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Abstract. The current work considers solutions to the wave equation on asymptot-
ically flat, stationary, Lorentzian spacetimes in (1+3) dimensions. We investigate the
relationship between the rate at which the geometry tends to flat and the pointwise
decay rate of solutions. The case where the spacetime tends toward flat at a rate of
|x|�1 was studied in [33], where a t�3 pointwise decay rate was established. Here we
extend the result to geometries tending toward flat at a rate of |x|� and establish a
pointwise decay rate of t��2 for  2 N with  � 2. We assume a weak local energy
decay estimate holds, which restricts the geodesic trapping allowed on the underlying
geometry. We use the resolvent to connect the time Fourier Transform of a solution
to the Cauchy data. Ultimately the rate of pointwise wave decay depends on the
low frequency behavior of the resolvent, which is sensitive to the rate at which the
background geometry tends to flat.

1. Introduction

This work examines the e↵ect of the far away metric behavior on pointwise wave
decay on asymptotically flat, stationary backgrounds in (1+ 3) dimensions. A spacetime
geometry is asymptotically flat if the metric coe�cients tend toward the flat Minkowski
metric (m = diag(�1, 1, 1, 1) in (t, x) coordinates) as r ! 1. Here and throughout the
paper we take r := |x|. A geometry is said to be stationary if the metric coe�cients
are time independent. The main result of this paper quantifies the relationship between
the rate at which the background geometry tends to flat and the rate of pointwise wave
decay.

The pointwise decay rates established in this work interpolate between two known
cases: the flat Minkowski spacetime and asymptotically flat spacetimes tending toward
flat at a rate of r�1. Table 1 summarizes these results, which hold for compactly sup-
ported initial data. In the case of [33] and the current work, the assumptions on the
initial data can be weakened.

Since we are working in three spatial dimensions, sharp Huygens’ principle says that
solutions to the wave equation on the flat Minkowski spacetime decay all the way to 0 in
finite time at each point in space. In Table 1 we make a weaker statement that solutions
to the wave equation have arbitrarily fast polynomial time decay.

The author was supported in part by the NSF under Grant No. 1440140 while the author was in
residence at the Mathematical Sciences Research Institute in Berkeley, California. The author thanks
Jason Metcalfe for his invaluable guidance on this project and an anonymous referee for their helpful
feedback.

1



2 KATRINA MORGAN

Metric Behavior Pointwise Wave Decay
[33]: g = flat+O(r�1��) |u(t, x)| .x t

�3

Current Work: g = flat+O(r���) |u(t, x)| .x t
��2

Sharp Huygens’: g = flat |u(t, x)| .x t
�1

Table 1. Summary of Decay Rates

The results in [33] and the current work rely on an assumption that a dispersive esti-
mate called weak local energy decay holds. Heuristically, this estimate imposes su�cient
restrictions on the behavior of the geometry within compact regions so only the long
range metric behavior is left to be studied. A more detailed summary of local energy
decay is provided later in the introduction.

Asymptotically flat spacetimes arise in general relativity, which has motivated a va-
riety of mathematical questions about wave behavior in this setting. For example, the
Schwarzschild metric describing the geometry of space in the presence of a single, non-
rotating black hole and the Kerr metric describing spacetime in the presence of a single,
axially symmetric, rotating black hole both tend toward flat at a rate of r�1. A conjecture
posited by physicist Richard Price in the 1970’s in [27], known as Price’s Law, predicted a
t
�3 decay rate for waves on the Schwarzschild metric. The question of proving Price’s law
was explored in [33] and also in [13], where they analyze the wave behavior via spherical
modes using the spherical symmetry of the Schwarzschild metric. Pointwise decay rates
for the Kerr spacetime were studied in [11] and [14]. In [25] the authors proved Price’s
Law for non-stationary asymptotically flat spacetimes and established the t�3 decay rate
for a class of perturbations of the Kerr spacetime. The techniques in [13], [33], and the
current work involve taking the Fourier transform in time and therefore do not readily
extend to non-stationary geometries.

Weak local energy decay on the Schwarzschild geometry was established in [3], [9],
and [19]. For the Kerr spacetime with low angular momentum, weak local energy de-
cay estimates were proved in [2], [9], and [12]. The assumptions in [33] therefore hold
for Schwarzschild and Kerr with low angular momentum. A major challenge in obtain-
ing local energy estimates for the Kerr and Schwarzschild geometries is the presence of
trapping, in which a portion of the wave flow remains within a fixed set.

A natural question arising from Tataru’s result in [33] is: What aspects of the
Schwarzschild geometry dictate Price’s Law? There are three locations that are a priori
suspected to a↵ect this decay rate: the event horizon, the photon sphere, and the be-
havior of the perturbation at spatial infinity. The current work shows that the metric
behavior at spatial infinity dictates the pointwise decay rate of waves when the weak local
energy estimate holds. On the Schwarzschild background, trapping occurs in two areas
called the event horizon and the photon sphere. The trapping at the event horizon has
been shown to be trivial due to what is known as the red-shift e↵ect, which guarantees
energy decay along the trapped rays ([11], [9]). The photon sphere corresponds to a
fixed radius, and rays initially tangential to this surface remain there for all time. The
behavior on Kerr backgrounds is more complicated. The trapping at the event horizon
is similarly known to be trivial, but the other trapped set does not occur on a fixed
radius and can only be described in phase space. In order to deal with trapping, a weak
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local energy estimate with zero coe�cients on the trapped set is often introduced. If this
holds, then one obtains local energy estimates on the trapped set with a derivative loss.
Our definition of the weak local energy decay estimate includes this derivative loss.

Questions similar to the aim of this paper were studied in [6] and [5] where the au-
thors established local decay rates for waves on asymptotically flat, stationary spacetimes
which tend toward flat at di↵erent rates. There are several key di↵erences compared with
the current work. First, we handle full Lorentzian perturbations of flat Minkowski space
rather than restricting to perturbations of the Laplacian. This leads to the metrics consid-
ered in this paper containing dtdxi terms, which results in mixed space-time di↵erential
operators in our wave operator. Second, we allow for the possibility of unstable trapping
on our background. In [6] and [5], a nontrapping assumption is used in order to obtain
decay for the high frequency part of a solution to the wave equation (it is not needed for
the low frequency part). Third, our result improves upon the established decay rates. Fi-
nally we note that [5] considers (1+n) dimensional geometries for n � 2 and [6] considers
n odd with n � 3. The current work only studies (1 + 3) dimensional spacetimes.

1.1. The Wave Equation. The flat wave operator is given by

2 = �@
2
t
+

3X

i=1

@
2
xi

= �@
2
t
+�x

where �x is the spatial Laplacian. Throughout the paper we write � = �x. Similarly
we write r = rx for the spatial gradient. When both time and spatial derivatives are
considered we use @.

The wave operator associated to a Lorentzian metric g = g↵�d↵d� with signature (3,1)
is given by

2g =
1p
|g|
@↵

p
|g|g↵�@� (1.1)

where |g| is the determinant of the matrix associated to the metric, and ↵ and � are
summed over both time and space dimensions. We use Latin indices i, j to indicate only
spatial dimensions are being considered and Greek indices to indicate both space and
time dimensions are being considered. When we wish to specify Cartesian vs. spherical
coordinates, we use ↵,� for Cartesian and �, � for spherical coordinates.

The flat metric (i.e. the Minkowski metric) is given in rectangular coordinates by

m = �dt
2 +

3X

i=1

dx
2
i
. (1.2)

Taking g = m in (1.1) thus yields 2m = 2, as one would expect.

1.2. Energy Estimates. We are interested in the Cauchy problem

(2g + V )u = f, u(0, x) = u0, @tu(0, x) = u1 (1.3)

where V is a scalar potential. The assumptions placed on g and V are given in Section

1.5. The Cauchy data at time t is denoted u[t] =
⇣
u(t, ·), @tu(t, ·)

⌘
.
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Definition 1.1. We say the evolution (1.3) satisfies the uniform energy bounds if:

ku[t]k
Ḣk,1⇥Hk  ck(ku[0]kḢk,1⇥Hk + kfkHkL1), t � 0, k � 0. (1.4)

Here H
k denotes the usual Sobolev space, and we say � 2 Ḣ

k,1 if r� 2 H
k.

1.2.1. Local Energy Decay. Local energy decay estimates originated in the work of
Morawetz ([26]) where the author established a dispersive estimate for solutions to the
flat wave equation. In [16] the authors presented a new approach for proving existence of
solutions for nonlinear waves which relied on obtaining a Morawetz-type estimate. The
use of local energy estimates has since become a standard tool for studying nonlinear
wave equations (e.g. [4], [15], [20], [31], [21], [17], [18], [35], among many others).

The original Morawetz estimate considered a solution u to the homogeneous flat wave
equation with initial data u0, u1 and states

Z
t

0

Z

R3

1

|x|
| 6ru|

2(t, x) dtdx . kru0k
2
L2 + ku1k

2
L2 .

Restricting to compact regions in space, one is able to obtain similar bounds on u and
its derivatives (see e.g. [16], [30], and [32]). Our definitions for the local energy norms
will restrict to dyadic spatial regions. We use hri to indicate a smooth function of r such
that hri � 2 and hri = r for r � 3, and we define Am := {x : 2m  hri  2m+1

}. One
benefit of using these dyadic regions is that r ⇡ 2m on the region of integration, so the
weights in the local energy norm can roughly be treated as constant within the region of
integration.

The local energy norm we use is defined by

kukLE = sup
m

khri
� 1

2ukL2(R+⇥Am).

Its H1 analogue is given by

kukLE1 = k@ukLE + khri
�1

ukLE ,

and the dual norm is given by

kfkLE⇤ =
X

m

khri
1
2 fkL2(R+⇥Am).

For functions with higher regularity we define the following norms

kukLE1,N =
X

jN

k@
j
ukLE1 , kfkLE⇤,N =

X

jN

k@
j
fkLE⇤ .

The spatial counterparts of the LE and LE
⇤ space-time norms are

kvkLE = sup
m

khri
� 1

2 vkL2(Am); kgkLE⇤ =
X

m

khri
1
2 gkL2(Am)

with the higher regularity norms defined by

kvkLEN =
X

jN

kr
j
vkLE , kgkLE⇤,N =

X

jN

kr
j
gkLE⇤ .

Definition 1.2. We say the evolution (1.3) satisfies the local energy decay estimate if:

kukLE1,N  cN (ku[0]kHN,1⇥HN + kfkLE⇤,N ), N � 0. (1.5)
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Heuristically, the local energy decay estimate holds if the underlying geometry allows
waves to spread out enough so that the energy within compact spatial regions decays
su�ciently quickly to be integrable in time. Local energy decay has been used to establish
other dispersive estimates such as Strichartz estimates (global, mixed norm estimates) in
[24], [34], and [19] and pointwise estimates in [10], [25], [33] (among others).

The local energy decay estimate is known to hold in several nontrapping geometries.
For su�ciently small perturbations of flat space without trapping, local energy decay was
established in [1], [21], and [23]. The case of stationary product manifolds was considered
in [8], [5], and [31]. The nontrapping case was studied more generally in [22]. If trapping
occurs then the local energy decay estimate does not hold ([28], [29]).

1.2.2. Weak Local Energy Decay. Trapping on the background geometry may be stable
or unstable. A spacetime with trapping where every trapped geodesic is unstable may
still admit a weaker form of the local energy decay estimate. In the case of trapping,
there is necessarily a loss of derivatives on the right hand side of the estimate (see e.g.
[7]).

Definition 1.3. We say the evolution (1.3) satisfies the weak local energy decay estimate
if:

kukLE1,N  cN (ku[0]k
ḢN+3,1⇥HN+3 + kfkLE⇤,N+3), N � 0. (1.6)

1.3. Vector Fields and Weighted Sobolev Spaces. Our argument will use vector
field methods. Specifically we are interested in the vector fields:

• Rotations: ⌦ = {⌦ab | a, b = 1, 2, 3} where ⌦ab = xa@b � xb@a.
• Translations: T = {Ta | a = 1, 2, 3} where Ta = ra.
• Scaling: S = Sr � S⌧ where Sr = r@r and S⌧ = ⌧@⌧ .

Note that the scaling vector field we use is taken in time frequency space and therefore
di↵ers from the scaling vector field in physical space which is given by r@r + t@t. This is
because we use the vector field arguments only on the time Fourier transform side. We
denote the collection of all such vector fields by � = {⌦, T, S}. We write �<n to denote
a linear combination of �↵ for |↵| < n: �<n :=

P
|↵|<n

c↵�↵.

We use the vector fields to define a weighted Sobolev type norm. We will assume the
initial data lies in such a space. The weighted Sobolev spaces Zn,q are defined by

k�kZn,q = sup
i+j+kn

khri
q
T

i⌦j
S
k

r
�kLE⇤ . (1.7)

1.4. Symbol Classes. We will assume that the metric coe�cients of the background
geometry belong to certain symbol classes.

The symbol classes S(rq), `1S(rq), S(log r) are defined as follows:

�(x) 2 S(rq) , khri
j�q

@
j
f(x)kL1(R3) .j 1 j 2 {0, 1, 2, . . . }

�(x) 2 `
1
S(rq) ,

X

m

2m(j�q)
k@

j
f(x)kL1(Am) .j 1 j 2 {0, 1, 2, . . . }

�(x) 2 S(log r) , k(loghri)�1
f(x)kL1(R3) . 1 and khri

j
@
j
f(x)kL1(R3) .j 1,

j 2 {1, 2, 3, . . . }.
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If � 2 S(rq) is radial, we write � 2 Srad(rq). We indicate radial functions in the other
symbol classes analogously.

In some of our calculations we use the notation ⇢q
`
to indicate a representative of the

symbol class `1S(rq). Similarly, we use ⇢q to represent S(rq) and ⇢q
r
to represent Srad(rq).

We allow ⇢
q

`
, ⇢q

r
, and ⇢q to stand for di↵erent functions at each appearance.

1.5. Statement of Main Theorem. We consider a Lorentzian metric g with the fol-
lowing properties:

Metric Assumptions

(1) g is stationary (i.e. the metric coe�cients are time independent).
(2) The submanifolds t = constant are space-like (i.e. the induced metric on the

spatial submanifolds is positive definite).
(3) Let  2 N with  � 2. The metric g is asymptotically flat in the sense that g can

be written as

g = m+ f+ h

where

f = f00(x)dt
2 + f0i(x)dtdxi + fij(x)dxidxj

with f↵� 2 `
1
S(r�) for ↵,� 2 {0, 1, 2, 3} and

h = htt(r)dt
2 + htr(r)dtdr + hrr(r)dr

2 + h!!(r)r
2
d!

2

with h�� 2 Srad(r�) for �, � 2 {t, r,!}. Here d!
2 = d✓

2 + sin2 ✓d�2.

We note these assumptions but with  = 1 match those in [33], and thus the results apply
here. We will appeal to Tataru’s results for steps of the proof of the main theorem which
are not sensitive to the rate at which the background geometry tends to flat.

Remark 1.4. In [33] the author also considers geometries exterior to an open ball where
the lateral boundary R ⇥ @B(0, R0) is outgoing space-like. Our results are likely to also
hold in this case. However, due to Birkho↵ ’s theorem, the applications to black holes in
this setting appear limited so we do not pursue the matter here.

Theorem 1.5. Let g be a (1+3)-dimensional spacetime satisfying metric assumptions
1-3 above. Let V be a potential of the form

V (x) = V`(x) + Vr(r), V` 2 `
1
S(r��2), Vr 2 Srad(r

��2). (1.8)

Assume the homogeneous Cauchy problem

(2g + V )u(t, x) = 0, u(0, x) = u0, @tu(0, x) = u1 (1.9)

satisfies the uniform energy bound (1.4) and the weak local energy decay assumption (1.6).
If u solves (1.9) with u0 2 Z

⌫+1, and u1 2 Z
⌫,+1 for ⌫ � 31+168, then in normalized

coordinates (see section 2) u satisfies the bounds

|u(t, x)| . 1

htiht� ri+1

�
ku0kZ⌫+1, + ku1kZ⌫,+1

�
(1.10)

|@tu(t, x)| .
1

htiht� ri+2

�
ku0kZ⌫+1, + ku1kZ⌫,+1

�
. (1.11)
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1.6. Cuto↵ and Bump Functions. The function �<1(r) is defined to be a smooth
function which is 1 for r  1 and 0 for r � 2. We define �>1(r) := 1 � �<1(r) so that
�>1(r) is a smooth function which is 1 for r � 2 and 0 for r  1. We define �⇡1(r) to be
a smooth function which is 1 for 1  r  2 and 0 for r <

1
2 and r > 4.

We define �⇡m(r) for m � 0 to be a smooth partition of unity which is subordinate
to the dyadic intervals Am.

When restricting r by dyadic regions, we use �⇡m to indicate �⇡m(r) = �⇡(
r

2m ),
�>m(r) = �>1(

r

2m ), and �<m(r) = �<1(
r

2m ). We note @r�<m(r) and @r�>m(r) are each
supported on Am and for some constants c1 and c2 we have

k@r�<m(r)kL2(Am) = c12
3m
2 k@r�>m(r)kL2(Am) = c22

3m
2 .

In other contexts where we restrict to r < R or r > R for some constant R we write
�⇡R = �⇡(

r

R
), etc..

1.7. Argument Summary. We first fix a coordinate system that allows us to write the
operator (2g + V ) in the form

P = �@
2
t
+�+ @tP

1 + P
2 (1.12)

where P
1 and P

2 are spatial operators of order 1 and 2, respectively. The coe�cients of
the operators depend on the metric coe�cients assumed in the main theorem. We then
use the resolvent (denoted R⌧ ) to connect the time Fourier transform of a solution u to
the Cauchy problem (1.9) with the initial data.

We define the resolvent to be the inverse of the image of P under the time Fourier
transform, when the inverse exists. We will establish that if u solves (1.9) then

û(⌧) = R⌧ (�i⌧u0 + P
1
u0 � u1). (1.13)

The final pointwise decay rate is then proved by analyzing the resolvent and inverting
the Fourier transform.

Our argument will be di↵erent for high frequencies (|⌧ | & 1) and low frequencies (|⌧ | .
1). Roughly speaking, the low frequency behavior is sensitive to the metric behavior at
spatial infinity while the high frequency behavior is sensitive to trapping. We assume
the weak local energy decay estimate holds so that some trapping may occur, but this
estimate provides enough information to obtain decay for the high frequency part of our
solution u. It is the low frequency behavior that depends on the metric perturbation at
spatial infinity and dictates the pointwise decay rate. We obtain an expansion in powers
of r�1 for the resolvent at zero frequency and use this to calculate the error when we
estimate R⌧u0 by (R0u0)e�i⌧hri for the resolvent at low frequencies. We then apply the
inverse Fourier transform to the terms arising in this estimate. The behavior of these
terms dictates the final pointwise decay rate.

This approach is due to [33]. A key di↵erence in our analysis is that we need to go
further down in the expansion of the zero resolvent in order to obtain improved decay
rates. Changing the expansion then a↵ects the error in the estimate for R⌧u0 when |⌧ | is
small. The rate at which the background geometry tends toward flat (indicated by the
parameter  in the statement of the main theorem) ultimately determines how far down
in the expansion of the zero resolvent we are able to go, which determines the error terms
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in our low frequency resolvent estimate and in turn determines the result of inverting the
Fourier transform.

Outline of the Paper

• Section 2: Replace 2g + V by P as in (1.12).
• Section 3: Define the resolvent and appeal to [33] to establish the desired mapping
properties.

• Section 4: Analyze the resolvent at zero frequency. This analysis depends on the
rate at which the background geometry tends toward flat.

• Section 5: Estimate the low frequency resolvent R⌧u0 by (R0u0)e�i⌧hri and cal-
culate the error using the results of section 4.

• Section 6: Establish pointwise bounds on derivatives of the resolvent that will be
used when inverting the Fourier transform. We do not improve upon the bounds
established in [33], but we do track the resulting regularity requirements more
precisely and correct one proposition statement.

• Section 7: Invert the Fourier transform to prove theorem (1.5).

2. Coordinate Change

In this section we establish a normalized coordinate system in which the operator
2g + V in the statement of Theorem (1.5) can be replaced by an operator P of the form

P = �@
2
t
+�+ @tP

1 + P
2 (2.1)

where

P
1 = @ip

i

1 + p
i

1@i, p
i

1 2 `
1
S(r�) (2.2)

and

P
2 = @ip

ij

2 @j + p
!

2�! + V` + Vr,

p
ij

2 2 `
1
S(r�); V` 2 `

1
S(r��2); p

!

2 , Vr 2 Srad(r
��2).

(2.3)

The calculations in this section encode the geometric assumptions into the di↵erential
operator. Throughout the rest of the paper we will work in the normalized coordinates
established here. The statement of the main theorem is given in these coordinates.

Metric Assumption 3 (given in the Introduction) can be restated in dual coe�cients
and using spherical coordinates as

g�� = m�� + f�� + h�� (2.4)

where

h
m��

i
=

2

664

�1 0 0 0
0 1 0 0
0 0 1

r2
0

0 0 0 1
r2 sin2 ✓

3

775 ,

h
f��

i
=

2

6664

ftt ftr f
t✓

r

f
t�

r sin ✓

frt frr f
r✓

r

f
r�

r sin ✓

f✓t

r

f✓r

r

f
✓✓

r2
f
✓�

r2 sin ✓

f�t

r sin ✓

f�r

r sin ✓

f
�✓

r2 sin ✓

f
��

r2 sin2 ✓

3

7775
,
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and

h
h��

i
=

2

664

htt htr 0 0
hrt hrr 0 0
0 0 h!!

r2
0

0 0 0 h!!

r2 sin2 ✓

3

775

with f�� 2 `
1
S(r�) and h�� 2 Srad(r�). Furthermore [f��] and [h��] are symmetric (i.e.

f�� = f�� and h�� = h��).

Lemma 2.1. There exists a coordinate system so that g satisfies Metric Assumptions
1-3 as well as the additional condition

hrr = �htt, htr = 0.

Proof. In order to achieve htr = 0, we reset t via the coordinate change

dT = dt� �>R

hrt

1 + hrr
dr

where R is a constant chosen to be su�ciently large so that 1 + hrr & 1 for r > R. Note

we have �>R
hrt

1+hrr 2 Srad(r�).

To see Assumption 1 still holds, we write the coordinate change as T = t+Q(r) where

Q
0(r) = ��>R

hrt

1+hrr . Thus
@

@T
= @

@t
so the metric coe�cients remain independent of the

time variable T .

To see Assumption 2 still holds, we calculate

hdT, dT i = hdt, dti � 2�>R

hrt

1 + hrr
hdt, dri+

✓
�>R

hrt

1 + hrr

◆2

hdr, dri.

Choosing R su�ciently large so that �>R
hrt

1+hrr is su�ciently small, the sign of gTT is the

same as the sign of gtt. The signature of the metric does not change under the change of
coordinates, so the t = constant submanifolds remain positive definite.

To establish Assumption 3 we need only calculate gT� for � 2 {T, r, ✓,�} since r, ✓,
and � are unchanged. Direct calculation yields

gTT = �1 + ftt � 2�>R

hrt

1 + hrr
(ftr + htr) +

✓
�>R

hrt

1 + hrr

◆2

(1 + frr + hrr)

| {z }
2`1S(r�)

+htt

gTr = ftr � �>R

hrt

1 + hrr
frr + �<Rh

tr
2 `

1
S(r�)

rgT✓ = ft✓ � �>R

hrt

1 + hrr
fr✓ 2 `

1
S(r�)

r sin ✓gT� = ft� � �>R

hrt

1 + hrr
fr� 2 `

1
S(r�).

Thus after relabeling, g can be written as in (2.4) with htr = 0, as desired.

Next we achieve hrr = �htt via the coordinate change

d⇢ =
⇣
1 + �>R

�htt � hrr

1 + hrr

⌘ 1
2
dr



10 KATRINA MORGAN

where R is a constant chosen so 1 + hrr & 1 for r > R. Note we have �>R
�htt�hrr

1+hrr 2

Srad(r�) and
⇣
1 + �>R

�htt�hrr

1+hrr

⌘ 1
2
2 Srad(1). The t = constant subspaces are invari-

ant under the change of coordinates and thus remain positive definite and the metric
coe�cients remain independent of t. It follows that Assumptions 1 and 2 still hold.

We now calculate g�� in the new coordinate system. Since t, ✓, and � are unchanged,
we need only calculate g⇢� for � 2 {t, ⇢, ✓,�}. Direct calculation yields

g⇢⇢ = 1 + frr + �<R(h
rr + htt) + �>R

�htt � hrr

1 + hrr
frr

| {z }
2`1S(r�)

�htt

g⇢t =
⇣
1 + �>R

�htt � hrr

1 + hrr

⌘ 1
2
frt 2 `

1
S(r�)

rg⇢✓ =
⇣
1 + �>R

�htt � hrr

1 + hrr

⌘ 1
2
fr✓ 2 `

1
S(r�)

r sin ✓g⇢� =
⇣
1 + �>R

�htt � hrr

1 + hrr

⌘ 1
2
fr� 2 `

1
S(r�).

After relabeling, g can now be written as in (2.4) with the additional assumption hrr =
�htt, as desired. ⇤

Proposition 2.2. In normalized coordinates (established in Lemma 2.1), the operator
2g + V can be replaced by an L

2 self-adjoint operator, which can be written as in (2.1)
where (2.2) and (2.3) hold.

Proof. The result of the proposition is obtained via direct calculation. We outline the key
steps of the process. Converting from spherical to rectangular coordinates, the normalized
metric g can be written as

h
g↵�

i
=

h
m↵�

i
+

h
f↵�

i
+
h
h↵�

i

where

h
m↵�

i
=

2

664

�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3

775 ,

h
f↵�

i
=

2

664

ftt ft1 ft2 ft3

ft1 f11 f12 f13

ft2 f12 f22 f23

ft3 f13 f23 f33

3

775 ,

and

h
h↵�

i
=

2

664

htt 0 0 0
0 h!! 0 0
0 0 h!! 0
0 0 0 h

!!

3

775�
htt + h!!

r2

2

664

0 0 0 0
0 x

2
1 x1x2 x1x3

0 x1x2 x
2
2 x2x3

0 x1x3 x2x3 x
2
3

3

775

with f↵� 2 `
1
S(r�) and h↵� 2 Srad(r�).

To make the operator self-adjoint, we conjugate by |g|
1
4 where |g| = | det(g)|:

2g + V ! |g|
1
4 (2g + V )|g|�

1
4
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The -1 coe�cient of @2
t
in (2.1) is achieved through multiplication by (�gtt)�1, but we

split this factor into multiplication by (�gtt)�1/2 on the left and right so the operator
remains self-adjoint. Thus we will replace 2g + V by

P = |g|1/4(�gtt)�1/2(2g + V )(�gtt)�1/2
|g|�1/4

.

Commuting and writing the operator in divergence form we find

P = @↵A
2
B

↵�
@� +A(@↵B

↵�)(@�A) +AB
↵�(@↵�A) + (gtt)�1

V (2.5)

where

A := (�gtt)�1/2
|g|�1/4 and B

↵� := |g|
1
2 g↵� .

Since |g| � 1, gtt + 1 2 `
1
S(r�) + Srad(r�), the scalar terms in (2.5) are of the form

V` + Vr as in (2.3).

Consider the term @↵A
2
B

↵�
@� = @↵(�gtt)�1g↵�@� in (2.5). When ↵ = � = t we find

@t(�gtt)�1gtt@t = �@
2
t
. (2.6)

When either ↵ = t or � = t (but not both), the desired form, @t(@ipi1 + p
i

1@i) with
p
i

1 2 `
1
S(r�), follows from the observation

(�gtt)�1gti =
fti

1� ftt � htt
2 `

1
S(r�), i 2 {1, 2, 3}.

When ↵,� 2 {1, 2, 3} we use i, j instead of ↵,� since we are only considering spatial
terms. If i = j then

(�gtt)�1gii = 1 + p
ii

2 + (htt + h!!)(1� x
2
i
r
�2) (2.7)

where

p
ii

2 :=
fii + ftt + (htt + h!!)(1� x

2
i
r
�2)(ftt + htt)

1� ftt � htt
2 `

1
S(r�).

If i 6= j then we find

(�gtt)�1gij = p
ij

2 � (htt + h!!)xixjr
�2

, i 6= j (2.8)

where

p
ij

2 :=
fij � (ftt + htt)(htt + h!!)xixjr

�2

1� ftt � htt
2 `

1
S(r�).

Combining (2.7) and (2.8) yields

(�gtt)�1gij = �ij + p
ij

2 + (htt + h!!)(�ij � xixjr
�2)

and we find

@i(�gtt)�1gij@j = �+ @ip
ij

2 @j + p
!

2�!

where p!2 = (htt+ h!!)r�2
2 Srad(r��2) and p

ij

2 are as above. This concludes the proof
of the proposition. ⇤

Throughout the rest of the paper we take P to be the operator established in Propo-
sition 2.2.
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3. Preliminary Results on the Resolvent

The results in this section are not sensitive to the rate at which the background
geometry tends toward flat. Instead, they rely on the energy assumptions in the statement
of the main theorem. The results of section 2 mean we are interested in the Cauchy
problem

Pu = f, u(0, ·) = u0, @tu(0, ·) = u1. (3.1)

The evolution satisfies the uniform energy bounds (1.4) and the weak local energy esti-
mate (1.6) since these estimates are coordinate independent. We define the resolvent as
follows:

Definition 3.1. The operator P⌧ associated to P is given by @t 7! i⌧ so that

P⌧ := ⌧
2 +�+ i⌧P

1 + P
2
.

Definition 3.2. The resolvent associated to P , denoted R⌧ , is defined by

R⌧ := P
�1
⌧

when it exists.

The following proposition shows that the uniform energy assumption guarantees that
R⌧ exists when =⌧ < 0 and links the time Fourier transform of a solution u to the initial
data. It is this link that we will exploit in order to establish the final pointwise decay.
The results of Proposition 3.3 are established in [33] section 3, but we include a proof
since (3.2) is a fundamental piece of our argument.

Proposition 3.3. Assume (3.1) satisfies the uniform energy bounds (1.4). If =⌧ < 0, the
operator P⌧ : H2

! L
2 is one-to-one and the range of P⌧ is dense in L

2. Furthermore,
if u satisfies (3.1) then for =⌧ < 0 we have

û(⌧, x) = R⌧ (f̂(⌧)� i⌧u0 + P
1
u0 � u1). (3.2)

Proof. Let Q⌧ be a family of ⌧ dependent operators which are defined by Q⌧g = û(⌧)
where u(t, x) solves the homogeneous Cauchy problem

Pu = 0, u(0) = 0, @tu(0) = �g 2 L
2
.

We will show for =⌧ < 0 that Q⌧P⌧g = P⌧Q⌧g = g (i.e. P⌧ is invertible and R⌧ = Q⌧ ).

First we establish L
2 based bounds onQ⌧g. By assumption, the evolution (3.1) satisfies

the uniform energy bounds (1.4), which translate into L
2 based bounds for Q⌧g. Using

the notation k�k
ḢN,1 = kr�kHN and setting u(t, x) ⌘ 0 for t < 0 we use the Minkowski

Integral Inequality and (1.4) to find for any N � 0

kQ⌧gkḢN,1 

X

jN

Z 1

0

✓Z

R3

��e�it⌧
r

j+1
u(t, x)

��2 dx

◆1/2

dt . 1

|=⌧ |
kgkHN .

Similarly we calculate

|⌧ |kQ⌧gkHN 

Z 1

0
e
t=⌧

k@tu(t, ·)kHN (R3) dt .
1

|=⌧ |
kgkHN .

Therefore if g 2 H
N then Q⌧g 2 H

N+1 for =⌧ < 0.
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In general taking the time Fourier transform of Pu (again setting u(t, x) ⌘ 0 for t < 0)
and integrating by parts yields

0 =

Z
e
�it⌧

Pu dt = P⌧ û(⌧) + @tu(0) + i⌧u(0)� P
1
u(0)

so that

P⌧ û(⌧) = (Pu)ˆ� i⌧u(0) + P
1
u(0)� @tu(0). (3.3)

Given g 2 H
1, we have Q⌧g 2 H

2, so Q⌧g is in the domain of P⌧ . Applying (3.3)
to our definition of Q⌧g, we find P⌧Q⌧g = g. Thus H

1 is contained in the range of
P⌧ : H2

! L
2, so the range is dense in L

2.

Next we aim to show Q⌧P⌧g = g. To this end, we claim that if u(t, x) solves the
nonhomogeneous Cauchy problem

Pu = f, u(0, ·) = u0, @tu(0, ·) = u1

then

û(⌧) = Q⌧ (f̂(⌧)� i⌧u0 + P
1
u0 � u1). (3.4)

Once (3.4) is established, we can show Q⌧P⌧g = g. Indeed, assume (3.4) holds and let
g(x) 2 H

2 be given. We define u(t, x) := g(x)1t�0, where 1t�0 is an indicator function
that is 1 for t � 0 and 0 otherwise. Taking the time Fourier transform of u(t, x) yields
û(⌧) = 1

i⌧
g. By (3.3) we have

1

i⌧
P⌧g = (Pu)ˆ� i⌧u(0) + P

1
u(0)� @tu(0). (3.5)

Then applying Q⌧ to (3.5) and using (3.4) gives

Q⌧P⌧g = i⌧Q⌧

⇣
(Pu)ˆ� i⌧u(0) + P

1
u(0)� @tu(0)

⌘
= g,

as desired.

It is left to show (3.4). To do this we use Duhamel’s formula and find

u(t, x) =

Z
t

0
ua(t� s, x; s) ds+ @tub + uc + ud, (3.6)

where u1(t, x; s), u2(t, x), u3(t, x), and u4(t, x) solve the following:

Pua = 0 ua(0, x; s) = 0 @tua(0, x; s) = �f(s, x)

Pub = 0 ub(0, x) = 0 @tub(0, x) = u0

Puc = 0 uc(0, x) = 0 @tuc(0, x) = �P
1
u0

Pud = 0 ud(0, x) = 0 @tud(0, x) = u1.

Note to find @tu(0, t) = u1, we use Pub = 0 to write @2
t
ub = (� + @tP

1 + P
2)ub. We

calculate û(⌧) by taking the time Fourier transform of each term in (3.6). For the first
term we switch the order of integration, change variables by t 7! t+ s, then switch back
the order of integration to find

Z 1

0
e
�it⌧

Z
t

0
ua(t� s, x; s) dsdt =

Z 1

0
e
�it⌧

�(t, x; ⌧)dt
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where �(t, x; ⌧) =
R1
0 e

�is⌧
ua(t, x; s) ds. Since �(t, x; ⌧) satisfies

P� = 0, �(0, x; ⌧) = 0, @t�(0, x; ⌧) = �f̂(⌧, x)

we have �̂(⌧, x; ⌧) = Q⌧ f̂(⌧). Applying the time Fourier transform to the remaining terms
in (3.6) yields

û(⌧) = �̂(⌧, x; ⌧) + i⌧ ûb(⌧) + ûc(⌧) + ûd(⌧) = Q⌧

⇣
f̂(⌧)� i⌧u0 + P

1
u0 � u1

⌘

as desired. This concludes the proof of (3.4) and thus the proof of the proposition. ⇤

If the weak local energy decay estimate (1.6) also holds, then we are able to obtain
L
2-based resolvent bounds which are stronger than those established in the proof of

Proposition 3.3 and are uniform as =⌧ ! 0. This makes it possible to extend the resolvent
continuously to the real axis. The results proving the stronger L2-based bounds and the
continuous extension of R⌧ to ⌧ 2 R are established in [33] and are not a↵ected by
our change to the assumed rate at which the background geometry tends toward flat.
Therefore we state the key results from [33] without proof.

The LE⌧ norm, in which we measure the resolvent v = R⌧g, is defined by

kvkLEN
⌧
= k(|⌧ |+ hri

�1)vkLEN + krvkLEN + k(|⌧ |+ hri
�1)�1

r
2
vkLEN . (3.7)

Proposition 3.4 (see [33, Proposition 9 and Corollary 12]). Assume (3.1) satisfies the
uniform energy bounds (1.4) and the weak local energy estimate (1.6). If =⌧  0 and
g 2 LE

⇤,N+4 for fixed N 2 N, then v = R⌧g satisfies

kvkLEN
⌧
. kgkLE⇤,N+4 . (3.8)

Proposition 3.5 (see [33, Proposition 10 and Corollary 12]). Assume the Cauchy prob-
lem (3.1) satisfies the uniform energy bounds (1.4) and the local energy estimate (1.6).

If =⌧  0, and g 2 LE
⇤ satisfies

kT
i⌦j

S
k
gkLE⇤,4 . 1, i+ 4j + 16k < M (3.9)

for some positive integer M , then

kT
i⌦j

S
k(R⌧g)kLE⌧

. 1, i+ 4j + 16k < M � 4. (3.10)

3.1. Strategy to Obtain Decay Rate. To prove Theorem 1.5, we must prove pointwise
decay rates for solutions to the homogeneous Cauchy problem (3.1) with f = 0. Therefore
by (3.2) we have

u(t, x) =
1

p
2⇡

Z

=⌧=�"

R⌧ (�i⌧u0 + P
1
u0 � u1)e

it⌧
d⌧

for " > 0. The continuous extension of R⌧ to ⌧ 2 R allows us to take the limit as " ! 0
to obtain

u(t, x) =
1

p
2⇡

Z

R
R⌧ (�i⌧u0 + P

1
u0 � u1)e

it⌧
d⌧. (3.11)

The pointwise decay rates are obtained by writing e
it⌧ = d

d⌧
( e

it⌧

it
) and integrating by

parts. Thus the final decay rate will depend on how many times we can integrate by
parts, which depends on the regularity of the resolvent.
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We separate the solution u into low and high frequency parts by defining

u>1(t, x) :=
1

p
2⇡

Z

R
�>1(|⌧ |)R⌧ (�i⌧u0 + P

1
u0 � u1)e

it⌧
d⌧ (3.12)

and

u<1(t, x) :=
1

p
2⇡

Z

R
�<1(|⌧ |)R⌧ (�i⌧u0 + P

1
u0 � u1)e

it⌧
d⌧. (3.13)

Recall in Theorem 1.5 we assume the initial data satisfies u0 2 Z
⌫+1, and u1 2 Z

⌫,+1.
Here ⌫ is a su�ciently large constant depending on , and  indicates the rate at which
the background geometry tends toward flat. The assumptions on the initial data mean
we can write

�i⌧u0 + P
1
u0 � u1 = ⌧g

⌫+1


+ g
⌫

+1

for some g
⌫+1


2 Z
⌫+1, and some g

⌫

+1 2 Z
⌫,+1. In sections 4 and 5 we analyze the

resolvent R⌧g near 0 frequency for general g in an appropriately defined function space.

4. The Zero Resolvent

In this section we obtain an expansion of R0g in powers of hri�1. In section 5 we will
approximate R⌧g by R0ge

�i⌧r for small ⌧ and calculate the error using this expansion.
Note for the arguments in this and the following section we harmlessly assume r � 3,
since the results of these sections hold for r . 1 using weak local energy decay and
Sobolev embeddings.

In our argument establishing an expansion of R0g for large r we will find

(��)(�>RR0g) = h+ �>R/2P
2(�>RR0g)

where khkZn,� . kgkZn+4,� . This motivates Lemma 4.1, where we will obtain an expan-
sion of (��)�1

g for g 2 Z
n,�.

Lemma 4.1. Let g 2 Z
n,� with �, n 2 N. We have the following representation for

(��)�1
g:

(��)�1
g =

��2X

j=0

�
cj ·r

j
hri

�1+ej(r) ·(r
j
hri

�1)hrij��+1
�
+d(r) ·r��1

hri
�1+q(x) (4.1)

where the coe�cients satisfy

��2X

j=0

⇣
|cj |+ kejk`1S(1)

⌘
+ kdkL1 + kSrdk`1S(1) + kqkZn+2,��2 . kgkZn,� . (4.2)

For � = 1 we have only the last two terms in (4.1).

Proof. Set v = (��)�1
g. We begin by proving if hri�g 2 LE

⇤, then v can be expressed
as in (4.1) where the following estimate holds

��2X

j=0

|cj |+kejk`1S(1)+kdkL1+kSrdk`1S(1)+
X

i2

khri
�2+�+i

r
i
qkLE⇤ . khri

�
gkLE⇤ . (4.3)

We will then consider the case g 2 Z
n,� and prove (4.2) using (4.3) and elliptic regularity

arguments.
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We have v(x) = 1
4⇡

R
g(y) 1

|x�y| dy using the kernel for the fundamental solution of the

Laplacian in R3. We wish to bound the coe�cients of the representation for v by the size
of hri�g measured in LE

⇤, which is defined by the behavior of g on dyadic regions Am.
This motivates the following decomposition of g:

gm := �⇡m(r)g and vm := (��)�1
gm =

Z
gm(y)

1

|x� y|
dy.

We further decompose each vm into v
low

m
and v

high

m
as follows

v
low

m
:= �<m+2(r)vm = �<m+2(|x|)

Z
�⇡m(|y|)g(y)

1

|x� y|
dy (4.4)

and

v
high

m
:= �>m+2(r)vm = �>m+2(|x|)

Z
�⇡m(|y|)g(y)

1

|x� y|
dy. (4.5)

Thus we have v = 1
4⇡

P
m�0 v

low

m
+ v

high

m
.

We claim
X

i2

���hri�2+�+i
r

i
X

m�0

v
low

m

���
LE⇤

.
���hri�g

���
LE⇤

(4.6)

so that
P

m�0 v
low

m
can be included in the q(x) term in (4.3) (we will see that

P
m�0 v

high

m

also generates a term that will be included in q(x)). To prove (4.6) we begin by calculating

|(��)vlow
m

| . |gm|+ 2�m
|�

0
<m+2(|x|)|

Z ����⇡m(|y|)g(y)
���

1

|x� y|2
dy

+ 2�2m
|�

00
<m+2(|x|)|

Z ����⇡m(|y|)g(y)
���

1

|x� y|
dy

. |gm|+ 2�
3m
2 |�

0
<m+2(|x|)|k�⇡mgkL2 + 2�

3m
2 |�

00
<m+2(|x|)|k�⇡mgkL2 .

The second inequality is obtained using the Cauchy-Schwarz inequality and the fact
that the cuto↵s in x and y give |x � y|

�1 . 2�m. Integration by parts then yields
kr

2
v
low

m
kL2 . kgmkL2 (there are no boundary terms since v

low

m
is compactly supported).

Next we use the Hardy inequality and the fact that vlow
m

is supported on a bounded region
to find

kr
i
v
low

m
kL2 . 2m(2�i)

kgkL2(Am), i = 0, 1, 2. (4.7)

Note if |x| ⇡ 2k and |y| ⇡ 2m with k  m � 1, we have |r
i
|x � y|

�1
| . 2�m(1+i) for

i = 0, 1, 2 and kr
i
v
low

m
kL2(Ak) = kr

i
vmkL2(Ak). Using the Cauchy-Schwarz inequality,

we find

kr
i
vmkL2(Ak) . 2

3k
2 2m( 1

2�i)
kgkL2(Am), i = 0, 1, 2 (4.8)
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when k  m� 1. Now we use (4.7) and (4.8) to calculate

khri
�2+�+i

r
i
X

m

v
low

m
kLE⇤ .

X

m

X

k<m+2

2
k
2 2k(�2+�+i)

kr
i
v
low

m
kL2(Ak)

.
X

m

X

k<m

2k(�+i)2m( 1
2�i)

kgkL2(Am)

+
X

m

X

k⇡m

2m(� 3
2+�+i)

kr
i
v
low

m
kL2(A⇡m)

. khri
�
gkLE⇤

for i = 0, 1, 2. This concludes the proof of (4.6).

Next we turn our attention to
P

m
v
high

m
. For each m we integrate over |y| ⇡ 2m

with |x| � 2m+2, so 1
|x�y| is smooth in the region of integration and Taylor’s theorem

applies. We define y
j as follows. If the n

th component of rj is @i1@i2 · · · @ij then the n
th

component of yj is yi1yi2 · · · yij . Note that |yj | . |y|
j . In this notation, Taylor’s theorem

yields

1

|x� y|
=

��1X

j=0

r
j
|x|

�1
· (y)j

j!
+R

x

�
(y)

where
R

x

�
(y) = �!�1

r
�
�
|x� ty|

�1
�
· (y)�

for some t 2 (0, 1). Therefore

v
high

m
(x) =

��1X

j=0

j!�1
�>m+2(|x|)

Z
gm(y)(rj

|x|
�1) · yj dy+�>m+2(|x|)

Z
gm(y)Rx

�
(y) dy.

(4.9)

We claim the last term in (4.9) can be included in q after summing over m. In other
words, we wish to show

X

i2

khri
�2+�+i

r
i
q̃kLE⇤ . khri

�
gkLE⇤ , (4.10)

where q̃ is defined by

q̃ :=
X

m

q̃m, and q̃m := �>m+2(r)

Z
gm(y)Rx

�
(y) dy.

Note |r
�(|x|�1)| . |x|

���1 and |x � ty|
�1 . |x|

�1 since |x| � 2|y| and t 2 (0, 1). It
follows that

|R
y

�
(x)| . |y|

�

|x|�+1
, (4.11)

which implies for l > m+ 2

kq̃mkL1(Al) . 2�l(�+1)
kr

�
gmkL1 . 2(m�l)(�+1)

khri
1
2 gmkL2 . (4.12)

Straightforward calculation yields

khri
�2+�

q̃kLE⇤ 

X

m

X

l>m+2

kq̃mkL1(Al)2
l�
. (4.13)



18 KATRINA MORGAN

Combining (4.12) and (4.13) then gives khri
�2+�

q̃(x)kLE⇤ . kgkLE⇤ , as desired. The

estimates for ri
q̃ for i = 1, 2 follow analogously once we note |r

i
R

y

�
(x)| . |y|�

|x|�+i+1 .

To handle the first term in (4.9) we define

cj :=
X

m

(j!)�1

Z
gm(y)yj dy, ej(r) :=

X

m

(j!)�1
hri

��1�j(��<m+2)

Z
gm(y)yj dy,

and d(r) :=
X

m

((�� 1)!)�1
�>m+2(r)

Z
gm(y)y��1

dy,

so

X

m

��1X

j=0

(j!)�1
�>m+2(|x|)

Z
gm(y)(rj

|x|
�1)yj dy

=
��2X

j=0

⇣
cj ·r

j
hri

�1 + ej(r) · (r
j
hri

�1)hrij��+1
⌘
+ d(r) ·r��1

hri
�1

.

The desired bounds (4.3) then follow directly using the inequality khri
p
gkL1(Am) .

khri
p+ 3

2 gkL2(Am), which is a straightforward application of Cauchy-Schwarz.

Now let g 2 Z
n,�. Since khri

�
gkLE⇤ . kgkZn,� , the above argument shows that v

admits a representation as in (4.1) such that (4.3) holds. To prove (4.2) we need to show
the q term now satisfies

kqkZn+2,��2 . kgkZn,� . (4.14)

Observe that for any � with su�cient di↵erentiability we have

|T
i⌦j

S
k

r
�| .

i+j+kX

l=0

|hri
l
r

l
�|. (4.15)

By (4.3) and (4.15) we find

kqkZ2,��2 . kgkLE⇤ = kgkZ0,� . (4.16)

Furthermore we can use the definition of Zn,� and (4.15) to establish

kqkZn+2,��2 . kqkZ2,��2 + kr
2
qkZn,� . (4.17)
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Next we calculate

kr
2
qkZn,� . sup

i+j+kn

X

m

2
m
2 2m�

kT
i⌦j

S
k

r
r

2(�⇡mq)kL2(R3)

⇡ sup
i+j+kn

X

m

2
m
2 2m�

kT
i⌦j

S
k

r
�(�⇡mq)kL2(R3)

. sup
i+j+kn

X

m

2m(�+ 1
2 )
⇣
kT

i⌦j
S
k

r
�⇡m�qkL2(R3) + kT

i⌦j
S
k

r
(��⇡m)qkL2(R3)

+ kT
i⌦j

S
k

r
(r�⇡m) ·rqkL2(R3)

⌘

. sup
i+j+kn

X

m

2m(�+ 1
2 )
⇣
kT

i⌦j
S
k

r
�⇡m�qkL2(R3) + k2�2m

T
i⌦j

S
k

r
�
00
⇣

r

2m

⌘
qkL2(R3)

+ 2�m
kT

i⌦j
S
k

r
r
�1
�
0
⇣

r

2m

⌘
qkL2(R3) + 2�m

kT
i⌦j

S
k

r
�
0
⇣

r

2m

⌘
rqkL2(R3)

⌘

. k�qkZn,� + krqkZn,��1 + kqkZn,��2

(4.18)

for all n � 1. The second line in (4.18) follows from

kT
i⌦j

S
k

r
r

2(�⇡mq)kL2(R3) ⇡ kT
i⌦j

S
k

r
�(�⇡mq)kL2(R3),

which is obtained via integration by parts using the commutators

[@i,⌦], [@i, Sr] 2 span {T}, [�,⌦] = [�, T ] = 0, and [�, Sr] = 2�.

We claim

k�qkZn,� . kgkZn,� . (4.19)

Once (4.19) is established, (4.14) follows by induction in n. Indeed, assume (4.19) holds.
When n = 1, the RHS of (4.18) is controlled by kgkZ1,� using (4.19) to bound the first
term and (4.16) to bound the last two terms (along with the fact kr�kZn,� . k�kZn+1,��1

for � 2 Z
n+1,��1). Thus kr2

qkZ1,� . kgkZ1,� , so by (4.16) and (4.17) we obtain (4.14)
in the case n = 1. The inductive step is proved in the same manner, with the inductive
hypothesis being used to bound the last two terms on the RHS of (4.18).

To prove (4.19) we write

��q = g +�(v � q). (4.20)

By (4.1) we have

��(v� q) = ��

0

@
��2X

j=0

⇣
cj ·r

j
hri

�1 + ej(r) · (r
j
hri

�1)hrij��+1
⌘
+ d(r) ·r��1

hri
�1

1

A .

Direct calculation using (4.3) yields

k�(cjr
j
hri

�1)kZn,� . khri
�
gkLE⇤

k�(ej(r
j
hri

�1)hrij��+1)kZn,� . khri
�
gkLE⇤

k�(dr��1
hri

�1)kZn,� . khri
�
gkLE⇤ ,

so that k�(v�q)kZn,� . kgkZ0,� , which combined with (4.20) gives (4.19). This concludes
the proof of (4.14) and thus the proof of the proposition. ⇤
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In Propositions 4.3 and 5.6 we will need expressions for (��)�1
g where g 2 Srad(r�q)

with q � 2, which are stated in the following lemma.

Lemma 4.2. Let g 2 Srad(r�q) and set v = (��)�1
g

(1) If q � 4 then there exist a constant c and an e 2 Srad(1) such that

v = chri
�1 + e(r)hri�(q�2)

.

If, furthermore, we have supp g ⇢ {r �
R

4 } for some R > 0, then we also have

|c|+R
� 1

2 kekS(1) . R
� 1

2 kgkSrad(r�q).

(2) If q = 3 then there exists an " 2 Srad(ln r) such that

v = "(r)hri�1
.

(3) If q = 2, then v 2 Srad(ln r).

Proof. 1 and 2. q � 3

Since ��v = g, we can write @2
r
(rv) = �rg., and integrating from infinity yields

|� @r(rv)| =

����
Z 1

r

@
2
s
(sv(s)) ds

���� =
����
Z 1

r

sg(s) ds

���� 
Z 1

r

hsi
�q+1

ds = hri
�q+2

.

So @r(rv) 2 Srad(r�q+2) .

When q � 4 we have �q + 2  �2 and we find

rv =

Z
r

0
@s(sv(s)) ds =

Z 1

0

Z 1

s

�⇢g(⇢) d⇢ ds+

Z 1

r

Z 1

s

⇢g(⇢) d⇢ ds = c+ g1

where g1 2 Srad(r�q+3). Taking e(r) := g1(r)hriq�3
, we find for large r

v = chri
�1 + e(r)hri�(q�2)

for some constant c and e 2 Srad(1), as desired.

When q = 3, we have �q + 2 = �1 so that

rv =

Z
r

0
@s(sv(s)) ds =

Z 1

0

Z 1

s

�⇢g(⇢) d⇢ ds+

Z 1

r

Z 1

s

⇢g(⇢) d⇢ ds = c+ g2

where g2 2 Srad(ln r). Note c 2 Srad(1) ✓ Srad(ln r). Thus taking "(r) = c+ g2 we find
for large r

v = "(r)hri�1

where " 2 Srad(ln r), as desired.



LOCAL DECAY IN THE ASYMPTOTICALLY FLAT STATIONARY SETTING 21

Finally we consider the case in (1) where supp g ✓ {r �
R

4 }. Using the representation
we already obtained and the fact @2

r
(rv) = rg, we see kekS(1) . kgkSrad(r�q). Furthermore,

|Rv(R)| =

�����

Z
R

0

Z 1

s

@
2
r
(rv) dr ds

�����

=

�����

Z
R

0

Z 1

s

rg dr ds

�����



Z
R

0

Z 1

R/4
hri

�q+1
dr dskgkSrad(r�q)

. R
�q+3

kgkSrad(r�q).

Therefore we have

|c| = |Rv(R)� e(R)R�q+3
| . R

�q+3
kgkSrad(r�q).

It follows that v = chri
�1 + e(r)hri��1 satisfies the estimate

|c|+R
� 1

2 kekS(1) . R
� 1

2 khkSrad(r�q).

3. q = 2

We write the equation v = (��)�1
g as

v(r0) = �

Z
r0

0
s
�2

Z
s

0
r
2
g(r) dr ds.

where g 2 Srad(r�2) by assumption. We find
����
Z

s

0
r
2
g(r) dr

���� .
Z

s

0
1 dr = s.

Thus for g1 2 Srad(r) we have

|v(r0)| =

����
Z

r0

0
s
�2

g1(s) ds

���� . | ln r0|,

and v(r) = "(r) with "(r) 2 Srad(ln r), as desired.

⇤

We now prove an analogue of Proposition 4.1 with ��1 replaced by R0 = (�+P
2)�1.

Here we first see the role of long range metric behavior - the faster the metric tends to
flat, the further we can go down in the expansion for R0g.

Proposition 4.3. Let g 2 Z
n+4,� with �, n 2 N. Take v = R0g.

If 1  �  , then for large r, v can be written as in (4.1) where the following estimate
holds

��2X

j=0

⇣
|cj |+ kejk`1S(1)

⌘
+ kdkL1 + kSrdk`1S(1) + kqkZn+2,��2 . kgkZn+4,� . (4.21)
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If � = +1, then for large r, v can be written as in (4.1) where the following estimate
holds

��2X

j=0

|cj |+ ke0kS(1) +
��2X

j=1

kejk`1S(1) + kdkL1 + kSrdk`1S(1) + kqkZn+2,��2 . kgkZn+4,� .

(4.22)

Before proving the proposition we provide a brief summary of the argument. Since we
are concerned only with large r, we consider �>Rv =: w and show

��w = h+ �>R/2P
2
w

where khkZn,� . kgkZn+4,� . We then use use Lemma 4.1 to obtain the desired form for
w. For �  , this works by showing that the above equation for w is perturbative with
respect to (4.2). The � =  + 1 case is similar to the case �  , but there is one term
which fails to be perturbative. This non-perturbative term has the benefit of being radial
and will be handled using Lemma 4.2.

Proof. Set w = �>Rv and write

P0w = �>Rg + [P0,�>R]v =: h. (4.23)

Recall that P0 = � + P
2 with P

2 as in (2.3). Since �>R ⌘ 0 for r < R and �>R ⌘ 1
for r > 2R, the commutator [P0,�>R] is supported on [R, 2R]. Using the notation ⇢q

`
to

indicate a representative of the symbol class `1S(rq) (and allowing ⇢q
`
to stand for di↵erent

functions at each appearance), direct calculation yields

khri
�[P0,�>R]vkLE⇤ .

log 2RX

m=logR

h
khri

1
2+�(R�2 +R

�1
⇢
��1
`

+R
�2
⇢
�

`
)vkL2(Am)

+ khri
1
2+�(R�1 +R

�1
⇢
�

`
)rvkL2(Am)

i

.R khri
�1

vkLE + krvkLE

. kvkLE0

(4.24)

where
kvkLE0 = khri

�1
vkLE + krvkLE + khrir

2
vkLE

by the definition of the LE⌧ norm in (3.7). The constants in the inequalities in (4.24)
depend on R, but this is not an issue since R is fixed. Now (4.23) and (4.24) yield

khri
�
hkLE⇤ . khri

�
gkLE⇤, + kvkLE0 . khri

�
gkLE⇤,4

since kvkLE0 . khrigkLE⇤,4 by Proposition 3.4.

Similarly we find

khkZn,� . kgkZn,� + sup
i+j+kn

khri
�
T

i⌦j
S
k

r
[P0,�>R]vkLE⇤

. kgkZn,� + sup
i+j+kn

khri
�[P0,�>R]T

i⌦j
S
k

r
vkLE⇤ + khri

�
⇥
T

i⌦j
S
k

r
, hri

�[P0,�>R]
⇤
vkLE⇤

.R kgkZn,� + sup
in

khri
�
T

i
vkLE⇤([R,2R])

.R kgkZn,� + kvkLEn
0
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where LE⇤([R, 2R]) indicates the LE⇤ norm restricted to R  r  2R. The last inequality
follows due to the commutator [P0,�>R] being supported on [R, 2R] and (4.15). Thus
by Proposition 3.4 we have

khkZn,� .R kgkZn+4,� . (4.25)

Rewriting the equation P0w = h using P0 = �+ P
2, we obtain

��w = �h+ �>R/2P
2
w. (4.26)

Note �>R/2P
2
w = P

2
w because the support of P 2

w is contained in the region where
�>R/2 = 1.

By Lemma 4.1, w can be written as in (4.1) where (4.2) holds so we have

��2X

j=0

|cj |+ kejk`1S(1) + kd(r)kL1 + kSrdk`1S(1) + kqkZn+2,��2

 C

������
�
>

R
2
P

2

0

@
��2X

j=0

�
cj ·r

j
hri

�1 + ej · (r
j
hri

�1)hrij��+1
�
+ d ·r

��1
hri

�1 + q

1

A

������
Zn,�

+ CRkhkZn,� .

(4.27)

If we can show
������
�
>

R
2
P

2

0

@
��2X

j=0

�
cj ·r

j
hri

�1 + ej · (r
j
hri

�1)hrij��+1
�
+ d ·r

��1
hri

�1 + q

1

A

������
Zn,�

. R
�1

0

@
��2X

j=0

|cj |+ kejk`1S(1) + kdkL1 + kSrdk`1S(1) + kqkZn+2,��2

1

A

(4.28)

then choosing R su�ciently large allows us to bootstrap the perturbative term in (4.28),
and we can use (4.25) to obtain

��2X

j=0

(|cj |+ kejk`1S(1)) + kd(r)kL1 + kSrdk`1S(1) + kqkZn+2,��2  (1� cR
�1)�1

CRkgkZn+4,�

as desired. Thus we wish to show

k�
>

R
2
P

2
cj ·r

j
hri

�1
kZn,� . R

�1
|cj |, 0  j  �� 2 (4.29)

k�
>

R
2
P

2
ej · (r

j
hri

�1)hrij��+1
kZn,� . R

�1
kejk`1S(1), 1  j  �� 2 (4.30)

k�
>

R
2
P

2
dr

��1
hri

�1
kZn,� . R

�1(kdkL1 + kSrdk`1S(1)) (4.31)

k�
>

R
2
P

2
qkZn,� . R

�1
kqkZn+2,��2 (4.32)

where the implicit constants are independent of R. We will see (4.30), (4.31), and (4.32)
hold for �  +1. And we will see (4.29) holds for �  +1 when 1  j  �� 2. When
j = 0, (4.29) holds only for �  . Our argument handling c0hri

�1 when � = + 1 will
change the space we can assume e0 is in, causing the di↵erence in the result for � = +1.
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First we prove (4.32). Direct calculation yields

khri
�
�>R/2P

2
qkLE⇤ .

X

a2

k�>R/2hri
�
⇢
��2+a

`
r

a
qkLE⇤ + k�>R/2hri

�
⇢
��2
r

�!qkLE⇤

+ k�>R/2hri
�
⇢
��2
r

qkLE⇤

.
X

a2

k�>R/2hri
���2+a

r
a
qkLE⇤ ,

(4.33)

and we note (4.33) holds for any q with enough regularity. Now we have

khri
�
T

i⌦j
S
k

r
�>R/2P

2
qkLE⇤

.
X

a2

khri
���2+a

r
a
T

i⌦j
S
k

r
qkLE⇤([R2 ,1)) + khri

�[T i⌦j
S
k

r
,�>R/2P

2]qkLE⇤ .
(4.34)

For the commutator [T i⌦j
S
k

r
,�>R/2P

2] we find

[T i⌦j
S
k

r
,�>R/2P

2] = [T i
,�>R/2]⌦

j
S
k

r
P

2 + T
i⌦j [Sk

r
,�>R/2]P

2 + �>R/2[T
i⌦j

S
k

r
, P

2].

The commutators [Sk

r
,�>R/2] and [T i

,�>R/2] are compactly supported and uniformly
bounded in R. We note if Q2 is an operator of the form

Q
2 = @ih

ij
@j + h

!�! + hr + h`, h
ij
2 `

1
S(r�), h

!
, hr 2 Srad(r

��2), and h` 2 `
1
S(r��2),

then [�, Q2] = Q
2 where we allow the precise form of Q2 to change each time it appears.

Since P
2 is an operator of the above form, it follows that [�n

, P
2] = Q

2�<n. Now we
can use (4.33) to obtain

sup
i+j+kn

khri
�[T i⌦j

S
k

r
,�>R/2P

2]qkLE⇤ . sup
i+j+kn�1

X

a2

khri
���2+a

r
a
T

i⌦j
S
k

r
qkLE⇤([R2 ,1)),

which combined with (4.34) yields

k�>R/2P
2
qkZn,� . kqk

Zn+2,���2([R2 ,1)) . R
�1

kqkZn+2,��2 , (4.35)

using |rq|  r
�1(|Srq|+ |⌦q|) (which holds for general q), as desired.

In the following calculations we will use the fact that if � 2 `
1
S(1), then

k(@↵�)⇢qkZn,� .
n+|↵|X

|B|=|↵|

khri
|B|
@
B
�kL1(Am) (4.36)

for q  ��� 2 + |↵|, which is established by direct calculation.
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To prove (4.31) we use (4.35) to find

k�>R/2P
2
d(r)r��1

hri
�1

kZn,� . k�>R/2P
2
d(r)⇢��

kZn,�

= kd(r)⇢��
k
Zn+2,���2([R2 ,1))

. kSr(d⇢
��)k

Zn+1,���2([R2 ,1)) + k⌦(d⇢��)k
Zn+1,���2([R2 ,1))

+ kT (d⇢��)k
Zn+1,���2([R2 ,1)) + kd⇢

��
k
Z0,���2([R2 ,1))

. k(Srd)⇢
��

k
Zn+1,���2([R2 ,1)) + kd⇢

��
k
Zn+1,���2([R2 ,1))

.
n+1X

b=0

k(Srd)⇢
��

k
Zb,���2([R2 ,1)) + kd⇢

��
k
Z0,���2([R2 ,1))

. R
�1

kSrdk`1S(1) +R
�1

kdkL1 .

The last inequality follows from (4.36).

To prove (4.30) we use (4.32) and (4.36) to find

k�>R/2P
2
ej(r

j
hri

�1)hrij��+1
kZn,� . R

�1
kej(r

j
hri

�1)hrij��+1
kZn+2,��2 . R

�1
kejk`1S(1).

(4.37)

Finally we consider (4.29). Using (4.35) we find

k�>R/2P
2
cjr

j
hri

�1
kZn,� . kcjr

j
hri

�1
kZn+2,���2([R/2,1))

. |cj |khri
���3�j

kLE⇤([R/2,1))

. |cj |

X

m>log R
2

2m(���1�j)
.

If � < + 1 + j, then this yields

k�>R/2P
2
cjr

j
hri

�1
kZn,� . R

�1
|cj |

as desired. Thus the c0 term fails to be perturbative when � = + 1.

A straightforward calculation yields |P
2(c0hri�1)| . c0⇢

��3
r

+ c0⇢
��3
`

. Note that
⇢
��3
`

2 Z
⌫,+1 for all ⌫. We obtain decay as R ! 1 so that k�>R/2c0⇢

��3
`

kZn,� .
oR(1)|c0|. Thus only the radial term c0⇢

��3
r

, which arises when the radial scalar term
in P

2 lands on c0r
�1, fails to be perturbative.

To handle this piece we use Lemmas 4.1 and 4.2 to find for � = + 1, if

��w = h1 + h2, h1 2 Z
n,�

, h2 2 Srad(r
���2)

where supp (h2) ✓ {r �
R

4 }, then w can be written as in (4.1) with

|c0|+R
� 1

2 ke0kS(1) +
��2X

j=1

|cj |+ kejk`1S(1) + kd(r)kL1+kSrdk`1S(1) + kqkZn+2,��2

. kh1kZn,� + kh2k
R

1
2 Srad(r���2)

.

Note that `1S(1) ⇢ S(1) so that the change of space for e0 as compared with Lemma
4.1 causes no problem. We now have (4.26) is perturbative with respect to this estimate
since

R
� 1

2 k�<R/2c0⇢
��3
r

kSrad(r��3) . R
� 1

2 |c0|.
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Furthermore, the e0 terms remain perturbative since our estimate (4.37) came with extra
powers of R

�1 and k�
>

R
2
e0k`1S(1) . logRke0kS(1). This concludes the proof of the

proposition. ⇤

5. Low Frequency Analysis

In this section we use Proposition 4.3 to calculate the error when we estimate R⌧g by
(R0g)e�i⌧hri

. Direct calculation yields for any function �

P⌧ (�e
�i⌧hri) = [(�+ P

2)�]e�i⌧hri
� 2i⌧

⇥
(@r +

1

r
)�
⇤
e
�i⌧hri

+
h�
⌧(⇢��1

`
+ ⇢

�

`
r) + ⌧

2
⇢
�

`

�
�

i
e
�i⌧hri

.

(5.1)

Since P0 = (�+ P
2), (5.1) gives

P⌧

⇣
R⌧g � (R0g)e

�i⌧hri
⌘
= g(1� e

�i⌧hri)� 2i⌧
⇥
(@r +

1

r
)R0g

⇤
e
�i⌧hri

+
h�
⌧(⇢��1

`
+ ⇢

�

`
r) + ⌧

2
⇢
�

`

�
R0g

i
e
�i⌧hri

.

(5.2)

Analyzing the right hand side of (5.2) with R0g represented by the expansion found
in Proposition 4.3 will yield a useful form of the error in the low frequency estimate.
Lemmas 5.1 - 5.5 provide preliminary calculations that help us handle terms arising in
the �2i⌧

⇥
(@r +

1
r
)R0g

⇤
e
�i⌧hri piece in (5.2). In Proposition 5.6 we will use these lemmas

to establish the error in the low frequency estimate.

Lemma 5.1. Let n be a positive integer. Let '0 be given and assume 'a satisfies

�
1

2
�'a = (@r +

1

r
)'a�1 (5.3)

and 'a 2 S(r�1) for 1  a  n. Then

�2i⌧
⇥
(@r +

1

r
)'0

⇤
e
�i⌧hri

=
nX

a=1

⇣
� P⌧ ((�i⌧)a'ae

�i⌧hri) + (⌧a⇣⌫

+ ⌧

a+1
⇣
⌫


+ ⌧

a+2
⇣
⌫

�1)e
�i⌧hri

⌘

� 2(�i⌧)n+1(@r +
1

r
)('n)e

�i⌧hri

(5.4)
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Proof. By (5.1) and (5.3), we have

�2i⌧
⇥
(@r +

1

r
)'0

⇤
e
�i⌧hri = i⌧(�'1)e

�i⌧hri

= P⌧ (i⌧'1e
�i⌧hri)� 2⌧2

⇥
(@r +

1

r
)'1

⇤
e
�i⌧hri

� i⌧(P 2
'1)e

�i⌧hri

+ ⌧

h�
⌧(⇢��1

`
+ ⇢

�

`
r) + ⌧

2
⇢
�

`

�
'1

i
e
�i⌧hri

= i⌧P⌧ ('1e
�i⌧hri)� 2⌧2

⇥
(@r +

1

r
)'1

⇤
e
�i⌧hri

+
⇣
⌧⇣

⌫


+ ⌧

2
⇣
⌫


+ ⌧

3
⇣
⌫

�1

⌘
e
�i⌧hri

.

(5.5)

The last inequality uses the fact that '1 2 S(r�1) by assumption, and the term ⌧⇣
⌫


is

limited in its decay by the ⇢��2
r

term in P
2.

Repeating this argument, now for 2i⌧2
⇥
(@r+

1
r
)i'1

⇤
e
�i⌧hri with '2 satisfying�

1
2�'2 =

(@r +
1
r
)'1 and plugging the resulting expression into (5.5) we find

�2i⌧(@r +
1

r
)('0)e

�i⌧hri = P⌧

⇣
i⌧'1e

�i⌧hri + ⌧
2
'2e

�i⌧hri
⌘
+ 2i⌧3

⇥
(@r +

1

r
)'2

⇤
e
�i⌧hri

+
⇣
⌧⇣

⌫


+ ⌧

2
⇣
⌫


+ ⌧

3(⇣⌫

+ ⇣

⌫

�1) + ⌧
4
⇣
⌫



⌘
e
�i⌧hri

as long as '1,'2 2 S(r�1).

Repeating this process yields (5.4) since 'a 2 S(r�1) for a  n by assumption. ⇤

Lemma 5.2. If r � 3, then for j 2 N+

(@r +
1

r
)(rj

hri
�1) = �

1

2
�
⇣ j�1X

k=0

r
j�1�k

x

r
r

k
hri

�1
⌘
. (5.6)

Proof. Direct calculation yields [(@r + 1
r
),r] = �

1
2 [�,

x

r
], and we use this identity to

handle the j = 1 case:

(@r +
1

r
)rhri

�1 = r(@r +
1

r
)r�1 +

1

2

x

r
�hri

�1
�

1

2
�
⇣
x

r
r
�1

⌘
= �

1

2
�
⇣
x

r
hri

�1
⌘
.

Now fix J and assume (5.6) holds for j = J � 1. We calculate

(@r +
1

r
)rJ

hri
�1 = r(@r +

1

r
)rJ�1

hri
�1 +

1

2

x

r
�(rJ�1

hri
�1)�

1

2
�
⇣
x

r
r

J�1
hri

�1
⌘

= r

⇣
�

1

2
�

J�2X

k=0

r
J�2�k

x

r
r

k
hri

�1
⌘
+ 0�

1

2
�
⇣
x

r
r

J�1
hri

�1
⌘

= �
1

2
�

J�1X

k=0

r
J�1�k

x

r
r

k
hri

�1

for r � 3, as desired. ⇤
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Lemma 5.3. Let a 2 N be fixed and let 'j be a family of functions indexed by j which
satisfy

(@r +
1

r
)'j = �

1

2
�

j�1X

k=a

r
j�1�k

x

r
'
k
, j � a+ 1 (5.7)

and (@r +
1
r
)'a = 0. Then

(@r +
1

r
)
j�1X

k=a

r
j�1�k

x

r
'
k = �

1

2
�

j�1X

k=a+1

r
j�1�k

x

r

⇣ k�1X

`=a

r
k�1�`

x

r
'
`

⌘
. (5.8)

Note that if we define

'
j

1 :=
j�1X

k=a

r
j�1�k

x

r
'
k

then the lemma shows that 'j

1 is a family of functions indexed by j which satisfy the
assumptions of the lemma with a replaced by a+ 1.

Proof. We calculate

(@r +
1

r
)
j�1X

k=a

r
j�1�k

x

r
'
k =

j�1X

k=a+1

r
j�1�k

x

r
(@r +

1

r
)'k +

j�2X

k=a

[(@r +
1

r
),rj�1�k]

x

r
'
k

= �
1

2

j�1X

k=a+1

k�1X

`=a

r
j�1�k

⇣
x

r
�
⌘
r

k�1�`
x

r
'
`

�
1

2

j�2X

k=a

j�1�kX

`=1

r
j�1�k�`[�,

x

r
]r`�1x

r
'
k
.

(5.9)

The first equality uses the assumption (@r +
1
r
)'a = 0. The second equality uses (5.7)

and the identity

[(@r +
1

r
),rb] =

bX

`=1

r
b�`[(@r +

1

r
),r]r`�1 = �

1

2

bX

`=1

r
b�`[�,

x

r
]r`�1

. (5.10)
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Changing the order of summation in the first term on the right hand side of (5.9) and
simply switching the indexing labels in the second term yields

(@r +
1

r
)
j�1X

k=a

r
j�1�k

x

r
'
k = �

1

2

j�2X

`=a

j�1X

k=`+1

r
j�1�k

⇣
x

r
�
⌘
r

k�1�`
x

r
'
`

�
1

2

j�2X

`=a

j�1�`X

k=1

r
j�1�`�k[�,

x

r
]rk�1x

r
'
`

= �
1

2

j�2X

`=a

j�1X

k=`+1

r
j�1�k

⇣
x

r
�+ [�,

x

r
]
⌘
r

k�1�`
x

r
'
`

= �
1

2
�

j�1X

k=a+1

r
j�1�k

x

r

k�1X

`=a

r
k�1�`

x

r
'
`
.

To obtain the second equality we redefine the k index by k 7! k+ `. To obtain the third
equality we switch the order of summation. This completes the proof of the lemma. ⇤

Lemma 5.4. Let j � 0 and r � 3. Then

�2i⌧(@r +
1

r
)(rj

hri
�1)e�i⌧hri

=
jX

a=1

⇣
� P⌧ ((�i⌧)aF j

a
e
�i⌧hri) + (⌧a⇣⌫


+ ⌧

a+1
⇣
⌫


+ ⌧

a+2
⇣
⌫

�1)e
�i⌧hri

⌘ (5.11)

where |Fa| . hri
�1 for 1  a  j.

Proof. We define 'j

0 := r
j
hri

�1. By Lemma 5.2 'j

0 satisfies (5.7) with a = 0. Further-
more (@r +

1
r
)'0

0 = 0, so the assumptions of Lemma 5.3 are satisfied.

Then defining 'j

1 :=
P

j�1
k=0 r

j�1�k x

r
'
k

0 , we have

(@r +
1

r
)'j

1 = �
1

2
�

j�1X

k=1

r
j�1�k

x

r
'
k

1 =: �
1

2
�'j

2

by Lemma 5.3. Now '
j

1 satisfies (5.7) with a = 1 and

(@r +
1

r
)'1

1 = (@r +
1

r
)
x

r
hri

�1 = 0

so we can iterate the process again. We define

'
j

`
:=

j�1X

k=`�1

r
j�1�k

x

r
'
k

`�1 (5.12)

and see (@r+
1
r
)'j

j
= (@r+

1
r
)
�
x

r

�j
hri

�1 = 0 so the assumptions of Lemma 5.3 are satisfied
at each iteration and we find for 0  n  j � 1

(@r +
1

r
)'j

n
= �

1

2
�

j�1X

k=n

r
j�1�k

x

r
'
k

n
=: �

1

2
�'j

n+1.
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We note 'j

n
2 S(r�j�1+n) so 'j

n
2 S(r�1) for n  j. Now (5.11) follows by (5.4) since

(@r +
1
r
)'j

j
= 0. ⇤

We define a ^ b to be a smooth function such that a ^ b = min(a, b) when a � b or
b ⌧ a.

Lemma 5.5. Let '0 2 Srad(r��1). Then

2⌧
⇥
(@r +

1

r
)'0

⇤
e
�i⌧hri

=
�1X

a=1

⇣
P⌧ (⌧

a
Fae

�i⌧hri) + (⌧a⇣⌫

+ ⌧

a+1
⇣
⌫


+ ⌧

a+1
⇣
⌫

�1)e
�i⌧hri

⌘
+ (⌧⇣⌫1 + ⌧

+1
⇣
⌫

0 )e
�i⌧hri

� ⌧

P⌧

⇣
(hri�1

"1(r ^ |⌧ |
�1) + ⌧("2(r ^ |⌧ |

�1
� "2(|⌧ |

�1))e�i⌧hri
⌘
.

(5.13)

where |Fa| . hri
�1 and "1, "2 2 S(log r).

Proof. Since '0 2 Srad(r��1), we see (@r +
1
r
)'0 2 Srad(r��2). Lemma 4.2 implies

(@r +
1

r
)'n = �

1

2
�'n+1, 'n 2 Srad(r

��1+n)

for 0  n  � 2. Then by Lemma 5.1 we have

�2i⌧
⇥
(@r +

1

r
)'0

⇤
e
�i⌧hri

=
�1X

a=1

⇣
� P⌧ ((�i⌧)aFae

�i⌧hri) + (⌧a⇣⌫

+ ⌧

a+1
⇣
⌫


+ ⌧

a+1
⇣
⌫

�1)e
�i⌧hri

⌘

� 2(�i⌧)(@r +
1

r
)('�1)e

�i⌧hri
.

(5.14)

Since '�1 2 Srad(r�2), we see (@r +
1
r
)'�1 2 Srad(r�3). By Lemma 4.2 there exists

an "1 2 Srad(log r) such that

�
1

2
�hri

�1
"1(r) = (@r +

1

r
)'�1.

We wish to avoid the logarithmic growth in r, so we use the modified function

'̃ := hri
�1
"1(r ^ |⌧ |

�1).

Now we have

�
1

2
�'̃ = �<|⌧ |�1(@r +

1

r
)'�1 = (@r +

1

r
)'�1 � �>|⌧ |�1(@r +

1

r
)'�1.
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Using (5.1) we find

2⌧(@r +
1

r
)'�1e

�i⌧hri

= P⌧

⇣
⌧
(�'̃)e

�i⌧hri
⌘
+ 2i⌧+1(@r +

1

r
)('̃)e

�i⌧hri

+ ⌧


⇣
⌧(⇢��1

`
+ ⇢

�

`
r) + ⌧

2
⇢
�

`

⌘
('̃)e

�i⌧hri + ⌧

P

2('̃)e
�i⌧hri

+ 2⌧�>|⌧ |�1

⇥
(@r +

1

r
)'�1

⇤
e
�i⌧hri

= P⌧

⇣
⌧
(�'̃)e

�i⌧hri
⌘
+ 2⌧+1

�<|⌧ |�1hri
�1(@r"1(r))e

�i⌧hri

+
⇣
⌧

⇣
⌫


+ ⌧

+1(⇣⌫
�1 + ⇣

⌫

0 ) + ⌧
+2

⇣
⌫

�2

⌘
e
�i⌧hri

.

(5.15)

Here we used the fact |⌧ |
�1
�>|⌧ |�1(@r + 1

r
)'�1 2 `

1
S(r�2) because (@r + 1

r
)'�1 2

Srad(r�3), and the cuto↵ function allows us to pull out a ⌧ factor when summing in the
`
1
S(r�2) norm.

We still need to handle the term 2⌧+1
�<|⌧ |�1hri

�1(@r"1(r))e�i⌧hri. By Lemma 4.2,
there exists an "2 2 Srad(log r) such that

�
1

2
�"2 = hri

�1(@r"1(r)) 2 Srad(r
�2).

To remove the logarithmic growth in r we use the modified function

'̃+1 := "2(r ^ |⌧ |
�1)� "2(|⌧ |

�1)

and find

�
1

2
�'̃+1 = �<|⌧ |�1hri

�1(@r"1(r)).

Then by (5.1) we have

2⌧+1
�<|⌧ |�1hri

�1(@r"1(r))e
�i⌧hri

= P⌧

⇣
⌧
+1(�'̃+1)e

�i⌧hri
⌘
+ 2⌧+2(@r +

1

r
)('̃+1)e

�i⌧hri

+ ⌧
+1

⇣
⌧(⇢��1

`
+ ⇢

�

`
r) + ⌧

2
⇢
�

`

⌘
('̃+1)e

�i⌧hri + (P 2
'̃+1)e

�i⌧hri

= P⌧

⇣
⌧
+1(�'̃+1)e

�i⌧hri
⌘
+ ⌧

+1
⇣
⌫

0 e
�i⌧hri +

⇣
⌧

⇣
⌫

�1 + ⌧
+1

⇣
⌫

�1

⌘
e
�i⌧hri

.

(5.16)

Combining (5.14), (5.15), and (5.16) then yields (5.13), as desired. ⇤

We are now ready to calculate the error in the approximation of R⌧g by (R0g)e�i⌧hri,
which is established in Proposition 5.6. The precise form of the error depends on the
regularity and decay assumed for g.

Proposition 5.6. Let g⌫
�
2 Z

⌫,� with 1  �   + 1 and ⌫ > 3�. Assume |⌧ | . 1 and
=⌧  0.
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(1) If 1  �   then

R⌧g
⌫

�
= (R0g

⌫

�
)e�i⌧hri +R⌧ (�>|⌧ |�1g

⌫

�
) +

��1X

m=1

⌧
m(Fm +R0⇣

⌫�3�
��m

)e�i⌧hri + ⌧
�(R⌧h⌫�3�)

where |Fm| . hri
�1, ⇣⌫�3�

��m
2 Z

⌫�3�,��m, and h⌫�3� satisfies

sup
i+j+k+q⌫�3�

khri
q(@r + i⌧)qT i⌦j

S
k
h⌫�3�kLE⇤ . 1. (5.17)

(2) If � = + 1 then

R⌧g
⌫

+1 = (R0g
⌫

+1)e
�i⌧hri +R⌧ (�>|⌧ |�1g

⌫

+1) +
X

m=1

⌧
m(Fm +R0⇣

⌫�3m
+1�m

)e�i⌧r

+ ⌧

"(r, ⌧)e�i⌧r + ⌧

+1(R⌧h⌫�3�3)

where |Fm| . hri
�1, ⇣⌫�3m

+1�m
2 Z

⌫�3m,+1�m, "(r, ⌧) is of the form

"(r, ⌧) = hri
�1
"1(r ^ |⌧ |

�1) + ⌧

⇣
"2(r ^ |⌧ |

�1)� "2(|⌧ |
�1)

⌘

with "1, "2 2 S(log r), and h⌫�3� satisfies (5.17) with � = + 1.

The term "(r, ⌧) in the statement of Proposition 5.6 for � =  + 1 arises due to the
e0(r) term in Proposition 4.3 in the � =  + 1 case. The final decay rate is ultimately
determined by this "(r, ⌧) term.

We use ⇣⌫
�
to represent a function in Z

⌫,� and allow ⇣
⌫

�
to change from line to line.

The purpose of this notation is to keep track of what function spaces each term in our
calculations is in while reserving g

⌫

�
to indicate the arbitrary but fixed function in Z

⌫,�

given in the statement of the proposition. In general ZN1,L1 ⇢ Z
N2,L2 for N2  N1 and

L2  L1. The monotonicity of Z⌫,� allows us to collect terms with di↵erent regularity
and decay and write them as one term:

⇣
⌫1
�1

+ ⇣
⌫2
�2

= ⇣
min(⌫1,⌫2)
min(�1,�2)

. (5.18)

Proof. Define E
⌫

�
to be the error associated to R⌧g

⌫

�
: E

⌫

�
:= R⌧g

⌫

�
� (R0g

⌫

�
)e�i⌧hri

.

We begin by establishing a useful expression for P⌧ (E⌫

�
) using (5.2). Our expansion in

Proposition 4.3 shows R0g
⌫

�
2 S(r�1) + Z

⌫�2,��2. It follows that

⇢
��1
`

R0g
⌫

�
2 Z

⌫�2,
, ⇢

�

`
rR0g

⌫

�
2 Z

⌫�3,
, and ⇢

�

`
R0g

⌫

�
2 Z

⌫�2,�1
. (5.19)

Furthermore we have

g
⌫

�
� g

⌫

�
e
�i⌧hri = �>|⌧ |�1(r)g⌫

�
+ ⌧�<|⌧ |�1(r)hrig⌫

�

1� e
�i⌧hri

⌧hri
� ⌧

�
�>|⌧ |�1(r)⌧��

g
⌫

�
e
�i⌧hri

.

(5.20)
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We use (5.2), (5.19), and (5.20) to find

P⌧ (E
⌫

�
) = �>|⌧ |�1(r)g⌫

�
+

(I)
z }| {

⌧

⇣
�<|⌧ |�1(r)hrig⌫

�

1� e
�i⌧hri

⌧r

⌘
�

(II)
z }| {
⌧
�

⇣
�>|⌧ |�1(r)⌧��

g
⌫

�
e
�i⌧hri

⌘

� 2i⌧(@r +
1

r
)(R0g

⌫

�
)e�i⌧hri

| {z }
(III)

+(⌧⇣⌫�3


+ ⌧
2
⇣
⌫�2
�1)e

�i⌧hri
| {z }

(IV )

.

(5.21)

Next we claim that
h⌫�3� = ⇣

⌫�3�
0 e

�i⌧hri (5.22)

satisfies (5.17). Indeed, when r � 3, we find for any �(x)

S
k(�e�i⌧hri) = (Sk

r
�)e�i⌧hri

, ⌦j(�e�i⌧hri) = (⌦j
�)e�i⌧hri

|T
i(�e�i⌧hri)| .

iX

a=0

|(T a
�)e�i⌧hri

|, (@r + i⌧)q(�e�i⌧hri) = (@q
r
�)e�i⌧hri

.

Thus when i+ j + k + l  ⌫ � 3� we have

kr
l(@r + i⌧)lT i⌦j

S
k

r
(⇣⌫�3�

0 e
�i⌧hri)kLE⇤ . kT

i⌦j
S
k+l

r
⇣
⌫�3�
0 kLE⇤ . 1.

Our formula for E⌫

�
will be recursive in �, so we begin by calculating E

⌫

1 directly.

Case 1: � = 1

We calculate E
⌫

1 using (5.21) and the expansion for R0g
⌫

1 given by Proposition 4.3:

R0g
⌫

1 = d(r)hri�1 + q (5.23)

where d 2 L
1, Srd 2 `

1
S(1), and q 2 Z

⌫�2,��2. Terms II and IV in (5.21) are readily
seen to be of the form ⌧h⌫�3 using (5.22). Term I in (5.21) can also be included in
⌧h⌫�3. The cuto↵ function restricts I to the region where r|⌧ | . 1, so (5.17) reduces to
h⌫�3 2 Z

⌫�3,0. Since rg
⌫

1 2 Z
⌫,0,

@r

⇣1� e
�i⌧hri

⌧rn

⌘
=

ie
�i⌧hri

rn
� n

1� e
�i⌧hri

⌧rn+1
, @r

⇣
ie

�i⌧hri

rn

⌘
= �n

ie
�i⌧hri

rn+1
+
⌧e

�i⌧hri

rn
,

and

S

⇣1� e
�i⌧hri

⌧r

⌘
= 0,

we have

hrig
⌫

1
1� e

�i⌧hri

⌧hri
2 Z

⌫,0
⇢ Z

⌫�3,0
,

as desired. Here and throughout we harmlessly assume r � 3. We note the above
calculations and (5.20) imply

R⌧ (g
⌫

1 (1� e
�i⌧hri)) = R⌧ (�>|⌧ |�1g

⌫

1 ) + ⌧(R⌧h⌫). (5.24)

This equation will help us handle terms that will arise when � � 2 by providing a base
case for an inductive argument.

For term III in (5.21), we use (5.23) and write @r = r
�1

Sr to find (@r +
1
r
)R0g

⌫

1 2

Z
⌫�3,0, so this term also satisfies (5.17).
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Combining our calculations for terms I, II, III, and IV and applying R⌧ to both sides
of (5.21) yields

E
⌫

1 = R⌧ (�>|⌧ |�1g
⌫

1 ) + ⌧R⌧h⌫�3 (5.25)

as desired.

Case 2: 2  �   + 1 We proceed as in the � = 1 case. For term I in (5.21), we see

hrig
⌫

�

1�e
�i⌧hri

⌧hri 2 Z
⌫,��1 uniformly in ⌧ as ⌧ ! 0. So we can write

I = ⌧�<|⌧ |�1(r)hrig⌫
�

1� e
�i⌧hri

⌧hri
= ⌧�<|⌧ |�1(r)⇣⌫

��1. (5.26)

For term II in (5.21), we note �>|⌧ |�1(r)⌧��
g
⌫

�
2 Z

⌫,0 uniformly in ⌧ as ⌧ ! 0. So
we can write

II = ⌧
�
�>|⌧ |�1⌧

��
g
⌫

�
e
�i⌧hri = ⌧

�
⇣
⌫

0 e
�i⌧hri

. (5.27)

Substituting (5.26) and (5.27) into (5.21) we have

P⌧ (E
⌫

�
) = �>|⌧ |�1g

⌫

�
+ ⌧�<|⌧ |�1⇣

⌫

��1 +
⇣
⌧⇣

⌫�3


+ ⌧
2
⇣
⌫�2
�1 + ⌧

�
⇣
⌫

0

⌘
e
�i⌧hri

� 2i⌧
⇥
(@r +

1

r
)R0g

⌫

�

⇤
e
�i⌧hri

.

(5.28)

We claim that terms of the right hand side of (5.28) of the form

⌧
m
⇣
⌫

��m
e
�i⌧hri

, 1  m  �� 1 (5.29)

produce error terms which can be handled inductively. First consider the case m = ��1.
By (5.24) we see that after applying R⌧ to both sides of (5.28), terms on the right hand
side that are of the form (5.29) with m = �� 1 become

⌧
��1

R⌧ (⇣
⌫

1 e
�i⌧hri) = ⌧

��1
R⌧ (�<|⌧ |�1⇣

⌫

1 ) + ⌧
�(R⌧h⌫), (5.30)

and we can appeal to case 1 of the proposition to handle the first term, while the second
term is expected to appear in E

⌫

�
(In fact this term has more regularity than the h term

in the statement of the proposition. We will see the last term on the right hand side of
(5.28) limits the amount of regularity we can get for h⌫�3�.)

Now consider (5.29) for 1  m  � � 2. Substituting (5.26) and (5.27) into (5.20)
gives

R⌧ (g
⌫

�
e
�i⌧hri) = R⌧ (�<|⌧ |�1g

⌫

�
) + ⌧R⌧ (�<|⌧ |�1⇣

⌫

��1) + ⌧
�(R⌧h⌫).

Therefore after applying R⌧ to both sides of (5.28), we see terms on the right hand side
that are of the form (5.29) with 1  m  �� 2 become

⌧
m
R⌧ (⇣

⌫

��m
e
�i⌧hri) = ⌧

m
R⌧ (�<|⌧ |�1⇣

⌫

��m
) + ⌧

m+1
R⌧ (�<|⌧ |�1⇣

⌫

��m�1) + ⌧
�(R⌧h⌫),

(5.31)
and we can proceed inductively for the first 2 terms, while the last term is expected to
appear in E

⌫

�
.

Next we consider the term �2i⌧
⇥
(@r +

1
r
)R0g

⌫

�

⇤
e
�i⌧hri in (5.28) using Proposition 4.3.

We note (@r +
1
r
)hri�1 = 0 so the term 2i⌧(@r +

1
r
)c0hri�1 vanishes. It is left to consider

the terms

(A) �2i⌧
⇥
(@r +

1
r
)cjrj

hri
�1

⇤
e
�i⌧hri for 1  j  �� 2

(B) �2i⌧
⇥
(@r +

1
r
)ej(r)(rj

hri
�1)hrij��+1

⇤
e
�i⌧hri for 1  j  �� 2
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(C) �2i⌧
⇥
(@r + 1

r
)e0hri��

⇤
e
�i⌧hri (Here the cases �   and � =  + 1 must be

considered separately since e0 2 `
1
S(1) for �   and e0 2 S(1) for � = + 1 by

Proposition 4.3.)
(D) �2i⌧

⇥
(@r +

1
r
)d(r)r��1

hri
�1

⇤
e
�i⌧hri

(E) �2i⌧
⇥
(@r +

1
r
)q(x)

⇤
e
�i⌧hri.

For term E we have q 2 Z
⌫�2,��2, so writing @r = r

�1
Sr we see (@r +

1
r
)q 2 Z

⌫�3,��1.

Thus we can write E = ⌧⇣
⌫�3
��1e

�i⌧hri
.

For term B we have ej 2 `
1
S(1) so (@r +

1
r
)ej(rj

hri
�1)hrij��+1

2 `
1
S(r���1). Since

`
1
S(r�2) ✓ Z

N,0 for any N , we can write B = ⌧⇣
⌫�3
��1e

�i⌧hri
.

To handle term A we multiply both sides of (5.11) by the constant cj to find

A =
jX

a=1

⇣
P⌧ (⌧

a
Fae

�i⌧hri) + (⌧a⇣⌫

+ ⌧

a+1
⇣
⌫


+ ⌧

a+2
⇣
⌫

�1)e
�i⌧hri

⌘

where |Fa| . hri
�1. Here we absorbed the constant into the functions ⇣⌫


and ⇣⌫

�1.

Next we consider term D. Using Lemma 5.4 and the fact that Srd 2 `
1
S(1), we

calculate

D = �2i⌧(@rd)(r
��1

hri
�1)e�i⌧hri

� d2i⌧(@r +
1

r
)(r��1

hri
�1)

= ⌧⇣
⌫

��1e
�i⌧hri +

��1X

a=1

dP⌧ ((�i⌧)aFae
�i⌧hri) + (⌧a⇣⌫


+ ⌧

a+1
⇣
⌫


+ ⌧

a+2
⇣
⌫

�1)e
�i⌧hri

= ⌧⇣
⌫

��1e
�i⌧hri +

��1X

a=1

P⌧ (d(�i⌧)aFae
�i⌧hri)� [P⌧ , d](�i⌧)aFae

�i⌧hri

+
⇣
⌧
a
⇣
⌫


+ ⌧

a+1
⇣
⌫


+ ⌧

a+2
⇣
⌫

�1

⌘
e
�i⌧hri

.

We find by direct calculation [P⌧ , d]Fae
�i⌧hri =

⇣
⇢
��+a�2
`

+ ⌧⇢
��+a�1
`

⌘
e
�i⌧hri

. so that

D =
��1X

a=1

P⌧

⇣
⌧
a
Fae

�i⌧hri
⌘
+ (⌧a(⇣⌫


+ ⇣

⌫

��a
) + ⌧

a+1(⇣⌫

+ ⇣

⌫

��a�1) + ⌧
a+2

⇣
⌫

�1)e
�i⌧hri

since `1S(r�2) ⇢ Z
N,0 for any N .

Substituting our expressions for terms A,B,D, and E into (5.28) and simplifying yields

P⌧ (E
⌫

�
) = �>|⌧ |�1g

⌫

�
+

��1X

a=1

⇣
P⌧ (⌧

a
Fae

�i⌧hri)
⌘
+ ⌧�<|⌧ |�1⇣

⌫

��1 +
⇣
⌧⇣

⌫�3
��1 + ⌧

2
⇣
⌫�2
��2

⌘
e
�i⌧hri

+
�X

m=3

⌧
m
⇣
⌫

��m
e
�i⌧hri + 2⌧(@r +

1

r
)(e0hri

��)e�i⌧hri

| {z }
(C)

(5.32)

for 1  �  + 1.

For term C we consider the cases 2  �   and � = + 1 separately.
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Case 2(a): 2  �  

Here we have e0 2 `
1
S(1) so e0hri

��
2 `

1
S(r��) and we find

C = 2⌧(@r +
1

r
)(e0(r)hri

��)e�i⌧hri = ⌧⇣
⌫

��1e
�i⌧hri

. (5.33)

We can absorb C into the term ⌧⇣
⌫�3
��1e

�i⌧hri in (5.32). Then applying R⌧ to both sides
of (5.32) and using (5.30) and (5.31) yields

E
⌫

�
= R⌧ (�>|⌧ |�1g

⌫

�
) +

��1X

a=1

(⌧aFae
�i⌧hri) + ⌧R⌧ (�<|⌧ |�1⇣

⌫�3
��1) + ⌧

2
R⌧ (�<|⌧ |�1⇣

⌫�3
��2)

+
��1X

m=3

⌧
m
R⌧ (�<|⌧ |�1⇣

⌫

��m
) + ⌧

�(R⌧h⌫�3).

(5.34)

Part 1 of the proposition then follows by induction in � and the established base case for
� = 1. We note the term ⌧R⌧ (�<|⌧ |�1⇣

⌫�3
��1) leads to the loss of regularity for h.

Case 2(b): � = + 1

Since e0hri
��1

2 Srad(r��1), we can use Lemma 5.5. Combining (5.13) and (5.32)
then applying R⌧ yields

E
⌫

+1 = R⌧ (�>|⌧ |�1g
⌫

+1) +
X

a=1

(⌧aFae
�i⌧hri) + ⌧R⌧ (�<|⌧ |�1⇣

⌫


+ ⇣

⌫�3


e
�i⌧hri)

+ ⌧
2
R⌧ (⇣

⌫�2
�1e

�i⌧hri) +
X

m=3

⌧
m
R⌧ (⇣

⌫

+1�m
e
�i⌧hri) + ⌧


"(r, ⌧)e�i⌧hri + ⌧

+1
R⌧h⌫ .

(5.35)

Part 1 of the proposition, (5.30), and (5.31) then give

E
⌫

+1 = R⌧ (�>|⌧ |�1g
⌫

+1) +
X

m=1

⇣
⌧
m(Fm +R0⇣

⌫�3m
��m

)e�i⌧hri
⌘
+ ⌧


"(r, ⌧)e�i⌧hri

+ ⌧
+1(R⌧h⌫�3�3)

(5.36)

as desired. This concludes the proof of the proposition. ⇤

6. Pointwise Resolvent Bounds

In this section we establish the pointwise resolvent bounds that will be used in the
proof of the main theorem (see Propositions 6.5 and 6.8). The results of this section do
not improve on the results in [33], but we do track the required regularity more precisely.

Our argument uses the Sobolev embedding

k�kL1(S2) . k�kL2(S2) + k⌦2
�kL2(S2) (6.1)

to obtain useful L2
r
L
1
!
(Am) bounds on g and R⌧g. For reference we begin with two

preliminary lemmas resulting from a straightforward application of (6.1).
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Lemma 6.1. If � satisfies

khri
p
�kL2(Am) +

X

|↵|=2

khri
p⌦↵

�kL2(Am) . 1

then 2m(1+p)
k�kL2

rL
1
! (Am) . 1.

Proof. A change of coordinates yields khrip�k2
L2(Am) ⇡ 22m(1+p)

k�k
2
L2

rL
2
!(Am). Then from

the Sobolev embedding (6.1) we obtain

2m(1+p)
k�kL2

rL
1
! (Am) . khri

p
�kL2(Am) + khri

p⌦2
�kL2(Am) . 1. (6.2)

⇤

In the following proofs we use the notation Q` to denote any operator of the form

⌧(@ih
i + h

i
@i) + @ih

ij
@j + h`, h

i
, h

ij
2 `

1
S(r�), h` 2 `

1
S(r��2) (6.3)

and use Qr to denote an operator of the form

h
!�! + hr, h

!
, hr 2 Srad(r

��2). (6.4)

Lemma 6.2. If �, Sr�, ⌦2
�, ⌦2

Sr� 2 LE
⇤, then |�| . hri

�2. Furthermore, if � 2 Z
n,q,

then |@
p

r
�| . hri

�2�p�q for p  n� 3.

Proof. Fix m. By assumption, hri
1
2�, hri

1
2⌦2

�, hri
3
2 @r�, hri

3
2⌦2

@r� 2 L
2(Am), so by

(6.1), we have 2
3m
2 k�kL2

rL
1
! (Am) . 1 and 2

5m
2 k@r�kL2

rL
1
! (Am) . 1. Using the Fundamen-

tal Theorem of Calculus and Cauchy-Schwarz, we find pointwise bounds on �:

k�kL1(Am) . 2�
m
2 k�kL2

rL
1
! (Am) + 2

m
2 k@r�kL2

rL
1
! (Am) . 2�2m

.

Thus |�| . hri
�2 since m was arbitrary.

Now take � 2 Z
n,q. We can write hri

p
@
p

r
S
p

r
as a linear combination of Sk

r
for k  p so

|hri
q+p

@
p

r
�| . P

kp
|hri

q
S
k

r
�|. Since [⌦, r] = 0 and [Sr, r] = r, it follows by the definition

of Zn,q that ⌦j
S
k

r
hri

q+p
@
p

r
� 2 LE

⇤ when j + k  3 if p  n � 3. Therefore by the first
part of the proposition we have |hri

q+p
@
p

r
�| . hri

�2. ⇤

The following calculation will be useful for the remaining lemmas and propositions in
this section. Writing

(@2
r
+ ⌧

2) = P⌧ � (2r�1
@r + r

�2�! +Q` +Qr),

where Q`, Qr are as in (6.3) and (6.4), we obtain

(@2
r
+ ⌧

2)rvijk = r(@2
r
+ ⌧

2)vijk + 2@rvijk

= rP⌧vijk � r
�1�!vijk � r(Q` +Qr)vijk.

(6.5)

Commuting P⌧ with T
i⌦j

S
k yields

P⌧vijk = gijk +Q`(v<ijk + vi<jk + vij<k) +Qr(v<ijk + vij<k). (6.6)

Then we rewrite the first term of (6.5) using (6.6) to find

(@2
r
+ ⌧

2)rvijk = �r
�1�!vijk + r(Q` +Qr)vijk + rgijk. (6.7)
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In Proposition 6.3 we state the same pointwise bounds and outgoing radiation condi-
tion established in [33, Proposition 16]. However, we obtain di↵erent numerology for the
number of vector fields that can be applied to v = R⌧g so that the results hold. Thus
we o↵er a concrete justification for the change in the vector field numerology but provide
only a brief outline of the argument. We will use notation as in Proposition 3.5 so that
M indicates the regularity assumed for g. We take vijk = T

i⌦j
S
k
v and gijk = T

i⌦j
S
k
g.

Similarly, we write v<i<j<k = T
<i⌦<i

S
<k

v and use analogous notation for g.

Proposition 6.3. Assume =⌧  0. Let g 2 LE
⇤ satisfy (3.9) and possibly depend on ⌧ .

Set v = R⌧g.

(i) If |⌧ | & 1, then

|T
i⌦j

S
k
v(⌧)| . (|⌧ |hri)�1

, i+ 4j + 16k  M � 20. (6.8)

(ii) If |⌧ | . 1, then

|T
i⌦j

S
k
v(⌧)| .

(
min{1, (|⌧ |hri)�1

} i = 0

hri
�1

i � 1
i+ 4j + 16k  M � 20. (6.9)

(iii) If ⌧ 2 R \ {0}, then we have the outgoing radiation condition:

lim
|x|!1

r(@r + i⌧)T i⌦j
S
k
v(⌧) = 0, i+ 4j + 16k  M � 20. (6.10)

proof summary. (i) and (ii) The estimate
X

m

2
m
2 k(@2

r
+ ⌧

2)(rvijk)kL2
rL

1
! (Am) . 1 (6.11)

implies

|vijk| . (hri|⌧ |)�1 and |@rvijk| . hri
�1 (6.12)

using the fundamental solution for (@2
r
+ ⌧

2), which is given by ⌧�1
e
�i⌧ |s|.

The pointwise bounds for |⌧ | & 1 and for the case hri & |⌧ |
�1 when |⌧ | . 1 are

obtained using (6.11). To show (6.11) holds, we bound each term on the right hand side
of (6.7) by applying Lemma 6.1 to the assumption kgijkkLE⇤ . 1 for i + 4j + 16k  M

and the resulting fact kvijkkLE⌧
. 1 for i+4j+16  M � 4 (which holds by Proposition

3.5).

To see where the vector field loss occurs, consider the term r
�1�!vijk on the right

hand side of (6.7). We wish to show this term satisfies (6.11). Using (6.2) in Lemma 6.1,
it su�ces to show

X

m

khri
� 3

2�!vijkkL2(Am) + khri
� 3

2⌦2(�!vijk)kL2(Am) . 1. (6.13)

When |⌧ | & 1, we have

khri
� 1

2 vijkkL2(Am) . |⌧ |khri
� 1

2 vijkkL2(Am) . kvijkkLE⌧
. 1 i+ 4j + 16k < M � 4.

(6.14)
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Replacing �! by
P

|↵|=2 ⌦
↵ and using (6.14) yields

X

m

khri
� 3

2�!vijkkL2(Am) + khri
� 3

2⌦2(�!vijk)kL2(Am)

=
X

m

khri
� 3

2 vi(j+2)kkL2(Am) + khri
� 3

2 vi(j+4)kkL2(Am)

. 1, i+ 4j + 16k  M � 20.

This shows the M � 20 vector field loss (as compared to the erroneously stated M � 12
loss in [33]).

When |⌧ | . 1 and |⌧ |
�1 & hri, then (6.12) is insu�cient since (|⌧ |hri)�1 is unbounded.

The advantage in this case is that the (hri�1 + |⌧ |)�1 weight in the second order term of
kvijkkLE⌧

is bounded below by hri when hri . |⌧ |
�1. ⇤

We will use Proposition 6.3 to establish pointwise bounds on (⌧@⌧ )p(veir⌧ ). Note
⌧@⌧ (veir⌧ ) = [(�S+ r(@r + i⌧))v]eir⌧ . This motivates the following lemma, which will be
used to prove the subsequent proposition stating the pointwise bounds on (⌧@⌧ )p(veir⌧ )
for |⌧ | & 1. We remark that while the above calculation shows we are primarily concerned
with (@r + i⌧)pv00k, our methods will generate T and ⌦ vector fields as we induct in k,
so we handle (@r + i⌧)pvijk.

Lemma 6.4. Let g 2 Z
n,q. If ⌧ 2 R and |⌧ | & 1, then v = R⌧g satisfies the pointwise

bounds

|(@r+i⌧)pvijk| . |⌧ |
p�1

hri
�p�1

, p  q, p  n�3, and i+4j+16k  n�20�8p.
(6.15)

Proof. Note i+ j+k < i+4j+16k < n so g 2 Z
n,q implies g satisfies (3.9) with M = n,

and the results of Proposition 6.3 apply with M = n.

When p = 0, (6.15) follows from (6.8).

Now let p = 1. All but the last term on the right hand side of (6.7) are pointwise
bounded by hri

�2 using (6.8) and the fact that  � 2. We replace �!vijk by vi(j+2)k

so the bounds hold when i + 4j + 16k  n � 28. For the final term, by Lemma 6.2 we
have |@

k

r
g| . hri

�2�k�q when k  n � 3, so |rg| . hri
�2 since 1 = p  q. Thus we have

|(@2
r
+ ⌧

2)(rvijk)| . hri
�2.

We rewrite @2
r
+ ⌧

2 = (@r � i⌧)(@r + i⌧) and use an integrating factor to write

@r

⇥�
(@r + i⌧)rvijk

�
e
�i⌧r

⇤
=

�
(@2

r
+ ⌧

2)rvijk
�
e
�i⌧r

By (6.8) and (6.10), we have limr!1(@r+i⌧)(rvijk) = 0, so we can integrate from infinity
to find

|(@r + i⌧)(rvijk)| .
Z 1

r

|hsi
�2

|ds = hri
�1

.

It follows that |(@r + i⌧)vijk| . hri
�2, as desired.
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We proceed by induction. Fix p and assume |(@r + i⌧)avijk| . |⌧ |
a�1

hri
�a�1 for a < p

when i+ 4j + 16  n� 20� 8a. Applying (@r + i⌧)p�1 to (6.7) we find

(@r � i⌧)(@r + i⌧)p(rvijk)

=
p�1X

m=0

⇣
(�1)p�m+1

cmr
�(p�m)(@r + i⌧)m�!vijk

⌘
+ r(@r + i⌧)p�1(Q` +Qr)vijk

+ C(@r + i⌧)p�2(Q` +Qr)vijk +
�
r(@r + i⌧)p�1 + C(@r + i⌧)p�2

�
gijk.

(6.16)

Each term on the right hand side of (6.16) is bounded in magnitude by |⌧ |
p�1

hri
�p�1.

The first term is bounded, by the inductive hypothesis, when i+4j +16k  n� 20� 8p.
For the Q` and Qr terms, we commute (@r + i⌧) with the coe�cients of the operators
and view the derivatives as vector fields. The bounds then follow using our assumption
 � 2 once we note

[(@r + i⌧)p�1
, ⇢

�

• ] =
p�1X

m=1

cm⇢
��m

• (@r + i⌧)p�1�m (6.17)

for • 2 {`, r}. For the last gijk terms we use Lemma 6.2 (which requires our assumption
p  n� 3) to find

|r(@r + i⌧)p�1
gijk|+ |(@r + i⌧)p�2

gijk|

=
��r

p�1X

m=0

cm(i⌧)m@p�1�m

r
gijk

��+
��
p�2X

m=0

(i⌧)mcm@
p�2�m

r
gijk

��

. |⌧ |
p�1

hri
�1�p

.

The last inequality holds since we assume p  q.

Now we have

|(@r � i⌧)(@r + i⌧)p(rvijk)| . |⌧ |
p�1

hri
�p�1

Integrating as before then yields (6.15). ⇤

Proposition 6.5 establishes the pointwise bounds we will use in the proof of the main
theorem. This corresponds to Proposition 17 in [33]. Note we use Tataru’s method of
proof and correct an error in the proposition statement.

Proposition 6.5. Let g 2 Z
n,q. If ⌧ 2 R and |⌧ | & 1, then v = R⌧g satisfies the

pointwise bounds

|(⌧@⌧ )
p

⇣
ve

i⌧hri
⌘
| . |⌧ |

p�1
hri

�1
, p  q and 16p  n� 20. (6.18)

Proof. If p = 0, then (6.18) follows from (6.8).

To handle p = 1, we write (⌧@⌧ )
�
ve

ihri⌧� = (�Sv + r(@r + i⌧)v)eihri⌧ . Then |Sv| .
|⌧ |

�1
hri

�1 using (6.8), and |r(@r + i⌧)v| . hri
�1 using (6.15). Both (6.8) and (6.15) hold

under our assumptions p  16p  n�20, which implies p  n�3 since p is nonnegative).
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For general p, we write

(⌧@⌧ )
p

⇣
ve

ihri⌧
⌘
=

0

@
pX

j=0

jX

`=0

cj`r
`(@r + i⌧)`(�S)p�j

v

1

A e
ihri⌧

.

Each term on the right hand side is bounded by |⌧ |
`�1

hri
�1 . |⌧ |

p�1
hri

�1 using (6.15)
and our assumption 16p  n� 20. ⇤

Next we find pointwise resolvent bounds for |⌧ | . 1. In this case we are interested in
the term R⌧h⌫�3�3 in our expression for R⌧g in Proposition 5.6. The terms included in
h in the proof of Proposition 5.6 depend on ⌧ , so we consider a ⌧ dependent function g.

Lemma 6.6. Let g 2 LE
⇤, possibly depending on ⌧ , satisfy

khri
q(@r + i⌧)qT i⌦j

S
k
gkLE⇤ . 1, q + i+ 4j + 16k  n. (6.19)

If ⌧ 2 R, |⌧ | . 1, and p < n� 3 then

|@
p

r
(gei⌧r)| . r

�p�2
, (6.20)

|(@r + i⌧)pg| . r
�p�2

, (6.21)

and

|@
p

r
g| . r

�2
. (6.22)

Furthermore, if |⌧r| . 1 then

|@
p

r
g| . r

�p�2
. (6.23)

Proof. To prove (6.20) we calculate Sr(gei⌧r) = (r(@r + i⌧)g)ei⌧r so that

S
k

r
(gei⌧r) =

kX

m=1

cm(rm(@r + i⌧)mg)ei⌧r. (6.24)

We also have ⌦j
ge

i⌧r = (⌦j
g)ei⌧r. Finally we calculate

|T
i
ge

i⌧r
| =

���
iX

m=0

cm(T i�m
g)Tm

e
i⌧r

��� .
iX

m=0

cm|T
m
g|

since we assumed |⌧ | . 1. Therefore (6.19) implies ge
i⌧r

2 Z
n,0 and (6.20) follows by

Lemma 6.2. Then (6.21) follows from (6.20) since @p
r
(gei⌧r) = ((@r + i⌧)pg)ei⌧r.

To prove (6.22), note the case p = 0 follows from (6.21). Now assume (6.22) holds for
a < p. We calculate

(@r + i⌧)p =
pX

m=0

cm@
m

r
(i⌧)p�m = @

p

r
+

p�1X

m=0

cm@
m

r
(i⌧)p�m (6.25)

so that

|@
p

r
g| . |(@r + i⌧)pg|+

p�1X

m=0

|@
m

r
g|

since we assume |⌧ | . 1. Then (6.22) follows from (6.21) and the inductive hypothesis.
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Finally, to prove (6.23), we see the case p = 0 follows from (6.21). Now assume (6.23)
holds for a < p. By (6.25) we have

|r
p
@
p

r
g| . |r

p(@r + i⌧)pg|+
p�1X

m=0

r
m
|@

m

r
(i⌧r)p�m

| . hri
�2

where the last inequality follows from (6.21), the assumption |⌧r| . 1, and the inductive
hypothesis. ⇤

Lemma 6.7. Let g 2 Z
n,0, possibly depending on ⌧ , satisfy

khri
q(@r + i⌧)qT i⌦j

S
k
gkLE⇤ . 1, q + i+ 4j + 16k  n. (6.26)

If ⌧ 2 R and |⌧ | . 1 then v = R⌧g satisfies

|(@r + i⌧)pvijk| . |⌧ |
�1

hri
�p�1

, p  n� 3 and i+ 4j + 16k  n� 20� 8p. (6.27)

Proof. If p = 0, (6.27) follows from (6.9).

To handle p = 1, we again use (6.7). All but the last term are bounded by |⌧ |
�1

hri
�2

using (6.9). We note the assumption g 2 Z
n,0 does not allow us to use Lemma 6.2: g

may depend on ⌧ , so Sg 6= Srg. Take  = (@r + i⌧)(rvijk). Then the radiation condition
(6.10) allows us to integrate from infinity as before to find

| (r0)e
�i⌧r0 | =

����
Z 1

r0

(r�1�!vijk + r(Q` +Qr)vijk)e
�i⌧r

dr +

Z 1

r0

rgijke
�i⌧r

dr

����

. |⌧ |
�1

hr0i
�1 +

����
Z 1

r0

rgijke
�i⌧r

dr

���� .

For the last term we integrate by parts and use Lemma 6.6 to calculate
����
Z 1

r0

rgijke
i⌧r
@r

✓
e
�2i⌧r

�2i⌧

◆
dr

����

=

����
�i

2⌧
r0gijk(r0)e

�i⌧r0 +
1

2i⌧

Z 1

r0

e
�2i⌧r

⇣
ge

ir⌧ + r@r(ge
ir⌧ )

⌘
dr

����

. |⌧ |
�1

hr0i
�1

.

Thus we have

|r(@r + i⌧)vijk| = |(@r + i⌧)(rvijk)� vijk| . |⌧ |hri
�1

so that |(@r + i⌧)vijk| . |⌧ |
�1

hri
�2, as desired.

We proceed by induction. Fix p and assume |(@r + i⌧)avijk| . |⌧ |
�1

hri
�a�1 for a < p.

We again use (6.16). All but the gijk terms are bounded by |⌧ |
�1

hri
�p�1 using the

inductive hypothesis and (6.17). For the gijk terms we integrate by parts as in the p = 1
case to find����

Z 1

r0

�
r(@r + i⌧)p�1 + C(@r + i⌧)p�2

�
gijke

�i⌧r
dr

���� . |⌧ |
�1

hr0i
�p

.

Then (6.27) follows.

⇤
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In Proposition 6.8 we establish the pointwise resolvent bounds which will be used in
the proof of the main theorem for small ⌧ . The result is the same as that in Proposition
18 in [33] with a more precise statement on the regularity requirements.

Proposition 6.8. Let g 2 Z
n,0, possibly depending on ⌧ , satisfy

khri
q(@r + i⌧)qT i⌦j

S
k
gkLE⇤ . 1, q + i+ 4j + 16k  n. (6.28)

If ⌧ 2 R and |⌧ | . 1 then v = R⌧g satisfies the following pointwise bounds:

(1) If hri . |⌧ |
�1, then

|(⌧@⌧ )
p
v| . 1, 16p  n� 20. (6.29)

(2) If hri & |⌧ |
�1, then

|(⌧@⌧ )
p

⇣
ve

i⌧hri
⌘
| . (|⌧ |hri)�1

, 16p  n� 20. (6.30)

Proof. 1. Small r: hri . |⌧ |
�1

We write ⌧@⌧ = �S + r@r and find

(⌧@⌧ )
p
v =

pX

m=0

cm(r@r)
p�m(�S)mv.

Since (r@r)p =
P

p

j=0 cjr
j
@
j

r
, it is su�cient to show |r

p
@
p

r
v00k| . 1 for 16k  n�20�16p.

As before, we will use (6.7), which introduces ⌦ and T vector fields, so we will instead
bound |r

p
@
p

r
vijk| then set i, j = 0.

When p = 0, we have |vijk| . 1 by (6.9) for i + 4j + 16k  n � 20. When p = 1, we
have |@rvijk| . |rvijk| . hri

�1 when i+ 4j + 16k  n� 20 by (6.9).

Fix p and assume |ra@a
r
vijk| . 1 for a < p when i+4j+16k  n� 20� 16a. Applying

r
p�2

@
p�2
r

to r
2
@
2
r
vijk and commuting yields

r
p
@
p

r
vijk = r

p�2
@
p�2
r

(r2@2
r
vijk)� c1r

p�2
@
p�2
r

vijk � c2r
p�1

@
p�1
r

vijk. (6.31)

The last two terms in (6.31) are bounded by the inductive hypothesis. To handle the
first term in (6.31) we use (6.7) and obtain

r
2
@
2
r
vijk = ��!vijk + r

2(Q` +Qr)vijk � r
2
⌧
2
vijk + r

2
gijk � 2r@rvijk.

Now we calculate

|r
p�2

@
p�2
r

(��!vijk + r
2(Q` +Qr)vijk � r

2
⌧
2
vijk + r

2
gijk � 2r@rvijk)|

.
���(rp�2

@
p�4
r

+ c1r
p�1

@
p�3
r

+ c2r
p
@
p�2
r

)[(Q` +Qr)vijk + gijk � ⌧
2
vijk]

���

+ |r
p�2

@
p�2
r

vi(j+2)k|+ |(rp�2
@
p�2
r

+ r
p�1

@
p�1
r

)vijk|.

The Q` and Qr terms are handled in a manner analogous to the argument using (6.17).
Each term on the right hand side is then bounded by the inductive hypothesis, the
assumption |⌧r| . 1, and Lemma 6.6.

2. Large r: hri & |⌧ |
�1

As in Proposition 6.5, it su�ces to prove the proposition for (⌧@⌧ )k
�
ve

i⌧r
�
.

If p = 0, the desired bound follows by (6.9).
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Fix p and assume |(⌧@⌧ )a
⇣
ve

i⌧r

⌘
| . (|⌧ |hri)�1 when a < p. We write

(⌧@⌧ )
p(veir⌧ ) =

0

@
pX

j=0

jX

`=0

cj`r
`(@r + i⌧)`(�S)p�j

v

1

A e
ir⌧

.

By Lemma 6.7, each term on the right hand side is bounded by |⌧ |
�1

hri
�1, as desired. ⇤

7. Proof of Main Theorem

We are now ready to prove Theorem 1.5. By assumption the initial data satisfies
u0 2 Z

⌫+1, and u1 2 Z
⌫,+1. Since P

1 : Zn,q
! Z

n�1,q+, we can write

R⌧ (�i⌧u0 + P
1
u0 � u1) = R⌧ (⌧g

⌫+1


+ g
⌫

+1)

for some g
⌫+1


2 Z
⌫+1, and some g

⌫

+1 2 Z
⌫,+1. Therefore (3.11) becomes

u(t, x) =
1

p
2⇡

Z

R
R⌧ (⌧g

⌫+1


+ g
⌫

+1)e
i⌧t

d⌧. (7.1)

We will use cuto↵ functions to break u into high and low frequency components as in
(3.12) and (3.13).

7.1. High Frequency Case. (|⌧ & 1) We will decompose the expression R⌧ (⌧g⌫+1


+
g
⌫

+1) in (7.1) via an iterative argument, so we begin by writing the high frequency part
of u as

u>1(t, x) =
1

p
2⇡

Z

R
�>1(|⌧ |)R⌧ (⌧f0 + g0)e

i⌧t
d⌧ (7.2)

for f0 = g
⌫+1


2 Z
⌫+1, and g0 = g

⌫

+1 2 Z
⌫,+1.

We approximate R⌧ (⌧f0 + g0) by ⌧
�1

f0 and calculate the error. Direct calculation
yields

P⌧

⇥
R⌧ (⌧f0 + g0)� ⌧

�1
f0

⇤
= (g0 � iP

1
f0) + ⌧

�1(�+ P
2)(�f0) =: f1 + ⌧

�1
g1.

Note P
2 : Zp,q

! Z
p�2,q+, P 1 : Zp,q

! Z
p�1,q+, and � : Zp,q

! Z
p�2,q+2. To see the

latter, write � in spherical coordinates and viewing the derivatives as vector fields:

� = @
2
r
+

2

r
@r + r

�2�! = r
�2(S2

r
� Sr) + 2r�2

Sr + r
�2⌦2

.

Thus f1 2 Z
⌫,+1 and g1 2 Z

⌫�1,+2. Now we have

R⌧ (⌧f0 + g0) = ⌧
�1

f0 +R⌧ (f1 + ⌧
�1

g1).

Next we reiterate the process and approximate R⌧ (f1 + ⌧
�1

g1) by ⌧�2
f1:

R⌧ (f1 + ⌧
�1

g1) = ⌧
�2

f1 +R⌧ (⌧
�1(g1 � iP

1
f1) + ⌧

�2(�+ P
2)(�f1))

=: ⌧�2
f1 +R⌧ (⌧

�1
f2 + ⌧

�2
g2)
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where f2 2 Z
⌫�1,+2 and g2 2 Z

⌫�2,+3. Further reiterating this process a total of J
times we obtain the representation

R⌧ (⌧f0 + g0) =
J�1X

j=0

⌧
�j�1

fj

| {z }
=:ûa

+ ⌧
�J

R⌧ (⌧fJ + gJ)| {z }
=:ûb

(7.3)

where fj = gj�1 � iP
1
fj�1 2 Z

⌫+1�j,+j and gj = �(� + P
2)fj�1 2 Z

⌫�j,+1+j . We
plug (7.3) into (7.2) and bound each term separately.

By Lemma 6.2 we see |fj | . hri
�2��j , and we calculate for any N � 1:
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.

By (6.18), we have |(⌧@⌧ )`(ûb(⌧)ei⌧hri)| . |⌧ |
`�J

hri
�1 for 16`  ⌫ � J � 20 and

`  + J . We use this to calculate
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Z
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#
e
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�����
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�1
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for J � 2, N  + J , and 16N  ⌫ � J � 20.

Combining the above results, we find

|u>1(t, x)| . hti
�N

hri
��1 + hri

�1
ht� ri

�N
.

Theorem 1.5 then follows in the high frequency case if we take J = 2 and N =  + 2
since the resulting requirement on ⌫ is ⌫ � 16+54, which is satisfied by our assumption
⌫ � 31+ 168.

7.2. Low Frequency Case. (|⌧ . 1) Note Proposition 4.3 shows |R0g
⌫

�
| . hri

�1 for
1  �   + 1. Therefore the terms of the form R0g

⌫

�
in our expressions for R⌧g

⌫

�
in

Proposition 5.6 can be included in the terms of the form Fm(x). Thus we see

R⌧ (⌧g
⌫+1


+ g
⌫

+1)

= R⌧

⇣
�>|⌧ |�1(r)(⌧g⌫+1


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⌫

+1)
⌘
+
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⌧
m
Fm(x)e�i⌧hri

⌘
+ ⌧


"(r, ⌧)e�i⌧hri

+ ⌧
+1(R⌧h⌫�3�3)

(7.4)

where

"(r, ⌧) = hri
�1
"1(r ^ |⌧ |

�1) + ⌧
�
"2(r ^ |⌧ |

�1)� "2(|⌧ |
�1)

�
(7.5)

with "1, "2 2 Srad(log r) and r ^ |⌧ |
�1

⇡ min(r, |⌧ |�1) is smooth.
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Using a decomposition as in (7.3), the first term on the right hand side of (7.4) becomes

R⌧

⇣
�>|⌧ |�1(r)(⌧g⌫+1


+ g

⌫

+1)
⌘
=

J�1X

j=0

⌧
�j�1(�>|⌧ |�1g

⌫+1�j

+j
) +

JX

M=J�1

⌧
�M

R⌧ (�>|⌧ |�1g
⌫�M

+1+M
).

(7.6)

The term
P

J

M=J�1 ⌧
�M

R⌧ (�>|⌧ |�1g
⌫�M

+1+M
) can be written as ⌧+1(R⌧hn) for n =

min(⌫ � J, J + ) with hn as in (5.17). This holds for any J � 1, and we will pick
a suitable J once we have determined the necessary regularity for hn in order for the
theorem to hold. Indeed, direct calculation shows

��r`(@r + i⌧)`T i⌦j
S
k
⌧
�N

�>1(r⌧)g
�� .

��rNT
i⌦j

S
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r
g
��.

It follows that

kr
`(@r + i⌧)`T i⌦j

S
k
⌧
��1�M

�>|⌧ |�1(r)g⌫�M

+1+M
kLE⇤ . 1

for `  M + + 1 and i+ j + k + `  ⌫ �M .

Motivated by the above calculations, we define

ûa(⌧) :=
J�1X

j=0

⌧
�j�1(�>|⌧ |�1(r)g⌫+1�j

+j
), ûb(⌧) :=
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⌧
m
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, and ûd(⌧) := ⌧
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⇣
R⌧h⌫�3�3 +R⌧hn

⌘

for fixed J � 1 and n = min(⌫ � J, J + ) and write the low frequency part of u as

u<1(t, x) =
1

p
2⇡

Z

R
�<1(|⌧ |)
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ûa(⌧) + ûb(⌧) + ûc(⌧) + ûd(⌧)

�
e
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d⌧. (7.7)

To handle
R
�<1(|⌧ |)ûae

it⌧
d⌧ we calculate for any N � 1
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(7.8)

If r �
t

2 , we take N = 1. If r <
t

2 , we take N = + 2. This yields
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For the ûb term in (7.7) we find
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(7.10)

for any N .
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Next we consider the ûc term in (7.7). Recall ûc = ⌧

"(r, ⌧)e�i⌧hri with "(r, ⌧) as in

(7.5). Here we define for j = 1, 2

"
m
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Furthermore, we see
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where cm are constants. Now we define
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so that ûc =
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(7.13)

To obtain the first inequality we change variables by ⌧ 7! 2�m
⌧ and use the fact that

"
m

1 (2m|⌧ |
�1) = 0 for 2�m

|⌧ | � 2�m along with the observations |"m1 (r)| . 1 and (7.11).
The second inequality uses di↵erent arguments depending on the relative sizes of r and
t. If t < 2r, we break up the sum into 2�m

< |t � hri| (where we take N =  + 2) and
|t�hri|  2m < r (where we takeN = 0). If t � 2r, we use the fact that |t�hri| . ht+ri
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and set N = + 2.

When 2m � r, "m
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�1) = 0 so we are left only with the "m2 (|⌧ |�1) term in 'm
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(7.14)

The first inequality is obtained the same way we found the first inequality in (7.13). The
second inequality again uses di↵erent arguments depending on the relative sizes of t and
r. If t  2r we have hri

�1 . ht + ri
�1 and hri

�1 . ht � ri
�1 so the inequality follows

taking N = 0. It t > 2r we have |t � hri|
�1 . ht + ri

�1 and we break the sum into
2m < |t� hri| (where we take N = + 3) and 2m � |t� hri| (where we take N = 0).

When 2m ⇡ r, we have that 'm is composed of terms as in the 2m ⌧ r and 2m � r

cases. Thus we argue as above with the added benefit that the summation is finite in m

to find X
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Now (7.13), (7.13), and (7.15) yield
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Finally we handle the ûd term. We do our calculations for hn then apply the results to
h⌫�3�3. We will use Proposition 6.8. Note ⌧ `@`

⌧
can be written as a linear combination

of (⌧@⌧ )a with 1  a  `, so (6.29) and (6.30) hold for (⌧@⌧ )` replaced by ⌧ `@`
⌧
.
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for 16(+ 4) < n� 20. The inequality for the
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· d⌧ term follows from integration by

parts + 4 times.

Now we consider when |⌧ |
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(7.18)
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If t < 2r then 1 . hri
ht+ri , hri

�1 . t
�1, and hri

�1
< |t� hri|
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< 1. We write
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for 2r > t and 16(+ 4)  n� 20.

Combining (7.18), and (7.19) then yields
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��� . 1

ht+ ri+2
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for 16( + 4)  n � 20. Thus n = min(⌫ � J, + J) � 16 + 84 for fixed J � 1 so that
the results hold for ⌫ � 31+ 168.

The statement of the main theorem then follows for |⌧ | . 1 by (7.7), (7.9), (7.10),
(7.16), and (7.20).
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