16

17
18
19

%

NN NN
NG JCHN

V]
t

AN ADAPTIVE FACTORIZED NYSTROM PRECONDITIONER FOR
REGULARIZED KERNEL MATRICES

SHIFAN ZHAO*, TIANSHI XU* , HUA HUANG!, EDMOND CHOW'! , AND YUANZHE
XTI*

Abstract. The spectrum of a kernel matrix significantly depends on the parameter values of the
kernel function used to define the kernel matrix. This makes it challenging to design a preconditioner
for a regularized kernel matrix that is robust across different parameter values. This paper proposes
the Adaptive Factorized Nystrom (AFN) preconditioner. The preconditioner is designed for the case
where the rank k£ of the Nystrom approximation is large, i.e., for kernel function parameters that lead
to kernel matrices with eigenvalues that decay slowly. AFN deliberately chooses a well-conditioned
submatrix to solve with and corrects a Nystrom approximation with a factorized sparse approximate
matrix inverse. This makes AFN efficient for kernel matrices with large numerical ranks. AFN also
adaptively chooses the size of this submatrix to balance accuracy and cost.

Key words. Kernel matrices, preconditioning, sparse approximate inverse, Nystrom approxi-
mation, farthest point sampling, Gaussian process regression

AMS subject classifications. 65F08, 65F10, 65F55, 68W25

1. Introduction. In this paper, we seek efficient preconditioning techniques for
the iterative solution of large, regularized linear systems associated with a kernel
matrix K,

(1.1) (K+upul)a=Dh,

where I is the n x n identity matrix, 4 € R is a regularization parameter, a,b € R",
and K € R™*" is the kernel matrix whose (¢, j)-th entry is defined as K(x;, x;) with
a symmetric positive semidefinite (SPSD) kernel function K : R¢ x RY — R and data
points {x;}7 ;. For example, IC can be chosen as a Gaussian kernel function,

2
(1.2) K(x,y) = exp <”X12y2> ;
where [ is a kernel function parameter called the length-scale.

Linear systems of the form (1.1) appear in many applications, including Kernel
Ridge Regression (KRR) [1] and Gaussian Process Regression (GPR) [39]. When the
number of data points n is small, solution methods based on dense matrix factoriza-
tions are the most efficient. When n is large, a common approach is to solve (1.1)
using a sparse or low-rank approximation to K [43, 44, 35]. In this paper, we pur-
sue an exact solution approach for (1.1) with iterative methods. Fast matrix-vector
multiplications by K for the iterative solver are available through fast transforms
[25, 56] and hierarchical matrix methods [3, 7, 20, 9, 41, 2, 13, 40, 46, 32]. This paper
specifically addresses the problem of preconditioning for the iterative solver.

In KRR, GPR, and other applications, the kernel function parameters must be es-
timated that fit the data at hand. This involves an optimization process, for example
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2 ADAPTIVE FACTORIZED NYSTROM PRECONDITIONER
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Fig. 1: Left: Spectrum of 61 regularized Gaussian kernel matrices associated with
the same 1000 points sampled randomly over a cube with edge length 10 and a fixed
regularization parameter g = 0.0001 but different length-scales I. Right: Iteration
counts of unpreconditioned CG to solve (1.1) for the 61 regularized kernel matrices to
reach the relative residual tolerance 1074,

maximizing a likelihood function, which in turn involves solving (1.1) for kernel matri-
ces given the same data points but different values of the kernel function parameters.
Different values of the kernel function parameters lead to different characteristics of
the kernel matrix. For the Gaussian kernel function above, Figure 1 (left) shows the
eigenvalue spectrum of 61 regularized 1000 x 1000 kernel matrices. 1000 data points
are sampled inside a cube with edge length 10. In all the experiments, the side of
the d-dimensional cube is scaled by n!/¢ in order to maintain a constant density as
we increase the number of data points. For large values of [, the sorted eigenvalues
decay rapidly, but the decay is slow for small values of I. Figure 1 (right) shows the
number of unpreconditioned conjugate gradient (CG) iterations required to solve linear
systems for these matrices. We observe that the systems are easier to solve for very
large or very small values of [ than for moderate values of [.

In this paper, we seek a preconditioner for kernel matrix systems (1.1) that is
adaptive to different kernel matrices K corresponding to different values of kernel
function parameters. When the numerical rank of K is small, there exist good methods
[45, 22] for preconditioning K + pI based on a Nystrom approximation [55] to the
kernel matrix. We will provide a detailed description of the Nystrom approximation
and the notation we will use, as it is related to our proposed preconditioner.

The n x n kernel matrix is defined by a kernel function and the set of n training
points X = {x;}? ;. The Nystrém approximation, which is inspired by solving an
integral operator eigenvalue problem using the Nystrom method, gives the low rank
factorization

(1.3) K~UAU"

where A is a diagonal matrix of eigenvalues of the smaller £ x k kernel matrix Kx, x, =
[K(2, y)]wexy, yexes Xk = {Xk, }¥_; is a subset of X consisting of k data points referred
to as landmark points. From now on, we will use K x y to denote [K(x, y)]zex, yey for
two general datasets X and Y. Additionally, X_; is a subset of X;. The nxk matrix
U does not have orthonormal columns, but the columns are Nystrom extensions of
the eigenvectors of Kx, x,. The preconditioning operation that approximates the
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S. ZHAO, T. XU, H. HUANG, E. CHOW, AND Y. XI 3

inverse of K + uI utilizes the Sherman-Morrison-Woodbury (SMW) formula,
TTATT 1 1~ e~
(14) (UAUT + D)™ = 1 ;U(,MA_l +UTU)u

Randomized Nystrom approximations based on random projections [33, 45, 22] are
often of the form

(1.5) K~ UAU"

where U has explicitly orthonormalized columns and Ais a diagonal matrix. Now
utilizing the SMW formula and orthonormality, we have the simpler expression for
the preconditioning operation:

~ ~ 1
(1.6) (UAUT 4 uI)~' = UA + u)"'UT + ;(I —-uu’).

The randomized Nystrom approximation based on random projections may be cheaper
to compute if it is expensive to choose the landmark points (e.g., via computing lever-
age scores [14]). However, in some applications such as KRR, the original Nystrom
approximation appears to be more effective [22].

The above preconditioners using Nystrom approximations and other low-rank
approximations to the kernel matrix K involve at least an eigendecomposition or
other factorization of a dense k x k matrix. These methods are effective for small k,
but are costly for large k. In this paper, we address the case where the numerical rank
of the kernel matrix is not small. In Section 2, we propose a 2-by-2 block approximate
factorization of K + uI as a preconditioner, where the (1,1) block corresponds to a
set of landmark points. To select the landmark points for our preconditioner, we use
farthest point sampling, and support this choice with an analysis in Section 3. We also
propose a method for selecting the number of landmark points in Section 4. Section
5 demonstrates the effectiveness of the new preconditioner, and Section 6 summarizes
the contributions of this paper.

2. Adaptive Factorized Nystrém preconditioner. Let K, ,, = UAUT de-
note the Nystrom approximation (1.3). The approximation is mathematically equal
to [55]

(2.1) K,ys = Kx x, K;(;Xk Kx, x

where the notation was defined in the previous section. Without loss of generality, if
the landmark points are indexed first, we can partition K into the block 2-by-2 form

Kll K12:|

2.2 K=
( ) |:K1F2 K22

where K11 = KXIwXIM K12 = KXk,X\Xk and K22 = KX\Xk,X\Xk- In this notation,

Ky K
2.3 K, s = - .
( ) Y |:K1I—2 KIQKulKlJ

The difference K — K, is positive semidefinite.

The Nystrom preconditioner for K+ pl is K,y + pI. For K5 in the above form,
solving with the Nystrom preconditioner via the SMW formula requires applying the
operator
(2.4)

_ 1 1 T 1 _
(Knys +pl) ™! = ;I ; E [KH K12} (Ko + ;(K%I + KK j,)) ™! [Kll KlQ]

This manuscript is for review purposes only.
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4 ADAPTIVE FACTORIZED NYSTROM PRECONDITIONER

to a vector. The matrix (K1 + i(K%l + K12K}],)) is often ill-conditioned, but the
ill-conditioning can be ameliorated [45] if the matrix is not too large (i.e., k is not too
large) and the Cholesky factorization of K;; can be computed rapidly.

We now propose a new preconditioner for K + ulI that can be efficient when
k is large. Recall that K;; is the kernel matrix associated with a set of landmark
points Xj. In order to control the computational cost, we impose a limit on the
maximum size of X, setting it to a constant value, such as 2000. Let LLT be the
Cholesky factorization of Ki; + pI and GTG be an approximate factorization of
(Koo + pI — K5 (Kq; + pI)7'Kjs)™!. Then we can define the following factorized
preconditioner for K + ul:

L 0 LT L1K12:|
2.5 M = _ _ _ .
( ) |:K1T2L T G 1:| |: 0 G T
Expanding the factors,
(2.6)
M — K +pl K
K, (GTG)™' + K| (Ky1 + pI) 'Ky

0 0
2.7) =Kuys +pl+ _ _ _ ,
( ) v H [0 (GTG) 1 + KL ((Kll + /JI) L (Kll) 1) K12 — /LI

Correction term

we see that M equals K,,s + puI plus a correction term. Thus the preconditioner
is not a Nystrom preconditioner, but has similarities to it. Unlike a Nystrém pre-
conditioner, the factorized form approximates K + uI entirely and does not approxi-
mate K separately, and thus avoids the SMW formula. In particular, when we have
G'G = (Koo +pI - K, (Ky; +puI) 1K)t exactly, M=K + uL

The preconditioner requires an economical way to approximately factor the gen-
erally dense matrix (Ko + uI — Koy (Kq; + pI)7Ki2) !, which can be large. For
this, we use the factorized sparse approximate inverse (FSAI) method of Kolotilina
and Yeremin [29]. We use FSAI to compute a sparse approximate inverse G of
the lower triangular Cholesky factor of a symmetric positive definite (SPD) matrix
Koo + uI — Koy (Kqy + uI)7'Kys, given a sparsity pattern for G, ie., GTG =~
(Koo + puI — Ko (Ky; + pI)71Kj3)™t. An important feature of FSAI is that the
computation of G only requires the entries of Koo+ 1 —Kop (Ky1 +pI) "1 Kjs corre-
sponding to the sparsity pattern of G and G T. This makes it possible to economically
compute G even if Koo + I — Ko (Ky1 —|—,uI)_1K12 is large and dense. Further, the
computation of each row of G is independent of other rows and is thus the rows of G
can be computed in parallel. The nonzero pattern used for row ¢ of G corresponds
to the w — 1 nearest neighbors of point ¢ that are numbered less than ¢ (since G is
lower triangular), where w is a parameter. The pseudocode of FSAI can be found in
Alogrithm B.1 in Appendix B.

The preconditioning operation for this proposed Adaptive Factorized Nystrom
(AFN) preconditioner solves systems with the matrix M. Assuming that the vectors
r and s are partitioned conformally with the block structure of M, then to solve the

system
M |:Sl:| |:I‘1:| :
S92 Iro

This manuscript is for review purposes only.
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the algorithm is
$2:=G'G (ro —K{,(L" 'L ")ry),
S1 = L_TL_l(I'l - Klgsg).

The complete construction and application pseudocode of the AFN preconditioner can
be found in Algorithm B.2 and Algorithm B.3, respectively, in Appendix B.

The choice of the landmark points affects the accuracy of the overall AFN pre-
conditioner, just as this choice affects the accuracy of the Nystrom preconditioners.
The sparsity and the conditioning of Koy + uI — K5 (Kq; + 1) 'Kjo generally
improves when more landmark points are chosen, which would on the other hand
increase the computational cost and the instability of the Cholesky factorization of
K11 + pI. In the next section, the choice of landmark points is discussed in light of
these considerations.

3. Selecting the landmark points. Existing methodologies for sampling k
landmark points from a dataset with n data points include uniform sampling [55],
the anchor net method [8, 10], leverage score sampling [17, 23, 35], k-means-based
sampling [57], determinantal point process (DPP)-based sampling [4], and random
pivoted Cholesky sampling [12]. Uniform sampling with the computational complex-
ity O(k) excels in scenarios such as kernel ridge regression applications where direct
access to kernel matrices is available, and the data does not exhibit unbalanced clus-
ters. Nonetheless, its efficacy diminishes when faced with unbalanced clusters as it
tends to oversample larger clusters. To address this shortcoming, adaptive sampling
techniques have been proposed. These methods, including leverage score sampling,
DPP-based sampling, and random pivoted Cholesky sampling, employ non-uniform
sampling distributions derived from kernel matrices. For instance, ridge leverage
score sampling constructs the probability for sampling the i-th column proportional
to the i-th diagonal entry of (K + uI)™'K. In [34], a recursive sampling strategy
was introduced, reducing the computational cost of ridge leverage score sampling to
O(nk) kernel evaluations and O(nk?) running time. k-DPP-based sampling extends
the sampling distribution across all k-subsets of 1,...,n, albeit at a much higher
computational cost of O(n3). However, a Markov Chain Monte Carlo (MCMC) ap-
proach proposed in [31] can reduce this cost to linear time under some conditions.
Due to the challenges of verifying these conditions and the necessity to reevaluate
a k x k determinant, k-DPP-based sampling has experienced limited acceptance in
practice compared to other sampling methods. Random pivoted Cholesky sampling,
as presented in [12], introduces a method aligned with pivoted Cholesky procedures,
where the i-th pivot is selected proportional to the magnitude of the diagonal entries
of the Schur complement at the i-th step. This method necessitates O(n(k + 1)) ker-
nel evaluations. Geometry-based sampling is another avenue, with k-means sampling
clustering data points into & clusters and utilizing the centroids as landmark points at
a cost of O(tkn), where ¢ represents the iteration count in Lloyd’s algorithm. The An-
chor Net method [8], an efficient tactic to mitigate the limitations of uniform sampling
in high-dimensional datasets, employs a low-discrepancy sequence to diminish gaps
and clusters compared to uniform sampling while maintaining robust space coverage,
at a complexity of O(nk). In our proposed preconditioner, a few different sampling
methods can be employed. We opt for Farthest Point Sampling (FPS) due to its
simplicity, ease of use, cost-effectiveness, and independence from the length-scale pa-
rameter. Specifically, landmark points will be selected based on a balance between
two geometric measures to ensure the preconditioner’s effectiveness and robustness.

This manuscript is for review purposes only.
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6 ADAPTIVE FACTORIZED NYSTROM PRECONDITIONER

The first measure hx,, called fill distance [21, 30], is used to quantify how well
the points in X} fill out a domain €Q:
(3.1) hx, = xg&}){(’c dist(x, Xi),
where dist(x,Y) = infyey ||x — y|| is the distance between a point x and a set Y,
and where ) denotes the domain of the kernel function under consideration which
can be either a continuous region or a finite discrete set. The geometric interpre-
tation of this measure is the radius of an empty ball in Q that does not intersect
with Xj. This implies X3 with a smaller fill distance will better fill out €. Since
Ko + puI — K/, (Ky; + uI)7'Kjs can be considered as the conditional covariance
matrix of X\ X} conditioned on Xy, the screening effect [26, 38, 47, 48, 49, 44, 43]
implies that a smaller hx, often yields a Koo + uI — K{,(Ky; + pI)7'K, that
has more entries with small magnitude. = The screening effect in geostatistics im-
plies that optimal linear predictions at a point in a Gaussian process primarily rely
on nearby data points. While the theory provides specific conditions for this effect,
it is also practically leveraged to improve the computational efficiency of Gaussian
process regression. The Vecchia approximation, rooted in this concept, simplifies
joint density calculations by conditioning on neighboring points, leading to a sparse
Cholesky factorization of the precision matrix. However, the approximation accu-
racy depends on the strength of the screening effect and the number of neighboring
points considered. More specifically, the screening effect suggests that the optimal
linear prediction of target values y; at a point x; in a Gaussian process typically
depends on the values at neighboring points N;. This has been theoretically scru-
tinized and conditions for its validity have been established, albeit under limited
scenarios [47, 48, 49]. The Vecchia approximation [50] utilizes this principle by ap-
proximating the exact joint density pi(y) = p(v1) [Ty P(¥ily1:i—1) ~ N(0,K) with
p2(y) = p(1) [11—y P(yilyn,) ~ N(0,K), significantly simplifying calculations. This
approximation yields a precision matrix K~! with a sparse Cholesky decomposition,
where the Cholesky factor has a limited number of non-zero entries per row, equal
to the size of N; [15, 28]. While recent studies [44, 43] confirm that the screening
effect is valid for functions derived from the Green’s functions of elliptic operators,
it’s important to note that when the effect is weak or absent, the approximation will
not be very accurate.

The second measure gx,, called separation distance [21, 30], is defined as the
distance between the closest pair of points in X:
(3.2) qx, = . )ijneléa’k#kj dist (xz,, X¢, )
The geometric interpretation of this measure is the diameter of the largest ball that
can be placed around every point in Xj such that no two balls overlap. A larger
¢x, indicates that the columns in K;; tend to be more linearly independent and thus
leads to a more well-conditioned K;. Given that the separation distance serves as a
metric for the conditioning of the kernel matrix [52] and the conditioning of K;; will
affect the numerical stability of L, a larger separation distance implies a more stable
Nystrom approximation and a more stable AFN preconditioner.

As more landmark points are sampled, both hx, and ¢x, tend to decrease. We
wish to choose X}, such that hx, is small while gx, is large. We will analyze the
interplay between hy, and ¢x, in Section 3.1. In particular, we will show that if

hx, < Cgx, for some constant C, then hx, and gx, have the same order as the

This manuscript is for review purposes only.
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Fig. 2: An illustration of FPS for selecting one, ten, twenty and thirty points from a
two-dimensional dataset with 400 points where the big circles represent the selected
points and the dots denote the other data points.

minimal value of the fill distance and the maximal value of the separation distance
that can be achieved with k& points, respectively.

Moreover, we find that FPS [19] can generate landmark points with hx, < gx,.
FPS is often used in mesh generation [37] and computer graphics [42]. In spatial
statistics, FPS is also known as MaxMin Ordering (MMD) [26]. FPS initializes X
with an arbitrary point x;, in X (better choices are possible). At step i + 1, FPS
selects the point that is farthest away from X;

(3.3) Xp,,, = argmaxdist(x, Xj).
x€X\X;
See Figure 2 for an illustration of FPS on a two-dimensional dataset and the complete

pseudocode of FPS in Algorithm B.4 in Appendix B. The landmark points selected
by FPS spread evenly in the dataset and do not form dense clusters. We will justify
the use of FPS to select landmark points in the construction of the AFN preconditioner
in Section 3.2.

3.1. Interplay between fill and separation distance. In this section, we will
study the relationship between hx, and gx,. We will show that if hx, < Cgx, for a
constant C, then hx, and gx, will have the same order as the minimal fill distance
and maximal separation distance that can be achieved with any subset with k points,
respectively.

First notice that there exist a lower bound for hx, and a upper bound for ¢x,,
which is analyzed in the next theorem when all the points are inside a unit ball in R?.

THEOREM 3.1. Suppose all the data points are inside a unit ball Q in R¢. Then
for an arbitrary subset X, = {xi,,...,%i,} of X, the following bounds hold for hx,
and qx, :

(3.4) hx, > kY4 and qx, <29 kY4,

This manuscript is for review purposes only.
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8 ADAPTIVE FACTORIZED NYSTROM PRECONDITIONER

Proof. In order to show the lower bound of hx,, we first derive an upper bound

of the volume of Q. Notice that  C Ule By, (xx;) where By (xy,) is the ball
centered at xj, with radius hx,. Then

k dj2

™
Vol() <) " Vol(B,, (xx,)) = kmhgﬂk.
i=1

This gives us the first bound.
Similarly, we get an upper bound of gx, by deriving a lower bound of the volume
of Q:

k k

Vol() > Vol | Bax, (xx,)) = > Vol () Bax, (xk,))
i=1 i=1

d/2

1 b m
72 quk 1)):k

R —
24+ (4 4 1) "%

[\]

Here we use the fact that Vol(2 quk (X)) > 7 Vol(qu,c (x%;)). This gives us the
second bound. |

Remark 3.2. When ) satisfies the interior cone condition [36], similar bounds
hx, > Cok=14 and gx, < C@k‘l/d can be derived for more complex bounded
domains where Cq and CY, are two constants depending on the domain .

The above bounds show that the minimal fill distance hx, cannot be smaller than

k—1/d while the maximal separation distance qx, cannot be greater than 24 k—1/d

and 2~ o= gx, < hx, when the domain is a unit ball in R?. In the following theorem,
we show that if a sampling scheme can select a subset X} with hx, < Cg¢x,, then

. has the same order as the maximal separation distance that can be achieved by
a subset with k£ points.

THEOREM 3.3. Assume the data points are on a bounded domain ) that satisfies
the interior cone condition, then if hx, < Cqx,

(3.5) Cok ™% < hyx, <C x ChHk™Y4, %kﬁl/d < qx, < CHk™Ye,
Proof. If hx < Cqx, then we have
Cak™V/? < hy, < Cqx, < C x Chk™ 14, O

Theorem 3.3 shows that hx, is at most C' x g—g times larger than its theoretical lower

bound and ¢x, is at least % X CC 2 times as large as its theoretical upper bound in
Q

this case.

3.2. Farthest point sampling. In this section, we justify the use of FPS in the
construction of the proposed preconditioner. FPS is a greedy algorithm designed to
select a set of data points with maximal dispersion at each iteration. FPS can generate
X, with hx, at most 2 times the minimal fill distance [24] and ¢y, at least half the
largest separation distance over all subsets with & points [54]. In the forthcoming theo-
rem, we initially confirm that the FPS method can generate X}, satisfying hx, < ¢x,.
Subsequently, we leverage this finding to demonstrate two near-optimality properties

This manuscript is for review purposes only.
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in a cohesive manner. While these properties have been independently established in
[24, 54], our work amalgamates and revalidates these results within a unified frame-
work. Notably, despite FPS’s widespread application in Nystrom approximation and
spatial statistics ordering, its theoretical underpinnings remain underexplored in this
community, contrasting with its empirical efficacy. We posit that incorporating these
findings will significantly benefit the scientific computing community.

THEOREM 3.4. Suppose the minimal fill distance of a subset with k points is
achieved with X[ and the maximal separation distance of a subset with k points is
achieved with Xy.. Then the set Xy, sampled by FPS satisfies

1
(36) th < qx; and qx;, > iqu* and th < 2hX’:

Proof. Without loss of generality, we assume the subset X} sampled by FPS
contains the points X1, Xs, ..., X,. Suppose ¢x, = dist(x;,X,,) with j <m < (k+1),
and point x,, is selected at iteration m by FPS, then

3.7 h = dist(x, X,,_1) = dist(x; = .
(3.7) Xy = Max  dis (x, Xipp—1) = dist(x;, X)) = gx,
Since hx, is a non-increasing function of k, we have hx, < hx, , = ¢x,.

We now prove gx, > %qu*. According to the definition, there exists a subset
with k points X, = {x!,...,x*} such that

gx,, = max min _dist(x;, x;).
YCX,|Y|=k xi,X;€EY

According to (3.7), we know all the points in X must lie in one of the m — 1 disks
defined by

(3'8) C(Xi’qu) = {X‘HX - XZH < qu}7 (S [m - 1]'

Since m—1 < k, at least two points x¢, x) € Xp. must belong to the same disk centered
at some x;. Therefore, 2qx, > dist(x%, x;) +dist(x%, x;) > dist(x%,xL) > gx,« via the
triangle inequality.

Next, we prove hx, < 2hx-. At the kth iteration of FPS, the set X can be split
into k clusters {C;}%_, such that the point x in X will be classified into cluster C; if
dist(x;,x) < dist(x;,x), Vj # i. At the (k + 1)th iteration of FPS, one more point
Xg+1 will be selected. Then we can show that

dist(x;,x;) > hx, for i,je{1,2,...,k+1},

and in particular
AXpq = hx,,-

Assume xj41 € C;. From the definition of hx,, we know that dist(xx4+1,%;) = hx,
and dist(xg41,%x;) > dist(xg41,x;) for j # i. Moreover, we have dist(x;,x;) > gx,
for j # k + 1. Since qx, > hx,, we know qx,,, = dist(x;,x;) > hx, .

Finally, assume x7,x3,...,x} are the optimal subset of X that achieves the mini-
mal fill distance with cardinality k. Now the set X can be split into k clusters {C}}%_,
such that the point x in X will be classified into C;" if dist(x}, x) < dist(x},x), Vj # i.
Assume the points selected by FPS in the first k£ + 1 iterations are x1,Xa, ..., Xg+1-
We know that at least two points from x;,Xs,...,X;t1 belong to the same cluster.

This manuscript is for review purposes only.
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10 ADAPTIVE FACTORIZED NYSTROM PRECONDITIONER

Denote these two points as x;, and x, and the corresponding cluster is C7. Then we
have
hx, < qx,,, < dist(x,,x,) < dist(x,, x7) + dist(xg, x;) < 2hx;,

which indicates that hy, < 2hX;. O

We now demonstrate the screening effect (mentioned in Section 3) numerically
with an example in Figure 3 when FPS is applied to select landmark points. Figure 3
shows histograms of the magnitude of the entries in three matrices Koo + I, Koo +
MI_KIQ(KII +u I)_1K12 and (K22 +,U,I—KB(K11 +u I)_lKlg)_l for [ = 5, with the
matrices scaled so that their maximum entries are equal to one. The 1000 data points
X are generated uniformly over a cube with edge length 10 and 100 landmark points
X190 are selected by FPS. The figure shows that Koo + uI — K5 (Ky; + pI) 71Ky,
and its inverse have many more entries with smaller magnitude than Koy + pI. This
example further justifies that (Koo +uI—K /], (Kq1+pI) 71K )™t has more “sparsity”
than Koo + I — K], (Ky1 + 1 I)" K2, which supports the use of FSAT.

-1
- -1, -1
Kyp 1t - 10 Kogti ! - KoKy + 1)Ky, ; g Ryl -Ky K+ )

CDF
Frequency
CDF

N
Frequency

0 02 04 06 08 [ %%z o o0z o4 o8 o8 1 ° 04 02 0 02 04 06 08 1
Magnitude Magnitude Magnitude

Fig. 3: Histograms of the magnitude of the entries in Koo + I, Koo+ I— K1T2(K11 +
pI) 1Ko, and (Koo +pu I-K [, (K1 +u1) 71 Ki2) ! associated with a Gaussian kernel
matrix defined using 1000 points sampled uniformly from a cube with edge length 10,
regularization parameter p = 0.0001, and length-scale [ = 5. The maximum entries
in these three matrices are all scaled to 1. K has 243 eigenvalues greater than 1.1 X p.

3.3. Implementation of FPS. A naive implementation of FPS for selecting
k samples from n points in R? scales as O(dk?n). The scaling can be reduced to
O(p?nlogn) by using an algorithm [44] that keeps the distance information in a heap
and that only updates part of the heap when a new point is added to the set Xj.
Here, p is a constant that controls the efficiency of the sampling process. When p is
greater than or equal to 1, this algorithm returns the exact FPS. A larger p is required
if a larger number of neighbors for each data point need to be computed during the
same sampling process.

4. Adaptive choice of approximation rank. In order to construct a precon-
ditioner that is adaptive and efficient for a range of regularized kernel matrices arising
from different values of the kernel function parameters, it is necessary to estimate the
rank of the kernel matrix K. For example, if the estimated rank is small enough
that it is inexpensive to perform an eigendecomposition of a k-by-k matrix, then the
Nystrom preconditioner should be used due to the reduced construction cost.

4.1. Nystrom approximation error analysis based on fill distance. De-
fine the Nystrom approximation error as

1K — Knysll = [[K22 — Ko1K Kool

This manuscript is for review purposes only.
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In this section, we will show that the Nystrom approximation error is also related to
the fill distance hx,. In particular, for Gaussian kernels defined in (1.2) and inverse
multiquadric kernels

(4.1) K(x,y)=(*+|x—y|*)"%, p>0, ceR,

we can derive a Nystrom approximation error estimate in terms of the fill distance,
as presented in the following theorem.

THEOREM 4.1. The Nystrom approximation K,ys = KX»Xk,K;(i,XkKXImX to K
using the landmark points Xj, = {xy, }*_, has the following error estimate

(4.2) K = Konyall < v/nlIK[[C” exp(~C" /hx,),

where C' and C" are constants independent of X}.

The detailed proof of Theorem 4.1 is in Appendix A. This theorem is a discrete
version of the Theorem A in [5], which implies that kernel operators corresponding to
smooth kernels are effective low rank. Our proof broadens the scope of the original
results on kernel functions , as presented in [5], to encompass discrete matrix settings.
This extension shows that the low-rank approximation mentioned in [5] can indeed
be interpreted as a Nystrom approximation applicable to matrices. For this Nystrom
approximation. Theorem 4.1 implies landmark points X with a smaller fill distance
can yield a more accurate Nystrom approximation. We illustrate this numerically
with an experiment. In Figure 4, we plot the fill distance curve and the Nystrém
approximation error curve corresponding to a Gaussian kernel with [ = 10 when 1000
points are uniformly sampled from a cube with edge length 10. We test random
sampling and FPS for selecting the landmark points and observe that FPS leads to a
smaller fill distance than random sampling. We also observe that FPS Nystrom can
achieve lower approximation errors than the randomly sampled one when the same
k is used. Thus we will use FPS to select landmark points in the construction of
Nystrom-type preconditioners if the estimated rank is small. Meanwhile, the rank
estimation algorithm discussed in the next section also relies on FPS.

The error estimate in (4.1) does not involve the length-scale [ explicitly. However,
this error estimate can still help understand how the length-scale in Gaussian kernels
affects the Nystrom approximation error when the same landmark points X}, are used.
Assume hx, is the fill distance of X, associated with the unit length-scale. When we
change the length-scale to [, the kernel matrix associated with length-scale [ can be
regarded as a kernel matrix associated with the unit length-scale and the scaled data

X

points X = x/l. This is because [|x — y|| = || — ¥|| = 7 dist(x,y). In this case, the

fill distance on the rescaled data points becomes h)l(’“ . As a result, as [ increases, the
exponential factor in the estimate decays faster. This is consistent with the fact that
the Gaussian kernel matrix K is numerically low-rank when [ is large.

4.2. Nystrom rank estimation based on subsampling. It is of course too
costly in general to use a rank-revealing decomposition of K to compute k. Instead,
we will compute k£ that approximately achieves a certain Nystrom approximation
accuracy via checking the relative Nystrom approximation error on a subsampled
dataset.

First, a dataset X,,, of m points is randomly subsampled from X. The number of
points m is an input to the procedure, and m can be much smaller than the k that will
be computed. Then the coordinates of the data points in X, are scaled by (m/n)Y/?

This manuscript is for review purposes only.
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Fill distance

Nystrom error

| | | | ] 1 ! Y 1015 . . . .
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Fig. 4: Comparison of fill distance and the Nystrém approximation error for 1000
points uniformly sampled from a cube with edge length 10, when the Gaussian kernel
function with length-scale I = 10 is used. FPS and random sampling are used to
sample k points from X to form Xj. Nystrom error is computed only for the ranks
which are multiples of 10.

and the smaller kernel matrix Kx , x,, is formed. The rationale of this scaling is that
we expect the spectrum of Kx  x, has a similar decay pattern as that of Kx x.
We now run FPS on X,,, to construct Nystrom approximations with increasing rank
to K until the relative Nystrom approximation error falls below 0.1 and define this
Nystrom rank as r. Finally, we approximate the Nystrom rank of K as rn/m. Figure 5
plots the Nystrom approximation errors on subsampled matrices and original matrices
associated with two different length-scales. The data points X are generated randomly
by sampling 1000 points uniformly within a cube and m = 100 points are subsampled
randomly. The two relative Nystrom approximation error curves show a close match
in both cases. This rank estimation method is summarized in Algorithm 4.1. We
also find that if the estimated rank is small (e.g., less than 2000), we can perform an
eigen-decomposition of Kx x, . associated with the unscaled data points and refine
the estimation with the number of eigenvalues greater than 0.1pu.

Algorithm 4.1 Nystrom rank estimation

1: Input: dataset X with size n, subsample size m, and kernel function K(x,y)

2: OQutput: approximate Nystrom rank k

3: Randomly subsample a subset X,,, of m points from X and scale the coordinates
of X,, by (m/n)/4

4: Form the m x m matrix Kx, x,.

Find the Nystrom rank r such that the relative Nystrom approximation error for

Kx,, x,, with FPS sampling falls below 0.1

Compute k = rn/m

if £ > 2000 then
Return k = rn/m

else

10:  Compute eigenvalues of Kx, x associated with the unscaled data points

11:  Return k = # of eigenvalues greater than 0 .1u

12: end if

o
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Fig. 5: Comparison of the relative Nystrom approximation error curves for an origi-
nal dataset and a subsampled dataset with 100 points, associated with two different
length-scales. The original dataset contains 1000 uniformly sampled points from a
cube with edge length 10. The indices of the subsampled dataset are matched with
those of the original dataset by computing the relative Nystrom approximation errors
on the original dataset only for ranks that are multiples of 10. The plot shows how
the approximation error changes as the rank of the approximation increases.

If the estimated rank k is smaller than 2000, then the Nystrom preconditioner
should be used. AFN is only constructed when the estimated rank exceeds 2000 for
better efficiency. The selection of the preconditioning method is shown precisely in
Algorithm 4.2.

Algorithm 4.2 Preconditioned conjugate gradient with the proposed preconditioning
scheme
1: Input: Kernel matrix K, regularization parameter u, right-hand side vector b
2: Estimate numerical rank & of K with Algorithm 4.1
3: if k£ > 2000 then
4:  Solve (K + pI)a = b using PCG with the AFN preconditioner, applied as per
Algorithm B.3
else
6: Solve (K + pI)a = b using PCG with the column sampling-based Nystrom
preconditioner, applied as per Equation (1.6)
7: end if
8: Return: approximate solution vector

o

5. Numerical experiments. The AFN preconditioner and the preconditioning
strategy (Algorithm 4.2) are tested for the iterative solution of regularized kernel
matrix systems (1.1) over a wide range of length-scale parameters ! in the following
two kernel functions

e Gaussian kernel: K(x,y) = exp (—#[x — y|3)

e Matérn-3/2 kernel: K(x,y) = (1 + ?Hx - y||2> exp (—?HX - y||2>.

We also benchmark the solution of these systems using unpreconditioned CG, and
preconditioned CG, with the FSAI preconditioner and with the randomized Nystrom
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14 ADAPTIVE FACTORIZED NYSTROM PRECONDITIONER

(RAN) preconditioner [22] with randomly selected k landmark points.

RAN approximates the kernel matrix with a rank-k Nystrom approximation based
on randomly sampling the data points. Assuming the k-th largest eigenvalue of K,y
is A, the inverse of the RAN preconditioner takes the form [22]: (A + pw)U(A +
pI)~1UT 4+ (I — UUT) where UAUT is the eigendecomposition of K,,s. In our
experiments, we use 400 nearest neighbors as the sparsity pattern for FSAI, fix the
Nystrom rank to be 3000 for RAN, and use 100 nearest neighbors as the sparsity pattern
for the FSAT used in AFN.

The stopping tolerance for the relative residual norm is set to be 107%. We
randomly generated right-hand side vectors in Equation (1.1) with entries from the
uniform distribution [—0.5, 0.5]. For all tests we perform 3 runs and report the average
results.

AFN, RAN and FSAI have been implemented in C. The C implementation of the
AFN preconditioner can be found in the AFN_Precond branch of the H2Pack GitHub
website '. The test routines for AFN and RAN can be found from this web page ? and
the test routines for FSAI can be found from this web page ®. Experiments are run
on an Ubuntu 20.04.4 LTS machine equipped with 755 GB of system memory and
a 24-core 3.0 GHz Intel Xeon Gold 6248R CPU. We build our code with the GCC
9.4.0 compiler and take advantage of shared memory parallelism using OpenMP. We
use the parallel BLAS and LAPACK implementation in the OpenBLAS library for basic
matrix operations. H2Pack [9, 27] is used to provide linear complexity matrix-vector
multiplications associated with large-scale K for 3D datasets with the relative error
threshold 1078, We utilized a brute force parallel FPS algorithm on the global dataset.
OpenMP was used to apply an O(n) distance update in parallel at each step. The
computational cost is tractable due to a maximum of 2000 distance updates required.
The number of OpenMP threads is set to 24 in all the experiments.

5.1. Experiments with synthetic 3D datasets. The synthetic data consists
of n = 1.6 x 10° random points sampled uniformly from inside a 3D cube with edge
length ¢/n. We first solve regularized linear systems associated with both Gaussian
kernel and Matérn-3/2 kernel, with p = 0.0001.

The computational results are tabulated in Table 1, which shows the number
of solver iterations required for convergence, the preconditioner setup (construction)
time, and the time required for the iterative solve. Rank estimation Algorithm 4.1
is used to estimate the rank k for each kernel matrix with the given length-scale
information shown on the first row of each table. For both kernels, we select 9 middle
length-scales to justify the robustness of AFN. We also include two extreme length-
scales in these tables to show the effectiveness of the preconditioning strategy using
AFN summarized in Algorithm 4.2 across a wide range of [.

We first note that, for unpreconditioned CG, the iteration counts first increase and
then decrease as the length-scale decreases for both kernel functions. This confirms the
result seen earlier in Figure 1 that it is the linear systems associated with the middle
length-scales that are most difficult to solve due to the unfavorable spectrum of these
kernel matrices. We also observe that FSAI is very effective as a preconditioner for
Gaussian kernel, with [2 = 0.1 and Matérn-3/2 kernel, with [ = 1.0. FSAT is effective
if the inverse of the kernel matrix can be approximated by a sparse matrix, which
is the situation for both length-scales. We observe the opposite effect for the RAN

Lhttps://github.com/scalable-matrix/H2Pack/
2https://github.com/scalable-matrix/H2Pack/tree/ AFN_precond /examples/AFN_precond
3https://github.com/scalable-matrix/H2Pack/tree/ AFN_precond /examples/SPDHSS-H2
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preconditioner, which is effective for large length-scales but is poor for small length-
scales. For middle length-scales, AFN substantially reduces the number of iterations
compared to other methods. In particular, AFN yields almost a constant iteration
number for Matérn-3/2 kernel. For Gaussian kernel with (> = 1000 and Matérn-3/2
kernel with [ = 1000, choosing AFN as the Nystrom preconditioner form with the
estimated rank significantly reduces the setup time for AFN compared to RAN(3000)
but still keeps roughly the same preconditioning effect.

Table 1: Numerical results for the kernel matrices defined based on n = 1.6 x 10°
points sampled inside a 3D cube of edge length &/n. “ —” indicates that a run failed
to converge within 500 iterations. All experiments are run three times and reported
as the average of three runs.

12 1000 65 60 55 50 45 40 35 30 25 0.1
k 565 9600 9600 9600 9600 12800 12800 12800 16000 19200 160000
Iteration Counts

CG | 44.00 - - - - - - - - - 1.00
AFN | 3.00 35.00 37.00 38.00 40.00 42.00 46.00 50.00 57.00 62.00 1.00
RAN | 3.00 72.67 101.33 140.67 199.33 284.33 409.33 - - - -
FSAI - - - - - - - - - - 1.00

Setup Time (s)

AFN | 3.19 38.97 39.75 40.10 39.73 39.89 40.76 39.34 40.12 40.59 40.37
RAN | 27.28 27.59 26.46 27.33 29.05 2995 31.18 31.56 33.64 33.97 35.07
FSAI | 10.00 9.91 10.02 10.16 9.72 9.87 10.14 9.71 10.01 9.84 13.22

Solve Time (s)

CG | 9.72 - - - - - - - - - 1.75
AFN | 0.43 12.49 14.00 14.99 15.82 18.02 20.15 2259 27.26 29.10 191
RAN | 0.81 23.29 3573 49.98 7220 96.75 138.88 - : . -
FSAI| - . . . . . . . . . 1.27

(a) Gaussian kernel with a fixed p = 0.0001 and varying .
1/1 1.0 0.065 0.060 0.055 0.050 0.045 0.040 0.035 0.030 0.025 0.001
k |160000 19200 16000 14080 12800 9600 9600 6400 6400 6400 178
Iteration Counts

CG | 293.67 - - - - - - - - - 292.67
AFN | 3.00 6.00 6.00 6.00 7.00 7.00 7.00 7.00 7.00 6.00 9.00
RAN - 454.00 404.33 355.67 308.33 263.00 220.67 181.00 142.00 108.33 4.00
FSAI| 5.00 - - - - - - - - - -

Setup Time (s)

AFN | 47.32 4524 44.67 42.99 4341 43.39 44.34 43.50 43.29 42.74 3.07
RAN | 63.69 39.78 40.30 39.81 40.16 39.94 40.08 40.19 40.18 39.77 55.41
FSAT| 13.98 10.31 10.18 10.19 10.29 10.26 10.30 10.28 10.02 9.84 13.80

Solve Time (s)

CG | 22.41 - - - - - - - - - 22.40
AFN | 2.43 2.52 2.63 2.42 3.32 2.84 3.02 2.58 2.74 2.30 0.86
RAN - 116.37 99.32 86.87 74.04 63.98 53.58 42.24 32.19 2593 1.36
FSAI| 3.71 - - - - - - - - - -

(b) Matérn-3/2 kernel with a fixed p = 0.0001 and varying I.

In Table 2, we also compare the performance of AFN, RAN and FSATI for solving
(1.1) associated with the Matérn-3/2 kernel matrices with | = 20 and varying p. It is
easy to see that the performance of RAN and FSAI deteriorates as the regularization
parameter p decreases while the iteration count of AFN remains almost a constant,

This manuscript is for review purposes only.



181

182

16 ADAPTIVE FACTORIZED NYSTROM PRECONDITIONER

which shows the improved robustness of AFN over RAN and FSAI with respect to p.

Table 2: Numerical results for the Matérn-3/2 kernel matrices associated with | = 20
and varying p and n = 1.6 x 10° points sampled inside a 3D cube of edge length /7.
“ —7 indicates that a run failed to converge within 500 iterations. All experiments
are run three times and reported as the average of three runs.

o [1@—1 le—2 1le—3 1le—4 1le—5 1le—6 1le—7 1le—8 1le—9 1le—10
Iteration Counts

G - - - - - - - - - -
AFN | 15.00 1200 6.00 7.00 7.00 7.00 7.00 7.00 7.00  7.00
RAN | 10.33  29.00 93.33 311.33 - - - - - -

FSAI | 164.00 370.33 -

Setup Time (s)
AFN 43.74 43.50 42.74 4459 43.63 43.24 4431 44.30 43.11 43.71
RAN 40.25 39.71  39.14 40.86 39.92 40.13 40.40 40.34 39.80 40.35
FSAI | 10.33 10.46 10.56 10.39 10.53 10.40 10.53 10.59 10.76  10.48
Solve Time (s)

[ - - - - - - - - - -
AFN | 530 495 261 278  3.02 290 2.89 284 288  3.09
RAN | 3.29 853 2503 76.33 - - - - ) _
FSAT | 21.43  46.44 - - - . - - B, _

5.2. Experiments with machine learning datasets. We test the perfor-
mance of AFN on two high-dimensional datasets, namely IJCNN1 from LIBSVM [11]
and Elevators from UCI [18] in this section. The training set of IJCNN1 consists
of n = 49990 data points, with 22 features and 2 classes, while Elevators contains
n = 16599 data points, with 18 features and 1 target.

Here, we perform experiments with the Gaussian kernel for IJCNN1 and Matérn-
3/2 kernel for Elevators. After conducting grid searches, we select the regularization
parameter to be u = n x 1076 for both datasets so that the test error of KRR is small
for the optimal length-scale [ in our searches. We select 12 length-scales in two sep-
arate intervals, which include the optimal length-scales for both datasets. The grid
search method was used to determine the optimal length-scale for TJCNN1, resulting
in a value of | = 1 which is consistent with the findings in [22]. In contrast, for
Elevators, the optimal length-scale was determined using GPyTorch [53] and found
to be | = 14. Most of the length-scales within each interval correspond to middle
length-scales. Two extreme length-scales are also considered here to show the effec-
tiveness of AFN across a wide range of [. Since FSAT is less robust than RAN, we only
compare AFN with RAN in this section. As these are high-dimensional datasets (22
and 18 dimensions, as mentioned) and we do not have a fast kernel matrix-vector
multiplication code for high-dimensional data, these kernel matrix-vector multiplica-
tions were performed explicitly. Due to the high computational cost of FPS in high
dimensions, we simply use uniform sampling to select the landmark points for AFN
when the estimated rank is greater than 2000 in these experiments.

We report the computational results in Table 3. The patterns of the change
of iteration counts, setup time and solution time with respect to the length-scales on
both datasets are similar to those observed in the 3D experiments. First, the iteration
counts of unpreconditioned CG first increases and then decreases as [ decreases in both
datasets. This indicates that the spectrum of the kernel matrices associated with high-
dimensional datasets could be related to those associated with low-dimensional data.
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Table 3: Numerical results for the IJCNN1 and Elevator datasets with Gaussian kernel
and Matérn-3/2 kernel, respectively. “—” indicates that a run failed to converge within
500 iterations. All experiments are run three times and reported as the average of
three runs. In both tests we set u =n x 107,

121100 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.01
k| 1278 8798 10397 11197 13197 14996 17396 20395 24394 29394 37192 48190
Iteration Counts

CG [218.00 - - - - - - - - 481.00 418.00 239.00
AFN| 3.00 44.00 43.33 42.00 41.00 39.00 36.67 33.00 29.33 25.33 19.67 9.00

RAN| 2.00 12.67 13.67 15.67 18.67 21.67 26.00 32.00 40.00 51.00 66.67 73.33
Setup Time (s)

AFN| 4.18 15.69 15.66 15.30 15.53 15.29 15.30 15.68 16.34 15.51 15.19 15.15
RAN| 52.44 40.81 41.68 41.20 41.73 41.40 41.09 41.59 41.08 40.90 43.58 48.16
Solve Time (s)

CG | 30.63 - - - - - - - - 55.23 46.73 34.73
AFN| 097 8.07 899 824 747 755 6.88 650 594 5.05 5.01 2.44
RAN| 0.70 293 3.04 3.01 403 490 487 6.13 811 940 11.89 12.83

(a) IJCNN1 with Gaussian kernel.

1/l 1.0 0.1 0.09 0.08 0.07 0.06 0.05 004 0.03 0.02 0.01 0.0005

k {16599 12083 11685 11419 11087 10822 10224 9427 8166 6838 5576 983
Iteration Counts

CG [29.00 324.00 325.00 331.00 339.00 347.00 355.00 358.00 349.00 331.00 303.00 124.00

AFN| 3.00 9.33 9.67 9.67 10.00 10.00 10.00 10.00 10.00 49.00 60.00 5.00

RAN|20.67 71.67 71.00 69.33 67.00 65.00 61.00 57.33 59.67 69.67 75.33 7.33

Setup Time (s)

AFN| 958 5.34 545 5.79 560 548 542 547 536 576 6.06 1.94

RAN|38.78 28.64 44.28 42.45 30.86 32.53 44.61 36.91 39.38 38.32 35.72 34.90

Solve Time (s)

cG| 054 365 373 371 379 392 401 4.06 393 375 348 1.39

AFN| 0.21 0.38 0.40 043 040 040 049 039 038 1.83 222 0.11

RAN| 0.68 2.04 1.84 208 182 176 167 149 176 1.88 2.00 0.28

(b) Elevators with Matérn-3/2 kernel.

AFN is again able to significantly reduce the iteration counts compared to unprecon-
ditioned CG in all tests. We notice that the iteration count of the RAN preconditioned
CG increases as the estimated rank increases on the IJCNN1 dataset. This implies
that in order to converge in the same number of iterations as [ becomes smaller, RAN
type preconditioners need to keep increasing the Nystrom approximation rank k£ and
thus require longer setup time and more storage. AFN requires smaller setup time
in all of the experiments and leads to smaller iteration counts when 12 < 0.4 on the
IJCNN1 dataset and all length-scales on the Elevators dataset. In addition, we can
also observe that AFN yields the smallest total time in all of the experiments on both
datasets compared with RAN.

6. Conclusion. In this paper, we introduced an approximate block factoriza-
tion of K + pI that is inspired by the existence of a Nystrom approximation, K =
Kx x, K;fi,Xk Kx, x. The approximation is designed to efficiently handle the case
where k is large, by using sparse approximate inverses.

We further introduced a preconditioning strategy that is robust for a wide range of
length-scales. When the length-scale is large, existing Nystrom preconditioners work
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26 well. For the challenging length-scales, the AFN preconditioner proposed in this paper

27 is the most effective. We justify the use of FPS to select landmark points in order to

28 construct an accurate and stable AFN preconditioner and propose a rank estimation
algorithm using a subsampling of the entire dataset.

® R

3 It is important to note that in high-dimensional settings, the effectiveness of
31 screening effects diminishes, as indicated by [43, 44]. This is attributed to the re-
32 duced representational capacity of Euclidean distance for spatial similarity in high-
33 dimensional spaces, a concept further explored by [16]. Consequently, the FSATI ap-
34 proach for approximating the inverse of the Schur complement can be less effective
35 for high-dimensional datasets, such as those commonly found in machine learning, as
36 it is for lower-dimensional ones, such as those in spatial statistics. Nevertheless, in
37 the realm of machine learning, kernel methods — including the kernel trick in Support
38 Vector Machines (SVMs), Kernel Ridge Regression (KRR), and Gaussian Process Re-
39 gression (GPR) — fundamentally rely on the premise that spatial similarity correlates
with data similarity and the proposed AFN method retains its relevance as long as this
assumption is valid. For datasets with high dimensionality, we plan to first apply a
transformation to map the data points to lower-dimensional manifolds. This transfor-
mation, as discussed in the survey by [6], ensures that Euclidean distance continues to
effectively represent similarity in these reduced-dimensional spaces. In future work,
we will also study whether the dependence on ambient dimension in Theorem 3.3 can
be reduced to the intrinsic dimension of the data manifold and apply AFN to accel-
erate the convergence of stochastic trace estimation and gradient based optimization
algorithms.
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N N NN P D W g
0 9 > Otk @

549 Appendix A. Proof of Theorem 4.1.

The proof of Theorem 4.1 relies on Theorem A.1 from [5]. Theorem A.1 states
that any bounded map 7 from a Hilbert space to a RKHS H corresponding to certain
smooth radial kernels such as the Gaussian kernel defined in (1.2) and the inverse
multiquadrics kernel defined in (4.1) always admits a low rank approximation in
L2 = {f(x)| [|f(x)]Pdu < oco}. Furthermore, the approximation error bound can
be quantified by fill distance. Before we proceed to Theorem A.1, we first introduce
a few notations that will be used in the statement of Theorem A.1. On a domain 2,
the integral operator K, : Lz — H is defined as:

[ SN, NG B |
N = O

]
Tt e W

ot ot Ut Ot Ot Ot Ot Ut

ot gv Ot ¢

JQ

ot
ot
oo

Ku(£)() = //C(-,X)f(-)du.

The restriction operator R, : H — Li is defined as the restriction of f € H to the
support of y, interpolation operator Sx, : ‘H — H is defined by interpolating the
values of f on a subset X; C Q as:

k
Sx, (f)(x) = Z i K(xi, %),

with (aq,...,0p) " = K)_(ink (f(x1),..., f(xx))". Since the range of R, and Sx, is
different, the following norm is used to measure their difference:

(R = Sx ) ()22
max
FEHf#0 (FalE?

IRy — Sx, sz =
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THEOREM A.1 ([5]). Let H denote the RKHS corresponding to the kernel K.
Given a probability measure p on Q and a set X;, C Q, there exist constants C', C" >
0 such that

(Al) ”RH - SXkHH—>Lﬁ < exp(—C’”/th).

When Q = X = {x1,...,%,} and the uniform discrete measure py = L 3" 4y, is
used with dx, being the Dirac measure at point x;, we have

n

Z’C(Xiax)f(xi)

=1

Kux (F)(x) =

1
n

and Hx = span{K (x1,"), ..., K(Xn,)}. The integral operator, interpolation operator
and restriction operator can then be written in the matrix form as IC,, (f)(X) =
LKf(X), Sx, (/)(X) = Kx x, Ky «, f(Xz), and R, = I € R"™*", respectively.
Since R, o Ky = Ky, we have

Kix —Sx, oKy = (Rux —Sx,) oKy
Thus, we can get the following inequality
[(Rux —Sxi) o Kuxcllez »r2 S I(Rux = Sxillnx—rz Kuxllzs  —x-
Based on Theorem A.1, we know that
[(Rux = Sxi) 0 Kux ”LﬁxﬁLix < C"exp(=C" [hx, )|IKyux HLELXHHX'

In the next theorem, we will derive an error estimate for the Nystrom approximation
error by further proving

1
[(Rux —Sx,) o Kpux HLELXHLﬁX = gHK — Koysl,

and [[Kux |72 ay = VIKI/n:

THEOREM 4.1. The Nystrom approzimation K, = KXkaK)_(i,XkKXImX to K
using the landmark points Xj, = {xx, }¥_, has the following error estimate

(A.2) 1K = Konyall < v/nlIK[[C" exp(~C" /hx,),

where C' and C” are constants independent of Xj.

Proof. Since R, o K,y =K, , we have
’CHX - SXk o ICHX = (Rll«x - SXk) o ICHX'

Notice K, is a map from LiX to Hx and from the definition of the norm, we get
the following inequality

(A3) 1Ry = Sx) 0 Kuxlliz o1z < [(Ryux = Sx)llnxrss W iz -1
Based on Theorem A.1, we obtain

(A4) H(R/LX - SXk)”Hx—)LﬁX <’ exp(foﬂ/hxk)'

This manuscript is for review purposes only.
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581 First, recall that

||(RMX - SXk) © IC,UX (f)||L2
582 Rux —Sx,) oK 2 > = max EX
) I(Rux = Sx) 0 Kuxcllez  —rz FELE 10 £z
583 and

584 ”(RHX _SXk:) O’CHX (f)HLiX = \//X ((RHX - SXk) OICMX (f))2 dpx

1 n
585 = [ 7 20 (R = 8x,) 0 Ky () (x)°
i=1
1 n
586 = EZ((RNX 0 Ky (F)(%:) = Sx, 0 Ky (£)(x2)))°
i=1
587 Define two vectors based on the two function evaluations at X:
588 Fi = (Rux o Kux (f))(X), and Fa = (Sx, o Ky ())(X).
589 Then we obtain
1
590 [(Rux —Sxi) o Kux (Hllzz = ﬁllFl —Faf.

591 Notice that F; and F5 can also be written as
1 1 1
592 F, = EKf(X), and Fy = EnykaXk,XkKXk:Xf(X)'

593  Thus,

1 1 1 _

594 [(Rpux —8xi) o Kux (Hllzz = EHEKJC(X) - EKX,XkKXi7XkKXk7Xf(X)||
1

595 = WH(K_KnyS)f(X)H'

596 Om the other hand,

097 1fllzz = /de,UX:
\ Jx

598 As a result, we get
H(RMX - SXk) © K}Lx (.f)||L2
599 ||(R —Sx ) oK ||L2 2 = max B
px % bx LY =L feL2 f#0 Hf”LﬁX
K-K X
600 = max I nys).f (Xl
FELE ,J#0 n|lf(X)]|
(K — Kays)f[| 1
= T W = DK — Koys -
o P T T o 1= K|
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Since there exists an orthogonal basis {f;}7_; of eigenfunctions of IC,, in Li .

with the eigenvalues \;, we can express any f € L,z as f = S oW fi As a result,
we have

1K yix ()13
Koo = max ————"x
|| MXHLiX—)'HX FEL? L J#0 ||f||%,2
15'e
_ max <ZZL:1 a(i)lcﬂx (7{2)’ Z?:l a(i)IC#X (fl)>7'lx )
JELZ ¢ f#0 1325 e fill72
5%

Proposition 10.28 in [51] shows that {/C, (f;)} is orthogonal in Hx:
(A5) <IC#X (f2)7 ]CMX (f])>7'lx - <RHXIC#X (fl)a fj>LiX = >‘1<fza fj>LﬁX :

Thus we obtain

S Mla@ A,

Kl = max = .
H px LG —Hx FELE L J#0 Zi:l |a(z)|2||fi||%ix
o aRIAIE,
= max - i
e DO T
= A1.
Since .
Kux (f)(X) = Xifi(X) and - Ky (fi)(X) = ~Kfi(X),
we get

Kfi(X) =n\ fi(X),

which implies that n); are the eigenvalues of the kernel matrix K and in particular,
(A.6) nA = [[K]J.

Finally, we have
1 1
K = Koyl < VA exp(=C/hx,) = 7V IK[IC" exp(=C"/hx,). DO

Appendix B. Pseudocode of algorithms. In this section, we include the
complete pseudocode of FPS, FSAI, the construction and application of AFN precon-
ditioner and our preconditioning scheme as follows.

Algorithm B.1 Factorized Sparse Approximate Inverse (FSAI)

1: Input: Symmetric positive definitive matrix K, lower triangular sparsity pattern
S

: fori=1tondo

3:  Extract the non-zero pattern s; from the ith row of S with length m;

N

>

Compute G; s, =

5: end for
6: Return: G
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Algorithm B.2 Adaptive Factorized Nystrom (AFN) preconditioner construction

1: Input: Kernel matrix K, regularization parameter y, estimated rank k returned
by Algorithm 4.1

2: Perform Cholesky factorization: L = Chol(K;; + pI)

3: Invoke Algorithm B.1 to compute G = FSAI(Kag + I — K (K; + uI) ' Ki2)

4: Return: Matrices L and G

Algorithm B.3 Adaptive Factorized Nystrom (AFN) preconditioner application

Input: Vector r, matrices L, G, K>

Partition r conformally with the size of L and G as [ry,ra] "

Solve (K11 + pI)z = r1 by computing z = L~ "L !r;

Compute sy = GTG(ry — K/,z)

Solve (Ki; + pl)s; = (r; — Kj282) by computing s; = L™ TL™!(r; — Ky289)
Return: Vector s = [s1,s9] "

Algorithm B.4 Farthest Point Sampling (FPS)

Input: dataset X of size n, number of samples k
Output: landmark point set X}, of size k
Find x the center of X
Set xg = argmin dist(x, X)

xeX
Initialize the set X} = {x¢}
fori=1tok—1do
7. Set x; = argmax dist(x, X})

x€X\ X}

8: Add x; to X,
9: end for
10: Return: Xy
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