks across two
datasets, and show that it outperforms eight state-of-the-art baseline
models.

2 RELATED WORK

To model long-range dependencies in images, existing studies mostly use
vision transformers [1, 6, 14, 17, 25, 32, 39, 42], and draw ideas from se-
quence modeling in Natural Language Processing (NLP). A limitation of
these approaches is their treatment of images as 1D sequences, thereby
overlooking the input’s inherent 2D or 3D structure. They struggle to grasp
the spatial relationships between pixels, leading to poor performance in
tumor detection or organ segmentation tasks. Additionally, they suffer from
quadratic memory complexity, leading to high processing costs and slow-
ness for high-resolution images, especially in the 3D context [23, 26, 35, 40].
In contrast, our proposed model, ULKANet, adopts an attention mechanism
with LKA® to handle long-range dependencies while preserving the spatial
structure of the images. This distinctive property enables our model to
capture spatial patterns of the input more effectively, resulting in more
informative representations. This is particularly advantageous in detecting
tumors, where the conditions may extend over a considerable area, and
models that rely solely on local features often fail to detect such cases [41].

In addressing dependencies within data, various techniques are employed
based on the range of the dependencies. CNN-based models have proven
effective for short-range dependencies, leveraging convolutional operations
to identify relevant spatial patterns efficiently. Through this approach, hier-
archical representations are learned, enhancing the understanding of the
intrinsic structure of the data [22, 43, 51]. However, our methodology takes
a comprehensive approach, recognizing the importance of long and short-
range dependencies. We adopt a dual encoding strategy to achieve this,
incorporating an attention mechanism in parallel mode. This dual encoding
technique enables the simultaneous capture and encoding of both types of
dependencies, providing a more holistic representation of the underlying
relationships in the data.

Next, the lack of labeled training data is a primary challenge in medical
image analysis. To address this challenge, some studies have focused on
domain-specific pretext tasks, as seen in Cao et al. [5], He et al. [18], Zhao
et al. [47], Zhu et al. [53], and, Xu and Adalsteinsson [45]. Others, such as
Zhou et al. [48], adapt contrastive learning techniques to suit medical data
by focusing on feature level contrasts, creating homogeneous and hetero-
geneous data pairs by mixing image and feature batches, and utilizing a
momentum-based teacher-student architecture. A comprehensive evalua-
tion of various SSL strategies for 3D medical imaging was conducted by
Taleb et al. [36]. Azizi et al. [2] demonstrated the benefits of pre-training a
model on ImageNet for dermatology image classification, showcasing the
potential of transfer learning in the medical imaging domain.

3LKA [12] is a method for computer vision tasks that effectively captures long-range
relationships from input features. LKA reduces computational costs while generat-
ing attention maps highlighting essential features without additional normalization
functions by decomposing large kernel convolutions into spatial local, long-range, and
channel convolutions.
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3 PROPOSED MODEL

Figure 1a illustrates the architecture of our model LoGoNet. The forward
pass begins by processing the input data in parallel. We have two modules
in this stage, the global and the local modules. In the global module, the
original data cube? is fed into our feature extractor (ULKANet). In the local
module, the same data cube is partitioned into smaller cubes, and then, each
cube is processed by a separate feature extractor. Afterwards, the resulting
feature tensors are concatenated to reconstruct the input. Then the outputs
of the global and the local modules are aggregated by an element-wise
summation operator-note that they have the same dimensions. Finally, the
resulting tensor is passed through a convolution kernel followed by a 3D
batch normalization operator and a GELU activation function to shape the
input to our final classifier. Our final classifier is a convolution kernel.

In the next section, we discuss our 3D encoder-decoder architecture
(ULKANet), which is armed with a 3D adaptation of LKA in the encoding
phase. We then explain our local-global dual encoding strategy, which
enables our model to extract feature dependencies at varying scales. After
describing our model in detail in Sections 3.1 and 3.2, we then explain our
novel pre-training method in Section 3.3. We use the pre-training algorithm
to initialize the parameters of our model before beginning to fine-tune the
network on labeled data.

3.1 LKA in Feature Extractor: An Alternative to
CNN and ViTs-based Models

Figure 1b illustrates an overview of our feature extractor (ULKANet), which
is a U-shaped model and has an encoder and a decoder. The encoder consists
of a sequence of blocks. Each block consists of a repeating sequence of three
components: a patch embedding component, a chain of transformer-like
modules that employ LKA (L; modules for i/ block of the encoder), and a
layer normalization component. For conciseness, Figure 1b only shows the
top-level blocks, while a detailed illustration of the model architecture and
inner components is provided in the appendix section 7.

The Patch Embedding component plays a crucial role in the processing of
input data within the encoder block, transforming the input into a tensor that
is subsequently passed to the next component in the sequence. Throughout
the current encoder block, the dimension of the embedding vectors remains
constant, denoted as dim. The mathematical representation of the projection
operation is defined as follows:

k
Patch = Norm(Conv3D (X, dim, k, padding = E)).flatten(z), (1)

where X represents the input with five dimensions (b, C, seq, H, W), and b
is the batch size, C is the channel size, k is the size of the 3D convolution
kernel, dim is the number of channels for the output of Conv3D, and Norm
represents the batch normalization operator. (seq, H, W) denotes the size of
the 3D input, and the flatten operation results in a tensor with dimensions
(b,dim, seq X H x W). The Patch Embedding process serves to efficiently
capture and represent the relevant features of the input data, facilitating
the subsequent stages of the network architecture.

To enable our model to efficiently extract complex feature dependencies
that are often present in medical images, we opt for using transformer
modules. However, instead of using the regular transformers with self-
attention that is slow and needs more memory [35], we use LKA [12] in
the attention layer. This type of attention mechanism decomposes large
convolution kernels into spatial dependencies and channel convolutions. It
enables our model to go deeper and remain memory efficient. The attention

4"Cube" typically refers to a three-dimensional (3D) region of interest (ROI) within
the volumetric medical image. Medical images, such as those obtained from MRI or
CT scans, are often represented as 3D volumes, where each voxel (3D pixel) contains
intensity or other information about the tissue or structures being imaged. A cube in
this scenario is a 3D subset of the entire image volume.
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module is implemented as follows:

Atts = Conv3D;x1 (DiConv3D (ChConv3D(X))), (2)

where X is the input tensor and ChConv3D is a depth-wise convolution
operating on a single channel. DiConv3Dis a dilated depth-wise convolution
to broaden the receptive field and to enable the extraction of long-range de-
pendencies. The point-wise convolution Conv3D;x; is applied to aggregate
the information across the channels. The final activations are obtained as
follows:

Attention Value = Atts © X, (3)
where © is the element-wise product. The remaining components of the
transformer block follow the conventional structure of typical transformers.

Output

Classifier

[ ULKANet ] [ ULKANet ]. -n [ ULKANet ] ;

L

Patching (Local
Mechanism)

Sequence (Global
Mechanism)

Encoder Decoder

(a) Proposed Model (b) ULKANet

Figure 1: 1a) Overview of our model LoGoNet. In order to
take into account the local and global feature dependencies
in images, they are fed into the model in parallel. In the local
mechanism, the input data is partitioned into small parts,
and each part is separately fed into our feature extractor
(ULKANet). 1b) Overview of the ULKANet Architecture. A
U-shaped network with the encoder-decoder design. Blue cir-
cles represent encoder blocks, and green circles represent the
decoder blocks. The + sign represents element-wise summa-
tion, and the X sign represents the concatenation operator.

The decoder in our model aims to restore the spatial resolution of the
input using a sequence of blocks (green circles in Figure 1b). Each decoder
block consists of a chain of three convolution modules followed by an
upsampling operation. The convolution modules are responsible for volu-
metric convolution operation. They consist of a Conv3D layer and a batch
normalization layer, followed by a LeakyReLU activation function. The
upsampling operation scales the resolution by a factor of two. As we stated
earlier, a second larger illustration of our architecture that shows the inner
modules can be found in the appendix section 7.

For each individual block in the encoder, the decoder has one corre-
sponding block. There is also an additional decoder block in the bottleneck
layer, as shown in Figure 1b. The input to each decoder block is supplied by
the block in the previous layer and also the corresponding encoder block
through a skip connection. In order to enhance the reconstruction of input,
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we use the skip connections to facilitate the transfer of high-level features
[46] to the layers that are responsible for the reconstruction task.

Set of Pseudo-Labels to be Predicted for Selected Images

|c} |c§ | . |c’1" | |c% |c§ | |c’2V | |c§ |c§ | |c’3" | |c1 |cﬁ| |cf,"|
[_ Pre-Training Classification Head 4 ?
[ LoGoNet 4 }

Figure 2: Illustration of our pre-training pipeline. We begin
by randomly selecting a set of m sequential images (here
m is four), on which we apply patching and masking. Then
LoGoNet is used to predict the set of pseudo-labels that we
generated for each distorted image (see Section 3.3 for details).
During the pre-training stage, a classification head (a feed-
forward network) is used on top of the model for prediction.
This head is replaced with a convolution head (see Figure 1a)
for fine-tuning on the segmentation task with labeled data.

3.2 Dual Encoding Strategy: An Alternative to
Increasing Model Capacity

One of the difficulties in medical image segmentation is the presence of
organs that have complex shapes. For instance, the human gallbladder and
spleen have an elongated structure. Hence, to achieve satisfactory perfor-
mance in the segmentation task, the model should be able to detect and
extract relevant features in multiple regions of the input images, heavily re-
lying on global features. On the other hand, this organ has irregular corners.
This characteristic requires the model to be able to detect local features
in multiple regions of the input. While increasing the model capacity by
adding more layers, and also composing larger training sets, will potentially
enable the model to automatically learn these regularities, this will likely
increase costs during both the deployment and development stages.

To reduce the burden of automatic feature mining and, consequently, to
reduce the costs, we propose to impose an inductive bias [29] on the feature
extraction process. We propose to have two feature extractors in parallel,
one focusing on the global scale and another one focusing on the local
scale-as shown in Figure 1a. The global module is able to extract long-range
dependencies due to access to the original data cube. On the other hand, the
local module focuses on short-range dependencies. This is accomplished by
partitioning the input cube into smaller ones, allowing for a more focused
analysis and resulting in finer-grained features.

To implement our idea, we use one instantiation of ULKANet in the
global module, and a sequence of N instantiations of ULKANet in the local
module. In the analysis section, we show that while using only one ULKANet
can reduce the model size and speed up inference, it will also significantly
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deteriorate prediction accuracy. Additionally, we show that alternative
strategies, used in comparable models, are either slower or achieve lower
prediction accuracy. To prepare the data for the local module, the input 3D
image is split into N smaller cubes of size B X B X B. Given an image of

size S X H X W, the value of B is obtained by B = ,3/ w

To reconstruct the input data cube, the outputs of the local module are
concatenated, as shown in Figure 1a. In order to aggregate the outputs of
the global and local modules, we use an element-wise summation operator.
The resulting tensor is expected to represent both global and local range
dependencies.

3.3 Pre-Training Method: Exploiting Unlabeled
Images

Before fine-tuning our model on labeled data, we utilize a multi-task pre-
training technique to relocate the model weights to a favorable state. This
self-supervised approach allows the model to learn general information
from 3D medical images, without the necessity of ground-truth labels.

Pre-training of our model is done in three stages. First, we methodically
mask certain regions of the input images. In this stage, the goal is to capture
long-range and short-range feature dependencies. Second, we generate
pseudo-labels for the masked images. The model later learns to generalize
to unseen cases by predicting the pseudo-labels of the masked data. Finally,
the masked images, along with their pseudo-labels, are used to pre-train
the model. Below we explain each step.

3.3.1 Masking Algorithm. In 3D imaging, objects are depicted across mul-
tiple 2D surfaces. Therefore, we argue that an effective masking strategy
should step beyond 2D inputs.

In order to help the model explore not only the dependencies between
pixels in 2D images but also the connections among pixels that form 3D
masses, we propose an algorithm to mask chains of patches in an image
sequence.’ We begin by randomly selecting an image from the set of unla-
beled data, with probability ¢; for selecting an individual image. Along the
selected image, we also retrieve the m — 1 preceding images in the same
sequence. Then, we apply a masking technique to the images in the chain.
Various masking techniques can be used in this stage [28, 33]; we employ
the method introduced by Xie et al. [44]. Therefore, for each image in the
HxW
(Pj)?
where H and W are the height and width of the image. Finally, with the
probability ¢, we mask out each patch of the image. Appendix section 4.1
discusses more details about the masking algorithm, and how to tune the
hyperparameters.

In contrast to algorithms such as SimMIM [44], our proposed approach
distinguishes itself by selecting a sequence of images and subsequently
applying masking to that sequence. This method facilitates the encoder in
gathering information by focusing on the interdependence of voxels within
the sequence of images. Notably, our algorithm operates independently
of the specific model structure, diverging from approaches seen in stud-
ies by Kakogeorgiou et al. [24], He et al. [16], and Zhou et al. [49], all of
which exhibit a reliance on model structure. Furthermore, our approach is
compatible with Vision Transformer (ViT)-based and CNN-Based models.

chain, we randomly select a patch size P, and partition it into patches,

3.3.2  Pseudo-Label Generation. Our pseudo-label generation algorithm
assigns labels to all the images in the unlabeled set. Later in the pre-training
pipeline, our model is asked to predict the pseudo-labels of the masked out
images in each sequence. The information conveyed by the distorted images
is insufficient for label prediction. Therefore, the model must explore the
associations between pixels across multiple 2D images in the sequence to
correctly predict the pseudo-labels of the target images. In the analysis

SNote that in speech processing, where data is naturally sequential, applying this
technique seems to be the default method [21]. However, to our knowledge, we are
the first to propose this technique in the computer vision domain.
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section, we empirically show that this exploration task helps the model to
learn the properties of the domain and to generalize better.

A clustering algorithm is employed for the pseudo-label generation. For
simplicity, we use the k-means clustering method, although other types of
clustering methods, such as hierarchical or spectral methods, can be utilized.
Given a random number k as the predefined number of clusters, we train a
k-means clusterer on a random subset (e.g. 10% in our experiments) of the
unlabeled data. Then we use the clusterer to label the entire unlabeled set.
Note that masking is not applied in any of these stages, and the clusterer
has access to the unmasked images. The obtained labels are used as pseudo-
labels to pre-train the model by predicting the corresponding labels for
every masked image.

The k-means clusterer is able to use all the properties of the images to
form the clusters. For instance, a cluster may constitute images that illustrate
elongated organs, while another cluster may constitute images that depict
organs that have particular corners. During pre-training, the model is asked
to recover the pseudo-labels of a sequence of images that are distorted by
masking. In order to predict their correct labels, the model must discover
the associations between neighboring pixels. This pretext task enables the
model to learn long-range and short-range spatial dependencies effectively.

Assuming that a clustering method exploits a finite set of characteristics
in data to form the clusters, our model needs to learn these characteristics
to correctly assign each image to the associated clusters. We conjecture that
having N different clusterers labeling the data and then using our model
to simultaneously predict these multiple labels can further help the model
gain broader knowledge from the data. From a different perspective, we can
assume that recovering the characteristics of each clusterer is a separate
pre-training task, and then, concurrently recovering the characteristics of
multiple clusterers is a multi-task training. The efficacy of multi-tasking
is well-documented in the machine learning literature [7]. Figure 2 shows
our pre-training pipeline. In this figure, N denotes the total number of
clusterers, and c{ denotes the pseudo-label generated by j-th clusterer for
the i-th masked image in the sequence.

3.3.3  Pre-Training Loss Function. To pre-train our model, we use a cumu-
lative negative log-likelihood function on the model predictions for the
masked images as follows:

S
L=- Zlog(p"<e|x,->), )

Jj=1

Mz

i

Il
-

where N is the number of clusterers, S is the number of masked images that
can be calculated by S = M x Q, where M is the length of image sequence for
masking, and Q is the number of concurrent masked sequences, if present.
X1, X2, X3, ..., Xs are masked images, and pi(e|XJ) is the probability that
the j-th masked image in the sequence (i.e., x;) is correctly assigned to
the pseudo-label e generated by the i-th clusterer. The value of p’(e|x;) is
calculated by a softmax function on top of the pre-training classification
head, which is a simple feed-forward network.® Therefore, given a clusterer,
we have:

_explfe¥)/r)
& exp(fix)/n)”
where exp(e) is the exponential function, K is the number of clusters
generated by the clusterer, e is the cluster that the input image x belongs
to, and fs(x) is the s-th logit of the pre-training classification head. The
hyper-parameter 7 is called the softmax temperature. The value of 7 deter-
mines the strength of the gradients backpropagated through the network.
Lower temperature values increase the magnitude of gradients [20]. This,
in turn, reduces the standard deviation of output probabilities—also known
as sharpening the posterior probabilities.

P (elx) = (©)

®Replacing the pre-training head with a finetuning head is an established practice in
the self-supervision literature [9].
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Our loss function (Equation 4), iterates over all the predictions that our
model makes during the pre-training stage and penalizes for the errors.
As we discussed earlier, our pretraining framework enables LoGoNet to
become familiar with the properties of the domain to generalize better by
exploiting unlabeled data. We empirically support this argument in our
analysis section. Additional experiments can be found in appendix section
4.1.

4 EXPERIMENTAL SETUP

In this section, we briefly describe the datasets used in the experiments,
provide a list of baseline models we compare to, and also provide an overview
of our setup.

Datasets. We use two widely used standard datasets. As the first dataset,
we use the BTCV dataset’ introduced by Gibson et al. [11]. This dataset
contains 13 segmentation tasks, and each task has 40 data points obtained
via abdominal CT scans. As the second dataset, we use the MSD dataset®
introduced by Simpson et al. [34]. This dataset contains a variety of tasks
obtained via magnetic resonance imaging (MRI), computed tomography
(CT), and positron emission tomography (PET). We use six different tasks
from this dataset that contain a total of 900 examples. The MSD dataset con-
tains 6 tasks, of which 4 are cancer or tumor detection (anomaly detection),
e.g., colon cancer. As the unlabeled data, we use the meta-dataset collected
by Tang et al. [37], which consists of 4,500 examples. The images in this
dataset are not annotated, and are 3D scans covering a variety of organs.
Baselines. We compare LoGoNet to a suite of baseline models, including
those that use Visual Transformers or Convolutional Neural Networks. We
compare to nnUNet [22], Attention U-Net [31], SegResNetVAE [30], UNet++
[52], DINTS (two variations of Search and Instance) [19], SwinUNETR
(feature size 48) [14], and UNETR (feature size 32) [15].

Setup. We follow standard practices to carry out the experiments. We
use the Dice metric, a common metric for the image segmentation task,
to report the performance results. We conduct the experiments in each
dataset task separately and report the average results for five runs in the
BTCV dataset and two runs in the MSD dataset. Detailed information about
hyperparameter tuning, configurations, and implementation is reported in
the appendix section 8.

Our default LoGoNet and ULKANet models have four encoder blocks
with 3, 4, 6, and 3 transformer modules in each block, respectively. The
dimensions of the embedding vectors in these models are 64, 128, 256, and
512, respectively.

4.1 Pre-Training Details

We used the scikit-learn implementation® of the Mini Batch KMeans algo-
rithm as the clusterers in our pre-training pipeline. The outcomes of vanilla
K-means clustering are unstable, and this can make the reproducibility
challenging. To address this problem, we used K-means++ (implemented in
Mini Batch KMeans). K-means++ addresses this issue directly through its
enhanced seeding process. It improves the stability and reproducibility of
clustering results by systematically selecting initial centers to reduce the
variability caused by random initialization in standard k-means.

During the training phase of the k-means models, we adopted a transfor-
mation process that converted the input image from a Channel X X XY X Z
format to a vector representation of dimensions Z x T, where T is equiv-
alent to Channel x X x Y. This transformation enabled us to generate a
label for each cluster per image slice, resulting in a sequence of labels for
a sequence of images. Subsequently, the model underwent 350 iterations
of training, with each iteration utilizing a randomly selected 10% subset
of the unlabeled data. To introduce diversity and enhance robustness, we

7 Available at https://www.synapse.org/#!Synapse:syn3193805/wiki/217789
8 Available at http://medicaldecathlon.com/
9 Available at: https://scikit-learn.org/stable/
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Models SegResNetVAE SwinUNETR UNETR UNet++ nnUNet —
FLOPs (G) 15.50 329.84 264.59 4229.20 1250.65

# Param 39M 62.2 M 101.7 M 84.6 M 30.7 M
— Models | DINTS Search  DiNTS Instance Attention U-Net LoGoNet
FLOPs (G) 743.88 743.88 7984.21 246.96

# Param 741 M 741 M 64.1 M 67.5 M

Table 1: Comparison between our model and the baselines in terms of inference speed (in floating-point operations per second)
and the number of trainable parameters in the BTCV dataset. Due to the size of the images, the results are identical across the
BTCV and MSD datasets. See appendix section 8 for more experiments on resource consumption.

Configuration Value

Optimizer AdamW

Epochs 100

Batch Size per GPU 1

Number of GPUs 16

Weight decay le -5

Optimizer momentum P1, P2 =0.9,0.999
Peak learning rate le — 4

Learning rate schedule CosineAnnealingLR
Warmup epochs 10

Dropout 0

Rand Spatial Crop Samples Data 96 X 96 X 96
a_min =-1000
a_max = 1000

MONAI Transforms: ScalelntensityRanged ~ b_min =0
b max =1
Clip = True

T 0.1

$1 0.1

é2 0.7

M (Size of masked sequence) 5

P; (Size of Patches) 1,2,4,8,16,32,96
Table 2: Pre-Training settings for our proposed approach

employed a stochastic approach in determining the value of K, randomly
sampling from a range spanning 80 to 500.

The information pertaining to pre-training is reported in Table 2. To
pre-train the model, we leveraged the AdamW optimizer, and set the hyper-
parameters ¢ to 0.1 and ¢, to 0.7. Additionally, the sequence of distorted
images, denoted as M, was set to 5.

Our observations reveal that augmenting both the values of M (length
of sequenced mask images) and ¢; (rate of sampled images) results in
an increased rate of masked images. However, this heightened rate poses
challenges to our model during the pre-training, and enables it to exploit
dependencies between successive slices for effectively capturing information
related to missing voxels. This delicate interplay between hyperparameters
emphasizes the necessity of finding an optimal balance to enhance model
performance, as an excessive increase in masked images may impede the
model’s ability to leverage contextual dependencies within the data.

Furthermore, we introduced randomness in the selection of patch sizes,
choosing from the set (1,2, 4,8, 16,32, 96). Our pre-training approach in-
volves the incorporation of a classification head designed to adapt the model
output to align with the requirements of our pseudo-labeling. Figure 2 shows
the structure of our proposed pre-training. The structure of the classification
head can be found in Algorithm 1.
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Algorithm 1 Pseudo Code of Pre-Training Classification Head

1: procedure PREHEAD(X, input_dim, x_dim, y_dim, z_dim,
cluster_num, class_size) > Input: X is the input tensor.
X « Conuv3d(X, input_dim, cluster_num)
X « BatchNorm3d(X, cluster_num).GELU (X)
X « Conv3d (X, cluster_num, cluster_num)
X « BatchNorm3d(X, cluster_num).GELU (X)
X « X.permute(0,3,2,1,4)

7: X « Conuv3d(X, y_dim, class_size)
8: X « BatchNorm3d(X, class_size).GELU (X)
9: X « Conv3d (X, class_size, class_size)

10: X « BatchNorm3d(X, class_size).GELU (X)
11: X « X.permute(0,2,1,3,4)

12: X « Conv3d(X,x_dim,x_dim/]/16)

13: X « BatchNorm3d(X,x_dim//16).GELU (X)
14: X « Conv3d(X,x_dim//16,1)

15: X « BatchNorm3d(X,1).GELU (X)

16: X « X.permute(0,4,3,2,1)

17: X « Conv3d(X,z_dim,z_dim)

18: X « BatchNorm3d(X, z_dim).GELU (X)

19: X « Conv3d(X,z_dim,z_dim)

20: X « ReLU (X).squeeze()

21: Return X

22: end procedure

Configuration BTCV

Optimizer AdamW

Epochs 5000

Batch Size per GPU 2

Number of GPUs 16

Weight decay le -5

Optimizer momentum P, P2 =0.9,0.999
Peak learning rate le — 4

Learning rate schedule CosineAnnealingLR
Warmup epochs 100

Dropout 0

Rand Spatial Crop Samples Data 96 X 96 X 96

Table 3: Training and fine-tune settings for all proposed and
baseline models

4.2 Fine-Tuning Details

Table 3 provides a comprehensive overview of the specifics pertaining to
our training or fine-tuning procedures.
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Our experimental setup involved 16 GPUs, each one having 35GB of
memory. The models were trained with AdamW optimizer. As we stated
earlier, our goal was to design a fast model at inference time, as such models
are used countless times in the deployment environment and can have a
large carbon footprint. As shown in Table 1, our model’s required resources
in terms of FLOPs are one of the best, lower than 7 of the baselines with
which we compared our model to. Our model’s total number of parameters
is also lower than many baselines while achieving higher performance. We
used multiple GPUs for training and data parallelism to decrease the time
required for training. However, our model is small enough to be trained on
a single GPU with 14 GB capacity, so researchers whose access to GPUs is
limited can still train and validate our model.

To adhere to established standards and foster equitable comparisons, we
employed a comprehensive array of augmentation techniques to augment
data variability. It’s noteworthy that these augmentations were uniformly
applied to all models, encompassing both our proposed models and the
baseline models. This meticulous approach ensures a fair and unbiased
comparative analysis. For the implementation of our models and the baseline
models, we leveraged the MON AI framework,'? which provided a robust
and versatile foundation for our experimentation. This framework facilitated
the seamless integration of existing public implementations.

In the course of each iteration, we implemented a randomized cropping
strategy, extracting two images for each case during the training phase.
This deliberate approach was employed with the intent of diversifying the
training dataset for each input case within every epoch, thereby enhancing
the overall richness of the training process.

5 RESULTS
5.1 Main Results

Table 1 compares our model to the baseline methods in terms of inference
time (FLOPs) and the number of trainable parameters in the BTCV dataset.
We see that our model has the lowest inference time after SegResNetVAE.
Tables 4 and 5 compare the accuracy of our method to the baselines. We
observe that the performance of SegResNetVAE is significantly lower than
that of ours. Taking into account both the inference speed and the predic-
tion accuracy, our model seamlessly ranks first among all the models. See
Appendix 9 for a report on the standard deviation and statistical significance
of the results.

Table 1 shows that our model is considered an average-sized network.
One noteworthy observation is that in some cases, e.g., nnUNet or DINTS
Instance, even though the number of trainable parameters is on a par or
smaller than ours, their inference speed is substantially slower. Tables 4 and
5 show that our model exhibits superior performance compared to the base-
line methods. Specifically, when evaluating our proposed model without
pre-training, it outperforms the baselines across 13 out of 19 tasks. Further-
more, incorporating our pre-training strategy into LoGoNet enhances its
performance even further, surpassing the baselines in 18 out of 19 tasks.
These findings underscore the effectiveness and versatility of our approach
in tackling a diverse range of tasks with notable efficacy.

In the BTCV dataset, LoGoNet outperforms the top three baseline models
on average by 2.7%, 3.0%, and 3.2%, respectively. Regarding the inference
time, our model outperforms the top three models by 17.6%, 14.8%, and
118.2%, respectively.

5.2 Analysis

In this section, we demonstrate the properties of our model from multiple
aspects. Specifically, we report a qualitative comparison between our model
and the best baseline model, evaluate our strategy for extracting local and
global features, evaluate our pre-training approach, show the impact of

10 Available at: https://monai.io/
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model size on performance, analyze the hyper-parameter sensitivity of our
model, and finally, report an ablation study on the steps in our pre-training
method. The experiments in this section are carried out in the BTCV dataset
unless stated otherwise.

Ground Truth LoGoNet

DiNTS Search

Figure 3: Output of LoGoNet compared to the best performing
baseline model in BTCV dataset, i.e., DINTS Search. We see
that our model tangibly outperforms the mentioned model
in detecting organ boundaries.

We begin by qualitatively inspecting our model. Figure 3 compares the
output of LoGoNet to the best-performing baseline model in the BTCV
dataset, i.e., DINTS Search. We see that our model particularly excels in
segmenting organ boundaries. This can be attributed to our effective strat-
egy for extracting local-range dependencies, which plays a crucial role in
extracting details from input data. Our model’s adeptness in capturing long-
range dependencies allows it to grasp contextual information that extends
over significant distances within the data. Simultaneously, its proficiency in
handling short-range dependencies ensures precision in capturing localized
patterns.

To further quantitatively support our strategy for extracting local and
global features in parallel, in the next experiment, we report the performance
of our model compared to the regular method for extracting features from
medical images, which is relying on a single feature extractor. This translates
into comparing LoGoNet to our feature extractor ULKANet. Table 6 reports
the results. We observe that our strategy enables our model to outperform
the alternative method.

In the next experiment, we report the efficacy of our pre-training method.
To carry out this experiment, we use the algorithm proposed in Section
3.3 to initialize the weights of our model, and then, we follow the regular
fine-tuning steps. In Tables 4 and 5 (the last rows), we report the results
of this model for both datasets, indicated by postfix PRE. We see that the
improvements achieved by pre-training are consistent across both datasets.

In the next experiment, we compare the effectiveness of our self-supervised
pre-training approach to the alternative methods. In particular we compare
to SimMIM [44], Rubuk’s Cube [38], and SimCLR [8] strategies. Table 7
reports the result. The numbers are obtained by initializing LoGoNet. No-
tably, our proposed model exhibits superior performance in three out of
four experiments, showcasing its effectiveness in a diverse set of tasks. The
comparison in Table 7 highlights the competitive edge of our model.
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Models Spl RKid Lkid Gall Eso Liv Sto Aor IVC Veins Pan Rad Lad | AVG
UNETR 912 940 938 .693 .690 954 .754 .891 .830 .703 .734 .660 .577 | .790
SegResNetVAE 941 938 933 .670 .718 955 745 892 .848 .695 .783 .633 .528 | .791
nnUNet 859 944 924 796 755 960 .781 .894 849 .756 .776 .675 .663 | .818
Attention U-Net | .955 .936 .930 .735 .739 964 .770 .898 .852 .753 .763 .695 .688 | .821
DiNTS Instance | .935 .942 .938 .770 .769 .962 .743 909 .857 .759 .782 .641 .691 | .823
UNet++ 934 931 925 810 .715 .961 .786 .900 .846 .747 .829 .685 .679 | .827
SwinUNETR 952 947 945 .790 .770 .963 .755 .901 .850 .771 .760 .702 .659 | .828
DiNTS Search 937 934 930 .788 .770 .960 .774 .904 866 .751 813 .670 .711 | .831
LoGoNet 958 949 947 818 786 969 880 912 865 769 821 .726 .698 | .854
LoGoNet + PRE | .961 947 944 .866 .845 .970 .898 .936 .885 .791 .838 .738 .757 | .875

Table 4: Performance of our model (in terms of Dice metric) compared to the baseline models in BTCV dataset. All experiments
were conducted using identical data splits, computing resources, and testing conditions to ensure a fair comparison. Additionally,
to ensure faithfulness to the original implementation of the baseline methods, we used their publicly available implementations
available at MONAI network repository. Spl: Spleen, RKid: Right Kidney, LKid: Left Kidney, Gall: Gallbladder, Eso: Esophagus,
Liv: Liver, Sto: Stomach, Aor: Aorta, IVC: Inferior Vena Cava, Veins: Portal and Splenic Venis, Pan: Pancreas, Rad: Right Adrenal

Glands, Lad: Left Adrenal Glands.

Models Col Spl Hep Pan Lun Car |AVG
UNETR 677 969 715 .699 .730 .953|.790
SegResNetVAE |.742 .968 .745 .740 .765 .951| .818
nnUNet 736 977 742 742 .816 .958 | .829
Attention U-Net | - - - - - - -
DiNTS Instance |.768 .979 .731 .742 .790 .963| .829
UNet++ 553 975 752 .760 .753 .961|.792
SwinUNETR |.695 .967 .737 .738 .763 .957|.810
DiNTS Search |.776 .980 .749 .749 .768 .960 | .830
LoGoNet |.786 .980 .757 .798 .802 .951| .846
LoGoNet + PRE|.801 .980 .779 .833 .828 .958|.863

Table 5: Performance of our model (in terms of Dice met-
ric) compared to the baselines in MSD dataset. The base-
line model “Attention U-Net” was not runnable on regular
chipsets which each has 35 Gigabyte of memory in MSD
dataset. Col: Colon Cancer Primaries, Spl: Spleen, Hep: Hep-
atic vessels and tumor, Pan: Pancreas Tumour, Lun: Lung
Tumours, Car: Cardiac.

Models Gall Eso Veins Lad | AVG
ULKANet | .761 782 .690 .684 .824
LoGoNet .818 .786 .769 .698 | .854

Table 6: The efficacy of our parallel strategy for extracting
local and global features, i.e., the comparison between our
method (LoGoNet) and an alternative method that relies on
a single feature extractor (ULKANet).

An inherent advantage of our pre-training approach lies in its versatility,
as it is designed to be compatible with both CNN and ViT-based models.
This flexibility broadens the applicability of our approach, allowing it to
seamlessly integrate with different architectural paradigms commonly used
in computer vision tasks.

To understand the impact of model size on the prediction accuracy, we
report the performance of our default model compared to a larger variant.
Our larger variant uses four encoder blocks with 3, 3, 24, and 3 transformer
modules, respectively. The dimensions of the embedding vectors in this
model are 96, 192, 384, and 768, respectively. Table 8 reports the results.
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SSL Approach Gall Eso Veins Lad | AVG
SimMIM [44] 837 829 785 733 | .864
Rubik’s Cube [38] 815 .820 .780 725 | .859
SimCLR [8] 829 .803 .780 720 .859
Our SSL Approach | .866 .845 791 757 | .875

Table 7: Performance of our multi-task self-supervised pre-
training method compared to the alternatives (number of
clusters is N=80).

Models Gall Eso Veins Lad | AVG
LoGoNet .818 .786 769 .698 .854
LoGoNet L .847 781 768 .710 .855
LoGoNet + PRE | 866 .845 .791  .757 | .875
LoGoNet L + PRE | .921 .859 .805 .784 | .891

Table 8: Performance of LoGoNet compared to LoGoNet L
(Number of clusters N=80, L stands for the large model vari-
ant).

Upon increasing the dimensions of our model, we observed an improvement
in results, though it fell short of our initial expectations. We attribute this to
the limited number of labeled data available. However, upon integrating our
pre-training methodology into our standard and larger variants of LoGoNet,
we noted a significant enhancement in performance, particularly noticeable
in the larger LoGoNet.

Model N=1 N =40 N =380
Gall Eso | Gall Eso | Gall Eso
LoGoNet + PRE | .830 .819 | .843 .860 866  .845

Table 9: Performance of our models at varying number of
clusterers for pre-training. As the number of clusterers in-
creases, the contribution of multi-tasking becomes more no-
ticeable.

In Section 3.3, we claimed that having multiple clusterers serves as a
multi-task training approach. In order to demonstrate the benefit of having
multiple clusterers, and also show the sensitivity of our model to the number
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of these learners in our algorithm, we report the results of our model with
varying numbers of clusterers in Table 9. We see that as the number of
clusterers increases, the performance improves. The results support our
hypothesis regarding the ability of our model to extract broader knowledge
from the unlabeled data in the presence of multi-tasking.

To refine our model using labeled data, we employed the DiceCELoss
as the objective function during the fine-tuning or training process. The
DiceCELoss function serves as a crucial metric, enabling us to strike a
balance between the Dice coefficient and Cross-Entropy, optimizing the
model’s performance on the labeled dataset. The DiceCELoss is articulated
by the following formulation:

DiceCELoss = wg; X DiceLoss + w.; X CELoss, 6)
where
2x YN pixti+e
DiceLoss =1 — A[Z‘_l# 7)
Zi=1 pit Zi=1 ti+e
and
1 N
CELoss = N ; t; X log(pi).- 8)

Thus, our fine-tuning and training loss term is the weighted summation
between the regular dice loss term and the cross entropy term. p; represents
the predicted probability for the i-th class. #; represents the ground truth
label for the i-th class. N represents the number of classes. € is a small
constant (e.g., le-5) added to the denominator to avoid division by zero.

Wl Wel | Wdi _ Wel
1.0 1.0 0.0 1.0 1.0 0.0

.854 .841 .847
Table 10: Performance outcomes with varied weights for Dice-
CELoss: The presented results represent the average across

all 13 organs in the BTCV dataset using the LoGoNet model.

Wdl Wl

LoGoNet

Our experiments revealed that assigning equal weights to both CELoss
and DiceLoss yields more favorable outcomes, surpassing the performance
achieved with other weight ratios. The results of various weight configura-
tions for losses are presented in Table 10. By according equal significance to
both Cross-Entropy Loss (CELoss) and Dice Loss, we strike a balance that
enhances the model’s ability to effectively capture diverse patterns in the
data.

Finally, we report an ablation study on the effectiveness of our masking
approach during the pre-training stage. In Section 3.3, we argued that by
distorting input images, the model must learn the properties of neighboring
pixels in order to predict the correct labels. We then argued that this explo-
ration task enables the model to faster learn the domain and to generalize
better. The results reported in Table 11 supports our claim. We see that
by incorporating the masking step, the performance noticeably improves
signifying a better generalizablity of our method.

Model w/ M wo/ M w/M + wo/ M
ode Gall Eso | Gall Eso | Gall Eso
LoGoNet + PRE | .866 .845 | .845 .802 | .851 .820

Table 11: Ablation study on the effectiveness of our masking
algorithm for 3D inputs. "w/ M" refers to pretraining with
masking, and "wo/ M" refers to pretraining without masking,.
(BTCV Dataset)
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5.3 Complexity analysis

This section presents a comprehensive analysis of the computational com-
plexity associated with our models, detailing the number of trainable pa-
rameters and the FLOPs. Please refer to Table 1 for a summary of these
metrics.

To make our computations more manageable, we simplify by excluding
biases. Let’s assume an input of size C X Z X W X H, where C represents
the number of channels and Z, W, H denote the spatial dimensions. From
here, we derive the complexity expression. Specifically, with a kernel size
of K and a mean dilation rate of d, the complexity can be expressed as
O(((K/d)*xC+(2xd—-1)>+C) x Cx W x H x Z). This is how we
arrive at our computational complexity.

It’s worth noting that both d and K are constants in our system. This
simplifies the complexity to O(C? X Z x W x H X e), where e represents a
constant value. This single LKA block complexity is a direct result of these
constants in our system.

Extending this analysis to encompass a network architecture with T
blocks in the encoder, each containing L number of LKA blocks, the overall
complexity becomes O(C? X Z x W x H x T X L X e), encapsulating the
computational demands of the entire system.

Furthermore, our complexity analysis provides valuable insights into
the computational demands of our proposed models. By simplifying com-
putations and excluding biases, we derive a comprehensive understanding
of the system’s scalability and efficiency. Notably, with each LKA block
complexity being a direct consequence of constant parameters, the scalabil-
ity of our system becomes evident. Extending this analysis to encompass
the entire network architecture, comprising multiple blocks in the encoder,
we obtain a holistic view of the computational complexity, highlighting its
manageable nature even in large-scale implementations.

In summary, we demonstrated the efficacy of our model in two datasets
across 19 segmentation tasks. We also compared our method to eight recent
baseline models, including those that use Visual Transformers. Our results
testify to the effectiveness of our novel feature extraction techniques. Our
analysis shows that our pre-training method is successfully able to exploit
unlabeled data to improve parameter initialization. We also showed that
our method significantly speeds up inference time compared to the best-
performing models.

Computer vision domain is a rapidly evolving research field. It seems
unrealistic to expect long-term plans, specifically considering the rise of
large pretrained vision models. However, with the existing challenges in the
medical domain, this community will invest more in developing methods
for mitigating the lack of large labeled sets. Therefore, in the next step,
we plan to explore Domain Adaptation, which is one of the well-known
methods for addressing this challenge.

6 CONCLUSIONS

In this paper, we proposed a fast and accurate approach for 3D medical
image segmentation termed LoGoNet, which facilitates the augmentation of
global and local feature dependencies. The localized mechanism in LoGoNet
significantly improves segmentation, especially for small organ sections,
while the incorporation of both global and local dependencies enhances
the segmentation accuracy for elongated organs. We further proposed a
pre-training method to exploit unlabeled data for enhancing model gener-
alization. This is particularly crucial in the medical domain where labeled
data is scarce. Experiments in the BTCV and MSD datasets demonstrate
that LoGoNet surpasses the baselines, achieving superior segmentation
accuracy. In the analysis section, we reported numerous experiments. We
particularly showed that the combination of LoGoNet with pretraining
further enhances accuracy, and the utilization of masked data in pretraining
framework significantly boosts the model performance.
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Masked LoGoNet: Fast and Accurate 3D Image Analysis for Medical Domain

APPENDIX

The following section presents a more detailed description of our feature
extractor, ULKANet. Then, we provide the details of our experiments, includ-
ing the configurations of the baseline models, our pre-training algorithm,
and our model architecture. We continue with a description of each used
dataset, and finally, we conclude the article by reporting an additional
qualitative experiment.

7 DETAILED ARCHITECTURE OF ULKANET

Figure 4: Architecture of our feature extractor (ULKANet).
The numbers next to some of the components indicate a se-
quence of the depicted component with the specified length.

Figure 4 illustrates our feature extractor. This feature extractor is struc-
tured into two main components: an encoder and a decoder. The encoder is
comprised of a series of blocks, each consisting of a recurring sequence of
three essential elements: a patch embedding component, which you can find
the algorithm of this component in the algorithm 2, a set of transformer-like
modules employing the LKA technique (The number of these modules in
the sequence is represented as L), and a layer normalization component.
The LKA component contains two crucial parts, first attention, which we
describe in part 3.1, and the MLP part, which you can find in the algorithm
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4; also, the algorithm of LKA part is available in the algorithm 3. This ar-
chitecture has been meticulously designed to process and extract crucial
input data features effectively. The patch embedding operation transforms
the input into a feature vector with a dimension of dim. Additionally, we
incorporate a Cono block, which encompasses three layers: a Conv3D layer,
batch normalization, and the Leak yRelu activation function.

Furthermore, the presence of a decoder block denoted as Dec in Figure 4
is a crucial element. This block consists of three Conw blocks and an upsam-
pling layer, which upscales the input by a factor of 2. This comprehensive
structure enables our model to efficiently handle the input data and extract
meaningful features for further processing.

Algorithm 2 Patch Embedding Pseudo Code

1: procedure PATCHEMBED3D(X, dim, patchSize, inputChannel,
stride) > Input: X is the input tensor, and dim is embed dimension

2: projection Conwv3D (inputChannel, dim, kernel
patchSize, stride = stride, padding = patchSize/[2)

X « projection(X)

B,C,D,H,W « X.Shape

X « BatchNorm(X)

X « X.flatten(2).transpose(1,2)

Return X, D, H, W
end procedure

—

Algorithm 3 Pseudo Code of LKA Block

1: procedure LKA(X, dim, H, W, mlpRatio)  » Input: X is the input
tensor. dim, H, and W are the dimensions of the input tensor.

2 B,N,C « X.shape

3 X «— X.permute(0,2,1).view(B,C,dim, H, W)

4: X < BatchNorm(X)

5 attentionValue < attentionFunction(X)
function is described before in the part 3.1

> The attention

6: X « X + attentionValue
7: X < BatchNorm(X)
8: mlpValue = MLP(X, dim, mlpRatio x dim)
9: X « X +mlpValue
10: X « X.view(B,C,N).permute(0,2,1)
11: Return X

12: end procedure

Algorithm 4 Pseudo Code of MLP Block

1: procedure MLP(X, inSize, hiddenSize, outSize)
input tensor.
fecl « Conv3d(inSize, hiddenSize, kernel = 1)
X « fel(x)
X « GELU((X)
dwconv3d «— Conv3d(inSize,inSize, kernel = 3)
X « dwconv3d(X)
X « GELU((X)
fc2 =« Conv3d(hiddenSize, outSize, kernel = 1)
9: Return X
10: end procedure

> Input: X is the
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1 2 3 4
L
ayer Number L [ dim [ mlpRatio | L [ dim [ mlpRatio | L [ dim [ mlpRatio | L [ dim [ mlpRatio
Normal 3 64 8 4 128 8 6 256 4 3 512 4
Large 39 8 3192 8 24 384 4 3 768 4

Table 12: The number of LKA modules in each encoder block and mlpRatio for each encoder layer, as well as the embedding
dimensions of the Patch Embedding module for the regular and the large variants of our model.

Spl RKid LKid Gall Eso Liv Sto Aor vC Veins Pan Rad Lad
DIiNTS | .937+£.02 .934+.00 .930+.02 .788+.02 .770+.00 .960+.00 .774+.02 .904+.02 .866+0.23 .751+.02 .813+.02 .670+.02 .711+.01
LoGoNet | .958+.02 .949+.00 .947+.01 .818+.02 .786+.00 .969+.01 .880+.02 .912+.01 .865+.01 .769+.02 .821+.02 .726+.01 .698+.01

Table 13: Comparison of Performance Metrics (Mean + Standard Deviation) for Various Methods Across Different Organs

8 COMPLEMENTARY IMPLEMENTATION
DETAILS

Our model architecture has incorporated four encoder blocks, a feature in
both the standard and the larger variants. However, it’s important to note
that our model is flexible and can seamlessly adapt to the use of varying
numbers of encoder layers. The primary distinction between the regular
and large models lies in the number of transformer modules within each
block and the dimensions of the internal embedding vectors.

To provide a comprehensive understanding, Table 12 presents a detailed
comparison between our standard model and its larger counterpart. It’s
noteworthy that, despite any variations, the size of the embedding vec-
tors for each patch module and the mlpRatio remains consistent across all
encoder blocks.

This structural consistency ensures that the essential characteristics of
the model components are preserved, facilitating ease of integration and
adaptability. Whether opting for the standard or larger version, users have
the freedom to fine-tune the model’s performance by adjusting the number
of encoder layers to suit their specific requirements. This flexibility is a
key advantage of our model, allowing for versatility in handling diverse
applications and tasks.

In the implementation of the local strategy within LoGoNet, a pivotal de-
cision was made to partition each image tensor into N = 8 segments. While
this approach offers advantages in enhancing local processing capabilities,
it concurrently introduces a significant surge in the number of trainable
parameters. In addressing this challenge, a thoughtful strategy has been
employed within the local section of LoGoNet.

Specifically, in the local processing segment of LoGoNet, a judicious
selection has been made to utilize only two encoder blocks, in contrast to
the four blocks employed in the global section, as previously mentioned.
This intentional divergence in the number of encoder blocks between the
local and global sections serves to strike a balance between computational
complexity and model expressiveness.

By limiting the local section to two encoder blocks, we manage to miti-
gate the potential escalation in trainable parameters, thereby optimizing
the trade-off between computational efficiency and model performance.
This strategic choice is rooted in a nuanced understanding of the inter-
play between local and global processing within the overall architecture of
LoGoNet.

In essence, our design rationale carefully tailors the number of encoder
blocks in each section to the specific demands of local and global processing,
ensuring a harmonious integration that optimally leverages the strengths
of both approaches. This meticulous consideration of architectural choices
reflects our commitment to achieving a well-balanced and efficient model
in LoGoNet.
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9 COMPLEMENTARY RESULTS

The information pertaining to pre-training is encapsulated in Table 2. To
train the pre-trained model, we leveraged the AdamW optimizer and fine-
tuned the process by configuring specific parameters. In particular, we
assigned values of 0.1 and 0.7 to ¢; and ¢, respectively. Additionally, the
sequence of distorted images, denoted as M, was set to 5.

Hyperparameter | M=3 M=5 M=7
¢$1=0.1 835  .850  .847
¢1=0.2 838 847  .840
$1=0.3 841 .843 .838

Table 14: Hyperparameter tuning for sequenced mask image
length (M) and rate of sampled images (¢1): A detailed explo-
ration of hyperparameter variations to optimize key aspects
of our experimental setup. Result is for BTCV dataset and
ULKANet model.

Table 14 presents the outcome of selecting hyperparameter values, with
results obtained from the BTCV dataset using the ULKANet model. This tab-
ulated information sheds light on the meticulous decision-making process
involved in determining specific values for key hyperparameters, providing
valuable insights into our experimental configuration.

Our observations reveal that augmenting both the values of M (length
of sequenced mask images) and ¢; (rate of sampled images) results in
an increased rate of masked images. However, this heightened rate poses
challenges for our model, making it more intricate to exploit dependen-
cies between successive slices for effectively capturing information related
to missing voxels. This delicate interplay between hyperparameters em-
phasizes the necessity of finding an optimal balance to enhance model
performance, as an excessive increase in masked images may impede the
model’s ability to leverage contextual dependencies within the data.

Regarding statistically significant tests, Our model underwent rigor-
ous training, leveraging the BTCV dataset five times and the MSD dataset
twice, ensuring robustness and reliability. To comprehensively evaluate our
model’s performance, we present the average Dice accuracy and standard
deviation on the BTCV dataset. Table 13 shows Mean + Standard Deviation
for our method compared to the best baseline (DiNTS) across different
organs. Upon scrutinizing the table, a notable observation emerges; for
instance, a one-tail t-test conducted on the 'Gall’ class yields a calculated
t-value of #(8) = 2.599, corresponding to a p-value of 0.016. Our model
demonstrates statistical significance over the best baseline in five classes at
an alpha level of 0.05 and nine classes at an alpha level of 0.10, elucidating
its superior performance across multiple organ segments.
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