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ABSTRACT
Standard modern machine-learning-based imaging methods have

faced challenges in medical applications due to the high cost of

dataset construction and, thereby, the limited labeled training data

available. Additionally, upon deployment, these methods are usu-

ally used to process a large volume of data on a daily basis, imposing

a high maintenance cost on medical facilities. In this paper, we in-

troduce a new neural network architecture, termed LoGoNet, with

a tailored self-supervised learning (SSL) method to mitigate such

challenges. LoGoNet integrates a novel feature extractor within a U-

shaped architecture, leveraging Large Kernel Attention (LKA) and a

dual encoding strategy to capture both long-range and short-range

feature dependencies adeptly. This is in contrast to existing meth-

ods that rely on increasing network capacity to enhance feature

extraction. This combination of novel techniques in our model is

especially beneficial in medical image segmentation, given the dif-

ficulty of learning intricate and often irregular body organ shapes,

such as the spleen. Complementary, we propose a novel SSL method

tailored for 3D images to compensate for the lack of large labeled

datasets. Our method combines masking and contrastive learning
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techniques within a multi-task learning framework and is compat-

ible with both Vision Transformer (ViT) and CNN-based models.

We demonstrate the efficacy of our methods in numerous tasks

across two standard datasets (i.e., BTCV andMSD). Benchmark com-

parisons with eight state-of-the-art models highlight LoGoNet’s

superior performance in both inference time and accuracy. Code

available at: https://github.com/aminK8/Masked-LoGoNet.
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1 INTRODUCTION
Accurate medical image segmentation can facilitate disease diagnosis and

treatment planning [14, 50]. One of the fundamental difficulties in this task

is the presence of organs or structures that span a large receptive field.

These structures may have irregular shapes, complex boundaries, or signifi-

cant variations in appearance, making the segmentation task particularly

demanding. Additionally, the high cost of expert annotation in this domain
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restricts the availability of large-scale labeled datasets. Consequently, it

limits the applicability of general domain computer vision methods [3, 13].

Furthermore, deployed systems usually process a large volume of images

on a daily basis, which demands a substantial computational resources and

leaves a large carbon footprint [27]. In the present work, we propose a

fast and accurate image segmentation architecture for the medical domain.

We also propose a pre-training algorithm to exploit unlabeled images, and

therefore, alleviate the demand for human annotation.

Our architecture is based on the widely adopted U-shaped model. We

particularly employ two strategies to enhance the inference speed, and si-

multaneously, maintain the prediction accuracy. First, in contrast to existing

models that rely on Convolutional Neural Networks (CNNs) and Vision

Transformers (ViTs) as encoders [10, 22], we employ the large-kernel atten-

tion model (LKA) [12] in our feature extractor, which we term ULKANet
(Unet Large Kernel Attention Network). As we discuss in the next section,

CNN and ViTs-based models suffer from a high memory complexity, are

slower during inference, and lack a proper strategy to process image se-

quences.
1
On the other hand, our method is demonstrably more efficient

due to the presence of LKA in the encoder.

Our second strategy is to enhance feature extraction through an inductive

bias. Learning short-range and long-range dependencies is essential in

medical image segmentation due to the large receptive field of organs.

Existing studies employ U-Net with the attention mechanism, and vertically

scale up their architecture to increase the network capacity for handling

feature dependencies [4, 31]. In contrast to these methods, we incorporate

our encoder (ULKANet) into a dual encoding algorithm to learn local (short-

range) as well as global (long-range) features. This enables us to keep the

network size manageable, and at the same time, maintain the prediction

accuracy. We term this model LoGoNet (Local and Global Network)2.
Our model is particularly advantageous for segmenting organs such as the

spleen, which has an elongated shape and irregular corners. Such body

organs demand the extraction of global and local features for segmentation.

Finally, we propose a novel self-supervision technique for 3D images

to address the lack of labeled training data. Our self-supervision method

combines masking and multi-task learning. Using a multi-clustering algo-

rithm, we generate a list of pseudo-labels for each unlabeled image. We

then methodically mask selected parts of these images to implicitly feed

the structural information of the unlabeled data into our model. A prop-

erty of our proposed SSL technique lies in its versatility, as it seamlessly

supports both CNN and ViT-based models. This flexibility sets our strategy

apart from conventional SSL approaches, which often cater to a specific

architecture [16, 24, 49]. Furthermore, our strategy leverages the inherent

characteristics of 3D medical images, specifically embracing the concept of

sequential images and neighborhood information of voxels in 3D images.

We evaluate our techniques on numerous tasks across two datasets, i.e.,

the BTCV dataset [11] for segmenting body organs, and the MSD dataset

[34] that encompasses diverse tasks in medical imaging, ranging from liver

tumors to cardiac and lung segmentation. Additionally, we benchmark our

method against eight state-of-the-art baseline models. The results demon-

strate the effectiveness and efficiency of our techniques. To offer a thorough

insight into the attributes of our approach, we undertook extensive experi-

ments, meticulously showcasing our model’s features and capabilities. To

summarize, our contributions are threefold:

• We propose a resource-efficient model based on the commonly used

U-shaped architecture. Our model has a short inference time and, at

the same time, outperforms state-of-the-art methods. We achieve this

1
The term "sequence" in 3D medical imaging refers to a series of volumetric data that

can be either a temporal sequence, capturing changes over time in a specific anatomical

region, or a spatial sequence, consisting of different slices from a 3D volume to provide

a comprehensive view of the anatomy from various angles.

2
This work was supported by an NSF MRI Grant #2018627

by employing two strategies: first, instead of relying on CNN or ViT-

based techniques, we utilize the large-kernel attention method to reduce

computational complexity. Second, instead of vertically scaling up our

network to improve feature extraction, we use a dual encoding algorithm

to facilitate the task. We empirically demonstrate that our strategies

combined achieve the best inference time and the highest precision.

• We propose a multi-task self-supervision technique to exploit unlabeled

images, and to overcome the lack of labeled data by employing a new

masking approach specifically designed for 3D images.

• We evaluate the efficacy of our model on numerous tasks across two

datasets, and show that it outperforms eight state-of-the-art baseline

models.

2 RELATEDWORK
To model long-range dependencies in images, existing studies mostly use

vision transformers [1, 6, 14, 17, 25, 32, 39, 42], and draw ideas from se-

quence modeling in Natural Language Processing (NLP). A limitation of

these approaches is their treatment of images as 1D sequences, thereby

overlooking the input’s inherent 2D or 3D structure. They struggle to grasp

the spatial relationships between pixels, leading to poor performance in

tumor detection or organ segmentation tasks. Additionally, they suffer from

quadratic memory complexity, leading to high processing costs and slow-

ness for high-resolution images, especially in the 3D context [23, 26, 35, 40].

In contrast, our proposed model, ULKANet, adopts an attention mechanism

with LKA
3
to handle long-range dependencies while preserving the spatial

structure of the images. This distinctive property enables our model to

capture spatial patterns of the input more effectively, resulting in more

informative representations. This is particularly advantageous in detecting

tumors, where the conditions may extend over a considerable area, and

models that rely solely on local features often fail to detect such cases [41].

In addressing dependencies within data, various techniques are employed

based on the range of the dependencies. CNN-based models have proven

effective for short-range dependencies, leveraging convolutional operations

to identify relevant spatial patterns efficiently. Through this approach, hier-

archical representations are learned, enhancing the understanding of the

intrinsic structure of the data [22, 43, 51]. However, our methodology takes

a comprehensive approach, recognizing the importance of long and short-

range dependencies. We adopt a dual encoding strategy to achieve this,

incorporating an attention mechanism in parallel mode. This dual encoding

technique enables the simultaneous capture and encoding of both types of

dependencies, providing a more holistic representation of the underlying

relationships in the data.

Next, the lack of labeled training data is a primary challenge in medical

image analysis. To address this challenge, some studies have focused on

domain-specific pretext tasks, as seen in Cao et al. [5], He et al. [18], Zhao

et al. [47], Zhu et al. [53], and, Xu and Adalsteinsson [45]. Others, such as

Zhou et al. [48], adapt contrastive learning techniques to suit medical data

by focusing on feature level contrasts, creating homogeneous and hetero-

geneous data pairs by mixing image and feature batches, and utilizing a

momentum-based teacher-student architecture. A comprehensive evalua-

tion of various SSL strategies for 3D medical imaging was conducted by

Taleb et al. [36]. Azizi et al. [2] demonstrated the benefits of pre-training a

model on ImageNet for dermatology image classification, showcasing the

potential of transfer learning in the medical imaging domain.

3
LKA [12] is a method for computer vision tasks that effectively captures long-range

relationships from input features. LKA reduces computational costs while generat-

ing attention maps highlighting essential features without additional normalization

functions by decomposing large kernel convolutions into spatial local, long-range, and

channel convolutions.
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3 PROPOSED MODEL
Figure 1a illustrates the architecture of our model LoGoNet. The forward

pass begins by processing the input data in parallel. We have two modules

in this stage, the global and the local modules. In the global module, the

original data cube
4
is fed into our feature extractor (ULKANet). In the local

module, the same data cube is partitioned into smaller cubes, and then, each

cube is processed by a separate feature extractor. Afterwards, the resulting

feature tensors are concatenated to reconstruct the input. Then the outputs

of the global and the local modules are aggregated by an element-wise

summation operator–note that they have the same dimensions. Finally, the

resulting tensor is passed through a convolution kernel followed by a 3D

batch normalization operator and a GELU activation function to shape the

input to our final classifier. Our final classifier is a convolution kernel.

In the next section, we discuss our 3𝐷 encoder-decoder architecture

(ULKANet), which is armed with a 3𝐷 adaptation of LKA in the encoding

phase. We then explain our local-global dual encoding strategy, which

enables our model to extract feature dependencies at varying scales. After

describing our model in detail in Sections 3.1 and 3.2, we then explain our

novel pre-training method in Section 3.3. We use the pre-training algorithm

to initialize the parameters of our model before beginning to fine-tune the

network on labeled data.

3.1 LKA in Feature Extractor: An Alternative to
CNN and ViTs-based Models

Figure 1b illustrates an overview of our feature extractor (ULKANet), which

is a U-shaped model and has an encoder and a decoder. The encoder consists

of a sequence of blocks. Each block consists of a repeating sequence of three

components: a patch embedding component, a chain of transformer-like

modules that employ LKA (𝐿𝑖 modules for 𝑖𝑡ℎ block of the encoder), and a

layer normalization component. For conciseness, Figure 1b only shows the

top-level blocks, while a detailed illustration of the model architecture and

inner components is provided in the appendix section 7.

The Patch Embedding component plays a crucial role in the processing of

input datawithin the encoder block, transforming the input into a tensor that

is subsequently passed to the next component in the sequence. Throughout

the current encoder block, the dimension of the embedding vectors remains

constant, denoted as𝑑𝑖𝑚. Themathematical representation of the projection

operation is defined as follows:

𝑃𝑎𝑡𝑐ℎ = 𝑁𝑜𝑟𝑚 (𝐶𝑜𝑛𝑣3𝐷 (𝑋,𝑑𝑖𝑚,𝑘, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 =
𝑘

2

) ) .𝑓 𝑙𝑎𝑡𝑡𝑒𝑛 (2), (1)

where 𝑋 represents the input with five dimensions (𝑏,𝐶, seq, 𝐻,𝑊 ) , and 𝑏
is the batch size,𝐶 is the channel size, 𝑘 is the size of the 3D convolution

kernel, 𝑑𝑖𝑚 is the number of channels for the output of Conv3D, and Norm

represents the batch normalization operator. (seq, 𝐻,𝑊 ) denotes the size of
the 3D input, and the flatten operation results in a tensor with dimensions

(𝑏,𝑑𝑖𝑚, seq × 𝐻 ×𝑊 ) . The Patch Embedding process serves to efficiently

capture and represent the relevant features of the input data, facilitating

the subsequent stages of the network architecture.

To enable our model to efficiently extract complex feature dependencies

that are often present in medical images, we opt for using transformer

modules. However, instead of using the regular transformers with self-

attention that is slow and needs more memory [35], we use LKA [12] in

the attention layer. This type of attention mechanism decomposes large

convolution kernels into spatial dependencies and channel convolutions. It

enables our model to go deeper and remain memory efficient. The attention

4
"Cube" typically refers to a three-dimensional (3D) region of interest (ROI) within

the volumetric medical image. Medical images, such as those obtained from MRI or

CT scans, are often represented as 3D volumes, where each voxel (3D pixel) contains

intensity or other information about the tissue or structures being imaged. A cube in

this scenario is a 3D subset of the entire image volume.

module is implemented as follows:

Atts = Conv3D1×1 (DiConv3D (ChConv3D(𝑋 ) ) ) , (2)

where 𝑋 is the input tensor and ChConv3D is a depth-wise convolution

operating on a single channel.DiConv3D is a dilated depth-wise convolution

to broaden the receptive field and to enable the extraction of long-range de-

pendencies. The point-wise convolution Conv3D1×1 is applied to aggregate

the information across the channels. The final activations are obtained as

follows:

Attention Value = Atts ⊙ 𝑋, (3)

where ⊙ is the element-wise product. The remaining components of the

transformer block follow the conventional structure of typical transformers.

Patching (Local
Mechanism)

Sequence (Global
Mechanism)

1 2 3
... ... ...
... ... N

ULKANet ULKANet ULKANet...

Conv3D

BatchNorm

GELU

Conv3D

Classifier

×+

(a) Proposed Model

Enc

Enc

Enc

Enc

Dec

Dec

Dec

Dec

Dec

Conv

× 2

Conv

× 2

Conv

× 2

Conv

× 2

Conv

Output

Encoder Decoder

×

×

×

×

(b) ULKANet

Figure 1: 1a) Overview of our model LoGoNet. In order to
take into account the local and global feature dependencies
in images, they are fed into the model in parallel. In the local
mechanism, the input data is partitioned into small parts,
and each part is separately fed into our feature extractor
(ULKANet). 1b) Overview of the ULKANet Architecture. A
U-shaped network with the encoder-decoder design. Blue cir-
cles represent encoder blocks, and green circles represent the
decoder blocks. The + sign represents element-wise summa-
tion, and the × sign represents the concatenation operator.

The decoder in our model aims to restore the spatial resolution of the

input using a sequence of blocks (green circles in Figure 1b). Each decoder

block consists of a chain of three convolution modules followed by an

upsampling operation. The convolution modules are responsible for volu-

metric convolution operation. They consist of a Conv3D layer and a batch

normalization layer, followed by a LeakyReLU activation function. The

upsampling operation scales the resolution by a factor of two. As we stated

earlier, a second larger illustration of our architecture that shows the inner

modules can be found in the appendix section 7.

For each individual block in the encoder, the decoder has one corre-

sponding block. There is also an additional decoder block in the bottleneck

layer, as shown in Figure 1b. The input to each decoder block is supplied by

the block in the previous layer and also the corresponding encoder block

through a skip connection. In order to enhance the reconstruction of input,
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we use the skip connections to facilitate the transfer of high-level features

[46] to the layers that are responsible for the reconstruction task.

Patching and Masking 

Random Sub-Sequence Selection

LoGoNet

Pre-Training Classification Head

𝒄𝟏
𝟏 𝒄𝟏

𝟐 𝒄𝟏
𝑵… 𝒄𝟐

𝟏 𝒄𝟐
𝟐 𝒄𝟐

𝑵… 𝒄𝟑
𝟏 𝒄𝟑

𝟐 𝒄𝟑
𝑵… 𝒄𝟒

𝟏 𝒄𝟒
𝟐 𝒄𝟒

𝑵…

Set of Pseudo-Labels to be Predicted for Selected Images

Figure 2: Illustration of our pre-training pipeline. We begin
by randomly selecting a set of 𝑚 sequential images (here
𝑚 is four), on which we apply patching and masking. Then
LoGoNet is used to predict the set of pseudo-labels that we
generated for each distorted image (see Section 3.3 for details).
During the pre-training stage, a classification head (a feed-
forward network) is used on top of the model for prediction.
This head is replaced with a convolution head (see Figure 1a)
for fine-tuning on the segmentation task with labeled data.

3.2 Dual Encoding Strategy: An Alternative to
Increasing Model Capacity

One of the difficulties in medical image segmentation is the presence of

organs that have complex shapes. For instance, the human gallbladder and

spleen have an elongated structure. Hence, to achieve satisfactory perfor-

mance in the segmentation task, the model should be able to detect and

extract relevant features in multiple regions of the input images, heavily re-

lying on global features. On the other hand, this organ has irregular corners.

This characteristic requires the model to be able to detect local features

in multiple regions of the input. While increasing the model capacity by

adding more layers, and also composing larger training sets, will potentially

enable the model to automatically learn these regularities, this will likely

increase costs during both the deployment and development stages.

To reduce the burden of automatic feature mining and, consequently, to

reduce the costs, we propose to impose an inductive bias [29] on the feature

extraction process. We propose to have two feature extractors in parallel,

one focusing on the global scale and another one focusing on the local

scale–as shown in Figure 1a. The global module is able to extract long-range

dependencies due to access to the original data cube. On the other hand, the

local module focuses on short-range dependencies. This is accomplished by

partitioning the input cube into smaller ones, allowing for a more focused

analysis and resulting in finer-grained features.

To implement our idea, we use one instantiation of ULKANet in the

global module, and a sequence of 𝑁 instantiations of ULKANet in the local

module. In the analysis section, we show that while using only one ULKANet

can reduce the model size and speed up inference, it will also significantly

deteriorate prediction accuracy. Additionally, we show that alternative

strategies, used in comparable models, are either slower or achieve lower

prediction accuracy. To prepare the data for the local module, the input 3D

image is split into 𝑁 smaller cubes of size 𝐵 × 𝐵 × 𝐵. Given an image of

size 𝑆 × 𝐻 ×𝑊 , the value of 𝐵 is obtained by 𝐵 =
3

√︃
𝑆×𝐻×𝑊

𝑁
.

To reconstruct the input data cube, the outputs of the local module are

concatenated, as shown in Figure 1a. In order to aggregate the outputs of

the global and local modules, we use an element-wise summation operator.

The resulting tensor is expected to represent both global and local range

dependencies.

3.3 Pre-Training Method: Exploiting Unlabeled
Images

Before fine-tuning our model on labeled data, we utilize a multi-task pre-

training technique to relocate the model weights to a favorable state. This

self-supervised approach allows the model to learn general information

from 3D medical images, without the necessity of ground-truth labels.

Pre-training of our model is done in three stages. First, we methodically

mask certain regions of the input images. In this stage, the goal is to capture

long-range and short-range feature dependencies. Second, we generate

pseudo-labels for the masked images. The model later learns to generalize

to unseen cases by predicting the pseudo-labels of the masked data. Finally,

the masked images, along with their pseudo-labels, are used to pre-train

the model. Below we explain each step.

3.3.1 Masking Algorithm. In 3D imaging, objects are depicted across mul-

tiple 2D surfaces. Therefore, we argue that an effective masking strategy

should step beyond 2D inputs.

In order to help the model explore not only the dependencies between

pixels in 2D images but also the connections among pixels that form 3D

masses, we propose an algorithm to mask chains of patches in an image

sequence.
5
We begin by randomly selecting an image from the set of unla-

beled data, with probability 𝜙1 for selecting an individual image. Along the

selected image, we also retrieve the𝑚 − 1 preceding images in the same

sequence. Then, we apply a masking technique to the images in the chain.

Various masking techniques can be used in this stage [28, 33]; we employ

the method introduced by Xie et al. [44]. Therefore, for each image in the

chain, we randomly select a patch size 𝑃 , and partition it into
𝐻×𝑊
(𝑃 𝑗 )2

patches,

where 𝐻 and𝑊 are the height and width of the image. Finally, with the

probability 𝜙2 we mask out each patch of the image. Appendix section 4.1

discusses more details about the masking algorithm, and how to tune the

hyperparameters.

In contrast to algorithms such as SimMIM [44], our proposed approach

distinguishes itself by selecting a sequence of images and subsequently

applying masking to that sequence. This method facilitates the encoder in

gathering information by focusing on the interdependence of voxels within

the sequence of images. Notably, our algorithm operates independently

of the specific model structure, diverging from approaches seen in stud-

ies by Kakogeorgiou et al. [24], He et al. [16], and Zhou et al. [49], all of

which exhibit a reliance on model structure. Furthermore, our approach is

compatible with Vision Transformer (ViT)-based and CNN-Based models.

3.3.2 Pseudo-Label Generation. Our pseudo-label generation algorithm

assigns labels to all the images in the unlabeled set. Later in the pre-training

pipeline, our model is asked to predict the pseudo-labels of the masked out

images in each sequence. The information conveyed by the distorted images

is insufficient for label prediction. Therefore, the model must explore the

associations between pixels across multiple 2D images in the sequence to

correctly predict the pseudo-labels of the target images. In the analysis

5
Note that in speech processing, where data is naturally sequential, applying this

technique seems to be the default method [21]. However, to our knowledge, we are

the first to propose this technique in the computer vision domain.
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section, we empirically show that this exploration task helps the model to

learn the properties of the domain and to generalize better.

A clustering algorithm is employed for the pseudo-label generation. For

simplicity, we use the k-means clustering method, although other types of

clustering methods, such as hierarchical or spectral methods, can be utilized.

Given a random number 𝑘 as the predefined number of clusters, we train a

k-means clusterer on a random subset (e.g. 10% in our experiments) of the

unlabeled data. Then we use the clusterer to label the entire unlabeled set.

Note that masking is not applied in any of these stages, and the clusterer

has access to the unmasked images. The obtained labels are used as pseudo-

labels to pre-train the model by predicting the corresponding labels for

every masked image.

The k-means clusterer is able to use all the properties of the images to

form the clusters. For instance, a cluster may constitute images that illustrate

elongated organs, while another cluster may constitute images that depict

organs that have particular corners. During pre-training, the model is asked

to recover the pseudo-labels of a sequence of images that are distorted by

masking. In order to predict their correct labels, the model must discover

the associations between neighboring pixels. This pretext task enables the

model to learn long-range and short-range spatial dependencies effectively.

Assuming that a clustering method exploits a finite set of characteristics

in data to form the clusters, our model needs to learn these characteristics

to correctly assign each image to the associated clusters. We conjecture that

having 𝑁 different clusterers labeling the data and then using our model

to simultaneously predict these multiple labels can further help the model

gain broader knowledge from the data. From a different perspective, we can

assume that recovering the characteristics of each clusterer is a separate

pre-training task, and then, concurrently recovering the characteristics of

multiple clusterers is a multi-task training. The efficacy of multi-tasking

is well-documented in the machine learning literature [7]. Figure 2 shows

our pre-training pipeline. In this figure, 𝑁 denotes the total number of

clusterers, and 𝑐
𝑗

𝑖
denotes the pseudo-label generated by 𝑗-th clusterer for

the 𝑖-th masked image in the sequence.

3.3.3 Pre-Training Loss Function. To pre-train our model, we use a cumu-

lative negative log-likelihood function on the model predictions for the

masked images as follows:

L = −
𝑁∑︁
𝑖=1

𝑆∑︁
𝑗=1

log(𝑝𝑖 (𝑒 |𝑥 𝑗 ) ), (4)

where 𝑁 is the number of clusterers, 𝑆 is the number of masked images that

can be calculated by 𝑆 = 𝑀×𝑄 , where𝑀 is the length of image sequence for

masking, and𝑄 is the number of concurrent masked sequences, if present.

𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑆 are masked images, and 𝑝𝑖 (𝑒 |𝑥 𝑗 ) is the probability that

the 𝑗-th masked image in the sequence (i.e., 𝑥 𝑗 ) is correctly assigned to

the pseudo-label 𝑒 generated by the 𝑖-th clusterer. The value of 𝑝𝑖 (𝑒 |𝑥 𝑗 ) is
calculated by a softmax function on top of the pre-training classification

head, which is a simple feed-forward network.
6
Therefore, given a clusterer,

we have:

𝑝• (𝑒 |𝑥 ) = 𝑒𝑥𝑝 (𝑓𝑒 (𝑥 )/𝜏 )∑𝐾
𝑠=1 𝑒𝑥𝑝 (𝑓𝑠 (𝑥 )/𝜏 )

, (5)

where 𝑒𝑥𝑝 (•) is the exponential function, 𝐾 is the number of clusters

generated by the clusterer, 𝑒 is the cluster that the input image 𝑥 belongs

to, and 𝑓𝑠 (𝑥 ) is the 𝑠-th logit of the pre-training classification head. The

hyper-parameter 𝜏 is called the softmax temperature. The value of 𝜏 deter-

mines the strength of the gradients backpropagated through the network.

Lower temperature values increase the magnitude of gradients [20]. This,

in turn, reduces the standard deviation of output probabilities–also known

as sharpening the posterior probabilities.

6
Replacing the pre-training head with a finetuning head is an established practice in

the self-supervision literature [9].

Our loss function (Equation 4), iterates over all the predictions that our

model makes during the pre-training stage and penalizes for the errors.

As we discussed earlier, our pretraining framework enables LoGoNet to

become familiar with the properties of the domain to generalize better by

exploiting unlabeled data. We empirically support this argument in our

analysis section. Additional experiments can be found in appendix section

4.1.

4 EXPERIMENTAL SETUP
In this section, we briefly describe the datasets used in the experiments,

provide a list of baselinemodels we compare to, and also provide an overview

of our setup.

Datasets.We use two widely used standard datasets. As the first dataset,

we use the BTCV dataset
7
introduced by Gibson et al. [11]. This dataset

contains 13 segmentation tasks, and each task has 40 data points obtained

via abdominal CT scans. As the second dataset, we use the MSD dataset
8

introduced by Simpson et al. [34]. This dataset contains a variety of tasks

obtained via magnetic resonance imaging (MRI), computed tomography

(CT), and positron emission tomography (PET). We use six different tasks

from this dataset that contain a total of 900 examples. The MSD dataset con-

tains 6 tasks, of which 4 are cancer or tumor detection (anomaly detection),

e.g., colon cancer. As the unlabeled data, we use the meta-dataset collected

by Tang et al. [37], which consists of 4,500 examples. The images in this

dataset are not annotated, and are 3D scans covering a variety of organs.

Baselines.We compare LoGoNet to a suite of baseline models, including

those that use Visual Transformers or Convolutional Neural Networks. We

compare to nnUNet [22], Attention U-Net [31], SegResNetVAE [30], UNet++

[52], DiNTS (two variations of Search and Instance) [19], SwinUNETR

(feature size 48) [14], and UNETR (feature size 32) [15].

Setup. We follow standard practices to carry out the experiments. We

use the Dice metric, a common metric for the image segmentation task,

to report the performance results. We conduct the experiments in each

dataset task separately and report the average results for five runs in the

BTCV dataset and two runs in the MSD dataset. Detailed information about

hyperparameter tuning, configurations, and implementation is reported in

the appendix section 8.

Our default LoGoNet and ULKANet models have four encoder blocks

with 3, 4, 6, and 3 transformer modules in each block, respectively. The

dimensions of the embedding vectors in these models are 64, 128, 256, and

512, respectively.

4.1 Pre-Training Details
We used the scikit-learn implementation

9
of the Mini Batch KMeans algo-

rithm as the clusterers in our pre-training pipeline. The outcomes of vanilla

K-means clustering are unstable, and this can make the reproducibility

challenging. To address this problem, we used K-means++ (implemented in

Mini Batch KMeans). K-means++ addresses this issue directly through its

enhanced seeding process. It improves the stability and reproducibility of

clustering results by systematically selecting initial centers to reduce the

variability caused by random initialization in standard k-means.

During the training phase of the k-means models, we adopted a transfor-

mation process that converted the input image from a𝐶ℎ𝑎𝑛𝑛𝑒𝑙 ×𝑋 ×𝑌 ×𝑍
format to a vector representation of dimensions 𝑍 × 𝑇 , where𝑇 is equiv-

alent to𝐶ℎ𝑎𝑛𝑛𝑒𝑙 × 𝑋 × 𝑌 . This transformation enabled us to generate a

label for each cluster per image slice, resulting in a sequence of labels for

a sequence of images. Subsequently, the model underwent 350 iterations

of training, with each iteration utilizing a randomly selected 10% subset

of the unlabeled data. To introduce diversity and enhance robustness, we

7
Available at https://www.synapse.org/#!Synapse:syn3193805/wiki/217789

8
Available at http://medicaldecathlon.com/

9
Available at: https://scikit-learn.org/stable/
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Models SegResNetVAE SwinUNETR UNETR UNet++ nnUNet→
FLOPs (G) 15.50 329.84 264.59 4229.20 1250.65

# Param 3.9 M 62.2 M 101.7 M 84.6 M 30.7 M

→Models DiNTS Search DiNTS Instance Attention U-Net LoGoNet
FLOPs (G) 743.88 743.88 7984.21 246.96

# Param 74.1 M 74.1 M 64.1 M 67.5 M

Table 1: Comparison between our model and the baselines in terms of inference speed (in floating-point operations per second)
and the number of trainable parameters in the BTCV dataset. Due to the size of the images, the results are identical across the
BTCV and MSD datasets. See appendix section 8 for more experiments on resource consumption.

Configuration Value
Optimizer 𝐴𝑑𝑎𝑚𝑊

Epochs 100

Batch Size per GPU 1

Number of GPUs 16

Weight decay 1𝑒 − 5

Optimizer momentum 𝛽1, 𝛽2 = 0.9, 0.999

Peak learning rate 1𝑒 − 4

Learning rate schedule 𝐶𝑜𝑠𝑖𝑛𝑒𝐴𝑛𝑛𝑒𝑎𝑙𝑖𝑛𝑔𝐿𝑅

Warmup epochs 10

Dropout 0

Rand Spatial Crop Samples Data 96 × 96 × 96

MONAI Transforms: ScaleIntensityRanged

𝑎_𝑚𝑖𝑛 = -1000

𝑎_𝑚𝑎𝑥 = 1000

𝑏_𝑚𝑖𝑛 = 0

𝑏_𝑚𝑎𝑥 = 1

Clip = True

𝜏 0.1

𝜙1 0.1

𝜙2 0.7

M (Size of masked sequence) 5

𝑃 𝑗 (Size of Patches) 1, 2, 4, 8, 16, 32, 96

Table 2: Pre-Training settings for our proposed approach

employed a stochastic approach in determining the value of 𝐾 , randomly

sampling from a range spanning 80 to 500.

The information pertaining to pre-training is reported in Table 2. To

pre-train the model, we leveraged the𝐴𝑑𝑎𝑚𝑊 optimizer, and set the hyper-

parameters 𝜙1 to 0.1 and 𝜙2 to 0.7. Additionally, the sequence of distorted

images, denoted as𝑀 , was set to 5.

Our observations reveal that augmenting both the values of𝑀 (length

of sequenced mask images) and 𝜙1 (rate of sampled images) results in

an increased rate of masked images. However, this heightened rate poses

challenges to our model during the pre-training, and enables it to exploit

dependencies between successive slices for effectively capturing information

related to missing voxels. This delicate interplay between hyperparameters

emphasizes the necessity of finding an optimal balance to enhance model

performance, as an excessive increase in masked images may impede the

model’s ability to leverage contextual dependencies within the data.

Furthermore, we introduced randomness in the selection of patch sizes,

choosing from the set (1, 2, 4, 8, 16, 32, 96) . Our pre-training approach in-

volves the incorporation of a classification head designed to adapt the model

output to align with the requirements of our pseudo-labeling. Figure 2 shows

the structure of our proposed pre-training. The structure of the classification

head can be found in Algorithm 1.

Algorithm 1 Pseudo Code of Pre-Training Classification Head

1: procedure PreHead(𝑋 , 𝑖𝑛𝑝𝑢𝑡_𝑑𝑖𝑚, 𝑥_𝑑𝑖𝑚, 𝑦_𝑑𝑖𝑚, 𝑧_𝑑𝑖𝑚,

𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑛𝑢𝑚, 𝑐𝑙𝑎𝑠𝑠_𝑠𝑖𝑧𝑒) ⊲ Input: 𝑋 is the input tensor.

2: 𝑋 ← 𝐶𝑜𝑛𝑣3𝑑 (𝑋, 𝑖𝑛𝑝𝑢𝑡_𝑑𝑖𝑚, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑛𝑢𝑚)
3: 𝑋 ← 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚3𝑑 (𝑋,𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑛𝑢𝑚) .𝐺𝐸𝐿𝑈 (𝑋 )
4: 𝑋 ← 𝐶𝑜𝑛𝑣3𝑑 (𝑋,𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑛𝑢𝑚,𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑛𝑢𝑚)
5: 𝑋 ← 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚3𝑑 (𝑋,𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑛𝑢𝑚) .𝐺𝐸𝐿𝑈 (𝑋 )
6: 𝑋 ← 𝑋 .𝑝𝑒𝑟𝑚𝑢𝑡𝑒 (0, 3, 2, 1, 4)

7: 𝑋 ← 𝐶𝑜𝑛𝑣3𝑑 (𝑋, 𝑦_𝑑𝑖𝑚, 𝑐𝑙𝑎𝑠𝑠_𝑠𝑖𝑧𝑒 )
8: 𝑋 ← 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚3𝑑 (𝑋,𝑐𝑙𝑎𝑠𝑠_𝑠𝑖𝑧𝑒 ) .𝐺𝐸𝐿𝑈 (𝑋 )
9: 𝑋 ← 𝐶𝑜𝑛𝑣3𝑑 (𝑋,𝑐𝑙𝑎𝑠𝑠_𝑠𝑖𝑧𝑒, 𝑐𝑙𝑎𝑠𝑠_𝑠𝑖𝑧𝑒 )
10: 𝑋 ← 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚3𝑑 (𝑋,𝑐𝑙𝑎𝑠𝑠_𝑠𝑖𝑧𝑒 ) .𝐺𝐸𝐿𝑈 (𝑋 )
11: 𝑋 ← 𝑋 .𝑝𝑒𝑟𝑚𝑢𝑡𝑒 (0, 2, 1, 3, 4)

12: 𝑋 ← 𝐶𝑜𝑛𝑣3𝑑 (𝑋, 𝑥_𝑑𝑖𝑚, 𝑥_𝑑𝑖𝑚//16)
13: 𝑋 ← 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚3𝑑 (𝑋, 𝑥_𝑑𝑖𝑚//16) .𝐺𝐸𝐿𝑈 (𝑋 )
14: 𝑋 ← 𝐶𝑜𝑛𝑣3𝑑 (𝑋, 𝑥_𝑑𝑖𝑚//16, 1)
15: 𝑋 ← 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚3𝑑 (𝑋, 1) .𝐺𝐸𝐿𝑈 (𝑋 )
16: 𝑋 ← 𝑋 .𝑝𝑒𝑟𝑚𝑢𝑡𝑒 (0, 4, 3, 2, 1)

17: 𝑋 ← 𝐶𝑜𝑛𝑣3𝑑 (𝑋, 𝑧_𝑑𝑖𝑚, 𝑧_𝑑𝑖𝑚)
18: 𝑋 ← 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚3𝑑 (𝑋, 𝑧_𝑑𝑖𝑚) .𝐺𝐸𝐿𝑈 (𝑋 )
19: 𝑋 ← 𝐶𝑜𝑛𝑣3𝑑 (𝑋, 𝑧_𝑑𝑖𝑚, 𝑧_𝑑𝑖𝑚)
20: 𝑋 ← 𝑅𝑒𝐿𝑈 (𝑋 ) .𝑠𝑞𝑢𝑒𝑒𝑧𝑒 ( )
21: Return X

22: end procedure

Configuration BTCV
Optimizer AdamW

Epochs 5000

Batch Size per GPU 2

Number of GPUs 16

Weight decay 1𝑒 − 5

Optimizer momentum 𝛽1, 𝛽2 = 0.9, 0.999

Peak learning rate 1𝑒 − 4

Learning rate schedule CosineAnnealingLR

Warmup epochs 100

Dropout 0

Rand Spatial Crop Samples Data 96 × 96 × 96

Table 3: Training and fine-tune settings for all proposed and
baseline models

4.2 Fine-Tuning Details
Table 3 provides a comprehensive overview of the specifics pertaining to

our training or fine-tuning procedures.
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Our experimental setup involved 16 GPUs, each one having 35GB of

memory. The models were trained with 𝐴𝑑𝑎𝑚𝑊 optimizer. As we stated

earlier, our goal was to design a fast model at inference time, as such models

are used countless times in the deployment environment and can have a

large carbon footprint. As shown in Table 1, our model’s required resources

in terms of FLOPs are one of the best, lower than 7 of the baselines with

which we compared our model to. Our model’s total number of parameters

is also lower than many baselines while achieving higher performance. We

used multiple GPUs for training and data parallelism to decrease the time

required for training. However, our model is small enough to be trained on

a single GPU with 14 GB capacity, so researchers whose access to GPUs is

limited can still train and validate our model.

To adhere to established standards and foster equitable comparisons, we

employed a comprehensive array of augmentation techniques to augment

data variability. It’s noteworthy that these augmentations were uniformly

applied to all models, encompassing both our proposed models and the

baseline models. This meticulous approach ensures a fair and unbiased

comparative analysis. For the implementation of ourmodels and the baseline

models, we leveraged the𝑀𝑂𝑁𝐴𝐼 framework,
10

which provided a robust

and versatile foundation for our experimentation. This framework facilitated

the seamless integration of existing public implementations.

In the course of each iteration, we implemented a randomized cropping

strategy, extracting two images for each case during the training phase.

This deliberate approach was employed with the intent of diversifying the

training dataset for each input case within every epoch, thereby enhancing

the overall richness of the training process.

5 RESULTS
5.1 Main Results
Table 1 compares our model to the baseline methods in terms of inference

time (FLOPs) and the number of trainable parameters in the BTCV dataset.

We see that our model has the lowest inference time after SegResNetVAE.

Tables 4 and 5 compare the accuracy of our method to the baselines. We

observe that the performance of SegResNetVAE is significantly lower than

that of ours. Taking into account both the inference speed and the predic-

tion accuracy, our model seamlessly ranks first among all the models. See

Appendix 9 for a report on the standard deviation and statistical significance

of the results.

Table 1 shows that our model is considered an average-sized network.

One noteworthy observation is that in some cases, e.g., nnUNet or DiNTS

Instance, even though the number of trainable parameters is on a par or

smaller than ours, their inference speed is substantially slower. Tables 4 and

5 show that our model exhibits superior performance compared to the base-

line methods. Specifically, when evaluating our proposed model without

pre-training, it outperforms the baselines across 13 out of 19 tasks. Further-

more, incorporating our pre-training strategy into LoGoNet enhances its

performance even further, surpassing the baselines in 18 out of 19 tasks.

These findings underscore the effectiveness and versatility of our approach

in tackling a diverse range of tasks with notable efficacy.

In the BTCV dataset, LoGoNet outperforms the top three baseline models

on average by 2.7%, 3.0%, and 3.2%, respectively. Regarding the inference

time, our model outperforms the top three models by 17.6%, 14.8%, and

118.2%, respectively.

5.2 Analysis
In this section, we demonstrate the properties of our model from multiple

aspects. Specifically, we report a qualitative comparison between our model

and the best baseline model, evaluate our strategy for extracting local and

global features, evaluate our pre-training approach, show the impact of

10
Available at: https://monai.io/

model size on performance, analyze the hyper-parameter sensitivity of our

model, and finally, report an ablation study on the steps in our pre-training

method. The experiments in this section are carried out in the BTCV dataset

unless stated otherwise.

Ground Truth LoGoNet DiNTS Search

Figure 3: Output of LoGoNet compared to the best performing
baseline model in BTCV dataset, i.e., DiNTS Search. We see
that our model tangibly outperforms the mentioned model
in detecting organ boundaries.

We begin by qualitatively inspecting our model. Figure 3 compares the

output of LoGoNet to the best-performing baseline model in the BTCV

dataset, i.e., DiNTS Search. We see that our model particularly excels in

segmenting organ boundaries. This can be attributed to our effective strat-

egy for extracting local-range dependencies, which plays a crucial role in

extracting details from input data. Our model’s adeptness in capturing long-

range dependencies allows it to grasp contextual information that extends

over significant distances within the data. Simultaneously, its proficiency in

handling short-range dependencies ensures precision in capturing localized

patterns.

To further quantitatively support our strategy for extracting local and

global features in parallel, in the next experiment, we report the performance

of our model compared to the regular method for extracting features from

medical images, which is relying on a single feature extractor. This translates

into comparing LoGoNet to our feature extractor ULKANet. Table 6 reports

the results. We observe that our strategy enables our model to outperform

the alternative method.

In the next experiment, we report the efficacy of our pre-training method.

To carry out this experiment, we use the algorithm proposed in Section

3.3 to initialize the weights of our model, and then, we follow the regular

fine-tuning steps. In Tables 4 and 5 (the last rows), we report the results

of this model for both datasets, indicated by postfix PRE. We see that the

improvements achieved by pre-training are consistent across both datasets.

In the next experiment, we compare the effectiveness of our self-supervised

pre-training approach to the alternative methods. In particular we compare

to SimMIM [44], Rubuk’s Cube [38], and SimCLR [8] strategies. Table 7

reports the result. The numbers are obtained by initializing LoGoNet. No-

tably, our proposed model exhibits superior performance in three out of

four experiments, showcasing its effectiveness in a diverse set of tasks. The

comparison in Table 7 highlights the competitive edge of our model.

 

1354



KDD ’24, August 25–29, 2024, Barcelona, Spain Amin Karimi Monsefi et al.

Models Spl RKid Lkid Gall Eso Liv Sto Aor IVC Veins Pan Rad Lad AVG

UNETR .912 .940 .938 .693 .690 .954 .754 .891 .830 .703 .734 .660 .577 .790

SegResNetVAE .941 .938 .933 .670 .718 .955 .745 .892 .848 .695 .783 .633 .528 .791

nnUNet .859 .944 .924 .796 .755 .960 .781 .894 .849 .756 .776 .675 .663 .818

Attention U-Net .955 .936 .930 .735 .739 .964 .770 .898 .852 .753 .763 .695 .688 .821

DiNTS Instance .935 .942 .938 .770 .769 .962 .743 .909 .857 .759 .782 .641 .691 .823

UNet++ .934 .931 .925 .810 .715 .961 .786 .900 .846 .747 .829 .685 .679 .827

SwinUNETR .952 .947 .945 .790 .770 .963 .755 .901 .850 .771 .760 .702 .659 .828

DiNTS Search .937 .934 .930 .788 .770 .960 .774 .904 .866 .751 .813 .670 .711 .831

LoGoNet .958 .949 .947 .818 .786 .969 .880 .912 .865 .769 .821 .726 .698 .854

LoGoNet + PRE .961 .947 .944 .866 .845 .970 .898 .936 .885 .791 .838 .738 .757 .875
Table 4: Performance of our model (in terms of Dice metric) compared to the baseline models in BTCV dataset. All experiments
were conducted using identical data splits, computing resources, and testing conditions to ensure a fair comparison. Additionally,
to ensure faithfulness to the original implementation of the baselinemethods, we used their publicly available implementations
available at MONAI network repository. Spl: Spleen, RKid: Right Kidney, LKid: Left Kidney, Gall: Gallbladder, Eso: Esophagus,
Liv: Liver, Sto: Stomach, Aor: Aorta, IVC: Inferior Vena Cava, Veins: Portal and Splenic Venis, Pan: Pancreas, Rad: Right Adrenal
Glands, Lad: Left Adrenal Glands.

Models Col Spl Hep Pan Lun Car AVG
UNETR .677 .969 .715 .699 .730 .953 .790

SegResNetVAE .742 .968 .745 .740 .765 .951 .818

nnUNet .736 .977 .742 .742 .816 .958 .829

Attention U-Net - - - - - - -

DiNTS Instance .768 .979 .731 .742 .790 .963 .829

UNet++ .553 .975 .752 .760 .753 .961 .792

SwinUNETR .695 .967 .737 .738 .763 .957 .810

DiNTS Search .776 .980 .749 .749 .768 .960 .830

LoGoNet .786 .980 .757 .798 .802 .951 .846

LoGoNet + PRE .801 .980 .779 .833 .828 .958 .863
Table 5: Performance of our model (in terms of Dice met-
ric) compared to the baselines in MSD dataset. The base-
line model “Attention U-Net” was not runnable on regular
chipsets which each has 35 Gigabyte of memory in MSD
dataset. Col: Colon Cancer Primaries, Spl: Spleen, Hep: Hep-
atic vessels and tumor, Pan: Pancreas Tumour, Lun: Lung
Tumours, Car: Cardiac.

Models Gall Eso Veins Lad AVG
ULKANet .761 .782 .690 .684 .824

LoGoNet .818 .786 .769 .698 .854
Table 6: The efficacy of our parallel strategy for extracting
local and global features, i.e., the comparison between our
method (LoGoNet) and an alternative method that relies on
a single feature extractor (ULKANet).

An inherent advantage of our pre-training approach lies in its versatility,

as it is designed to be compatible with both CNN and ViT-based models.

This flexibility broadens the applicability of our approach, allowing it to

seamlessly integrate with different architectural paradigms commonly used

in computer vision tasks.

To understand the impact of model size on the prediction accuracy, we

report the performance of our default model compared to a larger variant.

Our larger variant uses four encoder blocks with 3, 3, 24, and 3 transformer

modules, respectively. The dimensions of the embedding vectors in this

model are 96, 192, 384, and 768, respectively. Table 8 reports the results.

SSL Approach Gall Eso Veins Lad AVG
SimMIM [44] .837 .829 .785 .733 .864

Rubik’s Cube [38] .815 .820 .780 .725 .859

SimCLR [8] .829 .803 .780 .720 .859

Our SSL Approach .866 .845 .791 .757 .875
Table 7: Performance of our multi-task self-supervised pre-
training method compared to the alternatives (number of
clusters is N=80).

Models Gall Eso Veins Lad AVG
LoGoNet .818 .786 .769 .698 .854

LoGoNet L .847 .781 .768 .710 .855

LoGoNet + PRE .866 .845 .791 .757 .875

LoGoNet L + PRE .921 .859 .805 .784 .891
Table 8: Performance of LoGoNet compared to LoGoNet L
(Number of clusters N=80, L stands for the large model vari-
ant).

Upon increasing the dimensions of our model, we observed an improvement

in results, though it fell short of our initial expectations. We attribute this to

the limited number of labeled data available. However, upon integrating our

pre-training methodology into our standard and larger variants of LoGoNet,

we noted a significant enhancement in performance, particularly noticeable

in the larger LoGoNet.

Model N = 1 N = 40 N = 80
Gall Eso Gall Eso Gall Eso

LoGoNet + PRE .830 .819 .843 .860 .866 .845

Table 9: Performance of our models at varying number of
clusterers for pre-training. As the number of clusterers in-
creases, the contribution of multi-tasking becomes more no-
ticeable.

In Section 3.3, we claimed that having multiple clusterers serves as a

multi-task training approach. In order to demonstrate the benefit of having

multiple clusterers, and also show the sensitivity of our model to the number
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of these learners in our algorithm, we report the results of our model with

varying numbers of clusterers in Table 9. We see that as the number of

clusterers increases, the performance improves. The results support our

hypothesis regarding the ability of our model to extract broader knowledge

from the unlabeled data in the presence of multi-tasking.

To refine our model using labeled data, we employed the DiceCELoss

as the objective function during the fine-tuning or training process. The

DiceCELoss function serves as a crucial metric, enabling us to strike a

balance between the Dice coefficient and Cross-Entropy, optimizing the

model’s performance on the labeled dataset. The DiceCELoss is articulated

by the following formulation:

𝐷𝑖𝑐𝑒𝐶𝐸𝐿𝑜𝑠𝑠 = 𝑤𝑑𝑙 × 𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠 + 𝑤𝑐𝑙 × 𝐶𝐸𝐿𝑜𝑠𝑠, (6)

where

𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠 = 1 −
2 × ∑𝑁

𝑖=1 𝑝𝑖 × 𝑡𝑖 + 𝜖∑𝑁
𝑖=1 𝑝𝑖 +

∑𝑁
𝑖=1 𝑡𝑖 + 𝜖

, (7)

and

𝐶𝐸𝐿𝑜𝑠𝑠 = − 1

𝑁

𝑁∑︁
𝑖=1

𝑡𝑖 × log(𝑝𝑖 ) . (8)

Thus, our fine-tuning and training loss term is the weighted summation

between the regular dice loss term and the cross entropy term. 𝑝𝑖 represents

the predicted probability for the 𝑖-th class. 𝑡𝑖 represents the ground truth

label for the 𝑖-th class. 𝑁 represents the number of classes. 𝜖 is a small

constant (e.g., 1e-5) added to the denominator to avoid division by zero.

LoGoNet
𝑤𝑑𝑙 𝑤𝑐𝑙 𝑤𝑑𝑙 𝑤𝑐𝑙 𝑤𝑑𝑙 𝑤𝑐𝑙
1.0 1.0 0.0 1.0 1.0 0.0

.854 .841 .847

Table 10: Performance outcomeswith variedweights for Dice-
CELoss: The presented results represent the average across
all 13 organs in the BTCV dataset using the LoGoNet model.

Our experiments revealed that assigning equal weights to both CELoss

and DiceLoss yields more favorable outcomes, surpassing the performance

achieved with other weight ratios. The results of various weight configura-

tions for losses are presented in Table 10. By according equal significance to

both Cross-Entropy Loss (CELoss) and Dice Loss, we strike a balance that

enhances the model’s ability to effectively capture diverse patterns in the

data.

Finally, we report an ablation study on the effectiveness of our masking

approach during the pre-training stage. In Section 3.3, we argued that by

distorting input images, the model must learn the properties of neighboring

pixels in order to predict the correct labels. We then argued that this explo-

ration task enables the model to faster learn the domain and to generalize

better. The results reported in Table 11 supports our claim. We see that

by incorporating the masking step, the performance noticeably improves

signifying a better generalizablity of our method.

Model w/ M wo/ M w/ M + wo/ M
Gall Eso Gall Eso Gall Eso

LoGoNet + PRE .866 .845 .845 .802 .851 .820

Table 11: Ablation study on the effectiveness of our masking
algorithm for 3D inputs. "w/ M" refers to pretraining with
masking, and "wo/ M" refers to pretraining without masking.
(BTCV Dataset)

5.3 Complexity analysis
This section presents a comprehensive analysis of the computational com-

plexity associated with our models, detailing the number of trainable pa-

rameters and the FLOPs. Please refer to Table 1 for a summary of these

metrics.

To make our computations more manageable, we simplify by excluding

biases. Let’s assume an input of size𝐶 × 𝑍 ×𝑊 × 𝐻 , where𝐶 represents

the number of channels and 𝑍 ,𝑊 , 𝐻 denote the spatial dimensions. From

here, we derive the complexity expression. Specifically, with a kernel size

of 𝐾 and a mean dilation rate of 𝑑 , the complexity can be expressed as

𝑂 ( ( (𝐾/𝑑 )2 × 𝐶 + (2 × 𝑑 − 1)2 +𝐶 ) × 𝐶 ×𝑊 × 𝐻 × 𝑍 ) . This is how we

arrive at our computational complexity.

It’s worth noting that both 𝑑 and 𝐾 are constants in our system. This

simplifies the complexity to𝑂 (𝐶2 × 𝑍 ×𝑊 ×𝐻 × 𝑒 ) , where 𝑒 represents a
constant value. This single LKA block complexity is a direct result of these

constants in our system.

Extending this analysis to encompass a network architecture with 𝑇

blocks in the encoder, each containing 𝐿 number of LKA blocks, the overall

complexity becomes𝑂 (𝐶2 × 𝑍 ×𝑊 × 𝐻 × 𝑇 × 𝐿 × 𝑒 ) , encapsulating the

computational demands of the entire system.

Furthermore, our complexity analysis provides valuable insights into

the computational demands of our proposed models. By simplifying com-

putations and excluding biases, we derive a comprehensive understanding

of the system’s scalability and efficiency. Notably, with each LKA block

complexity being a direct consequence of constant parameters, the scalabil-

ity of our system becomes evident. Extending this analysis to encompass

the entire network architecture, comprising multiple blocks in the encoder,

we obtain a holistic view of the computational complexity, highlighting its

manageable nature even in large-scale implementations.

In summary, we demonstrated the efficacy of our model in two datasets

across 19 segmentation tasks. We also compared our method to eight recent

baseline models, including those that use Visual Transformers. Our results

testify to the effectiveness of our novel feature extraction techniques. Our

analysis shows that our pre-training method is successfully able to exploit

unlabeled data to improve parameter initialization. We also showed that

our method significantly speeds up inference time compared to the best-

performing models.

Computer vision domain is a rapidly evolving research field. It seems

unrealistic to expect long-term plans, specifically considering the rise of

large pretrained vision models. However, with the existing challenges in the

medical domain, this community will invest more in developing methods

for mitigating the lack of large labeled sets. Therefore, in the next step,

we plan to explore Domain Adaptation, which is one of the well-known

methods for addressing this challenge.

6 CONCLUSIONS
In this paper, we proposed a fast and accurate approach for 3D medical

image segmentation termed LoGoNet, which facilitates the augmentation of

global and local feature dependencies. The localized mechanism in LoGoNet

significantly improves segmentation, especially for small organ sections,

while the incorporation of both global and local dependencies enhances

the segmentation accuracy for elongated organs. We further proposed a

pre-training method to exploit unlabeled data for enhancing model gener-

alization. This is particularly crucial in the medical domain where labeled

data is scarce. Experiments in the BTCV and MSD datasets demonstrate

that LoGoNet surpasses the baselines, achieving superior segmentation

accuracy. In the analysis section, we reported numerous experiments. We

particularly showed that the combination of LoGoNet with pretraining

further enhances accuracy, and the utilization of masked data in pretraining

framework significantly boosts the model performance.

 

1356



KDD ’24, August 25–29, 2024, Barcelona, Spain Amin Karimi Monsefi et al.

REFERENCES
[1] Bobby Azad, Reza Azad, Sania Eskandari, and other. 2023. Foundational models

in medical imaging: A comprehensive survey and future vision. arXiv preprint
arXiv:2310.18689 (2023).

[2] Shekoofeh Azizi et al. 2021. Big self-supervised models advance medical image

classification. In Proceedings of the IEEE/CVF international conference on computer
vision. ICCV.

[3] Yu Cai, Hao Chen, Xin Yang, et al. 2023. Dual-distribution discrepancy with

self-supervised refinement for anomaly detection in medical images. Medical
Image Analysis 86 (2023), 102794.

[4] Yutong Cai and Yong Wang. 2022. Ma-unet: An improved version of unet based

on multi-scale and attention mechanism for medical image segmentation. In

Third International Conference on Electronics and Communication; Network and
Computer Technology (ECNCT 2021), Vol. 12167. SPIE, 205–211.

[5] Bing Cao, Han Zhang, Nannan Wang, et al. 2020. Auto-GAN: self-supervised

collaborative learning for medical image synthesis. In Proceedings of the AAAI
conference on artificial intelligence.

[6] Hu Cao, Yueyue Wang, Joy Chen, et al. 2023. Swin-unet: Unet-like pure trans-

former for medical image segmentation. In Computer Vision–ECCV.
[7] Rich Caruana. 1997. Multitask Learning. Mach. Learn. (1997). https://doi.org/10.

1023/A:1007379606734

[8] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A

simple framework for contrastive learning of visual representations. In Interna-
tional conference on machine learning.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding. In

Proceedings of the 2019 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics. Association for Computational Linguistics,

Minneapolis, MN, USA, 4171–4186.

[10] Alexey Dosovitskiy, Lucas Beyer, et al. 2020. An image is worth 16x16 words:

Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929
(2020).

[11] Eli Gibson, Francesco Giganti, and et al Hu. 2018. Automatic multi-organ seg-

mentation on abdominal CT with dense V-networks. IEEE transactions on medical
imaging (2018).

[12] Meng-Hao Guo, Cheng-Ze Lu, et al. 2022. Visual attention network. arXiv
preprint arXiv:2202.09741 (2022).

[13] Fatemeh Haghighi, Mohammad Reza Hosseinzadeh Taher, et al. 2022. DiRA:

Discriminative, restorative, and adversarial learning for self-supervised medical

image analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 20824–20834.

[14] Ali Hatamizadeh, Vishwesh Nath, et al. 2021. Swin unetr: Swin transformers for

semantic segmentation of brain tumors in mri images. In International MICCAI
Brainlesion Workshop.

[15] Ali Hatamizadeh, Yucheng Tang, Vishwesh Nath, et al. 2022. Unetr: Transformers

for 3d medical image segmentation. In Proceedings of the IEEE/CVF Conference on
WACV.

[16] Kaiming He, Xinlei Chen, et al. 2022. Masked autoencoders are scalable vision

learners. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 16000–16009.

[17] Sheng He, P Ellen Grant, and Yangming Ou. 2021. Global-local transformer for

brain age estimation. IEEE transactions on medical imaging (2021).

[18] Yufan He, Aaron Carass, Lianrui Zuo, et al. 2021. Autoencoder based self-

supervised test-time adaptation for medical image analysis. Medical image
analysis 72 (2021), 102136.

[19] Yufan He, Dong Yang, Holger Roth, et al. 2021. Dints: Differentiable neural

network topology search for 3d medical image segmentation. In Proceedings of
the IEEE/CVF Conference on CVPR.

[20] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in

a neural network. arXiv preprint arXiv:1503.02531 (2015).
[21] Wei-Ning Hsu, Benjamin Bolte, et al. 2021. Hubert: Self-supervised speech repre-

sentation learning by masked prediction of hidden units. IEEE/ACM Transactions
on Audio, Speech, and Language Processing (2021).

[22] Fabian Isensee, Jens Petersen, et al. 2018. nnu-net: Self-adapting framework for

u-net-based medical image segmentation. arXiv preprint arXiv:1809.10486 (2018).
[23] Devendra K Jangid, Neal R Brodnik, et al. 2024. Q-RBSA: high-resolution 3D

EBSD map generation using an efficient quaternion transformer network. npj
Computational Materials 10, 1 (2024), 27.

[24] Ioannis Kakogeorgiou, Spyros Gidaris, Bill Psomas, et al. 2022. What to hide from

your students: Attention-guided masked image modeling. In European Conference
on Computer Vision. Springer, 300–318.

[25] Amin Karimi Monsefi, Pouya Shiri, et al. 2023. CrashFormer: A Multimodal Ar-

chitecture to Predict the Risk of Crash. In Proceedings of the 1st ACM SIGSPATIAL
International Workshop on Advances in Urban-AI. 42–51.

[26] Salman Khan, Muzammal Naseer, et al. 2022. Transformers in vision: A survey.

ACM computing surveys (CSUR) 54, 10s (2022), 1–41.

[27] Jiangyun Li, Junfeng Zheng,MengDing, andHong Yu. 2021. Multi-branch sharing

network for real-time 3D brain tumor segmentation. Journal of Real-Time Image
Processing (2021), 1–11.

[28] Zhaowen Li, Zhiyang Chen, Fan Yang, et al. 2021. Mst: Masked self-supervised

transformer for visual representation. Advances in Neural Information Processing
Systems (2021).

[29] Thomas M. Mitchell. 1997. Machine Learning (1 ed.). McGraw-Hill, Inc., USA.

[30] Andriy Myronenko. 2019. 3D MRI brain tumor segmentation using autoencoder

regularization. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic
Brain Injuries: 4th International Workshop, Held in Conjunction with MICCAI.

[31] Ozan Oktay, Jo Schlemper, et al. 2018. Attention u-net: Learning where to look

for the pancreas. arXiv preprint arXiv:1804.03999 (2018).
[32] Shehan Perera, Pouyan Navard, and Alper Yilmaz. 2024. SegFormer3D: an

Efficient Transformer for 3D Medical Image Segmentation. arXiv preprint
arXiv:2404.10156 (2024).

[33] Yuge Shi, N Siddharth, et al. 2022. Adversarial masking for self-supervised

learning. In International Conference on Machine Learning.
[34] Amber L Simpson, Michela Antonelli, Spyridon Bakas, et al. 2019. A large anno-

tated medical image dataset for the development and evaluation of segmentation

algorithms. arXiv preprint arXiv:1902.09063 (2019).
[35] Satya P Singh, Lipo Wang, et al. 2020. 3D deep learning on medical images: a

review. Sensors 20, 18 (2020), 5097.
[36] Aiham Taleb, Winfried Loetzsch, Noel Danz, Julius Severin, et al. 2020. 3d

self-supervised methods for medical imaging. Advances in neural information
processing systems (2020).

[37] Yucheng Tang, Dong Yang, et al. 2022. Self-supervised pre-training of swin trans-

formers for 3d medical image analysis. In Proceedings of the IEEE/CVF Conference
on CVPR.

[38] Xing Tao, Yuexiang Li, Wenhui Zhou, Kai Ma, and Yefeng Zheng. 2020. Revisiting

Rubik’s cube: self-supervised learning with volume-wise transformation for 3D

medical image segmentation. InMedical Image Computing and Computer Assisted
Intervention–MICCAI 2020: 23rd International Conference. Springer, Lima, Peru,

238–248.

[39] Jeya Maria Jose Valanarasu et al. 2021. Medical transformer: Gated axial-attention

for medical image segmentation. In Medical Image Computing and Computer
Assisted Intervention.

[40] Hongyi Wang, Yingying Xu, Qingqing Chen, et al. 2023. Adaptive decomposition

and shared weight volumetric transformer blocks for efficient patch-free 3d

medical image segmentation. IEEE Journal of Biomedical and Health Informatics
(2023).

[41] Risheng Wang, Tao Lei, et al. 2022. Medical image segmentation using deep

learning: A survey. IET Image Processing (2022).

[42] Huisi Wu, Shihuai Chen, et al. 2022. FAT-Net: Feature adaptive transformers for

automated skin lesion segmentation. Medical image analysis (2022).
[43] Yingda Xia, Fengze Liu, Dong Yang, et al. 2020. 3d semi-supervised learning

with uncertainty-aware multi-view co-training. In Proceedings of the IEEE/CVF
Conference on WACV.

[44] Zhenda Xie, Zheng Zhang, Yue Cao, et al. 2022. Simmim: A simple framework

for masked image modeling. In Proceedings of the IEEE/CVF Conference on CVPR.
[45] Junshen Xu and Elfar Adalsteinsson. 2021. Deformed2self: Self-supervised de-

noising for dynamic medical imaging. InMedical Image Computing and Computer
Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg,
France, September 27–October 1, 2021, Proceedings, Part II 24. Springer, 25–35.

[46] Jason Yosinski, Jeff Clune, Yoshua Bengio, andHod Lipson. 2014. How transferable

are features in deep neural networks?. InAnnual Conference on Neural Information
Processing Systems. NeurIPS.

[47] He Zhao, Yuexiang Li, Nanjun He, Kai Ma, et al. 2021. Anomaly detection for

medical images using self-supervised and translation-consistent features. IEEE
Transactions on Medical Imaging 40, 12 (2021), 3641–3651.

[48] Hong-Yu Zhou, Shuang Yu, Cheng Bian, et al. 2020. Comparing to learn: Surpass-

ing imagenet pretraining on radiographs by comparing image representations.

In Medical Image Computing and Computer Assisted Intervention.
[49] Jinghao Zhou, Chen Wei, Huiyu Wang, et al. 2021. ibot: Image bert pre-training

with online tokenizer. arXiv preprint arXiv:2111.07832 (2021).
[50] Mengxi Zhou, Nathan Doble, et al. 2022. Using deep learning for the automated

identification of cone and rod photoreceptors from adaptive optics imaging of

the human retina. Biomedical Optics Express (2022).
[51] Mengxi Zhou and Rajiv Ramnath. 2022. A Structure-Focused Deep Learning

Approach for Table Recognition fromDocument Images. In 2022 IEEE 46th Annual
Computers, Software, and Applications Conference (COMPSAC). IEEE, 593–601.

[52] Zongwei Zhou, MdMahfuzur Rahman Siddiquee, et al. 2019. Unet++: Redesigning

skip connections to exploit multiscale features in image segmentation. IEEE
transactions on medical imaging (2019).

[53] Jiuwen Zhu, Yuexiang Li, Yifan Hu, et al. 2020. Rubik’s cube+: A self-supervised

feature learning framework for 3d medical image analysis. Medical image analysis
(2020).

 

1357

https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1023/A:1007379606734


Masked LoGoNet: Fast and Accurate 3D Image Analysis for Medical Domain KDD ’24, August 25–29, 2024, Barcelona, Spain

APPENDIX
The following section presents a more detailed description of our feature

extractor, ULKANet. Then, we provide the details of our experiments, includ-

ing the configurations of the baseline models, our pre-training algorithm,

and our model architecture. We continue with a description of each used

dataset, and finally, we conclude the article by reporting an additional

qualitative experiment.

7 DETAILED ARCHITECTURE OF ULKANET
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Figure 4: Architecture of our feature extractor (ULKANet).
The numbers next to some of the components indicate a se-
quence of the depicted component with the specified length.

Figure 4 illustrates our feature extractor. This feature extractor is struc-

tured into two main components: an encoder and a decoder. The encoder is

comprised of a series of blocks, each consisting of a recurring sequence of

three essential elements: a patch embedding component, which you can find

the algorithm of this component in the algorithm 2, a set of transformer-like

modules employing the LKA technique (The number of these modules in

the sequence is represented as 𝐿), and a layer normalization component.

The LKA component contains two crucial parts, first attention, which we

describe in part 3.1, and the MLP part, which you can find in the algorithm

4; also, the algorithm of LKA part is available in the algorithm 3. This ar-

chitecture has been meticulously designed to process and extract crucial

input data features effectively. The patch embedding operation transforms

the input into a feature vector with a dimension of 𝑑𝑖𝑚. Additionally, we

incorporate a𝐶𝑜𝑛𝑣 block, which encompasses three layers: a𝐶𝑜𝑛𝑣3𝐷 layer,

batch normalization, and the 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝑙𝑢 activation function.

Furthermore, the presence of a decoder block denoted as 𝐷𝑒𝑐 in Figure 4

is a crucial element. This block consists of three𝐶𝑜𝑛𝑣 blocks and an upsam-

pling layer, which upscales the input by a factor of 2. This comprehensive

structure enables our model to efficiently handle the input data and extract

meaningful features for further processing.

Algorithm 2 Patch Embedding Pseudo Code

1: procedure PatchEmbed3D(𝑋 , 𝑑𝑖𝑚, 𝑝𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 , 𝑖𝑛𝑝𝑢𝑡𝐶ℎ𝑎𝑛𝑛𝑒𝑙 ,

𝑠𝑡𝑟𝑖𝑑𝑒) ⊲ Input: 𝑋 is the input tensor, and 𝑑𝑖𝑚 is embed dimension

2: 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛 ← 𝐶𝑜𝑛𝑣3𝐷 (𝑖𝑛𝑝𝑢𝑡𝐶ℎ𝑎𝑛𝑛𝑒𝑙,𝑑𝑖𝑚,𝑘𝑒𝑟𝑛𝑒𝑙 =

𝑝𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 𝑠𝑡𝑟𝑖𝑑𝑒, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 = 𝑝𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒//2)
3: 𝑋 ← 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛 (𝑋 )
4: 𝐵,𝐶, 𝐷,𝐻,𝑊 ← 𝑋 .𝑆ℎ𝑎𝑝𝑒

5: 𝑋 ← 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚 (𝑋 )
6: 𝑋 ← 𝑋 .𝑓 𝑙𝑎𝑡𝑡𝑒𝑛 (2) .𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 (1, 2)
7: Return X, D, H, W

8: end procedure

Algorithm 3 Pseudo Code of LKA Block

1: procedure LKA(𝑋 , 𝑑𝑖𝑚, 𝐻 ,𝑊 ,𝑚𝑙𝑝𝑅𝑎𝑡𝑖𝑜) ⊲ Input: 𝑋 is the input

tensor. 𝑑𝑖𝑚, 𝐻 , and𝑊 are the dimensions of the input tensor.

2: 𝐵, 𝑁,𝐶 ← 𝑋 .𝑠ℎ𝑎𝑝𝑒

3: 𝑋 ← 𝑋 .𝑝𝑒𝑟𝑚𝑢𝑡𝑒 (0, 2, 1) .𝑣𝑖𝑒𝑤 (𝐵,𝐶,𝑑𝑖𝑚,𝐻,𝑊 )
4: 𝑋 ← 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚 (𝑋 )
5: 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑉𝑎𝑙𝑢𝑒 ← 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑋 ) ⊲ The attention

function is described before in the part 3.1

6: 𝑋 ← 𝑋 + 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑉𝑎𝑙𝑢𝑒
7: 𝑋 ← 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚 (𝑋 )
8: 𝑚𝑙𝑝𝑉𝑎𝑙𝑢𝑒 = 𝑀𝐿𝑃 (𝑋,𝑑𝑖𝑚,𝑚𝑙𝑝𝑅𝑎𝑡𝑖𝑜 × 𝑑𝑖𝑚)
9: 𝑋 ← 𝑋 +𝑚𝑙𝑝𝑉𝑎𝑙𝑢𝑒
10: 𝑋 ← 𝑋 .𝑣𝑖𝑒𝑤 (𝐵,𝐶, 𝑁 ) .𝑝𝑒𝑟𝑚𝑢𝑡𝑒 (0, 2, 1)
11: Return X

12: end procedure

Algorithm 4 Pseudo Code of MLP Block

1: procedure MLP(𝑋 , 𝑖𝑛𝑆𝑖𝑧𝑒 , ℎ𝑖𝑑𝑑𝑒𝑛𝑆𝑖𝑧𝑒 , 𝑜𝑢𝑡𝑆𝑖𝑧𝑒) ⊲ Input: 𝑋 is the

input tensor.

2: 𝑓 𝑐1← 𝐶𝑜𝑛𝑣3𝑑 (𝑖𝑛𝑆𝑖𝑧𝑒,ℎ𝑖𝑑𝑑𝑒𝑛𝑆𝑖𝑧𝑒, 𝑘𝑒𝑟𝑛𝑒𝑙 = 1)
3: 𝑋 ← 𝑓 𝑐1(𝑥 )
4: 𝑋 ← 𝐺𝐸𝐿𝑈 ( (𝑋 )
5: 𝑑𝑤𝑐𝑜𝑛𝑣3𝑑 ← 𝐶𝑜𝑛𝑣3𝑑 (𝑖𝑛𝑆𝑖𝑧𝑒, 𝑖𝑛𝑆𝑖𝑧𝑒, 𝑘𝑒𝑟𝑛𝑒𝑙 = 3)
6: 𝑋 ← 𝑑𝑤𝑐𝑜𝑛𝑣3𝑑 (𝑋 )
7: 𝑋 ← 𝐺𝐸𝐿𝑈 ( (𝑋 )
8: 𝑓 𝑐2 =← 𝐶𝑜𝑛𝑣3𝑑 (ℎ𝑖𝑑𝑑𝑒𝑛𝑆𝑖𝑧𝑒, 𝑜𝑢𝑡𝑆𝑖𝑧𝑒, 𝑘𝑒𝑟𝑛𝑒𝑙 = 1)
9: Return X

10: end procedure
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Layer Number 1 2 3 4
L dim mlpRatio L dim mlpRatio L dim mlpRatio L dim mlpRatio

Normal 3 64 8 4 128 8 6 256 4 3 512 4

Large 3 96 8 3 192 8 24 384 4 3 768 4

Table 12: The number of LKA modules in each encoder block and mlpRatio for each encoder layer, as well as the embedding
dimensions of the Patch Embedding module for the regular and the large variants of our model.

Spl RKid LKid Gall Eso Liv Sto Aor IVC Veins Pan Rad Lad

DiNTS .937±.02 .934±.00 .930±.02 .788±.02 .770±.00 .960±.00 .774±.02 .904±.02 .866±0.23 .751±.02 .813±.02 .670±.02 .711±.01
LoGoNet .958±.02 .949±.00 .947±.01 .818±.02 .786±.00 .969±.01 .880±.02 .912±.01 .865±.01 .769±.02 .821±.02 .726±.01 .698±.01
Table 13: Comparison of Performance Metrics (Mean ± Standard Deviation) for Various Methods Across Different Organs

8 COMPLEMENTARY IMPLEMENTATION
DETAILS

Our model architecture has incorporated four encoder blocks, a feature in

both the standard and the larger variants. However, it’s important to note

that our model is flexible and can seamlessly adapt to the use of varying

numbers of encoder layers. The primary distinction between the regular

and large models lies in the number of transformer modules within each

block and the dimensions of the internal embedding vectors.

To provide a comprehensive understanding, Table 12 presents a detailed

comparison between our standard model and its larger counterpart. It’s

noteworthy that, despite any variations, the size of the embedding vec-

tors for each patch module and the mlpRatio remains consistent across all

encoder blocks.

This structural consistency ensures that the essential characteristics of

the model components are preserved, facilitating ease of integration and

adaptability. Whether opting for the standard or larger version, users have

the freedom to fine-tune the model’s performance by adjusting the number

of encoder layers to suit their specific requirements. This flexibility is a

key advantage of our model, allowing for versatility in handling diverse

applications and tasks.

In the implementation of the local strategy within LoGoNet, a pivotal de-

cision was made to partition each image tensor into 𝑁 = 8 segments. While

this approach offers advantages in enhancing local processing capabilities,

it concurrently introduces a significant surge in the number of trainable

parameters. In addressing this challenge, a thoughtful strategy has been

employed within the local section of LoGoNet.

Specifically, in the local processing segment of LoGoNet, a judicious

selection has been made to utilize only two encoder blocks, in contrast to

the four blocks employed in the global section, as previously mentioned.

This intentional divergence in the number of encoder blocks between the

local and global sections serves to strike a balance between computational

complexity and model expressiveness.

By limiting the local section to two encoder blocks, we manage to miti-

gate the potential escalation in trainable parameters, thereby optimizing

the trade-off between computational efficiency and model performance.

This strategic choice is rooted in a nuanced understanding of the inter-

play between local and global processing within the overall architecture of

LoGoNet.

In essence, our design rationale carefully tailors the number of encoder

blocks in each section to the specific demands of local and global processing,

ensuring a harmonious integration that optimally leverages the strengths

of both approaches. This meticulous consideration of architectural choices

reflects our commitment to achieving a well-balanced and efficient model

in LoGoNet.

9 COMPLEMENTARY RESULTS
The information pertaining to pre-training is encapsulated in Table 2. To

train the pre-trained model, we leveraged the 𝐴𝑑𝑎𝑚𝑊 optimizer and fine-

tuned the process by configuring specific parameters. In particular, we

assigned values of 0.1 and 0.7 to 𝜙1 and 𝜙2 respectively. Additionally, the

sequence of distorted images, denoted as𝑀 , was set to 5.

Hyperparameter M = 3 M = 5 M = 7
𝜙1 = 0.1 .835 .850 .847

𝜙1 = 0.2 .838 .847 .840

𝜙1 = 0.3 .841 .843 .838

Table 14: Hyperparameter tuning for sequenced mask image
length (M) and rate of sampled images (𝜙1): A detailed explo-
ration of hyperparameter variations to optimize key aspects
of our experimental setup. Result is for BTCV dataset and
ULKANet model.

Table 14 presents the outcome of selecting hyperparameter values, with

results obtained from the BTCV dataset using the ULKANet model. This tab-

ulated information sheds light on the meticulous decision-making process

involved in determining specific values for key hyperparameters, providing

valuable insights into our experimental configuration.

Our observations reveal that augmenting both the values of𝑀 (length

of sequenced mask images) and 𝜙1 (rate of sampled images) results in

an increased rate of masked images. However, this heightened rate poses

challenges for our model, making it more intricate to exploit dependen-

cies between successive slices for effectively capturing information related

to missing voxels. This delicate interplay between hyperparameters em-

phasizes the necessity of finding an optimal balance to enhance model

performance, as an excessive increase in masked images may impede the

model’s ability to leverage contextual dependencies within the data.

Regarding statistically significant tests, Our model underwent rigor-

ous training, leveraging the BTCV dataset five times and the MSD dataset

twice, ensuring robustness and reliability. To comprehensively evaluate our

model’s performance, we present the average Dice accuracy and standard

deviation on the BTCV dataset. Table 13 shows Mean ± Standard Deviation
for our method compared to the best baseline (DiNTS) across different

organs. Upon scrutinizing the table, a notable observation emerges; for

instance, a one-tail t-test conducted on the ’Gall’ class yields a calculated

t-value of 𝑡 (8) = 2.599, corresponding to a p-value of 0.016. Our model

demonstrates statistical significance over the best baseline in five classes at

an alpha level of 0.05 and nine classes at an alpha level of 0.10, elucidating

its superior performance across multiple organ segments.
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