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Abstract—Autoregressive models, despite their commendable
performance in a myriad of generative tasks, face challenges
stemming from their inherently sequential structure. Inference
on these models, by design, harnesses a temporal dependency,
where the current token’s probability distribution is conditioned
on preceding tokens. This inherent characteristic severely impedes
computational efficiency during inference as a typical inference
request can require more than thousands of tokens, where
generating each token requires a load of entire model weights,
making the inference more memory-bound. The large overhead
becomes profound in real deployment where requests arrive
randomly, necessitating various generation lengths. Existing
solutions, such as dynamic batching and concurrent instances,
introduce significant response delays and bandwidth contention,
falling short of achieving optimal latency and throughput. To
address these shortcomings, we propose Flover – a temporal fusion
framework for efficiently inferring multiple requests in parallel.
We deconstruct the general generation pipeline into pre-processing
and token generation, and equip the framework with a dedicated
work scheduler for fusing the generation process temporally
across all requests. By orchestrating the token-level parallelism,
Flover exhibits optimal hardware efficiency and significantly
spares the system resources. By further employing a fast buffer
reordering algorithm that allows memory eviction of finished
tasks, it brings over 11× inference speedup on GPT and 16×
on LLAMA compared to the cutting-edge solutions provided by
NVIDIA FasterTransformer. Crucially, by leveraging the advanced
tensor parallel technique, Flover proves efficacious across diverse
computational landscapes, from single-GPU setups to distributed
scenarios, thereby offering robust performance optimization that
adapts to variable use cases.

Index Terms—Autoregressive model, Inference frameworks,
Parallel Pipelining, Distributed inference

I. INTRODUCTION

Large-scale artificial intelligence (AI) models, especially

autoregressive ones, are helping make significant strides in

several important areas such as Natural Language Processing

(NLP), time-series forecasting, and signal processing. Autore-

gressive models, including notable Large Language Models

(LLMs) like the Generative Pretrained Transformer (GPT)

series [2]–[4], [13], [14], [18], [19], stand out for their ability

to predict successive outputs based on preceding ones and the

entire input sequence. This inherent characteristic of forming

*This research is supported in part by NSF grants #1818253, #1854828,
#1931537, #2007991, #2018627, #2112606, #2311830, #2312927, and XRAC
grant #NCR-130002.

temporal dependencies among outputs is a characteristic that

is particularly pronounced in autoregressive models.

The training of these autoregressive models is a compu-

tationally demanding process due to the sheer volume of

parameters involved, the extensive sequence lengths, and the

requirement of techniques such as beam search and top-k

sampling. However, it’s important to note that training is largely

a one-time effort, often done in-house before the model is made

available to the public. A technique known as sequence masking
for parallelization has proved instrumental in mitigating this

challenge. By leveraging the available ground truth for all

output sequences in the training dataset, sequence masking

enables the simultaneous processing of different parts of an

input sequence, thereby considerably accelerating the training

process.

While the optimization of the training phase is crucial,

the real-time user experience predominantly hinges on the

efficiency of the inference phase. This phase, however, en-

counters unique challenges due to the much smaller batch size

per request, random flow of requests, and various inference

configurations. Along with the sequential dependency, tradi-

tional parallel inference strategies such as dynamic batching

and concurrent instances find huge gaps in accelerating the

inference service on servers. Therefore, while the training phase

can be expedited via sequence masking and dedicated tricks,

optimizing the inference phase, which directly impacts user

experience, requires a more tailored approach.

A. Problem Statement

With the rapid advancement of AI, inference servers routinely

grapple with the processing of multiple concurrent inference

requests from autoregressive models. Current methodologies

such as dynamic batching and concurrent model instances, em-

ployed by inference frameworks like Microsoft DeepSpeed [1],

[15] and NVIDIA Triton Inference Server [6], become much

less effective when confronted with autoregressive models,

as they either significantly delay the inference to a heuristic

time window or launching too many model instances causing

severe hardware contention, the degradation in performance

exacerbates rapidly as the number of parallel requests increase,

as shown in our thorough profiling in VI-E. Fig 1 provides

a real deployment case to compare these methods and our

107

2023 IEEE 30th International Conference on High Performance Computing, Data, and Analytics (HiPC)

2640-0316/23/$31.00 ©2023 IEEE
DOI 10.1109/HiPC58850.2023.00026

20
23

 IE
EE

 3
0t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 H
ig

h 
Pe

rf
or

m
an

ce
 C

om
pu

tin
g,

 D
at

a,
 a

nd
 A

na
ly

tic
s (

Hi
PC

) |
 9

79
-8

-3
50

3-
83

22
-5

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

HI
PC

58
85

0.
20

23
.0

00
26

Authorized licensed use limited to: The Ohio State University. Downloaded on January 06,2025 at 21:10:47 UTC from IEEE Xplore.  Restrictions apply. 



+0 ms +230 ms +470 ms +510 ms+500 ms
Time

request #0 request #1 request #2
request #3

Inference for 300 iter.
Waiting

Inference for 300 iter.Create Model Instance #0request #0

Dynamic Batching

Concurrent Instances

Proposed
Temporal Fusion

request #0 request #1 request #2 request #3

Main inference stream

Output #0

Output #0 Output #1 Output #2 Output #3

Inference  for 300 iter.Create Model Instance #1request #1 Output #1

Inference for 300 iter.Create Model Instance #2request #2 Output #2

Inference for 300 iter.Create Model Instance #3request #3

Token parallel inference
Total iter for 4 requests = e.g. 540

Waiting

Dynamic Batching Output #0~2

(a)
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Fig. 1: Workflow comparison on dynamic batching, concurrent model instances, and our Temporal fusion. Time stamps on

the line give an example of different arrival times of requests. For dynamic batching, we assume the time window is 500ms,

though this may vary in real cases. In this example, each inference request asks for 300 iterations.

proposed temporal fusion strategy, a detailed discussion will

be provided in III.

B. Motivation

A pressing need in today’s AI landscape is the development

of robust strategies capable of parallelizing these temporally

dependent inference requests. This would effectively enhance

system efficiency, improve throughput, and reduce response

time, ultimately leading to a better user experience and wider

applicability of these advanced AI models. In autoregressive

structure, the inherent constraints impede the potential of

parallel processing any single request, though, when dealing

with multiple of them, we indeed can adopt a parallel pipelining

method across all requests. In fact, it is more common and

particularly prominent in real-time applications and scenarios

where the inference server constantly receives new requests as

it is processing previous ones. As existing solutions become

ineffectual in handling such scenarios, there is an urgent need to

enhance the efficiency of the inference process in autoregressive

models, a necessity recognized by the AI community. And this

focus is paving the way for the next wave of advancements in

AI, aimed at making these powerful models more accessible

and efficient.

C. Contributions

In this work, we propose Flover, a temporal fusion frame-

work tailored to the context of parallel inference in autoregres-

sive models. The main contribution of Flover is to promptly

process incoming requests, eliminating the need for batching

or time window allocation, while not triggering the launch of

redundant model instances or kernel calls.

Flover only maintains one main computing stream to handle

any number of requests throughout the lifecycle of inference,

largely reducing the overhead in numerous separated kernel

calls and scheduling redundant collective communicators.

The paper makes the following contributions:

1) We introduce a novel temporal fusion framework for

propelling autoregressive model inference by leveraging

the temporality property of inferring generative tasks,

delivering superior and more fine-grained parallelism

beyond all current solutions.

2) We thoroughly analyze multiple real inference scenarios

and compare our solution with the cutting-edge NVIDIA

FasterTransformer [6], [12], where Flover provides

speedups of 11x on GPT-J [19] 6B and Llama [18]

7B, 7x on Llama [18] 13B, 13x on Llama [18] 33B, and

16x on Llama [18] 65B models.

3) We design the Flover scheduler to significantly reduce

hardware resource requirements by saving 93.9% of CPU

threads and 96.9% of GPU kernel launching compared

to FasterTransformer [6], [12], in parallel inference 32

requests.

4) We design an efficient memory shuffle algorithm that

can reorder requests’ buffers, such that significantly

reduce computing workload and communication message

volume, further providing 23% faster inference.

5) To the best of our knowledge, Flover provides a

high-performance solution in accelerating autoregressive

model inference with full support on various token

generation configurations. It is not restricted to hardware

resources, delivering the above performance gain not only

on single GPU inference, and also seamlessly works with

the advanced tensor parallel [17] technique to accelerate

distributed inference.

The code for our project is open-sourced and available online.1

II. BACKGROUND

A. Autoregressive models

Deep learning architectures comprise a variety of models

with unique traits and applications. Broadly, these models

fall into two categories: non-autoregressive and autoregressive,

differentiated by their operational patterns.

Non-autoregressive models, such as ResNet [9], Vision

Transformer [7], [10] for image classification, and YOLO [16]

1https://github.com/YJHMITWEB/Flover.git
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Variable generation Requests fused Buffer Parallel inference 32 requests
length processing reordering # of threads required # of kernel launch

FasterTransformer [6], [12] � 32 (+1) 32
ORCA [20] � / /

Flover (ours) � � � 1 (+1) 1

TABLE I: Summarizing state-of-the-art parallel inference frameworks.

for object detection, function as feed-forward networks. These

models independently process each input through a sequence

of transformations, thereby producing output in a single pass

through the model.

On the other hand, autoregressive models, such as GPT and

Llama models used in language modeling tasks, represent a

different operational paradigm, distinguished by their temporal

dependencies. Unlike non-autoregressive models, these models

necessitate multiple passes through the model, using the output

from one run as the input for the next. This inherently sequential

pattern is critical in tasks such as natural language processing

and time series analysis, where maintaining the order of data

points is vital. In particular, this sequential nature is a crucial

characteristic of language models like GPT, enabling them to

generate coherent and contextually appropriate language by

taking into account the previous tokens.

B. Parallel inference frameworks

Parallel inference frameworks, most notably FasterTrans-

former, play a critical role in boosting the efficiency of

Transformer-based models. The FasterTransformer library by

NVIDIA has been meticulously designed to optimize and

expedite the execution of such models, including Transformer-

based autoregressive architectures such as the GPT series. The

library incorporates a set of optimization strategies such as

kernel fusion and the use of half-precision (FP16) operations,

a method particularly suited for deep learning computations.

The broad compatibility of FasterTransformer with popular

deep learning frameworks like TensorFlow and PyTorch further

consolidates its widespread utility in the realm of Transformer-

based applications.

III. CHALLENGES AND LIMITATIONS OF EXISTING

APPROACHES

In the quest for efficient inference, general solutions such as

dynamic batching and concurrent model instances as shown

in Fig 1 have been integrated into frameworks like Microsoft

DeepSpeed [1], [15] and NVIDIA Triton Inference Server [6].

Table I compares the cutting-edge inference frameworks with

our proposed Flover design. We first analyze the common

strategies of parallel inference, a detailed stats will be provided

in VI-E.

Dynamic batching allows the server to wait within a time

window τ , which is pre-defined according to the estimated

volume of requests. Requests that arrive within the ith time

window τi will be packed together along the batch dimension.

When the time window is reached or the maximum requests

are presented, the packed batch bi will be passed into the

inference model as a whole for more efficient processing. Since

in inference scenarios, a single request usually has a much

smaller batch size compared to training, packing requests to a

larger batch will lead to higher GPU utilization and throughput.

Though, determining the time window can be heuristic and

exhibits no flexibility. For example, in Fig 1 (a), request #0 that

arrived at the beginning of a time window will have to wait for

the whole window until it can be processed, this could lead to

severe overhead in latency and also prevent possible overlap

of computation. Even worse, as shown in Fig 1 (a), request 3

arrives at 510 ms, thus it has to wait until the currently running

batch finishes. In autoregressive models, this will significantly

increase the response time.

Concurrent model instances allows the immediate launch-

ing of a new inference instance once a request arrives, and the

instance will only infer this request. As shown in Fig 1 (b),

the inference server first loads the model weight into the GPU

memory. Then, for each request it receives, a new thread will

be spawned by the server and it will create a new instance of

the inference model. As more and more requests arrive, the

server will continuously spawn new threads to handle each

of them separately. Notice that all instances will share the

same model weight that was pre-loaded in the global memory,

so that the overall memory consumption is still reasonable.

However, this method can introduce severe overhead because

each model instance can consume a massive amount of memory

bandwidth during computing, and when multiple instances run

concurrently, they compete for the same resources, draining

the bandwidth, causing frequent context switching on both

CPU and GPU sides, therefore creating a resource contention

scenario, leading to severe performance degradation.

ORCA [20] is an autoregressive model inference framework

that aims to tackle the resource contention situation by applying

a selection engine to perform the batching of requests. However,

their design requires determining the batching strategy at every

iteration and as shown in Table I, it can only handle requests

that are uniform in generation length, which is less likely to

be true in real deployment. Also as it is not public accessible,

preventing us from further analysis.

IV. PRELIMINARIES

To schematically demonstrate our method, let’s first define
what a request is in autoregressive model inference. Consider
the GPT models, a request Ri has the following domains:

• Ri

– Batch size: A positive integer n, e.g. 1
– Input words: n lists of words,

e.g. [‘How’, ‘can’, ‘AI’, ‘help’, ‘humans’, ‘?’]
– Max Generation Length: A positive integer, e.g. 300

The above request indicates that for such a question “How

can AI help humans?”, the inference server is allowed to
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FFlloovverer LLauncauncheherr

Configuration
files
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    ... 
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    ... 
3. Runtime parameters
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......
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Fig. 2: Schematic illustration of the proposed Temporal Fusion Framework for autoregressive models. (a) Flover launcher reads

configurations, (b) memory initialization on both model weights loading and buffer pre-allocation, (c) Inference scheduler is

initialized and spawns two threads for fetching requests and token generation, (d) Fetching thread spins on the request queue

and perform pre-processing, (e) token generation thread spins on inferene queue and generates tokens in parallel for all requests.

generate a response of at most 300 words. According to the

model specification, the inference process might terminate early

if it outputs an EOS word, such as “$”, denoting the completion

of the answer. Or, if it reaches the maximum length (e.g. 300),

it will force the inference process to stop.
Next, we will analyze two real inference scenarios where re-

quests’ arrival follows a constant time interval τ or the Poisson

process. The memorylessness property of the Poisson process

aligns with the nature of independent request arrivals, while

the burstiness and sparsity observed in deep learning systems

can be accommodated within this paradigm. Considering the

arrival of requests conforms to P (k) = e−λλk

k! , the arrivals

of requests occur randomly and independently over time. λ
denotes the expected number of arrivals that occur in a unit

interval of time, and P (k) represents the probability of k
requests arriving within a unit time interval. Then the time

interval x between two arrivals can be modeled by Exponential

distribution f(x) = λe−λx, x ≥ 0.
Utilizing both paradigms enables us to gain insights into the

request arrival patterns, facilitating efficient resource allocation

and capacity planning within our design.

V. FRAMEWORK DESIGN

With all the insights we have, we propose Flover, a temporal

fusion framework for propelling inference on autoregressive

models. First, we make the following clarifications. For every

request, we decompose its inference pipeline into two main

phases, namely, 1). Pre-processing 2). Token generation.
Fig 1 (c) shows the abstract workflow of Flover, and Fig 2

further shows more details. We illustrate the Flover framework

by it’s components, namely, (a) Flover Launcher, (b) Buffer

Manager, and (c) Inference Scheduler.

A. Memory and scheduler initialization
Flover Launcher in Fig 2 (a) will first read user-provided

configuration files, in which the type of the model, inference

data type, and parallel strategy are defined. As the information

is sufficient, it will immediately issue the model launching by

loading the model weights from the disk to GPU memory.

Next, Flover will read the meta specification of requests

which will be conformed to by all requests in this launch.

Given the actual scenarios where the frequency and intensity of

inference requests are pre-determined, max_concurrency
sets the maximum number of requests that can be concurrently

processed. Notice that the theoretical maximum of this value is

directly related to available GPU memory. In our experiments,

we set it up to 32 as it is reaches the memory limit of an

NVIDIA A100 GPU, denoting that there could be at most

32 requests running in the inference stream, in other words,

32 tokens will be generated per iteration. More requests will

be waiting until a running one finishes. Considering it with

other parameters such as the batch size, the max generation

length, and the width of beam search, Buffer Manager in

Fig 2 (b) could calculate the upper bound of memory usage

during the running. Notice that Flover applies a pinned and

reusable memory management, which means that every buffer

used by the framework will be pre-allocated, avoiding any

dynamic allocation during inference. Here are some advantages:

1) Parallel inference frameworks are considered to last long

on the server, meaning that as long as the workload and

flow are reasonably stable, we could expect all memory

that it pre-allocates will be in use without any waste. 2)

Allocating memory for all requests will guarantee their buffers

are contiguous and adjacent to each other, which could

largely increase the memory utilization and benefit the buffer

reordering technique which we will introduce later in V-D,

as it further brings about 23% of improvement on inference

latency. Fig 2 (b) shows the pre-allocation for three different

buffers that will be used in each round of generation. Note

that in the real model, the number of different buffers used in

inference is much more, and each buffer varies in size.

After GPU buffer is all set, we launch the inference scheduler,

preparing to fetch requests and perform token generation. Flover

adopts a queue-spinning strategy for handling new requests.

Specifically, the scheduler will create two queues, a request

queue QR, and an inference queue QI . And it launches two

threads, a request fetching thread TF and a token generation
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thread TI . During the whole running time of Flover, TF will

spin on QR, checking if there are any new requests received

by the server. Once it gets a new request from QR, it will

spawn a new thread TP (denoted as the yellow string in Fig 2

(d)) for pre-processing this request.

B. Fetching and pre-processing

Algorithm 1 Initialization, fetching requests, and performing

pre-processing in parallel
/* Initiate mutex queues and buffers */
RequestQueue reque;
InferenceQueue inque;

/* Pre-allocate buffers */
DeviceMalloc(ctxt_buffer, ln_buffer, act_buffer, reduce_buffer)

While not finish /* Loop, keep pulling for new requests */
If reque.get(req) then std::thread()

/* Fetching a request and assigning its memory index */
offset = AssignMemId() * per_request_size;

/* Start computing context cache on corresponding buffer */
preprocessing->run(ctxt_buffer+offset);

/* Current request is ready for token generation */
inque.add(req);

End If
/* End loop */

As we mentioned previously, that a new request coming from

the user only contains the raw input data, here we need to wrap

the data into a more compact data structure, e.g. tensors or

tensor maps, and we need to copy from host memory to GPU

buffer, as shown in Fig 2 (d). It is noteworthy that the Memcpy

is also performed on pre-allocated buffers as it will later be

used by the model, therefore, at this step, we have to decide

which slot of the buffer should the data go. In Fig 2, for better

visualization, we draw 3 buffers, each with 6 slots, meaning

that we allow a maximum of 6 requests’ concurrent inference.

Namely, they are context buffer, act buffer 1, and act buffer

2. Assuming that the new request is assigned with a unique

memory index mem_id=0, the following context decoder will

then process this request and put the intermediate result to slot

0 of context buffer. At this step, the context of the request has

been cached in memory, which means it is ready for token

generation. As shown in Algorithm 1, for simple clarification,

we list the basic outline of its logic.

Before proceeding to the next section, we would like to

further clarify the concurrent context caching design. When

a new request arrives, it might be as simple as the case we

introduced above, which only requires data packing before

going to the model, but in more often cases, the pre-processing

could include many more customized operations such as

keyword filtering, sensitivity checking, spell correction, or a

heavier context decoder, which are not parallelizable. In order

to avoid any congestion, we shortly spawn new threads to

handle the potential high concurrency and they no longer exist

after this step. We emphasize that for the typical autoregressive

generation task, the pre-processing part takes over less than 1%
of the overall elapsed time, therefore the potential of draining

the system resource from multi-thread subscription is negligible.

C. Parallel token generation for multiple requests

In generative models, token generation is the most time-

consuming process. A request that asks for a 1000 words

response will simply cost twice the time of a 500 words

request, due to the unbreakable data dependency existing in the

for loop. Fortunately, generating tokens for different requests

follows identical procedures. As shown in Fig 2 (e), suppose

that we have two requests, where the second request joins the

inference stream at iteration t+1, while the first request has

been in inference since iteration t-1. In every iteration, the

model performs completely identical operations, for example,

cuBLAS kernel calls, Layernorm, Allreduce, Allgather, and

the only difference is in the value of data itself. This means

that instead of inference two requests separately with multiple

kernel calls or collective operations, we can simply put their

buffers adjacent in memory and launch a single kernel call

to perform the computation and communication. Therefore, at

iteration t-1 and t, Flover is generating 1 token for the first

request. At iteration t+1, since the second request is received by

the generation thread, it will update the corresponding buffer

size to 2, so that all following kernel operations can directly

work on these buffers.

Algorithm 2 and Fig 3 (first row) illustrate how this temporal

fusion works on GPU memory space. We update the buffer

offset and size once there is a new request available in inference

queue QI . Therefore, the temporal fusion process contains two

operations: 1) Place new request memory adjacent to current

memory space; 2) Modify buffer offset and buffer accordingly.

Then, when computing kernels or collective operations are

called, they can operate on the exact memory space we intend,

without involving in additional unnecessary memories.

Algorithm 2 Main stream for token generation
/* Create an inference map to track every request */
InferenceMap inmap;

while not finish /* Loop */
/* 1. Iteratively generate new tokens for current requests */
/* 2. At the start of every loop, pulling for new requests ready for token generation */

If inque.get(req) then
/* Kernel operations need to cover the buffer region of the new request */

Update(offset, size);
inmap.insert(req);

End If

/* Start token generation */
cublasGemm(ctxt_buffer + offset, size, ...);
LayerNorm(ln_buffer + offset, size, ...);
GenericActivation(act_buffer + offset, size, ...);
NCCLAllreduce(reduce_buffer + offset, size, ...);
...

/* Check if any request finishes, so that it’s buffers can be evicted */
inmap.FindAndEvict(require_shuffle);

If require_shuffle then
/* Perform memory shuffle, making buffers tight and contiguous */

inmap.LaunchMemShuffle();
End If

/* End loop */
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D. Memory shuffle for creating contiguous buffer

We have discussed in preliminaries that the arrival of requests

is random, however, if the inference of every request will

always reach the maximum output length before it gets an

EOS to finish, then the memory management would be very

simple and straightforward. Assume that the first request is

assigned mem_id=0, the second request assigned mem_id=1,

the third request assigned mem_id=2, etc., then we only need

to increase buffer_size when a new request arrives, and

increment buffer_offset when a request finishes, and the

memory space is guaranteed to be contiguous (assume there

is enough memory that allows us to monotonically increase

buffer_offset). The reason is that since all requests

require fixed iterations, then the whole inference pipeline can

be seen as a FIFO queue, where the request that arrives first

will also evict from memory first. However, such an ideal

assumption might not be true for complicated real inference

scenarios.

Req #0, mem_id = 2
Req #1, mem_id = 3
Req #2, mem_id = 4
Req #3, mem_id = 5
Req #4, mem_id = 6
Req #5, mem_id = 7

0 1 2 3 4 5 6Req #

Running requestsRReqeq ##22 anandd ##55 ��nniisshheses

Req #6, mem_id = 8

0 1 3 4 6

Req #0, mem_id = 2
Req #1, mem_id = 3
Req #3, mem_id = 5
Req #4, mem_id = 6
Req #6, mem_id = 8

ww//ww oo.. mmememoorryy sshhuu��ee
KKernernelel''ss wwoorrklklooadad==77

0 13 4 6

Req #0, mem_id = 4
Req #3, mem_id = 5
Req #4, mem_id = 6
Req #1, mem_id = 7
Req #6, mem_id = 8

22-ssttepep mmemoemorryy sshhuu��ee
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buffer offset = 2 
buffer   size = 7

buffer offset = 4 
buffer   size = 5
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Fig. 3: Reordering the buffer using memory shuffle, guarantee-

ing a contiguous memory of running requests.

As we discussed before, for an generative model, inference

requests are likely to differ in max output lengths. Some

requests only need a few output tokens, whereas others might

require thousands. More commonly, even for an inference

server that has already set a max output length for all requests,

the inference might output an EOS token, such as “$”, before

it reaches the length limitation. In this case, keep generating

new tokens for this request will waste lots of computing power

and add additional latency as any tokens following the “$” will

be considered invalid. Thus, it is clear that when a request

sees an ending token $ or reaches the length limitation, it

should immediately evict from the memory. Fig 3 depicts such

a situation, where requests 2 and 5 finish, then after they evict,

how do we manage the memory space?

If we simply keep buffer offset and size unchanged, then

those evicted memories are detrimental to the inference pipeline,

as both computing kernels and collective communication can

only process contiguous memory buffers, and they still have to

Algorithm 3 Find Shuffled Memory Region
/* Initialization */
total_cost = 0;
non_zero = 0;

/* Loop to find non-zero elements in array and their total cost */
for (i = 0; i < arr.size(); ++i)
If arr[i] != 0 then

non_zero += 1;
total_cost += arr[i];

End If

/* Initialize min cost and window cost */
min_cost = ∞;
window_cost = 0;
mem_offset = 0;

/* Calculate window cost and update minimum cost and memory offset accordingly */
for (i = non_zero; i < arr.size(); ++i)

window_cost += arr[i] - arr[i - non_zero];
current_cost = total_cost - window_cost;
If current_cost < min_cost then

min_cost = current_cost;
mem_offset = i - non_zero + 1;

End If

/* Return memory offset */

cover mem_id 4 and 7. Thus, we need an efficient algorithm

to shuffle and reorder the memory by moving all valid buffers

together to form a new continuous memory space. The problem

now becomes how to minimize the amount of memory that

needs to be moved and therefore not introduce too much

overhead, as the inference server will block following iterations

until memory is properly managed.

To abstract the problem, given an array of 0 and 1, where 0

denotes empty memory space, and 1 denotes valid, we need

an algorithm that can group all 1 together while moving as

less number of elements as possible. Here we use a sliding

window algorithm 3 with time complexity O(n) to achieve it.

Since an ideal shuffle will result in a contiguous memory

region of size n if there are n 1’s in the array. Thus we only

need to locate where this memory region of size n should

lay, and we can copy those 1’s outside of this region in.

Algorithm 3 shows how to find the offset of this memory

region. Fig 3 (last row) illustrates the shuffled memory region

and the corresponding shuffle strategy. Note that our algorithm

guarantees that the total amount of memory movement is

minimized, but might disorder the memory offsets of requests.

Therefore, for each request running in the inference model, it

also tracks GPU memory offsets of all its tensors.

VI. EXPERIMENTS

A. Setup

As we emphasized, on both single GPU cases and distributed

scenarios where other advanced parallel strategies like tensor

parallel [17] are already deployed, Flover can largely propel

autoregressive model inference with its unique and efficient

workflow. Therefore, we conduct thorough ablation experiments

on both cases to study how Flover improves inference efficiency

at a fine-grained level, and we use various analysis methods

to profiling how Flover outperforms existing solutions.

Hardware: We conduct all experiments on NVIDIA A100

80GB GPUs with AMD EPYC 7763 64-Core Processor. Each
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(a). Parallel inference on different models. We measure the overall time spent on parallel inference 1, 2, 4, 8, 16, 32 requests.

Fig. 4: GPT-J, Llama 13B, 33B, and 65B runs on 1, 1, 2, 4 GPUs respectively. (b) Throughput and (c) latency analysis on

GPT-J and Llama. We use statistical data to model the average inference latency over the latency of inferring a single request.

computing node has four GPUs connected by NVLINK. All

collective operations are performed by the NVIDIA Collective

Communications Library [11] (NCCL).

Software: We implement our Flover framework based on

NVIDIA FasterTransformer [12] C++ codebase, which is one

of the most widely used Triton [6] backends and large language

model (LLM) solutions. For the following experiments, we

use the following famous language models — GPT-J [19]

6B, Llama [18] 6B, Llama [18] 13B, Llama [18] 33B, and

Llama [18] 65B. GPT-J [19] is created by EleutherAI, a

community-driven organization that aims to promote open-

source AI research. It has 6 billion parameters and was trained

on The Pile [8]. Llama [18] are the state-of-the-art foundation

language models released by Meta AI, which are trained on

1.4T tokens of CommonCrawl, Github, Wikipedia, ArXiv, etc.

We compare our results mainly to FasterTransformer, as

ORCA [20] is not open-sourced for evaluation.

B. Temporal fusion with constant time interval

In this section, we start with analyzing how efficient Flover

is when using temporal fusion to process multiple requests in

parallel. As discussed, the real case of arrivals of requests

is considered a Poisson process, where the time interval

between two requests is a random variable from the exponential

distribution. However, for simplicity, in this part, we will use a

constant time interval of 500ms to study the parallel efficiency,

as this is also adopted by some inference frameworks. Notice

that for all models, the average inference latency for a single

request is much longer than 500ms, therefore it leaves great

potential for parallel acceleration.

Fig 4 (a) compares Flover to FasterTransformer on four

different models. For GPT-J 6B and Llama 13B, we run on 1

GPU without tensor parallelism. For Llama 33B, we run on 2

GPUs with tensor parallelism of size 2. And for Llama 65B,

we use 4 GPUs to perform degree-4 tensor parallelism. When

we only have 1 request running for inference, both frameworks

deliver similar performance on all models as there is no differ-

ence in the workflow. When increasing the parallel requests

to 2, a salient disparity in latency performance is observed.

Flover provides an average 1.8x speedup in overall latency.

This is largely due to Flover only initiating half of kernel

calls and collective operations, while in FasterTransformer,

multiple model instances are competing for resources, leading

to significant overhead in context switching. Therefore, Flover

delivers increasingly higher parallel efficiency when we keep

increasing the concurrency of requests. At 32 concurrency,

Flover only spends 9% of time to complete all requests’

inference on GPT-J 6B model and 6% on Llama 65B. And

as we involve higher degree of tensor parallelism, additional

NCCL collective calls further slow down FasterTransformer.

In Llama 65B model, Flover provides 16.7x speedup against

the baseline.
Fig 4 (b) further analyzes the throughput of both frameworks

on these models. As Flover fuses the inference of multiple

requests by enabling individual kernels to operate on larger

contiguous buffer pieces, which is similar to increasing the

batch size from 1 to 32, it achieves optimal utilization

of GPU resources or an embarrassing parallel. While in

FasterTransformer, since each kernel is still operating on a

single request batch, increasing concurrency cannot benefit

the throughput, instead, because of frequent launching and
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(a)

λ (ms) 20 50 100 150 200 300 400

Total Iters. 557 616 748 888 911 1174 1366
Overlap 91.3% 81.8% 67.3% 62.1% 60.3% 45.2% 36.7%
Speedup 11.2x 11.1x 10.2x 9.3x 9.1x 7.9x 7.1x

λ (ms) 500 750 1000 2000 3000 4000 5000

Total Iters. 1537 2239 2621 5483 7738 8902 10694
Overlap 31.0% 23.2% 20.0% 9.3% 6.7% 5.7% 4.8%
Speedup 6.5x 4.5x 4.2x 2.1x 1.3x 1.3x 1.1x

(b)

Fig. 5: Total latency of inferring 32 requests follow the Poisson process. Time intervals between requests are randomly sampled

from the exponential distribution with different λ. A single request takes 5800ms on the inference server. The right-side table

further shows the number of total iterations for inferring 32 requests, requests overlap, and speedup to FasterTransformer,

following the Poisson process of different λ. A single request requires 512 iterations to generate all output tokens.

context switching, we observe a deterioration when launching

too many kernels at 32 parallel requests. Fig 4 (c) provides a

more detailed analysis of the average latency of each request,

as this directly affects the user experience of their request. As

the framework is dealing with different number of parallel

requests at any time step, so we present a statistical result

on the latency. With 8 parallel requests, the average latency

of each request is only 3% longer than solely inference such

a request. When we increase the concurrency to 32, it takes

slightly longer time for delivering the generation, at around

8% slower than solely inference such a request. The behavior

is expected as we increase the workload of kernels, though the

overall throughput gets better, the average latency per request

will increase as well. For FasterTransformer however, due to

context switching, we observe that almost all requests are

finished together at the very end, leading to extremely worse

latency performance.

C. Temporal fusion with Poisson process

Consider such a request ri, containing an inference task

that takes the inference server about tr to finish. Let’s denote

the time interval between request r0 and r1 as τ . If τ � tr,

then most of the time, r0 and r1 are temporally overlapped in

the inference server. If τ � tr, then requests are considered

sequentially processed. In practice, however, overlapping two

requests might sightly affect tr as we stated previously, by

1% to 13% as shown in Fig 4 (c). Here we stick to it as it is

enough for our analysis.

As we discussed, the arrival times of inference requests are

not fixed or predictable in a strict sense. Instead of adhering

to a constant time window or a constant interval between

the arrival of each request, the process can be modeled as a

Poisson process, in which the exponential distribution models

the varying time intervals between the arrivals of requests. Here

each request is with a 512 output tokens limitation. Bars in

Fig 5 compare the total inference latency on 32 requests using

FasterTransformer [12] and Flover respectively, under a span

of λ in [20ms, 5000ms]. The yellow line reports the average

number of overlapped requests in the overall inference, which is

in inverse proportion to λ. When τ = 20ms, almost all requests

are parallel processed by the inference server, while when τ =
5000ms, on average only 1 or 2 requests can temporally overlap

with each other. Table in Fig 5 provides a more detailed stat on

the Poisson process. Overlap is dividing the average number of

temporally overlapped requests by the total number of requests.

Total Iters. counts from the first request’s output token to the

end token of the last request. Given that one request requires

512 iterations for inference, the larger the overlap, the more

performance gain Flover can provide, as it is able to optimize

most computing and communication during the inference. Also

noteworthy is that in concurrent model instances, the time

interval does not dominate the overall latency until it reaches

4000ms. This is due to operating multiple instances which

introduce too much overhead for the inference server as we will

analyze in VI-E, resulting in severe degradation in performance.

D. Memory shuffle for non-uniform requests

We have so far analyzed different arrival patterns of requests,

e.g. constant, random. However, in real-world scenarios, re-

quests from various users might vary drastically in the total

number of iterations, which is another random variable. The

distribution of the total number of iterations (i.e., the length

of the generated sequences) before an end-of-sequence (EOS)

token appears in a sequence generated by an autoregressive

model like GPT [2]–[4], [13], [14], [19] largely depends on the

specifics of the model and its training data. If the model has

been trained on a dataset where text sequences typically have

a certain length, it will likely generate sequences of similar

length when run on similar data. Moreover, the generation

process in autoregressive models inherently includes a degree

of randomness. This randomness can cause variability in the

length of the generated sequences, making it hard to fit a

simple distribution. And techniques such as beam search,

top-k sampling, or temperature adjustments used during the

generation process can also affect the length of the output

sequences. Given these factors, to better study how different

frameworks perform in the most-uncertain scenarios or worst-

case, we adopt a uniform distribution Ul(a, b) to model and
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Fig. 6: Total latency of inferring 32 requests with random

numbers of token generation. Requests’ generation length is

sampled from a uniform distribution with a lower bound fixing

at 128, and the upper bound varies on the x-axis.

sample requests’ total number of iterations, where all values

are equally distributed.

In this experiment, we will vary b, to mimic the use cases

of Flover in various autoregressive models. We set the number

of requests to 32 to approach the real distribution and reduce

variance. In Fig 6, we compare our method with the baseline

FasterTransformer. Notice that Flover without memory shuffle

refers to the naive solution we showed in Fig 4, which will not

perform any memory shuffle operations but leave those finished

requests’ buffers within the contiguous memory space. It is clear

that when enabling memory shuffle after requests evict from the

compute stream, Flover is able to gain more performance during

the inference, as memory shuffle will reorder the buffer to make

sure evicted ones are no longer part of the computation. Also

noteworthy is that, for Ul on the interval [a, b], the standard

deviation is given by the σ =
√

(b−a)2

12 . Therefore, as we

increase the upper bound of Ul, requests tend to have more

various numbers of iterations, which means there will be more

evicted buffers as requests finish. Averagely, memory shuffle

delivers 20% improvement in latency compared to our vanilla

design. While in total, it delivers a 23.4x speedup in overall

inference latency against the baseline.

E. Profiling on hardware scheduling patterns

We’ve mentioned in early sections that compared to existing

parallel inference strategies, Flover provides both scalability

and instantaneity in dealing with heavy load scenarios. Fig 7

shows the cumulative token generation progress of processing

32 requests in parallel. We explicitly present 4 settings of

dynamic batching strategy and also compare them to the con-

current instances strategy which is used by FasterTransformer.

Although let dynamic batching wait for a long window, e.g.

16000ms, will result in higher throughput in token generation,

it also introduces severe latency, especially to the early arrived

Fig. 7: Cumulative progress in inference 32 requests with

different parallel strategies. Results are conducted on Llama

13B with a maximum generation length of 512. Requests are

sent to the server with a fixed time interval of 500ms.

requests. As shown in the second figure, dynamic batching

largely delays all requests in the same window by 300%
compared to the temporal fusion strategy that Flover adopts.

In Fig 8, we further analyze the hardware scheduling pattern

of the concurrent instances strategy used by FasterTransformer.

As we have provided theoretical explanations in VI-B, we

directly dive into the profiling results. In the Nsight interface,

blue blocks represent the CUDA kernel calls, while the CPU

threads status is shown at the bottom. In FasterTransformer

(Fig 8 (a)), since each model instance has to run by a dedicated

thread, parallel inference on 32 requests will require launching

that many threads. The CUDA profiling clearly shows that the

randomness and chaos due to each instance trying to launch

separate kernels and the CPU also needs to handle context

switching caused potentially by over-subscription. In Flover

example, the CUDA profiling is very clear and uniform, as

there is only 1 thread and 1 instance issuing kernel calls. Notice

that each segment here represents one iteration in the model

inference, while this streamlined pattern cannot be observed in

FasterTransformer. As we demonstrated in Fig 2, Flover only

keeps two threads spinning during the entire runtime. This is

also shown in Fig 8 (b) bottom part.
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VIII. CONCLUSIONS

We have proposed a novel temporal fusion framework

(Flover) for efficient autoregressive model inference across

various industrial scenarios. Unlike existing solutions that either

require a delayed batching of requests or launch multiple model

instances to serve the need, which lacks flexibility and causes

severe overhead in response time, Flover innovatively leverages

temporal parallelism of autoregressive models, providing
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Resource racing and
redundant kernel lauching

(a) NVIDIA Nsight Profiling on baseline FasterTransformer. All model instances compete for resources.

All requests only require 1
kernel call

Spinning on
request queue

Spinning on
inference queue

Fig. 8: (b) NVIDIA Nsight Profiling on Flover. Each green box denotes parallel generating 1 token for all requests.

instantaneous inference on incoming requests while being able

to seamlessly fuse new requests to proceeding ones regardless

of their temporal gaps. By employing an efficient memory

shuffle algorithm, our solution enhances hardware utilization

and substantially reduces the overhead in computing and

communication, guaranteeing a highly efficient and performant

inference framework. Being synergistically coalesced with the

advanced tensor parallel technique, Flover achieves optimal

management on both single GPU and distributed inference

scenarios, ensuring robustness and scalability in diverse autore-

gressive model inference landscapes. We hope that this work

sparks further research and innovations, fostering new methods

and techniques that build upon this foundation.

IX. RELATED WORK

A few works have investigated accelerating the inference

of auto-regressive generative models. ORCA [20] provides a

similar iteration batching mechanism, however, their solutions

can only deal with uniform requests with fixed generation length

and hence do not support memory eviction of early finished

requests. As we stated in our ablation experiments, we believe

that real-world requests are all various and follow random

arriving patterns which need to be thoroughly analyzed.

REFERENCES

[1] Reza Yazdani Aminabadi, Samyam Rajbhandari, Minjia Zhang, Am-
mar Ahmad Awan, Cheng Li, Du Li, Elton Zheng, Jeff Rasley, Shaden
Smith, Olatunji Ruwase, et al. Deepspeed inference: Enabling efficient
inference of transformer models at unprecedented scale. arXiv preprint
arXiv:2207.00032, 2022. 1, 3

[2] Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao,
Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason
Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria
Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. Gpt-neox-
20b: An open-source autoregressive language model, 2022. 1, 8

[3] Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman.
GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-
Tensorflow, March 2021. 1, 8

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.
1, 8

[5] FasterTranfromer contributors. llama support in fastertransformer. https:
//github.com/NVIDIA/FasterTransformer/issues/506. 9

[6] NVIDIA Corporation. Triton inference server: An optimized cloud and
edge inferencing solution. 1, 2, 3, 7

[7] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 2

[8] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe,
Charles Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima,
et al. The pile: An 800gb dataset of diverse text for language modeling.
arXiv preprint arXiv:2101.00027, 2020. 7

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 770–778, 2016. 2

[10] Jiachen Lu, Jinghan Yao, Junge Zhang, Xiatian Zhu, Hang Xu, Weiguo
Gao, Chunjing Xu, Tao Xiang, and Li Zhang. Soft: Softmax-free
transformer with linear complexity. Advances in Neural Information
Processing Systems, 34:21297–21309, 2021. 2

[11] NVIDIA. NCCL2. https://developer.nvidia.com/nccl, 2017. 7
[12] NVIDIA. ft. https://github.com/NVIDIA/FasterTransformer, 2021. 2, 3,

7, 8
[13] OpenAI. Gpt-4 technical report, 2023. 1, 8
[14] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya

Sutskever, et al. Language models are unsupervised multitask learners.
OpenAI blog, 1(8):9, 2019. 1, 8

[15] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He.
Deepspeed: System optimizations enable training deep learning models
with over 100 billion parameters. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 3505–3506, 2020. 1, 3

[16] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
779–788, 2016. 2

[17] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. Megatron-lm: Training multi-billion
parameter language models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019. 2, 6

[18] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-
Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric
Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023. 1, 2, 7

[19] Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Param-
eter Autoregressive Language Model. https://github.com/kingoflolz/
mesh-transformer-jax, May 2021. 1, 2, 7, 8

[20] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and
Byung-Gon Chun. Orca: A distributed serving system for {Transformer-
Based} generative models. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), pages 521–538, 2022.
3, 7, 10

116

Authorized licensed use limited to: The Ohio State University. Downloaded on January 06,2025 at 21:10:47 UTC from IEEE Xplore.  Restrictions apply. 


