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Abstract—Autoregressive models, despite their commendable
performance in a myriad of generative tasks, face challenges
stemming from their inherently sequential structure. Inference
on these models, by design, harnesses a temporal dependency,
where the current token’s probability distribution is conditioned
on preceding tokens. This inherent characteristic severely impedes
computational efficiency during inference as a typical inference
request can require more than thousands of tokens, where
generating each token requires a load of entire model weights,
making the inference more memory-bound. The large overhead
becomes profound in real deployment where requests arrive
randomly, necessitating various generation lengths. Existing
solutions, such as dynamic batching and concurrent instances,
introduce significant response delays and bandwidth contention,
falling short of achieving optimal latency and throughput. To
address these shortcomings, we propose Flover — a temporal fusion
framework for efficiently inferring multiple requests in parallel.
We deconstruct the general generation pipeline into pre-processing
and token generation, and equip the framework with a dedicated
work scheduler for fusing the generation process temporally
across all requests. By orchestrating the token-level parallelism,
Flover exhibits optimal hardware efficiency and significantly
spares the system resources. By further employing a fast buffer
reordering algorithm that allows memory eviction of finished
tasks, it brings over 11x inference speedup on GPT and 16x
on LLAMA compared to the cutting-edge solutions provided by
NVIDIA FasterTransformer. Crucially, by leveraging the advanced
tensor parallel technique, Flover proves efficacious across diverse
computational landscapes, from single-GPU setups to distributed
scenarios, thereby offering robust performance optimization that
adapts to variable use cases.

Index Terms—Autoregressive model, Inference frameworks,
Parallel Pipelining, Distributed inference

I. INTRODUCTION

Large-scale artificial intelligence (AI) models, especially
autoregressive ones, are helping make significant strides in
several important areas such as Natural Language Processing
(NLP), time-series forecasting, and signal processing. Autore-
gressive models, including notable Large Language Models
(LLMs) like the Generative Pretrained Transformer (GPT)
series [2]-[4], [13], [14], [18], [19], stand out for their ability
to predict successive outputs based on preceding ones and the
entire input sequence. This inherent characteristic of forming

*This research is supported in part by NSF grants #1818253, #1854828,
#1931537, #2007991, #2018627, #2112606, #2311830, #2312927, and XRAC
grant #NCR-130002.

temporal dependencies among outputs is a characteristic that
is particularly pronounced in autoregressive models.

The training of these autoregressive models is a compu-
tationally demanding process due to the sheer volume of
parameters involved, the extensive sequence lengths, and the
requirement of techniques such as beam search and top-k
sampling. However, it’s important to note that training is largely
a one-time effort, often done in-house before the model is made
available to the public. A technique known as sequence masking
for parallelization has proved instrumental in mitigating this
challenge. By leveraging the available ground truth for all
output sequences in the training dataset, sequence masking
enables the simultaneous processing of different parts of an
input sequence, thereby considerably accelerating the training
process.

While the optimization of the training phase is crucial,
the real-time user experience predominantly hinges on the
efficiency of the inference phase. This phase, however, en-
counters unique challenges due to the much smaller batch size
per request, random flow of requests, and various inference
configurations. Along with the sequential dependency, tradi-
tional parallel inference strategies such as dynamic batching
and concurrent instances find huge gaps in accelerating the
inference service on servers. Therefore, while the training phase
can be expedited via sequence masking and dedicated tricks,
optimizing the inference phase, which directly impacts user
experience, requires a more tailored approach.

A. Problem Statement

With the rapid advancement of Al inference servers routinely
grapple with the processing of multiple concurrent inference
requests from autoregressive models. Current methodologies
such as dynamic batching and concurrent model instances, em-
ployed by inference frameworks like Microsoft DeepSpeed [1],
[15] and NVIDIA Triton Inference Server [6], become much
less effective when confronted with autoregressive models,
as they either significantly delay the inference to a heuristic
time window or launching too many model instances causing
severe hardware contention, the degradation in performance
exacerbates rapidly as the number of parallel requests increase,
as shown in our thorough profiling in VI-E. Fig 1 provides
a real deployment case to compare these methods and our
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Fig. 1: Workflow comparison on dynamic batching, concurrent model instances, and our Temporal fusion. Time stamps on
the line give an example of different arrival times of requests. For dynamic batching, we assume the time window is 500ms,
though this may vary in real cases. In this example, each inference request asks for 300 iterations.

proposed temporal fusion strategy, a detailed discussion will
be provided in III.

B. Motivation

A pressing need in today’s Al landscape is the development
of robust strategies capable of parallelizing these temporally
dependent inference requests. This would effectively enhance
system efficiency, improve throughput, and reduce response
time, ultimately leading to a better user experience and wider
applicability of these advanced Al models. In autoregressive
structure, the inherent constraints impede the potential of
parallel processing any single request, though, when dealing
with multiple of them, we indeed can adopt a parallel pipelining
method across all requests. In fact, it is more common and
particularly prominent in real-time applications and scenarios
where the inference server constantly receives new requests as
it is processing previous ones. As existing solutions become
ineffectual in handling such scenarios, there is an urgent need to
enhance the efficiency of the inference process in autoregressive
models, a necessity recognized by the Al community. And this
focus is paving the way for the next wave of advancements in
Al, aimed at making these powerful models more accessible
and efficient.

C. Contributions

In this work, we propose Flover, a temporal fusion frame-
work tailored to the context of parallel inference in autoregres-
sive models. The main contribution of Flover is to promptly
process incoming requests, eliminating the need for batching
or time window allocation, while not triggering the launch of
redundant model instances or kernel calls.

Flover only maintains one main computing stream to handle
any number of requests throughout the lifecycle of inference,
largely reducing the overhead in numerous separated kernel
calls and scheduling redundant collective communicators.

The paper makes the following contributions:

1) We introduce a novel temporal fusion framework for
propelling autoregressive model inference by leveraging
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the temporality property of inferring generative tasks,
delivering superior and more fine-grained parallelism
beyond all current solutions.

2) We thoroughly analyze multiple real inference scenarios
and compare our solution with the cutting-edge NVIDIA
FasterTransformer [6], [12], where Flover provides
speedups of 11x on GPT-J [19] 6B and Llama [18]
7B, 7x on Llama [18] 13B, 13x on Llama [18] 33B, and
16x on Llama [18] 65B models.

3) We design the Flover scheduler to significantly reduce
hardware resource requirements by saving 93.9% of CPU
threads and 96.9% of GPU kernel launching compared
to FasterTransformer [6], [12], in parallel inference 32
requests.

4) We design an efficient memory shuffle algorithm that
can reorder requests’ buffers, such that significantly
reduce computing workload and communication message
volume, further providing 23% faster inference.
To the best of our knowledge, Flover provides a
high-performance solution in accelerating autoregressive
model inference with full support on various token
generation configurations. It is not restricted to hardware
resources, delivering the above performance gain not only
on single GPU inference, and also seamlessly works with
the advanced tensor parallel [17] technique to accelerate
distributed inference.

5)

The code for our project is open-sourced and available online.'

II. BACKGROUND
A. Autoregressive models

Deep learning architectures comprise a variety of models
with unique traits and applications. Broadly, these models
fall into two categories: non-autoregressive and autoregressive,
differentiated by their operational patterns.

Non-autoregressive models, such as ResNet [9], Vision
Transformer [7], [10] for image classification, and YOLO [16]

Uhttps://github.com/YJHMITWEB/Flover.git
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‘ Variable generation

Requests fused

Buffer | Parallel inference 32 requests

length processing reordering | # of threads required | # of kernel Taunch
FasterTransformer [6], [12] v 32 (+1) 32
ORCA [20] v / /
Flover (ours) v v v 1 (+1) 1

TABLE I: Summarizing state-of-the-art parallel inference frameworks.

for object detection, function as feed-forward networks. These
models independently process each input through a sequence
of transformations, thereby producing output in a single pass
through the model.

On the other hand, autoregressive models, such as GPT and
Llama models used in language modeling tasks, represent a
different operational paradigm, distinguished by their temporal
dependencies. Unlike non-autoregressive models, these models
necessitate multiple passes through the model, using the output
from one run as the input for the next. This inherently sequential
pattern is critical in tasks such as natural language processing
and time series analysis, where maintaining the order of data
points is vital. In particular, this sequential nature is a crucial
characteristic of language models like GPT, enabling them to
generate coherent and contextually appropriate language by
taking into account the previous tokens.

B. Parallel inference frameworks

Parallel inference frameworks, most notably FasterTrans-
former, play a critical role in boosting the efficiency of
Transformer-based models. The FasterTransformer library by
NVIDIA has been meticulously designed to optimize and
expedite the execution of such models, including Transformer-
based autoregressive architectures such as the GPT series. The
library incorporates a set of optimization strategies such as
kernel fusion and the use of half-precision (FP16) operations,
a method particularly suited for deep learning computations.
The broad compatibility of FasterTransformer with popular
deep learning frameworks like TensorFlow and PyTorch further
consolidates its widespread utility in the realm of Transformer-
based applications.

III. CHALLENGES AND LIMITATIONS OF EXISTING
APPROACHES

In the quest for efficient inference, general solutions such as
dynamic batching and concurrent model instances as shown
in Fig 1 have been integrated into frameworks like Microsoft
DeepSpeed [1], [15] and NVIDIA Triton Inference Server [6].
Table I compares the cutting-edge inference frameworks with
our proposed Flover design. We first analyze the common
strategies of parallel inference, a detailed stats will be provided
in VI-E.

Dynamic batching allows the server to wait within a time
window 7, which is pre-defined according to the estimated
volume of requests. Requests that arrive within the i, time
window 7; will be packed together along the batch dimension.
When the time window is reached or the maximum requests
are presented, the packed batch b; will be passed into the
inference model as a whole for more efficient processing. Since
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in inference scenarios, a single request usually has a much
smaller batch size compared to training, packing requests to a
larger batch will lead to higher GPU utilization and throughput.
Though, determining the time window can be heuristic and
exhibits no flexibility. For example, in Fig 1 (a), request #0 that
arrived at the beginning of a time window will have to wait for
the whole window until it can be processed, this could lead to
severe overhead in latency and also prevent possible overlap
of computation. Even worse, as shown in Fig 1 (a), request 3
arrives at 510 ms, thus it has to wait until the currently running
batch finishes. In autoregressive models, this will significantly
increase the response time.

Concurrent model instances allows the immediate launch-
ing of a new inference instance once a request arrives, and the
instance will only infer this request. As shown in Fig 1 (b),
the inference server first loads the model weight into the GPU
memory. Then, for each request it receives, a new thread will
be spawned by the server and it will create a new instance of
the inference model. As more and more requests arrive, the
server will continuously spawn new threads to handle each
of them separately. Notice that all instances will share the
same model weight that was pre-loaded in the global memory,
so that the overall memory consumption is still reasonable.
However, this method can introduce severe overhead because
each model instance can consume a massive amount of memory
bandwidth during computing, and when multiple instances run
concurrently, they compete for the same resources, draining
the bandwidth, causing frequent context switching on both
CPU and GPU sides, therefore creating a resource contention
scenario, leading to severe performance degradation.

ORCA [20] is an autoregressive model inference framework
that aims to tackle the resource contention situation by applying
a selection engine to perform the batching of requests. However,
their design requires determining the batching strategy at every
iteration and as shown in Table I, it can only handle requests
that are uniform in generation length, which is less likely to
be true in real deployment. Also as it is not public accessible,
preventing us from further analysis.

IV. PRELIMINARIES
To schematically demonstrate our method, let’s first define
what a request is in autoregressive model inference. Consider
the GPT models, a request R; has the following domains:
e R;
— Batch size: A positive integer n, e.g. 1
— Input words: n lists of words,
e.g. ['How’, ‘can’, ‘AI’, ‘help’, ‘humans’, ‘?’]
— Max Generation Length: A positive integer, e.g. 300
The above request indicates that for such a question “How
can Al help humans?”, the inference server is allowed to
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Fig. 2: Schematic illustration of the proposed Temporal Fusion Framework for autoregressive models. (a) Flover launcher reads
configurations, (b) memory initialization on both model weights loading and buffer pre-allocation, (c) Inference scheduler is
initialized and spawns two threads for fetching requests and token generation, (d) Fetching thread spins on the request queue
and perform pre-processing, (e) token generation thread spins on inferene queue and generates tokens in parallel for all requests.

generate a response of at most 300 words. According to the
model specification, the inference process might terminate early
if it outputs an EOS word, such as “$”, denoting the completion
of the answer. Or, if it reaches the maximum length (e.g. 300),
it will force the inference process to stop.

Next, we will analyze two real inference scenarios where re-
quests’ arrival follows a constant time interval 7 or the Poisson
process. The memorylessness property of the Poisson process
aligns with the nature of independent request arrivals, while
the burstiness and sparsity observed in deep learning systems
can be accommodated within this paradigm. Considering the
arrival of requests conforms to P(k) = e}:ﬁk, the arrivals
of requests occur randomly and independently over time. A
denotes the expected number of arrivals that occur in a unit
interval of time, and P(k) represents the probability of k
requests arriving within a unit time interval. Then the time
interval = between two arrivals can be modeled by Exponential
distribution f(z) = Ae™* x > 0.

Utilizing both paradigms enables us to gain insights into the
request arrival patterns, facilitating efficient resource allocation
and capacity planning within our design.

V. FRAMEWORK DESIGN

With all the insights we have, we propose Flover, a temporal
fusion framework for propelling inference on autoregressive
models. First, we make the following clarifications. For every
request, we decompose its inference pipeline into two main
phases, namely, 1). Pre-processing 2). Token generation.

Fig 1 (c) shows the abstract workflow of Flover, and Fig 2
further shows more details. We illustrate the Flover framework
by it’s components, namely, (a) Flover Launcher, (b) Buffer
Manager, and (c) Inference Scheduler.

A. Memory and scheduler initialization

Flover Launcher in Fig 2 (a) will first read user-provided
configuration files, in which the type of the model, inference
data type, and parallel strategy are defined. As the information
is sufficient, it will immediately issue the model launching by
loading the model weights from the disk to GPU memory.

Next, Flover will read the meta specification of requests
which will be conformed to by all requests in this launch.
Given the actual scenarios where the frequency and intensity of
inference requests are pre-determined, max_concurrency
sets the maximum number of requests that can be concurrently
processed. Notice that the theoretical maximum of this value is
directly related to available GPU memory. In our experiments,
we set it up to 32 as it is reaches the memory limit of an
NVIDIA A100 GPU, denoting that there could be at most
32 requests running in the inference stream, in other words,
32 tokens will be generated per iteration. More requests will
be waiting until a running one finishes. Considering it with
other parameters such as the batch size, the max generation
length, and the width of beam search, Buffer Manager in
Fig 2 (b) could calculate the upper bound of memory usage
during the running. Notice that Flover applies a pinned and
reusable memory management, which means that every buffer
used by the framework will be pre-allocated, avoiding any
dynamic allocation during inference. Here are some advantages:
1) Parallel inference frameworks are considered to last long
on the server, meaning that as long as the workload and
flow are reasonably stable, we could expect all memory
that it pre-allocates will be in use without any waste. 2)
Allocating memory for all requests will guarantee their buffers
are contiguous and adjacent to each other, which could
largely increase the memory utilization and benefit the buffer
reordering technique which we will introduce later in V-D,
as it further brings about 23% of improvement on inference
latency. Fig 2 (b) shows the pre-allocation for three different
buffers that will be used in each round of generation. Note
that in the real model, the number of different buffers used in
inference is much more, and each buffer varies in size.

After GPU buffer is all set, we launch the inference scheduler,
preparing to fetch requests and perform token generation. Flover
adopts a queue-spinning strategy for handling new requests.
Specifically, the scheduler will create two queues, a request
queue g, and an inference queue ;. And it launches two
threads, a request fetching thread 7= and a token generation
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thread 77. During the whole running time of Flover, T will
spin on @) g, checking if there are any new requests received
by the server. Once it gets a new request from Qp, it will
spawn a new thread 7'» (denoted as the yellow string in Fig 2
(d)) for pre-processing this request.

B. Fetching and pre-processing

Algorithm 1 Initialization, fetching requests, and performing
pre-processing in parallel

/* Initiate mutex queues and buffers */
RequestQueue reque;
InferenceQueue inque;

/* Pre-allocate buffers */
DeviceMalloc(ctxt_buffer, 1n_buffer, act_buffer, reduce_buffer)
While not finish /* Loop, keep pulling for new requests */
If reque.get (req) then std::thread()
/* Fetching a request and assigning its memory index */
offset = AssignMemId() =* per_request_size;

/* Start computing context cache on corresponding buffer */
preprocessing->run (ctxt_buffertoffset);

/* Current request is ready for token generation */
inque.add(req);
End If
/* End loop */

As we mentioned previously, that a new request coming from
the user only contains the raw input data, here we need to wrap
the data into a more compact data structure, e.g. tensors or
tensor maps, and we need to copy from host memory to GPU
buffer, as shown in Fig 2 (d). It is noteworthy that the Memcpy
is also performed on pre-allocated buffers as it will later be
used by the model, therefore, at this step, we have to decide
which slot of the buffer should the data go. In Fig 2, for better
visualization, we draw 3 buffers, each with 6 slots, meaning

that we allow a maximum of 6 requests’ concurrent inference.

Namely, they are context buffer, act buffer 1, and act buffer
2. Assuming that the new request is assigned with a unique
memory index mem_1id=0, the following context decoder will
then process this request and put the intermediate result to slot
0 of context buffer. At this step, the context of the request has
been cached in memory, which means it is ready for token
generation. As shown in Algorithm 1, for simple clarification,
we list the basic outline of its logic.

Before proceeding to the next section, we would like to
further clarify the concurrent context caching design. When
a new request arrives, it might be as simple as the case we
introduced above, which only requires data packing before
going to the model, but in more often cases, the pre-processing
could include many more customized operations such as
keyword filtering, sensitivity checking, spell correction, or a
heavier context decoder, which are not parallelizable. In order
to avoid any congestion, we shortly spawn new threads to
handle the potential high concurrency and they no longer exist
after this step. We emphasize that for the typical autoregressive
generation task, the pre-processing part takes over less than 1%
of the overall elapsed time, therefore the potential of draining

the system resource from multi-thread subscription is negligible.

C. Parallel token generation for multiple requests

In generative models, token generation is the most time-
consuming process. A request that asks for a 1000 words
response will simply cost twice the time of a 500 words
request, due to the unbreakable data dependency existing in the
for loop. Fortunately, generating tokens for different requests
follows identical procedures. As shown in Fig 2 (e), suppose
that we have two requests, where the second request joins the
inference stream at iteration t+1, while the first request has
been in inference since iteration t-1. In every iteration, the
model performs completely identical operations, for example,
cuBLAS kernel calls, Layernorm, Allreduce, Allgather, and
the only difference is in the value of data itself. This means
that instead of inference two requests separately with multiple
kernel calls or collective operations, we can simply put their
buffers adjacent in memory and launch a single kernel call
to perform the computation and communication. Therefore, at
iteration t-1 and t, Flover is generating 1 token for the first
request. At iteration t+1, since the second request is received by
the generation thread, it will update the corresponding buffer
size to 2, so that all following kernel operations can directly
work on these buffers.

Algorithm 2 and Fig 3 (first row) illustrate how this temporal
fusion works on GPU memory space. We update the buffer
offset and size once there is a new request available in inference
queue ;. Therefore, the temporal fusion process contains two
operations: 1) Place new request memory adjacent to current
memory space; 2) Modify buffer offset and buffer accordingly.
Then, when computing kernels or collective operations are
called, they can operate on the exact memory space we intend,
without involving in additional unnecessary memories.

Algorithm 2 Main stream for token generation

/* Create an inference map to track every request */
InferenceMap inmap;

while not finish /* Loop */
/* 1. Iteratively generate new tokens for current requests */
/* 2. At the start of every loop, pulling for new requests ready for token generation */
If inque.get (req) then
/* Kernel operations need to cover the buffer region of the new request */
Update (offset, size);
inmap.insert (req);
End If

/* Start token generation */

cublasGemm (ctxt_buffer + offset, size, ...);
LayerNorm(ln_buffer + offset, size, ...);
GenericActivation (act_buffer + offset, size, ...);
NCCLAllreduce (reduce_buffer + offset, size, ...);

/* Check if any request finishes, so that it’s buffers can be evicted */
inmap.FindAndEvict (require_shuffle);

If require_shuffle then
/* Perform memory shuffle, making buffers tight and contiguous */
inmap.LaunchMemShuffle () ;
End If
/* End loop */
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D. Memory shuffle for creating contiguous buffer

We have discussed in preliminaries that the arrival of requests
is random, however, if the inference of every request will
always reach the maximum output length before it gets an
EOS to finish, then the memory management would be very
simple and straightforward. Assume that the first request is
assigned mem_i1d=0, the second request assigned mem_id=1,
the third request assigned mem_id=2, etc., then we only need
to increase buffer_size when a new request arrives, and
increment buffer_offset when a request finishes, and the
memory space is guaranteed to be contiguous (assume there
is enough memory that allows us to monotonically increase
buffer_ offset). The reason is that since all requests
require fixed iterations, then the whole inference pipeline can
be seen as a FIFO queue, where the request that arrives first
will also evict from memory first. However, such an ideal
assumption might not be true for complicated real inference
scenarios.

Req #2 and #5 finishes Running requests
Req #0, mem id = 2
Req #1, mem id = 3
Req #2, mem id = 4
Req# B 1 2 3 4 5 b Req #3, mem id = 5
Req #4, mem id = 6
Req #5, mem id = 7
Req #6, mem id = 8

w/o. memory shuffle

f =

Kernel's workload=7 Req #0, mem id = 2
Req #1, mem id = 3
Req #3, mem id = 5
Req #4, mem_id = 6
Req# @ 1 3 4 B Req #6, mem id = 8
buffer offset = 2
buffer size =7

2-step memory shuffle
Kernel's workload=5 Shuffled to contiguous buffer
Req #0, mem id = 4
Req #3, mem id = 5
Req #4, mem id = 6
Req #1, mem id = 7
Req # DI3141 116 Req #6, mem id = 8
buffer offset = 4
buffer size = 5

Fig. 3: Reordering the buffer using memory shuffle, guarantee-
ing a contiguous memory of running requests.

As we discussed before, for an generative model, inference
requests are likely to differ in max output lengths. Some
requests only need a few output tokens, whereas others might
require thousands. More commonly, even for an inference
server that has already set a max output length for all requests,
the inference might output an EOS token, such as “$”, before
it reaches the length limitation. In this case, keep generating
new tokens for this request will waste lots of computing power
and add additional latency as any tokens following the “$” will
be considered invalid. Thus, it is clear that when a request
sees an ending token $ or reaches the length limitation, it
should immediately evict from the memory. Fig 3 depicts such
a situation, where requests 2 and 5 finish, then after they evict,
how do we manage the memory space?

If we simply keep buffer offset and size unchanged, then
those evicted memories are detrimental to the inference pipeline,
as both computing kernels and collective communication can
only process contiguous memory buffers, and they still have to

Algorithm 3 Find Shuffled Memory Region

/* Initialization */
total_cost
non_zero

0;

0;
/* Loop to find non-zero elements in array and their total cost */
for (1 = 0; 1 < arr.size(); ++1)
If arr[i] 0 then

non_zero += 1;

total_cost += arr[i];
End If

=

/* Initialize min_cost and window_cost */
min_cost = oo;

window_cost
mem_offset

0;
0;

/* Calculate window cost and update minimum cost and memory offset accordingly */
for (i non_zero; 1 < arr.size(); ++1i)

window_cost += arr[i] - arr[i - non_zero];

current_cost total_cost - window_cost;

If current_cost < min_cost then

min_cost = current_cost;
mem_offset = i - non_zero + 1;
End If

/* Return memory offset */

cover mem_1id 4 and 7. Thus, we need an efficient algorithm
to shuffle and reorder the memory by moving all valid buffers
together to form a new continuous memory space. The problem
now becomes how to minimize the amount of memory that
needs to be moved and therefore not introduce too much
overhead, as the inference server will block following iterations
until memory is properly managed.

To abstract the problem, given an array of 0 and 1, where 0
denotes empty memory space, and 1 denotes valid, we need
an algorithm that can group all 1 together while moving as
less number of elements as possible. Here we use a sliding
window algorithm 3 with time complexity O(n) to achieve it.

Since an ideal shuffle will result in a contiguous memory
region of size n if there are n 1’s in the array. Thus we only
need to locate where this memory region of size n should
lay, and we can copy those 1’s outside of this region in.
Algorithm 3 shows how to find the offset of this memory
region. Fig 3 (last row) illustrates the shuffled memory region
and the corresponding shuffle strategy. Note that our algorithm
guarantees that the total amount of memory movement is
minimized, but might disorder the memory offsets of requests.
Therefore, for each request running in the inference model, it
also tracks GPU memory offsets of all its tensors.

VI. EXPERIMENTS
A. Setup

As we emphasized, on both single GPU cases and distributed
scenarios where other advanced parallel strategies like tensor
parallel [17] are already deployed, Flover can largely propel
autoregressive model inference with its unique and efficient
workflow. Therefore, we conduct thorough ablation experiments
on both cases to study how Flover improves inference efficiency
at a fine-grained level, and we use various analysis methods
to profiling how Flover outperforms existing solutions.

Hardware: We conduct all experiments on NVIDIA A100
80GB GPUs with AMD EPYC 7763 64-Core Processor. Each
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GPT-J and Llama. We use statistical data to model the average inference latency over the latency of inferring a single request.

computing node has four GPUs connected by NVLINK. All
collective operations are performed by the NVIDIA Collective
Communications Library [11] (NCCL).

Software: We implement our Flover framework based on
NVIDIA FasterTransformer [12] C++ codebase, which is one
of the most widely used Triton [6] backends and large language
model (LLM) solutions. For the following experiments, we
use the following famous language models — GPT-J [19]
6B, Llama [18] 6B, Llama [18] 13B, Llama [18] 33B, and
Llama [18] 65B. GPT-J [19] is created by EleutherAl, a
community-driven organization that aims to promote open-
source Al research. It has 6 billion parameters and was trained
on The Pile [8]. Llama [18] are the state-of-the-art foundation
language models released by Meta Al, which are trained on
1.4T tokens of CommonCrawl, Github, Wikipedia, ArXiv, etc.

We compare our results mainly to FasterTransformer, as
ORCA [20] is not open-sourced for evaluation.

B. Temporal fusion with constant time interval

In this section, we start with analyzing how efficient Flover
is when using temporal fusion to process multiple requests in
parallel. As discussed, the real case of arrivals of requests
is considered a Poisson process, where the time interval
between two requests is a random variable from the exponential
distribution. However, for simplicity, in this part, we will use a
constant time interval of 500ms to study the parallel efficiency,
as this is also adopted by some inference frameworks. Notice
that for all models, the average inference latency for a single
request is much longer than 500ms, therefore it leaves great
potential for parallel acceleration.

Fig 4 (a) compares Flover to FasterTransformer on four
different models. For GPT-J 6B and Llama 13B, we run on 1
GPU without tensor parallelism. For Llama 33B, we run on 2
GPUs with tensor parallelism of size 2. And for Llama 65B,
we use 4 GPUs to perform degree-4 tensor parallelism. When
we only have 1 request running for inference, both frameworks
deliver similar performance on all models as there is no differ-
ence in the workflow. When increasing the parallel requests
to 2, a salient disparity in latency performance is observed.
Flover provides an average 1.8x speedup in overall latency.
This is largely due to Flover only initiating half of kernel
calls and collective operations, while in FasterTransformer,
multiple model instances are competing for resources, leading
to significant overhead in context switching. Therefore, Flover
delivers increasingly higher parallel efficiency when we keep
increasing the concurrency of requests. At 32 concurrency,
Flover only spends 9% of time to complete all requests’
inference on GPT-J 6B model and 6% on Llama 65B. And
as we involve higher degree of tensor parallelism, additional
NCCL collective calls further slow down FasterTransformer.
In Llama 65B model, Flover provides 16.7x speedup against
the baseline.

Fig 4 (b) further analyzes the throughput of both frameworks
on these models. As Flover fuses the inference of multiple
requests by enabling individual kernels to operate on larger
contiguous buffer pieces, which is similar to increasing the
batch size from 1 to 32, it achieves optimal utilization
of GPU resources or an embarrassing parallel. While in
FasterTransformer, since each kernel is still operating on a
single request batch, increasing concurrency cannot benefit
the throughput, instead, because of frequent launching and
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Fig. 5: Total latency of inferring 32 requests follow the Poisson process. Time intervals between requests are randomly sampled
from the exponential distribution with different \. A single request takes 5800ms on the inference server. The right-side table
further shows the number of total iterations for inferring 32 requests, requests overlap, and speedup to FasterTransformer,
following the Poisson process of different A\. A single request requires 512 iterations to generate all output tokens.

context switching, we observe a deterioration when launching
too many kernels at 32 parallel requests. Fig 4 (c) provides a
more detailed analysis of the average latency of each request,
as this directly affects the user experience of their request. As
the framework is dealing with different number of parallel
requests at any time step, so we present a statistical result
on the latency. With 8 parallel requests, the average latency
of each request is only 3% longer than solely inference such
a request. When we increase the concurrency to 32, it takes
slightly longer time for delivering the generation, at around
8% slower than solely inference such a request. The behavior
is expected as we increase the workload of kernels, though the
overall throughput gets better, the average latency per request
will increase as well. For FasterTransformer however, due to
context switching, we observe that almost all requests are
finished together at the very end, leading to extremely worse
latency performance.

C. Temporal fusion with Poisson process

Consider such a request r;, containing an inference task
that takes the inference server about ¢, to finish. Let’s denote
the time interval between request o and r; as 7. If 7 < ¢,
then most of the time, ry and r; are temporally overlapped in
the inference server. If 7 = t,., then requests are considered
sequentially processed. In practice, however, overlapping two
requests might sightly affect ¢, as we stated previously, by
1% to 13% as shown in Fig 4 (c). Here we stick to it as it is
enough for our analysis.

As we discussed, the arrival times of inference requests are
not fixed or predictable in a strict sense. Instead of adhering
to a constant time window or a constant interval between
the arrival of each request, the process can be modeled as a
Poisson process, in which the exponential distribution models
the varying time intervals between the arrivals of requests. Here
each request is with a 512 output tokens limitation. Bars in
Fig 5 compare the total inference latency on 32 requests using
FasterTransformer [12] and Flover respectively, under a span
of A in [20ms, 5000ms]. The yellow line reports the average
number of overlapped requests in the overall inference, which is
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in inverse proportion to A\. When 7 = 20ms, almost all requests
are parallel processed by the inference server, while when 7 =
5000ms, on average only 1 or 2 requests can temporally overlap
with each other. Table in Fig 5 provides a more detailed stat on
the Poisson process. Overlap is dividing the average number of
temporally overlapped requests by the total number of requests.
Total Iters. counts from the first request’s output token to the
end token of the last request. Given that one request requires
512 iterations for inference, the larger the overlap, the more
performance gain Flover can provide, as it is able to optimize
most computing and communication during the inference. Also
noteworthy is that in concurrent model instances, the time
interval does not dominate the overall latency until it reaches
4000ms. This is due to operating multiple instances which
introduce too much overhead for the inference server as we will
analyze in VI-E, resulting in severe degradation in performance.

D. Memory shuffle for non-uniform requests

We have so far analyzed different arrival patterns of requests,
e.g. constant, random. However, in real-world scenarios, re-
quests from various users might vary drastically in the total
number of iterations, which is another random variable. The
distribution of the total number of iterations (i.e., the length
of the generated sequences) before an end-of-sequence (EOS)
token appears in a sequence generated by an autoregressive
model like GPT [2]-[4], [13], [14], [19] largely depends on the
specifics of the model and its training data. If the model has
been trained on a dataset where text sequences typically have
a certain length, it will likely generate sequences of similar
length when run on similar data. Moreover, the generation
process in autoregressive models inherently includes a degree
of randomness. This randomness can cause variability in the
length of the generated sequences, making it hard to fit a
simple distribution. And techniques such as beam search,
top-k sampling, or temperature adjustments used during the
generation process can also affect the length of the output
sequences. Given these factors, to better study how different
frameworks perform in the most-uncertain scenarios or worst-
case, we adopt a uniform distribution U;(a,b) to model and
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Fig. 6: Total latency of inferring 32 requests with random
numbers of token generation. Requests’ generation length is
sampled from a uniform distribution with a lower bound fixing
at 128, and the upper bound varies on the x-axis.

sample requests’ total number of iterations, where all values
are equally distributed.

In this experiment, we will vary b, to mimic the use cases
of Flover in various autoregressive models. We set the number
of requests to 32 to approach the real distribution and reduce
variance. In Fig 6, we compare our method with the baseline
FasterTransformer. Notice that Flover without memory shuffle
refers to the naive solution we showed in Fig 4, which will not
perform any memory shuffle operations but leave those finished
requests’ buffers within the contiguous memory space. It is clear
that when enabling memory shuffle after requests evict from the
compute stream, Flover is able to gain more performance during
the inference, as memory shuffle will reorder the buffer to make
sure evicted ones are no longer part of the computation. Also
noteworthy is that, for U; on the interval [a, b], the standard
(b—a)?

12

deviation is given by the o . Therefore, as we
increase the upper bound of Uj, requests tend to have more
various numbers of iterations, which means there will be more
evicted buffers as requests finish. Averagely, memory shuffle
delivers 20% improvement in latency compared to our vanilla
design. While in total, it delivers a 23.4x speedup in overall
inference latency against the baseline.

E. Profiling on hardware scheduling patterns

We’ve mentioned in early sections that compared to existing
parallel inference strategies, Flover provides both scalability
and instantaneity in dealing with heavy load scenarios. Fig 7
shows the cumulative token generation progress of processing
32 requests in parallel. We explicitly present 4 settings of
dynamic batching strategy and also compare them to the con-
current instances strategy which is used by FasterTransformer.
Although let dynamic batching wait for a long window, e.g.
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16000ms, will result in higher throughput in token generation,
it also introduces severe latency, especially to the early arrived

Cumulative token generation progress

100 + =+ Temporal Fusion (ours) -
° Dynamic Batching, window = 2000ms /“‘-ﬁ
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Fig. 7: Cumulative progress in inference 32 requests with
different parallel strategies. Results are conducted on Llama
13B with a maximum generation length of 512. Requests are
sent to the server with a fixed time interval of 500ms.

requests. As shown in the second figure, dynamic batching
largely delays all requests in the same window by 300%
compared to the temporal fusion strategy that Flover adopts.

In Fig 8, we further analyze the hardware scheduling pattern
of the concurrent instances strategy used by FasterTransformer.
As we have provided theoretical explanations in VI-B, we
directly dive into the profiling results. In the Nsight interface,
blue blocks represent the CUDA kernel calls, while the CPU
threads status is shown at the bottom. In FasterTransformer
(Fig 8 (a)), since each model instance has to run by a dedicated
thread, parallel inference on 32 requests will require launching
that many threads. The CUDA profiling clearly shows that the
randomness and chaos due to each instance trying to launch
separate kernels and the CPU also needs to handle context
switching caused potentially by over-subscription. In Flover
example, the CUDA profiling is very clear and uniform, as
there is only 1 thread and 1 instance issuing kernel calls. Notice
that each segment here represents one iteration in the model
inference, while this streamlined pattern cannot be observed in
FasterTransformer. As we demonstrated in Fig 2, Flover only
keeps two threads spinning during the entire runtime. This is
also shown in Fig 8 (b) bottom part.
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VIII. CONCLUSIONS

We have proposed a novel temporal fusion framework
(Flover) for efficient autoregressive model inference across
various industrial scenarios. Unlike existing solutions that either
require a delayed batching of requests or launch multiple model
instances to serve the need, which lacks flexibility and causes
severe overhead in response time, Flover innovatively leverages
temporal parallelism of autoregressive models, providing
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Fig. 8: (b) NVIDIA Nsight Profiling on Flover. Each green box denotes parallel generating 1 token for all requests.

instantaneous inference on incoming requests while being able
to seamlessly fuse new requests to proceeding ones regardless
of their temporal gaps. By employing an efficient memory
shuffle algorithm, our solution enhances hardware utilization
and substantially reduces the overhead in computing and
communication, guaranteeing a highly efficient and performant
inference framework. Being synergistically coalesced with the
advanced tensor parallel technique, Flover achieves optimal
management on both single GPU and distributed inference
scenarios, ensuring robustness and scalability in diverse autore-
gressive model inference landscapes. We hope that this work
sparks further research and innovations, fostering new methods
and techniques that build upon this foundation.

IX. RELATED WORK

A few works have investigated accelerating the inference
of auto-regressive generative models. ORCA [20] provides a
similar iteration batching mechanism, however, their solutions
can only deal with uniform requests with fixed generation length
and hence do not support memory eviction of early finished
requests. As we stated in our ablation experiments, we believe
that real-world requests are all various and follow random
arriving patterns which need to be thoroughly analyzed.
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