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Abstract. The spectrum of a kernel matrix significantly depends on the parameter values of the5
kernel function used to define the kernel matrix. This makes it challenging to design a preconditioner6
for a regularized kernel matrix that is robust across different parameter values. This paper proposes7
the Adaptive Factorized Nyström (AFN) preconditioner. The preconditioner is designed for the case8
where the rank k of the Nyström approximation is large, i.e., for kernel function parameters that lead9
to kernel matrices with eigenvalues that decay slowly. AFN deliberately chooses a well-conditioned10
submatrix to solve with and corrects a Nyström approximation with a factorized sparse approximate11
matrix inverse. This makes AFN efficient for kernel matrices with large numerical ranks. AFN also12
adaptively chooses the size of this submatrix to balance accuracy and cost.13
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1. Introduction. In this paper, we seek efficient preconditioning techniques for17

the iterative solution of large, regularized linear systems associated with a kernel18

matrix K,19

(1.1) (K+ µI)a = b,20

where I is the n× n identity matrix, µ ∈ R is a regularization parameter, a,b ∈ R
n,21

and K ∈ R
n×n is the kernel matrix whose (i, j)-th entry is defined as K(xi,xj) with22

a symmetric positive semidefinite (SPSD) kernel function K : Rd ×R
d → R and data23

points {xi}ni=1. For example, K can be chosen as a Gaussian kernel function,24

(1.2) K(x,y) = exp

(
−∥x− y∥22

l2

)
,25

where l is a kernel function parameter called the length-scale.26

Linear systems of the form (1.1) appear in many applications, including Kernel27

Ridge Regression (KRR) [1] and Gaussian Process Regression (GPR) [39]. When the28

number of data points n is small, solution methods based on dense matrix factoriza-29

tions are the most efficient. When n is large, a common approach is to solve (1.1)30

using a sparse or low-rank approximation to K [43, 44, 35]. In this paper, we pur-31

sue an exact solution approach for (1.1) with iterative methods. Fast matrix-vector32

multiplications by K for the iterative solver are available through fast transforms33

[25, 56] and hierarchical matrix methods [3, 7, 20, 9, 41, 2, 13, 40, 46, 32]. This paper34

specifically addresses the problem of preconditioning for the iterative solver.35

In KRR, GPR, and other applications, the kernel function parameters must be es-36

timated that fit the data at hand. This involves an optimization process, for example37
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2 ADAPTIVE FACTORIZED NYSTRÖM PRECONDITIONER
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Fig. 1: Left: Spectrum of 61 regularized Gaussian kernel matrices associated with
the same 1000 points sampled randomly over a cube with edge length 10 and a fixed
regularization parameter µ = 0.0001 but different length-scales l. Right: Iteration
counts of unpreconditioned CG to solve (1.1) for the 61 regularized kernel matrices to
reach the relative residual tolerance 10−4.

maximizing a likelihood function, which in turn involves solving (1.1) for kernel matri-38

ces given the same data points but different values of the kernel function parameters.39

Different values of the kernel function parameters lead to different characteristics of40

the kernel matrix. For the Gaussian kernel function above, Figure 1 (left) shows the41

eigenvalue spectrum of 61 regularized 1000× 1000 kernel matrices. 1000 data points42

are sampled inside a cube with edge length 10. In all the experiments, the side of43

the d-dimensional cube is scaled by n1/d in order to maintain a constant density as44

we increase the number of data points. For large values of l, the sorted eigenvalues45

decay rapidly, but the decay is slow for small values of l. Figure 1 (right) shows the46

number of unpreconditioned conjugate gradient (CG) iterations required to solve linear47

systems for these matrices. We observe that the systems are easier to solve for very48

large or very small values of l than for moderate values of l.49

In this paper, we seek a preconditioner for kernel matrix systems (1.1) that is50

adaptive to different kernel matrices K corresponding to different values of kernel51

function parameters. When the numerical rank ofK is small, there exist good methods52

[45, 22] for preconditioning K + µI based on a Nyström approximation [55] to the53

kernel matrix. We will provide a detailed description of the Nyström approximation54

and the notation we will use, as it is related to our proposed preconditioner.55

The n× n kernel matrix is defined by a kernel function and the set of n training56

points X = {xi}ni=1. The Nyström approximation, which is inspired by solving an57

integral operator eigenvalue problem using the Nyström method, gives the low rank58

factorization59

(1.3) K ≈ ŨΛŨ⊤
60

whereΛ is a diagonal matrix of eigenvalues of the smaller k×k kernel matrixKXk,Xk
=61

[K(x, y)]x∈Xk, y∈Xk
, Xk = {xki

}ki=1 is a subset ofX consisting of k data points referred62

to as landmark points. From now on, we will useKX,Y to denote [K(x, y)]x∈X, y∈Y for63

two general datasetsX and Y . Additionally, Xk−1 is a subset ofXk. The n×k matrix64

Ũ does not have orthonormal columns, but the columns are Nyström extensions of65

the eigenvectors of KXk,Xk
. The preconditioning operation that approximates the66
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S. ZHAO, T. XU, H. HUANG, E. CHOW, AND Y. XI 3

inverse of K+ µI utilizes the Sherman–Morrison–Woodbury (SMW) formula,67

(1.4) (ŨΛŨ⊤ + µI)−1 =
1

µ
I− 1

µ
Ũ(µΛ−1 + Ũ⊤Ũ)−1Ũ⊤.68

Randomized Nyström approximations based on random projections [33, 45, 22] are69

often of the form70

(1.5) K ≈ UΛ̂U⊤
71

where U has explicitly orthonormalized columns and Λ̂ is a diagonal matrix. Now72

utilizing the SMW formula and orthonormality, we have the simpler expression for73

the preconditioning operation:74

(1.6) (UΛ̂U⊤ + µI)−1 = U(Λ̂+ µI)−1U⊤ +
1

µ
(I−UU⊤).75

The randomized Nyström approximation based on random projections may be cheaper76

to compute if it is expensive to choose the landmark points (e.g., via computing lever-77

age scores [14]). However, in some applications such as KRR, the original Nyström78

approximation appears to be more effective [22].79

The above preconditioners using Nyström approximations and other low-rank80

approximations to the kernel matrix K involve at least an eigendecomposition or81

other factorization of a dense k × k matrix. These methods are effective for small k,82

but are costly for large k. In this paper, we address the case where the numerical rank83

of the kernel matrix is not small. In Section 2, we propose a 2-by-2 block approximate84

factorization of K + µI as a preconditioner, where the (1,1) block corresponds to a85

set of landmark points. To select the landmark points for our preconditioner, we use86

farthest point sampling, and support this choice with an analysis in Section 3. We also87

propose a method for selecting the number of landmark points in Section 4. Section88

5 demonstrates the effectiveness of the new preconditioner, and Section 6 summarizes89

the contributions of this paper.90

2. Adaptive Factorized Nyström preconditioner. Let Knys = ŨΛŨ⊤ de-91

note the Nyström approximation (1.3). The approximation is mathematically equal92

to [55]93

(2.1) Knys = KX,Xk
K−1

Xk,Xk
KXk,X94

where the notation was defined in the previous section. Without loss of generality, if95

the landmark points are indexed first, we can partition K into the block 2-by-2 form96

(2.2) K =

[
K11 K12

K⊤
12 K22

]
,97

where K11 = KXk,Xk
, K12 = KXk,X\Xk

and K22 = KX\Xk,X\Xk
. In this notation,98

(2.3) Knys =

[
K11 K12

K⊤
12 K⊤

12K
−1
11 K12

]
.99

The difference K−Knys is positive semidefinite.100

The Nyström preconditioner for K+µI is Knys+µI. For Knys in the above form,101

solving with the Nyström preconditioner via the SMW formula requires applying the102

operator103

(2.4)

(Knys + µI)−1 =
1

µ
I− 1

µ2

[
K11 K12

]⊤
(K11 +

1

µ
(K2

11 +K12K
⊤
12))

−1
[
K11 K12

]
104
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4 ADAPTIVE FACTORIZED NYSTRÖM PRECONDITIONER

to a vector. The matrix (K11 +
1
µ (K

2
11 + K12K

⊤
12)) is often ill-conditioned, but the105

ill-conditioning can be ameliorated [45] if the matrix is not too large (i.e., k is not too106

large) and the Cholesky factorization of K11 can be computed rapidly.107

We now propose a new preconditioner for K + µI that can be efficient when108

k is large. Recall that K11 is the kernel matrix associated with a set of landmark109

points Xk. In order to control the computational cost, we impose a limit on the110

maximum size of Xk setting it to a constant value, such as 2000. Let LL⊤ be the111

Cholesky factorization of K11 + µI and G⊤G be an approximate factorization of112

(K22 + µI − K⊤
12(K11 + µI)−1K12)

−1. Then we can define the following factorized113

preconditioner for K+ µI:114

(2.5) M =

[
L 0

K⊤
12L

−⊤ G−1

] [
L⊤ L−1K12

0 G−⊤

]
.115

Expanding the factors,116

M =

[
K11 + µI K12

K⊤
12 (G⊤G)−1 +K⊤

12(K11 + µI)−1K12

](2.6)

117

= Knys + µI+

[
0 0

0 (G⊤G)−1 +K⊤
12

(
(K11 + µI)−1 − (K11)

−1
)
K12 − µ I

]

︸ ︷︷ ︸
Correction term

,(2.7)118

we see that M equals Knys + µI plus a correction term. Thus the preconditioner119

is not a Nyström preconditioner, but has similarities to it. Unlike a Nyström pre-120

conditioner, the factorized form approximates K+ µI entirely and does not approxi-121

mate K separately, and thus avoids the SMW formula. In particular, when we have122

G⊤G = (K22 + µ I−K⊤
12(K11 + µ I)−1K12)

−1 exactly, M = K+ µ I.123

The preconditioner requires an economical way to approximately factor the gen-124

erally dense matrix (K22 + µ I −K21(K11 + µ I)−1K12)
−1, which can be large. For125

this, we use the factorized sparse approximate inverse (FSAI) method of Kolotilina126

and Yeremin [29]. We use FSAI to compute a sparse approximate inverse G of127

the lower triangular Cholesky factor of a symmetric positive definite (SPD) matrix128

K22 + µ I − K21(K11 + µ I)−1K12, given a sparsity pattern for G, i.e., G⊤G ≈129

(K22 + µ I − K21(K11 + µ I)−1K12)
−1. An important feature of FSAI is that the130

computation of G only requires the entries of K22+µ I−K21(K11+µ I)−1K12 corre-131

sponding to the sparsity pattern of G and G⊤. This makes it possible to economically132

compute G even if K22 +µ I−K21(K11 +µ I)−1K12 is large and dense. Further, the133

computation of each row of G is independent of other rows and is thus the rows of G134

can be computed in parallel. The nonzero pattern used for row i of G corresponds135

to the w − 1 nearest neighbors of point i that are numbered less than i (since G is136

lower triangular), where w is a parameter. The pseudocode of FSAI can be found in137

Alogrithm B.1 in Appendix B.138

The preconditioning operation for this proposed Adaptive Factorized Nyström139

(AFN) preconditioner solves systems with the matrix M. Assuming that the vectors140

r and s are partitioned conformally with the block structure of M, then to solve the141

system142

M

[
s1
s2

]
=

[
r1
r2

]
,143
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the algorithm is144

s2 := G⊤G
(
r2 −K⊤

12(L
−⊤L−1)r1

)
,145

s1 := L−⊤L−1(r1 −K12s2).146

The complete construction and application pseudocode of the AFN preconditioner can147

be found in Algorithm B.2 and Algorithm B.3, respectively, in Appendix B.148

The choice of the landmark points affects the accuracy of the overall AFN pre-149

conditioner, just as this choice affects the accuracy of the Nyström preconditioners.150

The sparsity and the conditioning of K22 + µ I − K⊤
12(K11 + µ I)−1K12 generally151

improves when more landmark points are chosen, which would on the other hand152

increase the computational cost and the instability of the Cholesky factorization of153

K11 + µI. In the next section, the choice of landmark points is discussed in light of154

these considerations.155

3. Selecting the landmark points. Existing methodologies for sampling k156

landmark points from a dataset with n data points include uniform sampling [55],157

the anchor net method [8, 10], leverage score sampling [17, 23, 35], k-means-based158

sampling [57], determinantal point process (DPP)-based sampling [4], and random159

pivoted Cholesky sampling [12]. Uniform sampling with the computational complex-160

ity O(k) excels in scenarios such as kernel ridge regression applications where direct161

access to kernel matrices is available, and the data does not exhibit unbalanced clus-162

ters. Nonetheless, its efficacy diminishes when faced with unbalanced clusters as it163

tends to oversample larger clusters. To address this shortcoming, adaptive sampling164

techniques have been proposed. These methods, including leverage score sampling,165

DPP-based sampling, and random pivoted Cholesky sampling, employ non-uniform166

sampling distributions derived from kernel matrices. For instance, ridge leverage167

score sampling constructs the probability for sampling the i-th column proportional168

to the i-th diagonal entry of (K + µI)−1K. In [34], a recursive sampling strategy169

was introduced, reducing the computational cost of ridge leverage score sampling to170

O(nk) kernel evaluations and O(nk2) running time. k-DPP-based sampling extends171

the sampling distribution across all k-subsets of 1, . . . , n, albeit at a much higher172

computational cost of O(n3). However, a Markov Chain Monte Carlo (MCMC) ap-173

proach proposed in [31] can reduce this cost to linear time under some conditions.174

Due to the challenges of verifying these conditions and the necessity to reevaluate175

a k × k determinant, k-DPP-based sampling has experienced limited acceptance in176

practice compared to other sampling methods. Random pivoted Cholesky sampling,177

as presented in [12], introduces a method aligned with pivoted Cholesky procedures,178

where the i-th pivot is selected proportional to the magnitude of the diagonal entries179

of the Schur complement at the i-th step. This method necessitates O(n(k + 1)) ker-180

nel evaluations. Geometry-based sampling is another avenue, with k-means sampling181

clustering data points into k clusters and utilizing the centroids as landmark points at182

a cost of O(tkn), where t represents the iteration count in Lloyd’s algorithm. The An-183

chor Net method [8], an efficient tactic to mitigate the limitations of uniform sampling184

in high-dimensional datasets, employs a low-discrepancy sequence to diminish gaps185

and clusters compared to uniform sampling while maintaining robust space coverage,186

at a complexity of O(nk). In our proposed preconditioner, a few different sampling187

methods can be employed. We opt for Farthest Point Sampling (FPS) due to its188

simplicity, ease of use, cost-effectiveness, and independence from the length-scale pa-189

rameter. Specifically, landmark points will be selected based on a balance between190

two geometric measures to ensure the preconditioner’s effectiveness and robustness.191
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6 ADAPTIVE FACTORIZED NYSTRÖM PRECONDITIONER

The first measure hXk
, called fill distance [21, 30], is used to quantify how well192

the points in Xk fill out a domain Ω:193

(3.1) hXk
= max

x∈Ω\Xk

dist(x, Xk),194

where dist(x, Y ) = infy∈Y ∥x − y∥ is the distance between a point x and a set Y ,195

and where Ω denotes the domain of the kernel function under consideration which196

can be either a continuous region or a finite discrete set. The geometric interpre-197

tation of this measure is the radius of an empty ball in Ω that does not intersect198

with Xk. This implies Xk with a smaller fill distance will better fill out Ω. Since199

K22 + µ I − K⊤
12(K11 + µ I)−1K12 can be considered as the conditional covariance200

matrix of X\Xk conditioned on Xk, the screening effect [26, 38, 47, 48, 49, 44, 43]201

implies that a smaller hXk
often yields a K22 + µ I − K⊤

12(K11 + µ I)−1K12 that202

has more entries with small magnitude. The screening effect in geostatistics im-203

plies that optimal linear predictions at a point in a Gaussian process primarily rely204

on nearby data points. While the theory provides specific conditions for this effect,205

it is also practically leveraged to improve the computational efficiency of Gaussian206

process regression. The Vecchia approximation, rooted in this concept, simplifies207

joint density calculations by conditioning on neighboring points, leading to a sparse208

Cholesky factorization of the precision matrix. However, the approximation accu-209

racy depends on the strength of the screening effect and the number of neighboring210

points considered. More specifically, the screening effect suggests that the optimal211

linear prediction of target values yi at a point xi in a Gaussian process typically212

depends on the values at neighboring points Ni. This has been theoretically scru-213

tinized and conditions for its validity have been established, albeit under limited214

scenarios [47, 48, 49]. The Vecchia approximation [50] utilizes this principle by ap-215

proximating the exact joint density p1(y) = p(y1)
∏n

i=2 p(yi|y1:i−1) ∼ N (0,K) with216

p2(y) = p(y1)
∏n

i=2 p(yi|yNi
) ∼ N (0, K̂), significantly simplifying calculations. This217

approximation yields a precision matrix K̂−1 with a sparse Cholesky decomposition,218

where the Cholesky factor has a limited number of non-zero entries per row, equal219

to the size of Ni [15, 28]. While recent studies [44, 43] confirm that the screening220

effect is valid for functions derived from the Green’s functions of elliptic operators,221

it’s important to note that when the effect is weak or absent, the approximation will222

not be very accurate.223

The second measure qXk
, called separation distance [21, 30], is defined as the224

distance between the closest pair of points in Xk:225

qXk
= min

xki
,xkj

∈Xk,ki ̸=kj

dist(xki
,xkj

).(3.2)226

The geometric interpretation of this measure is the diameter of the largest ball that227

can be placed around every point in Xk such that no two balls overlap. A larger228

qXk
indicates that the columns in K11 tend to be more linearly independent and thus229

leads to a more well-conditioned K11. Given that the separation distance serves as a230

metric for the conditioning of the kernel matrix [52] and the conditioning of K11 will231

affect the numerical stability of L, a larger separation distance implies a more stable232

Nyström approximation and a more stable AFN preconditioner.233

As more landmark points are sampled, both hXk
and qXk

tend to decrease. We234

wish to choose Xk such that hXk
is small while qXk

is large. We will analyze the235

interplay between hXk
and qXk

in Section 3.1. In particular, we will show that if236

hXk
≤ CqXk

for some constant C, then hXk
and qXk

have the same order as the237
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Fig. 2: An illustration of FPS for selecting one, ten, twenty and thirty points from a
two-dimensional dataset with 400 points where the big circles represent the selected
points and the dots denote the other data points.

minimal value of the fill distance and the maximal value of the separation distance238

that can be achieved with k points, respectively.239

Moreover, we find that FPS [19] can generate landmark points with hXk
≤ qXk

.240

FPS is often used in mesh generation [37] and computer graphics [42]. In spatial241

statistics, FPS is also known as MaxMin Ordering (MMD) [26]. FPS initializes X1242

with an arbitrary point xk1
in X (better choices are possible). At step i + 1, FPS243

selects the point that is farthest away from Xi244

(3.3) xki+1
= argmax

x∈X\Xi

dist(x, Xi).245

See Figure 2 for an illustration of FPS on a two-dimensional dataset and the complete246

pseudocode of FPS in Algorithm B.4 in Appendix B. The landmark points selected247

by FPS spread evenly in the dataset and do not form dense clusters. We will justify248

the use of FPS to select landmark points in the construction of the AFN preconditioner249

in Section 3.2.250

3.1. Interplay between fill and separation distance. In this section, we will251

study the relationship between hXk
and qXk

. We will show that if hXk
≤ CqXk

for a252

constant C, then hXk
and qXk

will have the same order as the minimal fill distance253

and maximal separation distance that can be achieved with any subset with k points,254

respectively.255

First notice that there exist a lower bound for hXk
and a upper bound for qXk

,256

which is analyzed in the next theorem when all the points are inside a unit ball in R
d.257

Theorem 3.1. Suppose all the data points are inside a unit ball Ω in R
d. Then258

for an arbitrary subset Xk = {xi1 , . . . ,xik} of X, the following bounds hold for hXk
259

and qXk
:260

hXk
≥ k−1/d and qXk

≤ 2
d+1

d k−1/d.(3.4)261
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8 ADAPTIVE FACTORIZED NYSTRÖM PRECONDITIONER

Proof. In order to show the lower bound of hXk
, we first derive an upper bound262

of the volume of Ω. Notice that Ω ⊂ ⋃k
i=1 BhXk

(xki
) where BhXk

(xki
) is the ball263

centered at xki
with radius hXk

. Then264

Vol(Ω) ≤
k∑

i=1

Vol(BhXk
(xki

)) = k
πd/2

Γ(d2 + 1)
hd
Xk

.265

This gives us the first bound.266

Similarly, we get an upper bound of qXk
by deriving a lower bound of the volume267

of Ω:268

Vol(Ω) ≥ Vol(Ω
⋂ k⋃

i=1

B qXk
2

(xki
)) =

k∑

i=1

Vol(Ω
⋂

B qXk
2

(xki
))269

≥ 1

2

k∑

i=1

Vol(B qXk
2

(xki
)) = k

πd/2

2d+1Γ(d2 + 1)
qdXk

.270

Here we use the fact that Vol(Ω
⋂
B qXk

2

(xki
)) ≥ π

2πVol(B qXk
2

(xki
)). This gives us the271

second bound.272

Remark 3.2. When Ω satisfies the interior cone condition [36], similar bounds273

hXk
≥ CΩk

−1/d and qXk
≤ C ′

Ωk
−1/d can be derived for more complex bounded274

domains where CΩ and C ′
Ω are two constants depending on the domain Ω.275

The above bounds show that the minimal fill distance hXk
cannot be smaller than276

k−1/d while the maximal separation distance qXk
cannot be greater than 2

d+1

d k−1/d277

and 2−
d+1

d qXk
≤ hXk

when the domain is a unit ball in R
d. In the following theorem,278

we show that if a sampling scheme can select a subset Xk with hXk
≤ CqXk

, then279

qXk
has the same order as the maximal separation distance that can be achieved by280

a subset with k points.281

Theorem 3.3. Assume the data points are on a bounded domain Ω that satisfies282

the interior cone condition, then if hXk
≤ CqXk

283

CΩk
−1/d ≤ hXk

≤ C × C ′
Ωk

−1/d,
CΩ

C
k−1/d ≤ qXk

≤ C ′
Ωk

−1/d.(3.5)284

Proof. If hX ≤ CqX , then we have285

CΩk
−1/d ≤ hXk

≤ CqXk
≤ C × C ′

Ωk
−1/d.286

Theorem 3.3 shows that hXk
is at most C× C

′

Ω

CΩ
times larger than its theoretical lower287

bound and qXk
is at least 1

C × CΩ

C
Ω
′
times as large as its theoretical upper bound in288

this case.289

3.2. Farthest point sampling. In this section, we justify the use of FPS in the290

construction of the proposed preconditioner. FPS is a greedy algorithm designed to291

select a set of data points with maximal dispersion at each iteration. FPS can generate292

Xk with hXk
at most 2 times the minimal fill distance [24] and qXk

at least half the293

largest separation distance over all subsets with k points [54]. In the forthcoming theo-294

rem, we initially confirm that the FPS method can generate Xk satisfying hXk
≤ qXk

.295

Subsequently, we leverage this finding to demonstrate two near-optimality properties296
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in a cohesive manner. While these properties have been independently established in297

[24, 54], our work amalgamates and revalidates these results within a unified frame-298

work. Notably, despite FPS’s widespread application in Nyström approximation and299

spatial statistics ordering, its theoretical underpinnings remain underexplored in this300

community, contrasting with its empirical efficacy. We posit that incorporating these301

findings will significantly benefit the scientific computing community.302

Theorem 3.4. Suppose the minimal fill distance of a subset with k points is303

achieved with X∗
k and the maximal separation distance of a subset with k points is304

achieved with Xk∗. Then the set Xk sampled by FPS satisfies305

hXk
≤ qXk

and qXk
≥ 1

2
qXk∗

and hXk
≤ 2hX∗

k
.(3.6)306

Proof. Without loss of generality, we assume the subset Xk sampled by FPS307

contains the points x1,x2, . . . ,xk. Suppose qXk
= dist(xj ,xm) with j < m < (k+1),308

and point xm is selected at iteration m by FPS, then309

(3.7) hXm−1
= max

x∈X\Xm−1

dist(x, Xm−1) = dist(xj ,xm) = qXk
.310

Since hXk
is a non-increasing function of k, we have hXk

≤ hXm−1
= qXk

.311

We now prove qXk
≥ 1

2qXk∗. According to the definition, there exists a subset
with k points Xk∗ = {x1

∗, . . . ,x
k
∗} such that

qXk∗
= max

Y⊂X,|Y |=k
min

xi,xj∈Y
dist(xi,xj).

According to (3.7), we know all the points in X must lie in one of the m − 1 disks312

defined by313

(3.8) C(xi, qXk
) = {x|∥x− xi∥ ≤ qXk

}, i ∈ [m− 1].314

Sincem−1 < k, at least two points xi
∗,x

j
∗ ∈ Xk∗ must belong to the same disk centered315

at some xl. Therefore, 2qXk
≥ dist(xi

∗,xl)+dist(xj
∗,xl) ≥ dist(xi

∗,x
j
∗) ≥ qXk∗ via the316

triangle inequality.317

Next, we prove hXk
≤ 2hX∗

k
. At the kth iteration of FPS, the set X can be split

into k clusters {Ci}ki=1 such that the point x in X will be classified into cluster Ci if
dist(xi,x) ≤ dist(xj ,x), ∀j ̸= i. At the (k + 1)th iteration of FPS, one more point
xk+1 will be selected. Then we can show that

dist(xi,xj) ≥ hXk
for i, j ∈ {1, 2, . . . , k + 1},

and in particular
qXk+1

≥ hXk
.

Assume xk+1 ∈ Ci. From the definition of hXk
, we know that dist(xk+1,xi) = hXk

318

and dist(xk+1,xj) ≥ dist(xk+1,xi) for j ̸= i. Moreover, we have dist(xi,xj) ≥ qXk
319

for j ̸= k + 1. Since qXk
≥ hXk

, we know qXk+1
= dist(xi,xj) ≥ hXk

.320

Finally, assume x∗
1,x

∗
2, . . . ,x

∗
k are the optimal subset of X that achieves the mini-321

mal fill distance with cardinality k. Now the set X can be split into k clusters {C∗
i }ki=1322

such that the point x in X will be classified into C∗
i if dist(x∗

i ,x) ≤ dist(x∗
j ,x), ∀j ̸= i.323

Assume the points selected by FPS in the first k + 1 iterations are x1,x2, . . . ,xk+1.324

We know that at least two points from x1,x2, . . . ,xk+1 belong to the same cluster.325
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Denote these two points as xp and xq and the corresponding cluster is C∗
j . Then we326

have327

hXk
≤ qXk+1

≤ dist(xp,xq) ≤ dist(xp,x
∗
i ) + dist(xq,x

∗
i ) ≤ 2hX∗

k
,328

which indicates that hXk
≤ 2hX∗

k
.329

We now demonstrate the screening effect (mentioned in Section 3) numerically330

with an example in Figure 3 when FPS is applied to select landmark points. Figure 3331

shows histograms of the magnitude of the entries in three matrices K22 + µI, K22 +332

µ I−K⊤
12(K11+µ I)−1K12 and (K22+µ I−K⊤

12(K11+µ I)−1K12)
−1 for l = 5, with the333

matrices scaled so that their maximum entries are equal to one. The 1000 data points334

X are generated uniformly over a cube with edge length 10 and 100 landmark points335

X100 are selected by FPS. The figure shows that K22 + µ I − K⊤
12(K11 + µ I)−1K12336

and its inverse have many more entries with smaller magnitude than K22 + µI. This337

example further justifies that (K22+µ I−K⊤
12(K11+µ I)−1K12)

−1 has more “sparsity”338

than K22 + µ I−K⊤
12(K11 + µ I)−1K12, which supports the use of FSAI.339

Fig. 3: Histograms of the magnitude of the entries in K22+µI, K22+µ I−K⊤
12(K11+

µ I)−1K12, and (K22+µ I−K⊤
12(K11+µ I)−1K12)

−1 associated with a Gaussian kernel
matrix defined using 1000 points sampled uniformly from a cube with edge length 10,
regularization parameter µ = 0.0001, and length-scale l = 5. The maximum entries
in these three matrices are all scaled to 1. K has 243 eigenvalues greater than 1.1×µ.

3.3. Implementation of FPS. A naive implementation of FPS for selecting340

k samples from n points in R
d scales as O(dk2n). The scaling can be reduced to341

O(ρdn log n) by using an algorithm [44] that keeps the distance information in a heap342

and that only updates part of the heap when a new point is added to the set Xk.343

Here, ρ is a constant that controls the efficiency of the sampling process. When ρ is344

greater than or equal to 1, this algorithm returns the exact FPS. A larger ρ is required345

if a larger number of neighbors for each data point need to be computed during the346

same sampling process.347

4. Adaptive choice of approximation rank. In order to construct a precon-348

ditioner that is adaptive and efficient for a range of regularized kernel matrices arising349

from different values of the kernel function parameters, it is necessary to estimate the350

rank of the kernel matrix K. For example, if the estimated rank is small enough351

that it is inexpensive to perform an eigendecomposition of a k-by-k matrix, then the352

Nyström preconditioner should be used due to the reduced construction cost.353

4.1. Nyström approximation error analysis based on fill distance. De-
fine the Nyström approximation error as

∥K−Knys∥ = ∥K22 −K21K
−1
11 K12∥.
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In this section, we will show that the Nyström approximation error is also related to354

the fill distance hXk
. In particular, for Gaussian kernels defined in (1.2) and inverse355

multiquadric kernels356

(4.1) K(x,y) = (c2 + ∥x− y∥2)− p
2 , p > 0, c ∈ R,357

we can derive a Nyström approximation error estimate in terms of the fill distance,358

as presented in the following theorem.359

Theorem 4.1. The Nyström approximation Knys = KX,Xk
K−1

Xk,Xk
KXk,X to K360

using the landmark points Xk = {xki
}ki=1 has the following error estimate361

(4.2) ∥K−Knys∥ <
√
n∥K∥C ′ exp(−C ′′/hXk

),362

where C ′ and C ′′ are constants independent of Xk.363

The detailed proof of Theorem 4.1 is in Appendix A. This theorem is a discrete364

version of the Theorem A in [5], which implies that kernel operators corresponding to365

smooth kernels are effective low rank. Our proof broadens the scope of the original366

results on kernel functions , as presented in [5], to encompass discrete matrix settings.367

This extension shows that the low-rank approximation mentioned in [5] can indeed368

be interpreted as a Nyström approximation applicable to matrices. For this Nyström369

approximation. Theorem 4.1 implies landmark points Xk with a smaller fill distance370

can yield a more accurate Nyström approximation. We illustrate this numerically371

with an experiment. In Figure 4, we plot the fill distance curve and the Nyström372

approximation error curve corresponding to a Gaussian kernel with l = 10 when 1000373

points are uniformly sampled from a cube with edge length 10. We test random374

sampling and FPS for selecting the landmark points and observe that FPS leads to a375

smaller fill distance than random sampling. We also observe that FPS Nyström can376

achieve lower approximation errors than the randomly sampled one when the same377

k is used. Thus we will use FPS to select landmark points in the construction of378

Nyström-type preconditioners if the estimated rank is small. Meanwhile, the rank379

estimation algorithm discussed in the next section also relies on FPS.380

The error estimate in (4.1) does not involve the length-scale l explicitly. However,381

this error estimate can still help understand how the length-scale in Gaussian kernels382

affects the Nyström approximation error when the same landmark points Xk are used.383

Assume hXk
is the fill distance of Xk associated with the unit length-scale. When we384

change the length-scale to l, the kernel matrix associated with length-scale l can be385

regarded as a kernel matrix associated with the unit length-scale and the scaled data386

points x̃ = x/l. This is because ∥x̃ − ỹ∥ = ∥x
l − y

l ∥ = 1
l dist(x,y). In this case, the387

fill distance on the rescaled data points becomes
hXk

l . As a result, as l increases, the388

exponential factor in the estimate decays faster. This is consistent with the fact that389

the Gaussian kernel matrix K is numerically low-rank when l is large.390

4.2. Nyström rank estimation based on subsampling. It is of course too391

costly in general to use a rank-revealing decomposition of K to compute k. Instead,392

we will compute k that approximately achieves a certain Nyström approximation393

accuracy via checking the relative Nyström approximation error on a subsampled394

dataset.395

First, a dataset Xm of m points is randomly subsampled from X. The number of396

points m is an input to the procedure, and m can be much smaller than the k that will397

be computed. Then the coordinates of the data points in Xm are scaled by (m/n)1/d398
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Fig. 4: Comparison of fill distance and the Nyström approximation error for 1000
points uniformly sampled from a cube with edge length 10, when the Gaussian kernel
function with length-scale l = 10 is used. FPS and random sampling are used to
sample k points from X to form Xk. Nyström error is computed only for the ranks
which are multiples of 10.

and the smaller kernel matrix KXm,Xm
is formed. The rationale of this scaling is that399

we expect the spectrum of KXm,Xm
has a similar decay pattern as that of KX,X .400

We now run FPS on Xm to construct Nyström approximations with increasing rank401

to K until the relative Nyström approximation error falls below 0.1 and define this402

Nyström rank as r. Finally, we approximate the Nyström rank ofK as rn/m. Figure 5403

plots the Nyström approximation errors on subsampled matrices and original matrices404

associated with two different length-scales. The data pointsX are generated randomly405

by sampling 1000 points uniformly within a cube and m = 100 points are subsampled406

randomly. The two relative Nyström approximation error curves show a close match407

in both cases. This rank estimation method is summarized in Algorithm 4.1. We408

also find that if the estimated rank is small (e.g., less than 2000), we can perform an409

eigen-decomposition of KXm,Xm
associated with the unscaled data points and refine410

the estimation with the number of eigenvalues greater than 0.1µ.411

Algorithm 4.1 Nyström rank estimation

1: Input: dataset X with size n, subsample size m, and kernel function K(x,y)
2: Output: approximate Nyström rank k
3: Randomly subsample a subset Xm of m points from X and scale the coordinates

of Xm by (m/n)1/d

4: Form the m×m matrix KXm,Xm

5: Find the Nyström rank r such that the relative Nyström approximation error for
KXm,Xm

with FPS sampling falls below 0.1
6: Compute k = rn/m
7: if k ≥ 2000 then

8: Return k = rn/m
9: else

10: Compute eigenvalues of KXm,Xm
associated with the unscaled data points

11: Return k = # of eigenvalues greater than 0 .1µ
12: end if
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Fig. 5: Comparison of the relative Nyström approximation error curves for an origi-
nal dataset and a subsampled dataset with 100 points, associated with two different
length-scales. The original dataset contains 1000 uniformly sampled points from a
cube with edge length 10. The indices of the subsampled dataset are matched with
those of the original dataset by computing the relative Nyström approximation errors
on the original dataset only for ranks that are multiples of 10. The plot shows how
the approximation error changes as the rank of the approximation increases.

If the estimated rank k is smaller than 2000, then the Nyström preconditioner412

should be used. AFN is only constructed when the estimated rank exceeds 2000 for413

better efficiency. The selection of the preconditioning method is shown precisely in414

Algorithm 4.2.415

Algorithm 4.2 Preconditioned conjugate gradient with the proposed preconditioning
scheme

1: Input: Kernel matrix K, regularization parameter µ, right-hand side vector b
2: Estimate numerical rank k of K with Algorithm 4.1
3: if k ≥ 2000 then

4: Solve (K + µI)a = b using PCG with the AFN preconditioner, applied as per
Algorithm B.3

5: else

6: Solve (K + µI)a = b using PCG with the column sampling-based Nyström
preconditioner, applied as per Equation (1.6)

7: end if

8: Return: approximate solution vector

5. Numerical experiments. The AFN preconditioner and the preconditioning416

strategy (Algorithm 4.2) are tested for the iterative solution of regularized kernel417

matrix systems (1.1) over a wide range of length-scale parameters l in the following418

two kernel functions419

• Gaussian kernel: K(x,y) = exp
(
− 1

l2 ∥x− y∥22
)

420

• Matérn-3/2 kernel: K(x,y) =
(
1 +

√
3
l ||x− y||2

)
exp

(
−

√
3
l ||x− y||2

)
.421

We also benchmark the solution of these systems using unpreconditioned CG, and422

preconditioned CG, with the FSAI preconditioner and with the randomized Nyström423
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(RAN) preconditioner [22] with randomly selected k landmark points.424

RAN approximates the kernel matrix with a rank-k Nyström approximation based425

on randomly sampling the data points. Assuming the k-th largest eigenvalue of Knys426

is λk, the inverse of the RAN preconditioner takes the form [22]: (λk + µ)U(Λ +427

µI)−1U⊤ + (I − UU⊤) where UΛU⊤ is the eigendecomposition of Knys. In our428

experiments, we use 400 nearest neighbors as the sparsity pattern for FSAI, fix the429

Nyström rank to be 3000 for RAN, and use 100 nearest neighbors as the sparsity pattern430

for the FSAI used in AFN.431

The stopping tolerance for the relative residual norm is set to be 10−4. We432

randomly generated right-hand side vectors in Equation (1.1) with entries from the433

uniform distribution [−0.5, 0.5]. For all tests we perform 3 runs and report the average434

results.435

AFN, RAN and FSAI have been implemented in C. The C implementation of the436

AFN preconditioner can be found in the AFN Precond branch of the H2Pack GitHub437

website 1. The test routines for AFN and RAN can be found from this web page 2 and438

the test routines for FSAI can be found from this web page 3. Experiments are run439

on an Ubuntu 20.04.4 LTS machine equipped with 755 GB of system memory and440

a 24-core 3.0 GHz Intel Xeon Gold 6248R CPU. We build our code with the GCC441

9.4.0 compiler and take advantage of shared memory parallelism using OpenMP. We442

use the parallel BLAS and LAPACK implementation in the OpenBLAS library for basic443

matrix operations. H2Pack [9, 27] is used to provide linear complexity matrix-vector444

multiplications associated with large-scale K for 3D datasets with the relative error445

threshold 10−8. We utilized a brute force parallel FPS algorithm on the global dataset.446

OpenMP was used to apply an O(n) distance update in parallel at each step. The447

computational cost is tractable due to a maximum of 2000 distance updates required.448

The number of OpenMP threads is set to 24 in all the experiments.449

5.1. Experiments with synthetic 3D datasets. The synthetic data consists450

of n = 1.6 × 105 random points sampled uniformly from inside a 3D cube with edge451

length 3
√
n. We first solve regularized linear systems associated with both Gaussian452

kernel and Matérn-3/2 kernel, with µ = 0.0001.453

The computational results are tabulated in Table 1, which shows the number454

of solver iterations required for convergence, the preconditioner setup (construction)455

time, and the time required for the iterative solve. Rank estimation Algorithm 4.1456

is used to estimate the rank k for each kernel matrix with the given length-scale457

information shown on the first row of each table. For both kernels, we select 9 middle458

length-scales to justify the robustness of AFN. We also include two extreme length-459

scales in these tables to show the effectiveness of the preconditioning strategy using460

AFN summarized in Algorithm 4.2 across a wide range of l.461

We first note that, for unpreconditioned CG, the iteration counts first increase and462

then decrease as the length-scale decreases for both kernel functions. This confirms the463

result seen earlier in Figure 1 that it is the linear systems associated with the middle464

length-scales that are most difficult to solve due to the unfavorable spectrum of these465

kernel matrices. We also observe that FSAI is very effective as a preconditioner for466

Gaussian kernel, with l2 = 0.1 and Matérn-3/2 kernel, with l = 1.0. FSAI is effective467

if the inverse of the kernel matrix can be approximated by a sparse matrix, which468

is the situation for both length-scales. We observe the opposite effect for the RAN469

1https://github.com/scalable-matrix/H2Pack/
2https://github.com/scalable-matrix/H2Pack/tree/AFN precond/examples/AFN precond
3https://github.com/scalable-matrix/H2Pack/tree/AFN precond/examples/SPDHSS-H2
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preconditioner, which is effective for large length-scales but is poor for small length-470

scales. For middle length-scales, AFN substantially reduces the number of iterations471

compared to other methods. In particular, AFN yields almost a constant iteration472

number for Matérn-3/2 kernel. For Gaussian kernel with l2 = 1000 and Matérn-3/2473

kernel with l = 1000, choosing AFN as the Nyström preconditioner form with the474

estimated rank significantly reduces the setup time for AFN compared to RAN(3000)475

but still keeps roughly the same preconditioning effect.476

Table 1: Numerical results for the kernel matrices defined based on n = 1.6 × 105

points sampled inside a 3D cube of edge length 3
√
n. “− ” indicates that a run failed

to converge within 500 iterations. All experiments are run three times and reported
as the average of three runs.

l2 1000 65 60 55 50 45 40 35 30 25 0.1
k 565 9600 9600 9600 9600 12800 12800 12800 16000 19200 160000

Iteration Counts
CG 44.00 - - - - - - - - - 1.00
AFN 3.00 35.00 37.00 38.00 40.00 42.00 46.00 50.00 57.00 62.00 1.00
RAN 3.00 72.67 101.33 140.67 199.33 284.33 409.33 - - - -
FSAI - - - - - - - - - - 1.00

Setup Time (s)
AFN 3.19 38.97 39.75 40.10 39.73 39.89 40.76 39.34 40.12 40.59 40.37
RAN 27.28 27.59 26.46 27.33 29.05 29.95 31.18 31.56 33.64 33.97 35.07
FSAI 10.00 9.91 10.02 10.16 9.72 9.87 10.14 9.71 10.01 9.84 13.22

Solve Time (s)
CG 9.72 - - - - - - - - - 1.75
AFN 0.43 12.49 14.00 14.99 15.82 18.02 20.15 22.59 27.26 29.10 1.91
RAN 0.81 23.29 35.73 49.98 72.20 96.75 138.88 - - - -
FSAI - - - - - - - - - - 1.27

(a) Gaussian kernel with a fixed µ = 0.0001 and varying l.

1/l 1.0 0.065 0.060 0.055 0.050 0.045 0.040 0.035 0.030 0.025 0.001
k 160000 19200 16000 14080 12800 9600 9600 6400 6400 6400 178

Iteration Counts
CG 293.67 - - - - - - - - - 292.67
AFN 3.00 6.00 6.00 6.00 7.00 7.00 7.00 7.00 7.00 6.00 9.00
RAN - 454.00 404.33 355.67 308.33 263.00 220.67 181.00 142.00 108.33 4.00
FSAI 5.00 - - - - - - - - - -

Setup Time (s)
AFN 47.32 45.24 44.67 42.99 43.41 43.39 44.34 43.50 43.29 42.74 3.07
RAN 63.69 39.78 40.30 39.81 40.16 39.94 40.08 40.19 40.18 39.77 55.41
FSAI 13.98 10.31 10.18 10.19 10.29 10.26 10.30 10.28 10.02 9.84 13.80

Solve Time (s)
CG 22.41 - - - - - - - - - 22.40
AFN 2.43 2.52 2.63 2.42 3.32 2.84 3.02 2.58 2.74 2.30 0.86
RAN - 116.37 99.32 86.87 74.04 63.98 53.58 42.24 32.19 25.93 1.36
FSAI 3.71 - - - - - - - - - -

(b) Matérn-3/2 kernel with a fixed µ = 0.0001 and varying l.

In Table 2, we also compare the performance of AFN, RAN and FSAI for solving477

(1.1) associated with the Matérn-3/2 kernel matrices with l = 20 and varying µ. It is478

easy to see that the performance of RAN and FSAI deteriorates as the regularization479

parameter µ decreases while the iteration count of AFN remains almost a constant,480
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which shows the improved robustness of AFN over RAN and FSAI with respect to µ.481

Table 2: Numerical results for the Matérn-3/2 kernel matrices associated with l = 20
and varying µ and n = 1.6× 105 points sampled inside a 3D cube of edge length 3

√
n.

“ − ” indicates that a run failed to converge within 500 iterations. All experiments
are run three times and reported as the average of three runs.

µ 1e−1 1e−2 1e−3 1e−4 1e−5 1e−6 1e−7 1e−8 1e−9 1e−10
Iteration Counts

CG - - - - - - - - - -
AFN 15.00 12.00 6.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
RAN 10.33 29.00 93.33 311.33 - - - - - -
FSAI 164.00 370.33 - - - - - - - -

Setup Time (s)
AFN 43.74 43.50 42.74 44.59 43.63 43.24 44.31 44.30 43.11 43.71
RAN 40.25 39.71 39.14 40.86 39.92 40.13 40.40 40.34 39.80 40.35
FSAI 10.33 10.46 10.56 10.39 10.53 10.40 10.53 10.59 10.76 10.48

Solve Time (s)
CG - - - - - - - - - -
AFN 5.30 4.95 2.61 2.78 3.02 2.90 2.89 2.84 2.88 3.09
RAN 3.29 8.53 25.03 76.33 - - - - - -
FSAI 21.43 46.44 - - - - - - - -

5.2. Experiments with machine learning datasets. We test the perfor-482

mance of AFN on two high-dimensional datasets, namely IJCNN1 from LIBSVM [11]483

and Elevators from UCI [18] in this section. The training set of IJCNN1 consists484

of n = 49990 data points, with 22 features and 2 classes, while Elevators contains485

n = 16599 data points, with 18 features and 1 target.486

Here, we perform experiments with the Gaussian kernel for IJCNN1 and Matérn-487

3/2 kernel for Elevators. After conducting grid searches, we select the regularization488

parameter to be µ = n×10−6 for both datasets so that the test error of KRR is small489

for the optimal length-scale l in our searches. We select 12 length-scales in two sep-490

arate intervals, which include the optimal length-scales for both datasets. The grid491

search method was used to determine the optimal length-scale for IJCNN1, resulting492

in a value of l = 1 which is consistent with the findings in [22]. In contrast, for493

Elevators, the optimal length-scale was determined using GPyTorch [53] and found494

to be l = 14. Most of the length-scales within each interval correspond to middle495

length-scales. Two extreme length-scales are also considered here to show the effec-496

tiveness of AFN across a wide range of l. Since FSAI is less robust than RAN, we only497

compare AFN with RAN in this section. As these are high-dimensional datasets (22498

and 18 dimensions, as mentioned) and we do not have a fast kernel matrix-vector499

multiplication code for high-dimensional data, these kernel matrix-vector multiplica-500

tions were performed explicitly. Due to the high computational cost of FPS in high501

dimensions, we simply use uniform sampling to select the landmark points for AFN502

when the estimated rank is greater than 2000 in these experiments.503

We report the computational results in Table 3. The patterns of the change504

of iteration counts, setup time and solution time with respect to the length-scales on505

both datasets are similar to those observed in the 3D experiments. First, the iteration506

counts of unpreconditioned CG first increases and then decreases as l decreases in both507

datasets. This indicates that the spectrum of the kernel matrices associated with high-508

dimensional datasets could be related to those associated with low-dimensional data.509
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Table 3: Numerical results for the IJCNN1 and Elevator datasets with Gaussian kernel
and Matérn-3/2 kernel, respectively. “−” indicates that a run failed to converge within
500 iterations. All experiments are run three times and reported as the average of
three runs. In both tests we set µ = n× 10−6.

l2 10.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.01
k 1278 8798 10397 11197 13197 14996 17396 20395 24394 29394 37192 48190

Iteration Counts
CG 218.00 - - - - - - - - 481.00 418.00 239.00
AFN 3.00 44.00 43.33 42.00 41.00 39.00 36.67 33.00 29.33 25.33 19.67 9.00
RAN 2.00 12.67 13.67 15.67 18.67 21.67 26.00 32.00 40.00 51.00 66.67 73.33

Setup Time (s)
AFN 4.18 15.69 15.66 15.30 15.53 15.29 15.30 15.68 16.34 15.51 15.19 15.15
RAN 52.44 40.81 41.68 41.20 41.73 41.40 41.09 41.59 41.08 40.90 43.58 48.16

Solve Time (s)
CG 30.63 - - - - - - - - 55.23 46.73 34.73
AFN 0.97 8.07 8.99 8.24 7.47 7.55 6.88 6.50 5.94 5.05 5.01 2.44
RAN 0.70 2.93 3.04 3.01 4.03 4.90 4.87 6.13 8.11 9.40 11.89 12.83

(a) IJCNN1 with Gaussian kernel.

1/l 1.0 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.0005
k 16599 12083 11685 11419 11087 10822 10224 9427 8166 6838 5576 983

Iteration Counts
CG 29.00 324.00 325.00 331.00 339.00 347.00 355.00 358.00 349.00 331.00 303.00 124.00
AFN 3.00 9.33 9.67 9.67 10.00 10.00 10.00 10.00 10.00 49.00 60.00 5.00
RAN 20.67 71.67 71.00 69.33 67.00 65.00 61.00 57.33 59.67 69.67 75.33 7.33

Setup Time (s)
AFN 9.58 5.34 5.45 5.79 5.60 5.48 5.42 5.47 5.36 5.76 6.06 1.94
RAN 38.78 28.64 44.28 42.45 30.86 32.53 44.61 36.91 39.38 38.32 35.72 34.90

Solve Time (s)
CG 0.54 3.65 3.73 3.71 3.79 3.92 4.01 4.06 3.93 3.75 3.48 1.39
AFN 0.21 0.38 0.40 0.43 0.40 0.40 0.49 0.39 0.38 1.83 2.22 0.11
RAN 0.68 2.04 1.84 2.08 1.82 1.76 1.67 1.49 1.76 1.88 2.00 0.28

(b) Elevators with Matérn-3/2 kernel.

AFN is again able to significantly reduce the iteration counts compared to unprecon-510

ditioned CG in all tests. We notice that the iteration count of the RAN preconditioned511

CG increases as the estimated rank increases on the IJCNN1 dataset. This implies512

that in order to converge in the same number of iterations as l becomes smaller, RAN513

type preconditioners need to keep increasing the Nyström approximation rank k and514

thus require longer setup time and more storage. AFN requires smaller setup time515

in all of the experiments and leads to smaller iteration counts when l2 < 0.4 on the516

IJCNN1 dataset and all length-scales on the Elevators dataset. In addition, we can517

also observe that AFN yields the smallest total time in all of the experiments on both518

datasets compared with RAN.519

6. Conclusion. In this paper, we introduced an approximate block factoriza-520

tion of K + µI that is inspired by the existence of a Nyström approximation, K ≈521

KX,Xk
K−1

Xk,Xk
KXk,X . The approximation is designed to efficiently handle the case522

where k is large, by using sparse approximate inverses.523

We further introduced a preconditioning strategy that is robust for a wide range of524

length-scales. When the length-scale is large, existing Nyström preconditioners work525
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well. For the challenging length-scales, the AFN preconditioner proposed in this paper526

is the most effective. We justify the use of FPS to select landmark points in order to527

construct an accurate and stable AFN preconditioner and propose a rank estimation528

algorithm using a subsampling of the entire dataset.529

It is important to note that in high-dimensional settings, the effectiveness of530

screening effects diminishes, as indicated by [43, 44]. This is attributed to the re-531

duced representational capacity of Euclidean distance for spatial similarity in high-532

dimensional spaces, a concept further explored by [16]. Consequently, the FSAI ap-533

proach for approximating the inverse of the Schur complement can be less effective534

for high-dimensional datasets, such as those commonly found in machine learning, as535

it is for lower-dimensional ones, such as those in spatial statistics. Nevertheless, in536

the realm of machine learning, kernel methods – including the kernel trick in Support537

Vector Machines (SVMs), Kernel Ridge Regression (KRR), and Gaussian Process Re-538

gression (GPR) – fundamentally rely on the premise that spatial similarity correlates539

with data similarity and the proposed AFN method retains its relevance as long as this540

assumption is valid. For datasets with high dimensionality, we plan to first apply a541

transformation to map the data points to lower-dimensional manifolds. This transfor-542

mation, as discussed in the survey by [6], ensures that Euclidean distance continues to543

effectively represent similarity in these reduced-dimensional spaces. In future work,544

we will also study whether the dependence on ambient dimension in Theorem 3.3 can545

be reduced to the intrinsic dimension of the data manifold and apply AFN to accel-546

erate the convergence of stochastic trace estimation and gradient based optimization547

algorithms.548

Appendix A. Proof of Theorem 4.1.549

The proof of Theorem 4.1 relies on Theorem A.1 from [5]. Theorem A.1 states550

that any bounded map T from a Hilbert space to a RKHS H corresponding to certain551

smooth radial kernels such as the Gaussian kernel defined in (1.2) and the inverse552

multiquadrics kernel defined in (4.1) always admits a low rank approximation in553

L2
µ := {f(x)|

∫
|f(x)|2dµ < ∞}. Furthermore, the approximation error bound can554

be quantified by fill distance. Before we proceed to Theorem A.1, we first introduce555

a few notations that will be used in the statement of Theorem A.1. On a domain Ω,556

the integral operator Kµ : L2
µ → H is defined as:557

Kµ(f)(·) =
∫

K(·,x)f(·)dµ.558

The restriction operator Rµ : H → L2
µ is defined as the restriction of f ∈ H to the

support of µ, interpolation operator SXk
: H → H is defined by interpolating the

values of f on a subset Xk ⊂ Ω as:

SXk
(f)(x) =

k∑

i=1

αiK(xi,x),

with (α1, . . . , αk)
⊤ = K−1

Xk,Xk
(f(x1), . . . , f(xk))

⊤. Since the range of Rµ and SXk
is

different, the following norm is used to measure their difference:

∥Rµ − SXk
∥H→L2

µ
:= max

f∈H,f ̸=0

∥(Rµ − SXk
)(f)∥L2

µ

∥f∥H
.

559
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Theorem A.1 ([5]). Let H denote the RKHS corresponding to the kernel K.560

Given a probability measure µ on Ω and a set Xk ⊂ Ω, there exist constants C ′, C ′′ >561

0 such that562

(A.1) ∥Rµ − SXk
∥H→L2

µ
< C ′ exp(−C ′′/hXk

).563

When Ω = X = {x1, . . . ,xn} and the uniform discrete measure µX = 1
n

∑n
i=1 δxi

is
used with δxi

being the Dirac measure at point xi, we have

KµX
(f)(x) =

1

n

n∑

i=1

K(xi,x)f(xi)

and HX = span{K(x1, ·), . . . ,K(xn, ·)}. The integral operator, interpolation operator
and restriction operator can then be written in the matrix form as KµX

(f)(X) =
1
nKf(X), SXk

(f)(X) = KX,Xk
K−1

Xk,Xk
f(Xk), and RµX

= I ∈ R
n×n, respectively.

Since RµX
◦ KµX

= KµX
, we have

KµX
− SXk

◦ KµX
= (RµX

− SXk
) ◦ KµX

.

Thus, we can get the following inequality564

∥(RµX
− SXk

) ◦ KµX
∥L2

µX
→L2

µX
≤ ∥(RµX

− SXk
)∥HX→L2

µX
∥KµX

∥L2
µX

→HX
.565

Based on Theorem A.1, we know that566

∥(RµX
− SXk

) ◦ KµX
∥L2

µX
→L2

µX
≤ C ′ exp(−C ′′/hXk

)∥KµX
∥L2

µX
→HX

.567

In the next theorem, we will derive an error estimate for the Nyström approximation568

error by further proving569

∥(RµX
− SXk

) ◦ KµX
∥L2

µX
→L2

µX
=

1

n
∥K−Knys∥,570

and ∥KµX
∥2L2

µX
→HX

=
√
∥K∥/n.571

Theorem 4.1. The Nyström approximation Knys = KX,Xk
K−1

Xk,Xk
KXk,X to K572

using the landmark points Xk = {xki
}ki=1 has the following error estimate573

(A.2) ∥K−Knys∥ <
√
n∥K∥C ′ exp(−C ′′/hXk

),574

where C ′ and C
′′

are constants independent of Xk.575

Proof. Since RµX
◦ KµX

= KµX
, we have

KµX
− SXk

◦ KµX
= (RµX

− SXk
) ◦ KµX

.

Notice KµX
is a map from L2

µX
to HX and from the definition of the norm, we get576

the following inequality577

(A.3) ∥(RµX
− SXk

) ◦ KµX
∥L2

µX
→L2

µX
≤ ∥(RµX

− SXk
)∥HX→L2

µX
∥KµX

∥L2
µX

→HX
.578

Based on Theorem A.1, we obtain579

(A.4) ∥(RµX
− SXk

)∥HX→L2
µX

< C ′ exp(−C ′′/hXk
).580
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First, recall that581

∥(RµX
− SXk

) ◦ KµX
∥L2

µX
→L2

µX
= max

f∈L2
µX

,f ̸=0

∥(RµX
− SXk

) ◦ KµX
(f)∥L2

µX

∥f∥L2
µX

,582

and583

∥(RµX
− SXk

) ◦ KµX
(f)∥L2

µX
=

√∫

X

((RµX
− SXk

) ◦ KµX
(f))

2
dµX584

=

√√√√ 1

n

n∑

i=1

((RµX
− SXk

) ◦ KµX
(f)(xi))

2
585

=

√√√√ 1

n

n∑

i=1

((RµX
◦ KµX

(f)(xi)− SXk
◦ KµX

(f)(xi)))
2
.586

Define two vectors based on the two function evaluations at X:587

F1 = (RµX
◦ KµX

(f))(X), and F2 = (SXk
◦ KµX

(f))(X).588

Then we obtain589

∥(RµX
− SXk

) ◦ KµX
(f)∥L2

µX
=

1√
n
∥F1 − F2∥.590

Notice that F1 and F2 can also be written as591

F1 =
1

n
Kf(X), and F2 =

1

n
KX,Xk

K−1
Xk,Xk

KXk,Xf(X).592

Thus,593

∥(RµX
− SXk

) ◦ KµX
(f)∥L2

µX
=

1√
n
∥ 1
n
Kf(X)− 1

n
KX,Xk

K−1
Xk,Xk

KXk,Xf(X)∥594

=
1

n3/2
∥(K−Knys)f(X)∥.595

On the other hand,596

∥f∥L2
µX

=

√∫

X

f2dµX =

√√√√ 1

n

n∑

i=1

f(xi)2 =
1√
n
∥f(X)∥.597

As a result, we get598

∥(RµX
− SXk

) ◦ KµX
∥L2

µX
→L2

µX
= max

f∈L2
µX

,f ̸=0

∥(RµX
− SXk

) ◦ KµX
(f)∥L2

µX

∥f∥L2
µX

599

= max
f∈L2

µX
,f ̸=0

∥(K−Knys)f(X)∥
n∥f(X)∥600

= max
f∈Rn,f ̸=0

∥(K−Knys)f∥
n∥f∥ =

1

n
∥K−Knys∥.601
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Since there exists an orthogonal basis {fi}ni=1 of eigenfunctions of KµX
in L2

µX
602

with the eigenvalues λi, we can express any f ∈ Lµ2
X

as f =
∑n

i=1 α
(i)fi. As a result,603

we have604

∥KµX
∥2L2

µX
→HX

= max
f∈L2

µX
,f ̸=0

∥KµX
(f)∥2HX

∥f∥2L2
µX

605

= max
f∈L2

µX
,f ̸=0

⟨∑n
i=1 α

(i)KµX
(fi),

∑n
i=1 α

(i)KµX
(fi)⟩HX

∥∑n
i=1 α

(i)fi∥2L2
µX

.606

Proposition 10.28 in [51] shows that {KµX
(fi)} is orthogonal in HX :607

⟨KµX
(fi),KµX

(fj)⟩HX
= ⟨RµX

KµX
(fi), fj⟩L2

µX
= λi⟨fi, fj⟩L2

µX
.(A.5)608

Thus we obtain609

∥KµX
∥2L2

µX
→HX

= max
f∈L2

µX
,f ̸=0

∑n
i=1 λi|α(i)|2∥fi∥2L2

µX∑n
i=1 |α(i)|2∥fi∥2L2

µX

610

= max
f∈L2

µX
,f ̸=0

n∑

i=1

|α(i)|2∥fi∥2L2
µX∑n

i=1 |α(i)|2∥fi∥2L2
µX

λi611

= λ1.612

Since

KµX
(fi)(X) = λifi(X) and KµX

(fi)(X) =
1

n
Kfi(X),

we get
Kfi(X) = nλifi(X),

which implies that nλi are the eigenvalues of the kernel matrix K and in particular,613

(A.6) nλ1 = ∥K∥.614

Finally, we have615

1

n
∥K−Knys∥ <

√
λ1C

′ exp(−C ′′/hXk
) =

1√
n

√
∥K∥C ′ exp(−C ′′/hXk

).616

Appendix B. Pseudocode of algorithms. In this section, we include the617

complete pseudocode of FPS, FSAI, the construction and application of AFN precon-618

ditioner and our preconditioning scheme as follows.619

Algorithm B.1 Factorized Sparse Approximate Inverse (FSAI)

1: Input: Symmetric positive definitive matrix K, lower triangular sparsity pattern
S

2: for i = 1 to n do

3: Extract the non-zero pattern si from the ith row of S with length mi

4: Compute Gi,si =
e⊤

mi
K−1

si,si
√

e⊤
mi

K
−1
si,si

emi

5: end for

6: Return: G
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Algorithm B.2 Adaptive Factorized Nyström (AFN) preconditioner construction

1: Input: Kernel matrix K, regularization parameter µ, estimated rank k returned
by Algorithm 4.1

2: Perform Cholesky factorization: L = Chol(K11 + µI)
3: Invoke Algorithm B.1 to compute G = FSAI(K22 + µ I−K⊤

12(K11 + µ I)−1K12)
4: Return: Matrices L and G

Algorithm B.3 Adaptive Factorized Nyström (AFN) preconditioner application

1: Input: Vector r, matrices L, G, K12

2: Partition r conformally with the size of L and G as [r1, r2]
⊤

3: Solve (K11 + µI)z = r1 by computing z = L−⊤L−1r1
4: Compute s2 = G⊤G(r2 −K⊤

12z)
5: Solve (K11 + µI)s1 = (r1 −K12s2) by computing s1 = L−⊤L−1(r1 −K12s2)
6: Return: Vector s = [s1, s2]

⊤

Algorithm B.4 Farthest Point Sampling (FPS)

1: Input: dataset X of size n, number of samples k
2: Output: landmark point set Xk of size k
3: Find x̄ the center of X
4: Set x0 = argmin

x∈X
dist(x, x̄)

5: Initialize the set Xk = {x0}
6: for i = 1 to k − 1 do

7: Set xi = argmax
x∈X\Xk

dist(x, Xk)

8: Add xi to Xk

9: end for

10: Return: Xk
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