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GENERALIZED PRICE’S LAW ON FRACTIONAL-ORDER

ASYMPTOTICALLY FLAT STATIONARY SPACETIMES

Katrina Morgan and Jared Wunsch

Abstract. We obtain estimates on the rate of decay of a solution to the wave equa-

tion on a stationary spacetime that tends to Minkowski space at a rate O(|x|�
),

 2 (1,1)\N. Given suitably smooth and decaying initial data, we show a wave lo-

cally enjoys the decay rate O(t��2+✏
).

1. Introduction

The goal of this work is to study the relationship among pointwise decay rates of
waves, low- and high-frequency resolvent estimates, and the large scale behavior of
the background geometry. We study solutions to the wave equation on asymptotically
flat stationary 4-dimensional Lorentzian spacetimes with signature (3,1). The flat
Minkowski metric, which we denote m, is given by m = dt2 � dx2

1 � dx2
2 � dx2

3. The
spacetimes considered here are of the form g = m+ h where h has metric coe�cients
which decay like r� for some  2 (1,1) \ N. We say such a metric tends toward
flat at a rate of r�. We find that, given su�ciently di↵erentiable and decaying
Cauchy data, waves decay locally at a rate of t��2+✏. The main new input to this
decay estimate is a certain resolvent estimate valid uniformly near zero frequency.
In previous work [34], the first author studied the case when  2 N and established
t��2 decay rates when the background geometry exhibits spherical symmetry, and
t��2+✏ decay in the absence of spherical symmetry.

The study of pointwise decay rates on asymptotically flat spacetimes arises in gen-
eral relativity. In [35], physicist Richard Price gave a heuristic argument anticipating
a t�3 pointwise decay rate for waves on the Schwarzschild spacetime, which describes
space in the presence of a single, non-rotating black hole. This conjecture is known as
Price’s Law. There has been much mathematical interest in studying pointwise decay
rates of waves on relativistic geometric backgrounds, including the Schwarzschild and
Kerr spacetimes (the latter describes the geometry resulting from a rotating black
hole). Both these geometries tend toward flat at a rate of r�1.

Price’s Law was proved in [39] (see also [16] for the mode-by-mode estimate as
well as [12] and [22] for earlier decay estimates). Pointwise decay rates for the Kerr
spacetime were studied in [14] and [17]. The techniques in [16], [39], [34], and the
current work involve taking the Fourier transform in time and therefore do not readily
extend to non-stationary geometries. In [32] the authors proved Price’s Law for non-
stationary asymptotically flat spacetimes and established the t�3 decay rate for a
class of perturbations of the Kerr spacetime. Results similar to the current work
but also considering non-stationary spacetimes were obtained concurrently by Looi
in [21]. The author uses vector field techniques and an iterative argument to obtain
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decay rates which depend on the rate at which the background geometries become
flat. While the results of [21] are in fact stronger than those obtained here in the sense
that they apply to nonstationary metrics (and do not lose an ✏ power), the results of
this paper give direct and precise estimates in the frequency domain—in particular,
near zero frequency—which we hope will find further applications. For instance, given
a situation in which high-frequency resolvent estimates are known directly (and there
are many such situations, often with estimates obtained directly in frequency domain
by semiclassical propagation of singularities; see e.g. [41]), we can easily combine the
high- and low-frequency estimates to obtain new decay estimates in the time domain.

In the present work as well as in [34] and [39] an integrated local energy decay
estimate is assumed to hold. Such estimates were established on the Schwarzschild
geometry in [6], [11], and [23]. For the Kerr spacetime with low angular momentum,
local energy estimates were proved in [2], [11], and [15]; the major challenge here
was the trapping of null geodesics within a compact set in the space variables. The
assumptions in [39] therefore hold for Schwarzschild and Kerr with low angular mo-
mentum. We discuss the integrated local energy decay estimates in more detail later
in the introduction.

Finer analysis of the asymptotics of solutions on Schwarzschild space was obtained
in [3], including a characterization of when the t�3 decay rate is a lower bound for
the decay.

A di↵erent approach to Price’s law was pioneered by Hintz [19], who showed that
the estimate in Price’s Law on Kerr backgrounds is sharp, and obtained explicit
leading order asymptotics. Here, rather than use vector field methods in physical
space, the author employs resolvent estimates, after Fourier transforming the equation
in the appropriate variables. No explicit local energy decay assumption is employed:
the author instead considers metrics for which the associated spectral family (given
by formal Fourier transform in time) satisfies appropriate hypotheses on its inverse
(the resolvent). Integrated local energy decay estimates are in fact intimately related
to resolvent estimates. For example, in [29] the authors establish a full spectral
characterization of local energy decay in the context of nontrapping asymptotically
flat spacetimes.

An analysis of the asymptotics of solutions that distinguishes the contributions
due to low angular modes from the more decaying contributions from higher ones
has recently been carried out on Reissner–Nordström backgrounds in [5] and on Kerr
backgrounds in [4].

Our approach blends the hypotheses of [39] and associated works with an adapta-
tion of the new approach of Hintz [19], which in turn harnesses powerful low frequency
resolvent estimates recently developed by Vasy [40]. The high frequency estimates
thus follow [39] and [34], with the energy decay assumption being the crucial hy-
pothesis ensuring that in return for enough derivatives of regularity, this part of the
solution in fact decays at any desired rate. At low frequency, by contrast, the local
energy decay assumption yields absence of resonances in the upper half-space, which
is certainly one necessary condition for decay estimates to hold (and this is an ex-
plicit spectral hypothesis, e.g. in [19]). We obtain additional information about the
low-frequency asymptotics of asymptotically Euclidean resolvents, which is essentially
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independent of the small-scale geometry, via estimates from [19] and [40]: we apply
these iteratively to obtain conormal estimates for the resolvent at zero frequency.

A crucial step in our analysis is thus writing an expansion of the resolvent at zero
frequency (see Lemma 15). Low frequency resolvent expansions of the Laplacian were
first studied in [20]. The geometric context we consider here reduces to analyzing
perturbations of the flat Laplacian where the perturbation depends on the spectral
parameter. The presence of such terms arises from the fully Lorentzian nature of
the perturbations considered here. Closely related results on low frequency spectral
behavior and local wave decay were previously obtained in the setting of scattering
manifolds in [18], where the authors use an extremely precise description of the spec-
tral measure at low frequencies to establish decay rates dependent on the dimension
of the spacetime.

Questions similar to those treated here were studied in [8] and [7] where the authors
established local decay rates for waves on asymptotically flat, stationary spacetimes
which tend toward flat at di↵erent rates. There are several key di↵erences compared
with the current work. First, as noted above, we handle full Lorentzian perturbations
of flat Minkowski space rather than restricting to perturbations of the Laplacian. This
leads to the metrics considered in this paper containing dtdxi terms, which results in
mixed space-time di↵erential operators in our wave operator. Second, we allow for
the possibility of unstable trapping on our background. In [8] and [7], a nontrapping
assumption is used in order to obtain decay for the high frequency part of a solution
to the wave equation (it is not needed for the low frequency part). Third, our result
improves upon the established decay rates. Finally we note that [7] considers (1 + n)
dimensional geometries for n � 2 and [8] considers n odd with n � 3. The current
work only studies (1 + 3) dimensional spacetimes.

1.1. Wave Equation. On flat Minkowski space, the wave operator, denoted ⇤, is
given by ⇤ = @2

t
�� = @2

t
�
P3

i=1 @
2
xi
. More generally, on a Lorentzian spacetime with

metric g = g↵� , the wave operator is denoted ⇤g and is given by the d’Alembertian

⇤g =
1p
|g|

@↵
p
|g|g↵�@�

where g↵� are the dual metric coordinates.

1.2. Local Energy Decay. On stationary spacetimes, as considered here, solutions
to the wave equation may have constant energy. If the background geometry allows
solutions to spread out, then energy may decay within compact sets. We assume an
integrated local energy estimate where the local decay is fast enough to be integrable
in time. Estimates on the local decay of energy have a long history dating back to the
work of Morawetz [33]. The specific version of the estimates used here come from the
work of Metcalfe and Tataru in [31]. In addition to local energy decay, we will assume
uniform energy bounds on solutions of the wave equation. Such bounds necessarily
hold on stationary spacetimes where the Killing vector field @t is everywhere time-like.
The uniform energy estimate also holds on Schwarzschild and Kerr, although in these
geometries @t is not everywhere time-like (see e.g. [11], [23], [13] among others).

We consider the Cauchy problem

(1) (⇤g + V )u = f, u(0, x) = u0, @tu(0, x) = u1
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where V is a suitably decaying potential (see the statement of the main theorem for

conditions on V ). The Cauchy data at time t is denoted u[t] =
⇣
u(t, ·), @tu(t, ·)

⌘
.

Definition 1. We say the evolution (1) satisfies the uniform energy bounds if:

(2) ku[t]k
Ḣk,1⇥Hk  ck(ku[0]kḢk,1⇥Hk + kfkL1Hk), t � 0, k � 0.

Here Hk denotes the usual Sobolev space, and we say � 2 Ḣk,1 if r� 2 Hk, and
write

k�k
Ḣk,1 = kr�k

Hk .

In the following definitions we use @ to denote the space-time gradient while r is
reserved for the gradient in spatial variables only. We write hri :=

p
1 + r2 and define

the dyadic region Am := {x : 2m  hri  2m+1
}. The local energy norm we use is

defined by

kukLE = sup
m

khri�
1
2ukL2(R+⇥Am).

Its H1 analogue is given by

kukLE1 = k@ukLE + khri�1ukLE ,

and the dual norm is given by

kfkLE⇤ =
X

m

khri
1
2 fkL2(R+⇥Am).

For functions with higher regularity we define the following norms

kukLE1,N =
X

jN

k@jukLE1 , kfkLE⇤,N =
X

jN

k@jfkLE⇤ .

The spatial counterparts of the LE and LE⇤ space-time norms are

kvkLE = sup
m

khri�
1
2 vkL2(Am); kgkLE⇤ =

X

m

khri
1
2 gkL2(Am)

with the higher regularity norms defined by

kvkLEN =
X

jN

kr
jvkLE , kgkLE⇤,N =

X

jN

kr
jgkLE⇤ .

Definition 2. We say the evolution (1) satisfies the local energy decay estimate if:

(3) kukLE1,N  cN (ku[0]kHN,1⇥HN + kfkLE⇤,N ), N � 0.

Local energy decay is known to hold in several nontrapping geometries. For suf-
ficiently small perturbations of flat space without trapping, local energy decay was
established in [1], [28], and [30]. The case of stationary product manifolds was con-
sidered in [10], [7], and [38]. The nontrapping case was studied more generally in [29].
If trapping occurs then the local energy decay estimate does not hold ([36], [37]).
However, if the trapping is su�ciently unstable (i.e. perturbing a trapped geodesic
typically results in geodesics which escape to infinity) then a weaker form of local
energy decay may hold (see, e.g., [42] in the case of the normally hyperbolic trapping
that occurs in Kerr black hole spacetimes). In the case of trapping, there is necessarily
a loss of derivatives on the right hand side of the estimate (see e.g. [9]).
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Definition 3. We say the evolution (1) satisfies the weak local energy decay estimate
if:

(4) kukLE1,N  cN (ku[0]k
ḢN+$,1⇥HN+$ + kfkLE⇤,N+$ ), N � 0

for some $ > 0.

This weak local energy decay estimate is generally obtained by using a cuto↵ func-
tion to remove the trapped set. The precise derivative loss depends on the trapping.
Here we allow for an arbitrary but fixed loss, $.

1.3. b-Sobolev spaces. Our hypotheses on the Cauchy data and our key estimates
in the iteration at low frequency will be stated in the language of b-Sobolev spaces.
These spaces, described in detail in [24] (and discussed further in Section 2 below),
can be easily described in the context at hand, at least for positive integer orders,
as the spaces of functions enjoying Kohn–Nirenberg symbol estimates to finite order
with respect to L2 (rather than the usual L1):

u 2 Hm,l

b
(R3) () khxil+|↵|@↵

x
uk

L2(R3)  C↵, |↵|  m.

The fact that the space is nominally defined on R3, the radial compactification of R3,
is a nod to the fact that these spaces are more generally defined on manifolds with
boundary; details follow in Section 2 and Appendix A below.

We will also use in our hypotheses the usual spaces of Kohn–Nirenberg symbols,
defined by the estimates

(5) a 2 Sl(Rn) () a 2 C
1(Rn), sup hxi�l+|↵|

|@↵

x
a| < C↵ for all ↵.

1.4. Statement of Main Theorem. Let g, h satisfy the hypotheses of Section 1.5
of [34]:

(i) g is stationary (i.e. the metric coe�cients are time independent).
(ii) The submanifolds t = constant are space-like (i.e. the induced metric on the

spatial submanifolds is positive definite).
(iii) Let  2 (1,1)\N. The metric g is asymptotically flat in the sense that g can

be written as
g = m+ h

where
h = h00(x)dt

2 + h0i(x)dtdxi + hij(x)dxidxj

with h↵� 2 S�(R3) for ↵,� 2 {0, 1, 2, 3}.

Theorem 4. Let u solve the homogeneous Cauchy problem

(⇤g + V )u = 0, u(0, x) = u0, @tu(0, x) = u1

for V 2 S��2(R3) and

u0 2 Hs+1,+7/2
b

, u1 2 Hs,+7/2
b

,

with
s > ($ + 1)(2+ 9) + 2.
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Assume the evolution (1) satisfies the uniform energy bounds (2) and the weak local
energy decay estimate (4). Then |u(t, x)|  C✏t��2+✏ for any ✏ > 0, uniformly on
compact sets in x.

1.5. Paper Overview. The operator ⇤g+V can be replaced by an operator of the
form

P = @2
t
��+ @tP

1 + P 2

where

P 1
2 S�@x + S��1 and P 2

2 S�@2
x
+ S��1@x + S��2.

This is obtained by working in normalized coordinates and multiplying by (g00)�1 so
the coe�cient on @2

t
is 1. We refer the reader to [34] for details of the calculation.

We work with this operator throughout. The resolvent, P�1
�

, associated to P is given
formally by inverse Fourier transforming the operator P and taking the inverse.

In section 3 we define the resolvent and extract relevant spectral information from
the energy assumptions. In particular, we show the resolvent is well defined in the
upper half plane and extends continuously to the real axis. The results in section 3
allow us to relate the inverse Fourier transform of a solution u to the initial data of
the homogeneous Cauchy problem via the resolvent:

ǔ(�, x) = (2⇡)�
1
2P�1

�
(�i�u0 + P 1u0 � u1)

and to recover u by taking the Fourier transform (with integration along � 2 R). The
amount of decay we are able to obtain then depends on conormal regularity estimates
(i.e. bounds on (�@�)jP�1

�
g for appropriately chosen g). We handle the high and low

frequency cases separately. The high frequency part of u is sensitive to the trapping
dynamics, which are controlled by our weak local energy decay assumption. Indeed,
the spectral information derived from the energy assumptions is su�cient to handle
the high frequency part of the solution to the wave equation, and we find that in
exchange for enough derivatives on the Cauchy data, we could obtain any desired
polynomial time-decay for this piece of the solution. The low frequency part of u, by
contrast, is sensitive to the far away behavior of the background geometry, and it is
this latter piece which ultimately dictates the final decay rate.

We establish conormal estimates for the high energy resolvent in section 4. We
then turn to the low energy analysis in section 5. This includes deriving an expansion
of the resolvent at zero energy, which is then used to find a helpful expression for
the resolvent at low frequencies. The low frequency analysis utilizes conormal and
b-Sobolev spaces, and we provide an overview of these function spaces in section 2.
Finally, we prove the main theorem in section 6.

2. Background on Function Spaces

In dealing with low-frequency estimates, it will be convenient to compactify our
asymptotically Euclidean space and to employ the language of conormal and b-
Sobolev spaces on manifolds with boundary, as introduced by Melrose–Mendoza [25]
based on Melrose’s b-calculus of pseudodi↵erential operators [26]. (See [24] for an
extended exposition.) Some details of the local characterizations of these spaces near
the boundary at infinity via Mellin transform have been relegated to Appendix A.
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Let Rn ' Bn denote the radial compactification of Euclidean space to the unit
ball, with RC : Rn

! (Rn)� given by the compactification map

RC(x) =
x

1 + hxi
.

Note that RC⇤(C1(Rn)) = S0
cl(Rn), the space of “classical” symbols on Rn (those

satisfying (5) with l = 0 and additionally admitting an asymptotic expansion in
negative integer powers of |x|). The function

⇢ ⌘ |x � RC�1
|
�1

extends (except for a singularity at the origin) to a smooth function on R3 that is a
boundary defining function (it vanishes to exactly first order at the boundary). We
will freely employ the abuse of notation

⇢ = r�1 = |x|�1,

ignoring the pushforward/pullback by RC, and moreover will consider ⇢ to be extended
to a globally smooth function on R3, eliminating the singularity at x = 0.

More generally, we temporarily let X denote any manifold with boundary. Let
Vb(X) denote the space of “b-vector fields,” i.e. those which are tangent to @X. If
(⇢, y) are coordinates in a collar neighborhood of @X, with ⇢ a boundary defining func-
tion and y coordinates on @X, extended to the interior, then Vb(X) is locally spanned
by ⇢@⇢, @y over C1(X); in the special case X = Rn these vector fields correspond to
�r@r, @✓; note in particular that their norm is O(r) as r ! 1.

The b-di↵erential operators, Di↵m

b
(X), are defined as the C1-span of up to m-fold

products of vector fields in Vb(X). Given a fixed volume form on X� (possibly singular
at @X) we define L2(X) with respect to the volume form, and then set, for k 2 N,

Hk

b
(X) =

�
u 2 L2(X) : V1 . . . Vj(u) 2 L2(X) 8j  k, Vi 2 Vb(X)

 
.

We can further define Hs

b
(X) for s 2 R by interpolation and duality, or by use of the

calculus of b-pseudodi↵erential operators microlocalizing the algebra Di↵b(X) as in
[24].

In this paper, we will always employ the standard metric volume form on R3 in
defining L2 and Sobolev spaces on R3. This volume form is given, near the boundary
⇢ = 0, by

dV =
d⇢ d✓

⇢4

(with d✓ shorthand for the volume for on S2) hence appears quite singular on the
compactification.1 Note that Sobolev spaces with no subscripts will continue to de-
note “ordinary” Sobolev spaces on R3. These can, if desired, be identified with the
“scattering Sobolev spaces” on R3 as introduced by Melrose [27], but we will not
employ this terminology below.

We generalize the b-Sobolev spaces to weighted b-Sobolev spaces by simply setting

Hm,`

b
(X) = ⇢`Hm

b
(X).

1
We caution the reader that this choice of convention is not universal in the subject, with the

“b-volume form” d⇢ d✓/⇢ also having a considerable popularity, since its use would eliminate the

factors of ⇢3/2 that bedevil the accounting used here.
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A related function space to the b-Sobolev space is that of conormal functions
enjoying infinite-order iterated regularity under Vb(X), measured with respect to L1

rather than L2 :

u 2 A
�
() V1 . . . VN (u) 2 ⇢�L1(X) for all N 2 N, Vj 2 Vb(X).

Such estimates are closely related to the standard Kohn–Nirenberg symbol estimates,
since Vb(R3) is spanned over C1 by r@r = �⇢@⇢, and @✓; thus radial compactification
gives an isomorphism

A
�(R3) ⌘ S��(R3),

with the symbol spaces S• defined by (5) above. The point is that the definition
of the symbol spaces can be rephrased as iterated regularity under the vector fields
hxi@xj , which span Vb.

The conormal spaces are also closely related to H1,l

b
(X), but with a vexing shift

in orders owing to the metric volume form:

(6) H1,`

b
(X) ⇢ A

`+3/2(X) ⇢ H1,`�
b

(X), ` 2 R.

3. Spectral Information from Energy Assumptions

We define a spectral family associated to P by

P� ⌘ eit�Pe�it�

= ��2
��� i�P 1 + P 2

(7)

which is equivalent to formally inverse Fourier transforming the operator in t. In this
section we use the energy assumptions to study the existence and boundedness of the
operator P�1

�
.

We will use the unitary normalization for the Fourier transform on Rn :

(Ff)(⇠) = (2⇡)�n/2

Z
f(x)e�i⇠x dx,

with the inverse Fourier transform then given by its formal adjoint (and denoted
F

�1f or f̌).

Proposition 5. If Im� > 0, the operator P� : H2
! L2 is invertible. Furthermore,

if u satisfies (1) then for Im� > 0 we have

(8) (2⇡)1/2ǔ(�, x) = P�1
�

((2⇡)1/2f̌(�)� i�u0 + P 1u0 � u1).

Proof. Let u solve Pu = f for t � 0. By the uniform energy bound (2), eit�u enjoys
exponential energy decay at t ! +1 for Im� > 0, hence, with H(t) denoting the
Heaviside function, F�1

t!�
(H(t)u) is an analytic function of � in the upper half-space,

taking values in the energy space.
Integrating by parts in t moreover gives, for Im� > 0,

(2⇡)1/2F�1(H(t)Pu)(�, x) =

Z 1

0
e+it�Pudt

= (2⇡)1/2P�F
�1(H(t)u)(�)� @tu(0) + i�u(0)� P1u(0)
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Consequently,

(2⇡)1/2P�F
�1(H(t)u)(�)

= �(2⇡)1/2F�1(H(t)Pu)(�, x) + @tu(0)� i�u(0) + P1u(0).

Thus we can solve P�v = g, for g 2 L2, by solving the IVP (1) with u0 = 0, u1 = g
and setting

(9) v(t, x) =

Z 1

0
u(t, x)eit� dt.

(A priori this construction would produce v 2 H1, but v 2 H2 then follows by
ellipticity of P�.)

Now we turn to injectivity of P�. If P�w = 0 with Im� > 0, we set

u(t, x) = e�it�w(x).

Then by (7) we obtain
Pu = e�it�P�w = 0.

Since Im� > 0, kuk is exponentially growing as t ! +1, contradicting the uniform
energy bounds. Hence we obtain injectivity of P�. ⇤

The LE� norm, in which we measure the resolvent v = P�1
�

g, is defined by

(10) kvkLEN
�
= k(|�|+ hri�1)vkLEN + krvkLEN + k(|�|+ hri�1)�1

r
2vkLEN .

Next we transfer bounds in the local energy decay estimate to bounds on the resolvent
measured in the LE� norm which hold down to the real axis. Ultimately we wish to
obtain decay rates for u by taking the Fourier transform of (8), but integrating in
Im� > 0 would lead to exponential blow-up in time. The extension of P�1

�
to � 2 R

allows us to integrate along � 2 R.
The following proposition is analogous to results in [39] (see Proposition 9 and

Corollary 12) where $ = 3 (see equation (4.2)). We provide an outline of the proof,
focusing on how our assumed$ derivative loss in the weak local energy decay estimate
(4) a↵ects the derivative loss in the estimate (11).

Proposition 6. If Im� � 0 and g 2 LE
⇤,N+$+1 for fixed N 2 N, then v = P�1

�
g

satisfies

(11) kvkLEN
�
. kgkLE⇤,N+$+1 .

Proof. Recall that we may construct v for Im� > 0 by solving the IVP with Cauchy
data (0, g) and evaluating the integral (9); this construction continues to make sense
distributionally down to Im� = 0, indeed with explicit weighted Sobolev estimates,
as we will now see.

The weak local energy decay estimate allows us to establish the inequality

(12) k(hri�1 + |�|)vkLEN + krvkLEN .
X

jN+$

(1 + |�|)N+$�j
kr

jgkLE⇤ ,

Note (12) follows formally from (4) by Plancherel after inverting the Fourier transform.
From (12) we are able to bound the first two terms in the LE

N

�
norm:

(13) k(hri�1 + |�|)vkLEN + krvkLEN . kgkLE⇤,N+$ .

We refer the reader to [39] for details of the process (cf. equation (4.6)).
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Now consider the second order term in the LE
N

�
norm. If (hri�1 + |�|)�1 . 1 then

k(hri�1 + |�|)�1
r

2vkLEN . kr
2vkLEN . krvkLEN+1 . kgkLE⇤,N+$+1 .

This step is where the extra derivative loss in (11) versus (4) comes from. It is left to
consider the case where hri is large and |�| . 1. Here we write

k(hri�1 + |�|)�1(��+ P 2)vkLEN . k|�|vkLEN + kP 1vkLEN + khrigkLEN .

The first two terms have already been shown to satisfy the desired bounds. For the
third term, straightforward calculation yields khrigkLEN . kgkLE⇤,N . The estimate is
transferred to r

2v using standard elliptic arguments. ⇤

4. High Energy Conormal Estimates

The goal of this section is to obtain pointwise bounds on (�@�)MP�1
�

g for g 2 LE
⇤.

The results in this section are direct analogues to results in [39] and [34]. We provide
sketches of the arguments, but detail how the regularity requirements depend on the
loss, $, in the weak local energy decay estimate (4).

We consider the vector fields T 2 {@xi |i = 1, 2, 3},⌦ 2 {xi@xj �xj@xi |i, j = 1, 2, 3},
and S = r@r ��@�. Note if g is independent of � then Sg = r@rg. Since r@r = �⇢@⇢,
this implies that

T i⌦jSkg 2 L2 for all i+ j + k  M () g 2 HM,0
b

.

(Note that we include the T derivatives, which are powers of vector fields in ⇢Vb,
merely to ensure di↵erentiability at r = 0.) The assumptions here are stated in terms
of the energy space LE

⇤, and we note LE
⇤
⇢ r�

1
2L2.

In Lemmas 7 and 9 we take Q to represent an operator of the same form as �P 1+P 2

but let the exact coe�cients change each time Q appears.
The following lemma is an analogue to [39] Proposition 10.

Lemma 7. If Im� � 0 and g 2 LE
⇤ satisfies

(14) kT i⌦jSkgkLE⇤ . 1, i+ ($ + 1)j + ($ + 1)k  M

for some positive integer M , then v = P�1
�

v satisfies

(15) kT i⌦jSkvkLE� . 1, i+ ($ + 1)j + ($ + 1)k  M �$ � 1

Proof. Applying Proposition 6 to

P�T
i⌦jSkv = T i⌦jSkg + [P�, T

i⌦jSk]v

yields

kT i⌦jSkvkLEN
�
. kT i⌦jSkgkLE⇤,N+$+1 + k[P�, T

i⌦jSk]vkLE⇤,N+$+1 .

Since kT i⌦jSkvkLE�
= k⌦jSkvkLEi

�
we only require bounds on k⌦jSkvkLEN

�
. We

illustrate the general method with concrete examples and highlight the role of $ in
determining the requisite regularity.

Consider ⌦v. Direct calculation shows [P�,⌦] = Q and

kQ�kLE⇤,N . k(hri�1 + |�|)�kLEN + kr�kLEN =: k�kLEN
�,1
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for � with su�cient regularity and decay. Note that the LE
N

�,1 norm defined here is

the first two terms of the LEN

�
norm (10), and by (13) we have kvkLEN

�,1
. kgkLE⇤,N+$ .

Thus we find

k⌦vkLEN
�
. k⌦gkLE⇤,N+$+1 + kQvkLE⇤,N+$+1

. 1 + kvkLEN+$+2
�,1

. 1 + kgkLE⇤,N+2($+1) .

We see there is one loss of $+1 due to the estimate in Proposition 6 and a subsequent
loss of $ + 1 for each ⌦. This justifies the requirement i+ ($ + 1)j  M �$ � 1.

Next we consider Sv. Note [P�, S] = 2P� +Q. We calculate

kSP�1
�

gkLEN
�
. kgkLE⇤,N+$+1 + kSgkLE⇤,N+$+1 + kQvkLE⇤,N+$+1

. 1 + kvkLEN+$+2
�,1

. 1 + kgkLE⇤,N+2($+1) .

As above, this demonstrates the requirement i+ ($ + 1)j + ($ + 1)k  M �$ � 1.
The general case follows by induction. Details are omitted here. ⇤

In Lemma 9 and Proposition 10 we will make use of the following result, which we
quote from [39] Proposition 11:

Lemma 8. If � 2 R \ {0} and g 2 LE
⇤,4, then v = P�1

�
g satisfies the outgoing

radiation condition

(16) lim
m!1

2�
m
2 k(@r � i�)vkL2(Am) = 0.

A consequence of Lemma 8 and the proof of Lemma 7 is that for g satisfying (14),
the radiation condition holds for T i⌦jSkv with appropriate values of i, j, and k:

(17) lim
m!1

2�
m
2 k(@r � i�)T i⌦jSkvkL2(Am) = 0, i+ ($ + 1)j + ($ + 1)k  M � 4.

As in the proof of Lemma 7, we see there is one loss of $+ 1 due to Lemma 8 and a
subsequent loss of $+ 1 for each ⌦ and each S due to the commutator terms [P�,⌦]
and [P�, S].

Now we provide preliminary pointwise bounds on T i⌦jSkP�1
�

g using Sobolev em-
beddings and Proposition 7. The same result with di↵erent regularity assumptions
can be found in [39] (cf. Proposition 16).

Let � denote the collection of all vector fields in ⌦, T , and S. We write �↵ to
denote a product of these vector fields indexed by the multiindex ↵ and let �n

denote a linear combination of �↵ for |↵|  n : �n :=
P

|↵|n
c↵�↵. For the sake of

notational simplicity, we write vijk := T i⌦jSkv and gijk := T i⌦jSkg. Similarly we
write vijk := Ti⌦jSkv and gijk := Ti⌦jSkg.

Lemma 9. Let Im� � 0 with |�| & 1 and assume g 2 LE
⇤ satisfies (14).

(i) Then

(18) |T i⌦jSkP�1
�

g| . (|�|hri)�1, i+ ($ + 1)j + ($ + 1)k  M � 5($ + 1)
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(ii) If, in addition, we have � 2 R and M � 4, then we have the outgoing radiation
condition

(19) lim
r!1

r(@r � i�)T i⌦jSkv(�) = 0, i+ ($ + 1)j + ($ + 1)k  M � 5($ + 1).

Proof. (i) To begin, we claim that establishing the estimate

(20)
X

m

2
m
2 k(@2

r
+ �2)(rvijk)kL2

rL
1
! (Am) . 1

will su�ce to obtain (18). To see this, note that the fundamental solution to (@2
r
+�2)

(for Im� > 0) is given by ��(s) = ��1e�i�|s|. Thus (extending by continuity to
Im� � 0), rvijk = (@2

r
+ �2)(rvijk) ⇤ ��. Splitting

|rvijk| 
X

m

Z

Am

|(@2
r
+ �2)(rvijk)(s)��(r � s)| ds

we now use the fact that |��(s)| . |�|�1 and apply the Cauchy–Schwarz inequality
to each term in the sum to to find

|�||rvijk| . |�| · |�|�1
X

m

2
m
2 k(@2

r
+ �2)(rvijk)kL2

rL
1
! (Am) . 1.

This yields (18) with hri replaced by r, i.e.,

(21) |rT i⌦jSkP�1
�

g| . |�|, i+ ($ + 1)j + ($ + 1)k  M � 5($ + 1).

That the estimate in fact holds for hri essentially follows from the fact that there
is no preferred origin to our coordinate system, and our estimates are translation-
invariant. In particular, letting T denote the translation operation T f(x) = f(x� a)
with a a fixed nonzero vector, we observe that T commutes with translation vector
fields Ti, while

T ⌦� ⌦T , T S � ST

are both of the form
P

cjTjT =
P

cjT Tj . Thus

T i⌦jSk
T � T T i⌦jSk =

X
�↵

T =
X

T e�↵

where sums are over products of vector fields �↵, e�↵ of the form T i
0
⌦j

0
Sk

0
with

i0 + ($ + 1)j0 + ($ + 1)k0  i+ ($ + 1)j + ($ + 1)k.
Note further that the hypotheses on P are translation-invariant, so that if P�v = g

then P 0
�
T v = T g with P 0

�
an operator satisfying the same hypotheses. Owing to the

commutation properties of T with our rest operators, T g also satisfies (14), hence
T v likewise satisfies (21). Now translating back and again using the commutation
properties of the vector fields �↵ shows that

(22) |(x� a)T i⌦jSkv| . |�|, i+ ($ + 1)j + ($ + 1)k  M � 5($ + 1).

Adding (21) and (22) yields the desired estimate.
To establish (20) we write

(@2
r
+ �2) = �P� � (2r�1@r + r�2�✓ +Q)

and commute P� with T i⌦jSk to find

(23) (@2
r
+ �2)(rvijk) = �r�1�✓vijk + rQvijk � rgijk

and bound each term on the right hand side as in (20).
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To see where the vector field loss occurs, consider the term r�1�✓vijk on the right
hand side of (23). We wish to show this term satisfies (20). By the spherical Sobolev
embedding, it su�ces to show

(24)
X

m

khri�
3
2�✓vijkkL2(Am) + khri�

3
2⌦2(�✓vijk)kL2(Am) . 1.

We have

(25) khri�
1
2 vijkkL2(Am) . |�|khri�

1
2 vijkkL2(Am) . kvijkkLE�

. 1

when i+ ($ + 1)j + ($ + 1)k < M �$ � 1.
Replacing �✓ by

P
|↵|=2 ⌦

↵ and using (25) then yields

LHS of (24) =
X

m

khri�
3
2 vi(j+2)kkL2(Am) + khri�

3
2 vi(j+4)kkL2(Am)

. 1

when i+ ($ + 1)j + ($ + 1)k  M � 5($ + 1), as desired. The remaining terms on
the right hand side of (23) are handled similarly.

(ii) Note that we have

(@r + i�)(@r � i�)(rvijk) = (@2
r
+ �2)(rvijk)

so that

(26) @r
�
ei�r(@r � i�)(rvijk)

�
= (@2

r
+ �2)(rvijk)e

i�r.

By (20) we see that (@2
r
+�2)(rvijk) is integrable in r, so that the limit lim|x|!1 |(@r�

i�)(rvijk)| exists for each ✓ 2 S2 since

lim
|x|!1

|(@r � i�)(rvijk)| =
���
Z 1

0
(@2

r
+ �2)(rvijk)e

i�r dr + vijk(0)
���.

For fixed ✓ 2 S2, take

c✓ = lim
|x|!1

|(@r � i�)(rvijk)| = lim
|x|!1

|r(@r � i�)vijk + vijk|.

By part (i) of this proposition, limr!1 vijk = 0 so that

lim
r!1

|r(@r � i�)vijk| = c✓.

Thus we can write |(@r � i�)vijk| = c✓r�1 + o(r�1).
On the other hand, since � is real and 5($+1) � 4, by Lemma 8 vijk satisfies the

radiation condition (17). Then Sobolev embedding yields

(27) lim
m!1

2
m
2 k(@r � i�)vijkkL2

rL
1
✓ (Am) = 0.

It follows that

0 � lim
m!1

2
m
2 kc✓r

�1 + o(r�1)kL2
r(Am) = lim

m!1
2

m
2 c✓2

�m
2 = c✓

Thus c✓ ⌘ 0 for ✓ 2 S2 so that (@r � i�)vijk 2 o(r�1), which concludes the proof of
(19).

⇤
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Finally we provide the following result on the finite order conormal regularity of
P�1
�

for large � (see [39] Proposition 17 and [34] Proposition 6.5). We give a sketch
of the proof, with a focus on the numerology in the proposition.

Proposition 10. Let |�| & 1 with � real and take g 2 Hs,`

b
with ` > 1

2 . Then

��(�@�)p(e�i�rP�1
�

g)
�� . |�|p�1

hri�1+p(1�"), p  `�
1

2
, s � (2p+ 5)($ + 1)

for some ✏ 2 (0, 1].

Proof. Identifying the vector fields T,⌦, r@r with b-vector fields and using the change
of coordinates ⇢ = r�1, we see g 2 Hs,`

b
implies

kr`�
1
2�T i⌦jSkgkLE⇤ . 1

for i+ j + k  s.
Take v = P�1

�
g and write

(�@�)
p
�
ve�ir�

�
=
�
(�S + r(@r � i�))pv

�
e�ir�

=

 
pX

m=0

cm[r(@r � i�)]m(�S)p�mv

!
e�ir�

=

 
�Spv +

pX

m=1

mX

n=1

cmnr
n(@r � i�)n(�S)p�mv

!
e�ir�.

(28)

We claim |(@r � i�)pvijk| . |�|p�1r�1�p" with " 2 (0, 1] for

i+ ($ + 1)j + ($ + 1)k  s� 5($ + 1)� 2($ + 1)p.

The proposition follows from the claim. To see this, assume the claim holds. Then
|rn(@r � i�)n(�S)p�mv| . |�|n�1r�1+n(1�") when

($ + 1)p  s� 5($ + 1) + ($ + 1)(m� 2n)

for 0  n  m  p. The smallest value of s � 5($ + 1) + ($ + 1)(m � 2n) in this
range is s� (5 + p)($ + 1), which justifies the assumption s � (2p+ 5)($ + 1).

It is left to prove the claim. When p = 0, the claim follows from (18). For general
p, applying (@r � i�)p�1 to (23) we find

(@r + i�)(@r � i�)p(rvijk)

=
p�1X

m=0

⇣
(�1)p�m+1cmr�(p�m)(@r � i�)m�✓vijk

⌘
+ r(@r � i�)p�1Qvijk

+ C(@r � i�)p�2Qvijk +
�
r(@r � i�)p�1 + C(@r � i�)p�2

�
gijk.

(29)

Each T i⌦jSkv term on the right hand side of (29) is bounded in magnitude by
|�|p�1

hri�1�p" inductively using (18). We note the " factor in the exponent shows
up when considering, for example, the �S�@x term in Q which yields a S�+1(@r �
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i�)p�1vi+1,j,k term on the right hand side of (29)2. This requires

i+ ($ + 1)j + ($ + 1)k  s� 5($ + 1)� 2($ + 1)p.

The loss of 2($ + 1)p follows from the �✓ operator on the right hand side of (29),
which we replace by ⌦2.

To handle the gijk terms we note gijk 2 Hs�i�j�k,`

b
and by Sobolev em-

beddings we have |@p

r
gijk| . hri�`� 3

2�p if s� i� j�k�p > 3, which indeed holds
from the above restrictions on i, j, k. Now we calculate

|r(@r � i�)p�1gijk|+ |(@r � i�)p�2gijk|

=
��r

p�1X

m=0

cm(�i�)m@p�1�m

r
gijk

��+
��
p�2X

m=0

(�i�)mcm@p�2�m

r
gijk

��

. |�|p�1
hri�`� 1

2

which yields the desired |�|p�1
hri�1�p bound when p  `� 1

2 .
We write

@r[((@r � i�)prvijk)e
i�r] = [(@r + i�)(@r � i�)p(rvijk)]e

i�r.

When p = 1, Lemma 9 shows limr!1(@r � i�)(rvijk) = 0, so we can integrate from
infinity to prove the claim. When p > 1 note that

(@r � i�)vijk = r�1x ·rvijk � i�v

and thus

|(@r � i�)2vijk| = |xr�1(@r � i�)v(i+1)jk � i�(@r � i�)v|

. |(@r � i�)v(i+1)jk|+ |�||(@r � i�)v|.

Iterating, we find

|(@r � i�)pvijk| .
p�1X

m=0

|�|m|(@r � i�)v(i+p�1�m)jk|

and thus r(@r � i�)pvijk ! 0 as r ! 1 by (19) for

i+ ($ + 1)j + ($ + 1)k  s� 5($ + 1)� (p� 1)

which is satisfied under the conditions of the claim since �2($+1)p  �p+1. Thus
when p > 1 we can integrate from infinity just as in the p = 1 case to prove the claim.

⇤
2
When  > 2 we have " = 1 since in this case S�+1

✓ S�1
. When  2 (1, 2), it should be

possible to improve the estimate to " = 1. We roughly illustrate the idea of the process by considering

(�@�)(ve
�ir�

) =
�
[�S + r(@r � i�)]v

�
e�i�r

in which case we have

(@2
r + �2

)(rv) = �r�1
�✓v + rQv � rg

and the S�
coe�cient terms in Q do not satisfy the r�2

pointwise bounds. In this case we write

(@r + i�)(@r � i�)(rv) = S�
(@r � i�)(rv) +O(r�2

)

then solve for (@r � i�)(rv) by integrating as above to get (@r � i�)v . r�2
, as needed.
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5. Low Frequency Conormal Estimates

The purpose of this section is to provide information about the behavior of (�@�)MP�1
�

f
for f in an appropriately chosen function space. We follow the approach introduced
by Hintz in [19].

In order to obtain good asymptotic expansions as � ! 0, it is useful to work with
the conjugated operator

eP (�) ⌘ e�ir�P�e
ir�.

For � 2 R, we define eP (�)�1 to be lim✏#0 eP (� + i")�1. Note that eP (0) = P0.
Working on the spatial manifold X, we find

eP (�) = ⇢2[�(⇢@⇢)
2 + ⇢@⇢ +�✓] + 2i⇢�(⇢@⇢ � 1) +A

(X)�2

+A
+1(X)�Di↵b

1(X) +A
+2 Di↵b

2(X),

where the operator class
A

+2 Di↵2
b
(X)

refers to b-di↵erential operators with conormal coe�cients of the specified order.
Note that

(30) eP (�) = eP (0)� �R

where

(31) R = �2i⇢(⇢@⇢ � 1) +A
+1 Di↵1

b
(X) + �A.

In Proposition 20 we study the low frequency behavior of eP (�)�1f by using a formal
Neumann series argument to write

eP (�)�1 = eP (0)�1
�
Id+ · · ·+ (�R eP (0)�1)N

�
+ eP (�)�1(�R eP (0)�1)N+1.

The key feature of this expansion is that each iterative application of R eP (0)�1 results
in the loss of one power of decay. After enough iterations, the output will be too large
to apply eP (0)�1 again, which forces the iteration to stop with the final application of
eP (�)�1.

In subsection 5.1 we record a previously established preliminary estimate which
will aid our subsequent calculations. We then prove the necessary mapping properties
for eP (0)�1 and eP (�)�1 in subsection 5.2. This includes an expansion for eP (0)�1f
in Lemma 15 (and in Lemma 16 for larger inputs). We note that in Lemma 15,
we see that even if f is rapidly decaying, the expansion for P (0)�1 is limited by
the perturbative ⇢L1 term in eP (0). It is this limitation which dictates when the
Neumann series must end, which in turn dictates the final decay rate obtained in the
proof of the main theorem. Finally, in subsection 5.3 we study the Neumann series
and obtain the desired conormal estimates.

5.1. Preliminary results. The following result from [40] (cf. Theorem 1.1) will be
used to analyze the low energy resolvent:

Theorem 11. For s, `, ⌫ 2 R with ` < �
1
2 , s+ ` > �

1
2 , `� ⌫ 2 (� 3

2 ,�
1
2 ) the bound

k(⇢+ |�|)⌫uk
H

s,`
b (X) . k(⇢+ |�|)⌫�1 eP (�)uk

H
s,`+1
b (X)

holds for bounded �.
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Note that this result is obtained from taking r = s + l in Theorem 1.1 of [40] to
obtain

k(⇢+ |�|)⌫uk
H

s,r,l
sc,b,res

. k(⇢+ |�|)⌫�1 eP (�)uk
H

s�2,r+1,l+1
sc,b,res

;

these triple-index Sobolev spaces measure a combined (“second microlocal”) b and
scattering regularity. We then coarsen the estimate by estimating the right hand-side
by

k(⇢+ |�|)⌫�1 eP (�)uk
H

s,r+1,l+1
sc,b,res

;

Since Hs,s+l,l

sc,b,res = Hs,l

b
the result then follows.

We remark here that giving up two derivatives as we do in Theorem 11 in return
for weighted estimates does have consequences for the numerology of our decay hy-
potheses on initial data (mainly owing to the conjugating factor ei�/⇢ which means
that non-Schwartz data has limited b-regularity after multiplication by this factor). It
is possible that a finer accounting of regularity in our iteration, tracked in the second
microlocal Sobolev spaces of [40], would yield more precise decay hypotheses.

We use this theorem to establish basic mapping properties of eP (0)�1 that will help
us find a useful expression for eP (0)�1f .

Corollary 12. Let ` 2 (� 3
2 ,�

1
2 ) and s+ ` > �

1
2 . Then

eP (0)�1 : Hs,`+2
b

! Hs,`

b
.

5.2. Low frequency mapping properties. Following Hintz [19], we write

eP (0) = ⇢2(L0 + ⇢L1)

with

L0 = �(⇢@⇢)
2 + ⇢@⇢ +�✓,

L1 2 A
0 Di↵b

2 .

The conclusion of the following lemma involves sums over finite-dimensional spaces
of spherical harmonics, schematically denoted

MX

j=1

⇢jYj�1

Since all Sobolev norms are equivalent on such spaces, we write

|Yj�1|

to denote the supremum of each component, but will use tacitly the fact that this is
equivalent to taking any desired b-Sobolev norm of these angular pieces, as well.

We begin by considering L�1
0 then argue perturbatively to analyze eP (0)�1.

Lemma 13. Let f 2 Hs,�

b
with � > �

1
2 and s > 0. Assume u 2 H

s,� 1
2�

b
solves

L0u = f . If � + 3
2 /2 N then

u =

b�+ 3
2 cX

j=1

⇢jYj�1 + q
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where Yj is a linear combination of jth order spherical harmonics, q 2 Hs+2,��
b

, and

b�+ 3
2 cX

j=1

|Yj�1|+ kqk
H

s+2,��
b

. kfkHs,�
b

.

Proof. We are interested in the behavior of u as ⇢ ! 0. Take �@(⇢) to be a cuto↵
which is 1 on a neighborhood of @X and 0 for ⇢ � 1. Define u@ := �@u. Then we
have

(32) L0u@ = f@ 2 Hs,�

b
(X)

with supp(f@) ⇢ [0, 1)⇢.
The Mellin transform in ⇢ of a function g defined on X is given by Mg(⇠) :=R1

0 ⇢�i⇠g(⇢)d⇢
⇢
. Taking the Mellin transform in ⇢ of Equation (32) yields

L̂0(⇠)Mu@(⇠) = Mf@(⇠), L̂0(⇠) = �(i⇠)2 + i⇠ +�✓.

The Mellin transform of f@ is holomorphic in Im ⇠ > �� �
3
2 (see Proposition 25 in

Appendix A). Since u 2 H
s,� 1

2�
b

by assumption, we can invert the Mellin transform
of u@ by integrating along a contour in Im⇠ > �1. Thus we obtain

(33) u@(⇢) =

Z

Im ⇠=�1+"

⇢i⇠Mu@(⇠) d⇠.

For each ⇠ 2 C we decompose Mu@(⇠) and Mf@(⇠) into spherical harmonics:
Mu@(⇠) =

P1
j=0

P
j

m=�j
Mumj(⇠)ymj where

Mumj(⇠) =

Z

S2
Mu(⇠)ymj d✓

and similarly for Mf@ . Define Yj := span
m
(ymj) and note L̂0(⇠)

��
Yj

= �(i⇠)2 + i⇠ +

j(j + 1). Thus L̂0(⇠)�1
��
Yj

= 1
�(i⇠)2+i⇠+j(j+1) has simple poles at ⇠ = ij,�i(j + 1).

Using the spherical harmonic decomposition we have

Mu@(⇠) =
1X

j=0

jX

m=�j

L̂0(⇠)
�1
��
Yj
Mfmj(⇠)ymj

Since f@ 2 Hs,��
b

, we can push the contour of integration in (33) down to Im ⇠ =
�� �

3
2 + " and pick up residues at ⇠ = �i,�2i, . . . ,�b� + 3

2ci. The residue of
⇢i⇠Muk�1(⇠) at ⇠ = �ik is

⇢k
k�1X

m=�k+1

i(2k � 1)�1
Mfm(k�1)(�ik)ym(k�1).

Thus

u@(⇢, ✓) =

b�+ 3
2 cX

k=1

⇢kYk�1 +

Z

Im ⇠=��� 3
2+"

⇢i⇠Mu@(⇠)d⇠
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where Yk�1 =
P

k�1
m=�k+1 i(2k � 1)�1

Mfm(k�1)(�ik)ym(k�1) is a linear combination

of (k � 1)th order spherical harmonics. By Cauchy-Schwarz,

|Mf@(�ik)|2 .
Z 1

0
⇢�2�

|f@ |
2 d⇢

⇢�4

when k < � + 3
2 . Thus

|Mfm(k�1)(�ik)|2 

Z

S2
|Mf@(�ik)ym(k�1)| d✓ . kf@kHs,�

b

and |Yk�1| . kf@kHs,�
b

as desired. Finally we have obtained

q =

Z

Im ⇠=��� 3
2+"

⇢i⇠L̂0(⇠)
�1

Mf@(⇠)d⇠.

That Mq is holomorphic in Im(•) > �� � 3/2 + ✏ follows since q di↵ers from

M
�1(L̂0(⇠)

�1
Mf@(⇠))

by subtraction of the poles of L̂0(⇠)�1
Mf@(⇠) in this region. Consequently, since

L̂0(⇠)|Yj grows quadratically in both ⇠ and j, for any µ > ���3/2+ ✏ and for ⌫ 2 R,

|Mqj(⌫ + iµ)|  C(1 + j2 + ⌫2)�1
|Mfj(⌫ + iµ)|,

hence
��(⇠2 +�✓)

s+2
Mq(⌫ + iµ)

��2
L2

⌫
 C

���(1 + ⇠2 +�✓)
s/2

Mf@(⌫ + iµ)
���
2

L2
⌫

and the estimate kqk
H

s+2,��
b

. kf@kHs,�
b

follows, using Proposition 25. ⇤

The following lemma is analogous to Lemma 13 but with less decay assumed for
f . It is stated separately because of minor technical changes in the numerology (note
we now assume u 2 Hs,��

b
). The proof is the same and we provide an abbreviated

argument.

Lemma 14. Let f 2 Hs,�

b
with � 2 (� 3

2 ,�
1
2 ). Assume u 2 Hs,��

b
solves L0u = f .

Then
kuk

H
s+2,��
b

. kfkHs,�
b

.

Proof. The lemma is proved as in Lemma 13. Instead of (33) the assumptions on u
allow us to integrate along Im ⇠ = �� �

3
2 + ✏. Note �� �

3
2 + ✏ 2 (0,�1). Since f is

assumed to have the same decay, we cannot push the contour of integration further
into the lower half plane. The result follows immediately using Proposition 25 as
before. ⇤

The preceding lemmas will now be used to establish asymptotic expansions for
eP (0)�1f which depend on the amount of decay assumed for f .

Lemma 15. Let f 2 Hs,�

b
for s > 0 and 3

2 < � 
3
2 +  with � + 3

2 /2 N. Then

eP (0)�1f =

b�� 1
2 cX

j=1

⇢jYj�1 + q
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with
q 2 Hs+2,��2�

b

and
b�� 1

2 cX

j=1

|Yj�1|+ kqk
H

s+2,��2�
b

. kfk
H

s,��
b

.

Proof. Define u := eP (0)�1f and note that u 2 H
s,� 1

2�
b

by Corollary 12. Writing

L0 = ⇢�2 eP (0) � ⇢L1 with L1 2 A
0 Di↵2

b
, we find L0u = ⇢�2f + ⇢L1u. Then by

Lemma 13 we have

u =

b�� 1
2 cX

j=1

⇢jYj�1 + q

with
b�� 1

2 cX

j=1

|Yj�1|+ kqk
H

s+2,��2�
b

.

������
⇢�2f + ⇢L1

0

@
b�� 1

2 cX

j=1

⇢jYj�1 + q

1

A

������
H

s,��2�
b

. kfk
H

s,��
b

+ "
⇣ b�� 1

2 cX

j=1

|Yj�1|+ kqk
H

s+2,��2�
b

⌘

for ⇢ small for some 0 < " < 1. (Recall that all norms are comparable to one another
on the finitely many angular modes Yj .) Bootstrapping the last terms on the right
hand side above to the left hand side then yields the desired inequality. ⇤

Note even if f has faster decay as ⇢ ! 0 than assumed in Lemma 15, there is no

improvement over the result for f 2 H
s,+ 3

2
b

due to the perturbative ⇢L1 term in
eP (0).

As before, we prove a lemma analogous to Lemma 15 now assuming f has less
decay. More regularity is also assumed for f due to the numerology in Corollary 12.

Lemma 16. Let f 2 Hs,�

b
for s > 1 and � 2 ( 12 ,

3
2 ) with �+ 3

2 /2 N. Then u = eP (0)�1f
satisfies

kuk
H

s+2,��2�
b

. kfkHs,�
b

.

Proof. The proof is analogous to that of Lemma 15 except Corollary 12 now implies
u 2 Hs,��2�

b
. Note � � 2 2 (� 3

2 ,�
1
2 ). As before we find L0u = ⇢�2f � ⇢L1u. Now

we use Lemma 14 to find

kuk
H

s+2,��2�
b

. k⇢�2fk
H

s,��2�
b

+ k⇢L1ukHs,��2�
b

. kfk
H

s,��
b

+ ✏kuk
H

s+2,��2�
b

for ⇢ small for some 0 < ✏ < 1. ⇤
Since P (0)�1f generates terms of the form ⇢nY` and we will apply P (0)�1 itera-

tively, we now consider the output of P (0)�1⇢nY`.

Lemma 17. If 3  n and n 6= `+ 3, then

eP (0)�1(⇢nY`) = ⇢n�2Y` +

bc+1X

j=1

⇢jYj�1 +A
+1�
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Proof. Note for generalm we have L0⇢mY` = �(m+`)(m�`�1)⇢mY` so L
�1
0 (⇢mY`) =

c⇢mY` when m 6= �`, `+ 1.
Define u := eP (0)�1(⇢nY`). By Sobolev embeddings (6) we have ⇢nY` 2 A

n
✓

H
1,n� 3

2�
b

. It follows from Corollary 12 that u 2 H
1,� 1

2�
b

. As before we use L0 =

⇢�2 eP (0) � ⇢L1 to write L0u = ⇢n�2Y` + H
1,� 1

2�
b

. The result then follows by
Lemma 13 and using our assumptions on n to find L�1

0 (⇢n�2Y`) = c⇢n�2Y`.
⇤

We now consider the mapping properties of P (�)�1, which will be needed in the
last term in the Neumann series. The following lemma is implicit in the proof of
Lemma 2.16 in [19], and our proof follows that in [19].

Lemma 18. Let ↵ 2 (0, 1) and s > 1. Then there exists �0 such that |�|  �0 implies
that for all � > 0 su�ciently small,

eP (�)�1 : Hs,1/2�↵

b
! |�|�↵��Hs,�3/2��

b
.

In [19] this is used to show (by taking s ! 1) that

eP (�)�1 : A2�↵
! |�|�↵�0

A
�0

(and indeed, a more refined statement holds on the resolved space).

Proof. We take l = �3/2 � � in Theorem 11. Then the constraint on s is s > 1 + �,
and is satisfied if � > 0 is su�ciently small. The constraint on ⌫ is ⌫ 2 (�1� �,��);
we take ⌫ = �2� to obtain

��(⇢+ |�|)�2�u
��
s,�3/2��

.
���(⇢+ |�|)�1�2� eP (�)u

���
s,�1/2��

.

Estimating
(⇢+ |�|)�1�2�

 ⇢�1��+↵
|�|���↵

allows us to bound the RHS by

|�|�↵��

��� eP (�)u
���
s,1/2�↵

.

Meanwhile, the LHS is clearly larger than kuk
s,�3/2��

, and the result follows. ⇤
We will also require a slightly di↵erent special case of Theorem 11, which we record

for later use as a separate lemma.

Lemma 19. For all � > 0 and s > 1 + �,

eP (�)�1 : Hs,�1/2��

b
! |�|�1�2�Hs,�3/2��

b

Proof. We take l = �3/2 � � in Theorem 11, which entails s > 1/2 + � and ⌫ 2

(�1� �,��). Taking ⌫ = �2�, and estimating (⇢+ |�|)�1�2�
 |�|�1�2� on the RHS

gives the desired estimate. ⇤
Recall that

(34) eP (�) = eP (0)� �R

where

(35) R = �2i⇢(⇢@⇢ � 1) +A
+1 Di↵b

1(X) + �A.
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In the following calculations we make use of the fact that Hs1,�1

b
⇢ Hs2,�2

b
for

s2  s1 and �2  �1. From (35) we see

R(⇢nY`) = Cn⇢
n+1Y` +A

+n+1 + �A+n,

where we crucially note that C1 = 0. Likewise,

(36) R(Hs,�

b
) ⇢ Hs�1,�+1

b
+ �Hs,�+

b
and R(A) ⇢ A

+1 + �A2.

In consequence, the foregoing lemmas imply

(37)

R eP (0)�1 : Hs,�

b
!

1X

j=3

⇢jYj�2 +Hs+1,��1�
b

+ �H
s+2,� 1

2�
b

,

� 2

✓
3

2
,+

3

2

�
, s > 0,

(38)

R eP (0)�1 : Hs,�

b
! Hs+1,��1�

b
+ �Hs+2,�+�2�

b
,

� 2

✓
1

2
,
3

2

◆
, s > 1,

(39)
R eP (0)�1 : ⇢nY` ! ⇢n�1Y` +

1X

j=3

⇢jYj�2 +A
+2� + �A+2,

n � 4, ` � n� 2

(40) R eP (0)�1 : ⇢3Y` !

1X

j=3

⇢jYj�2 +A
+2� + �A+2, ` � 1.

Note that we have written sums of ⇢jYj�2 terms with sums going out to infinity
for simplicity in bookkeeping, but all but a finite number of these terms are subsumed
in the conormal errors that we also carry along. When � 2 ( 12 ,

3
2 ) we use Corollary

12 to find eP (0)�1 : Hs,�

b
! Hs,��2�

b
for s > 3

2 � �.
Additionally, Lemma 19 and (35) yield the following estimate when we replace

eP (0) with the full eP (�) (and a factor of � thrown in for purposes of later iteration):

(41) eP (�)�1(�R) : Hs,�3/2��

b
! |�|�2�Hs�1,�3/2��

b
, s > 2 + �.

Since [�@�, eP (�)] is almost but not exactly ��R, this is not quite the estimate we will
need to obtain mapping properties of (�@�)J eP (�)�1 below; rather we need a slight
variant to take into account iterated commutators of �@� and eP (�). To this end, recall
that

eP (�) = eP (0)� �R

where R = R0 + �A, with R0 independent of �. Thus

[�@�, eP (�)] = ��R+ �2
A

,

and moreover all iterated commutators of �@� with eP (�) are of the form

(42) [�@�,��R+ �2
A

] = ��R+ �2
A

.

We thus remark for later use that changing �R by a multiplication operator in �2
A



does not change its mapping properties, since the mapping properties (36) apply a
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fortiori when R is replaced by a multiplication operator in �A (such a term figured
as part of R itself in the first place). Thus, more generally,

(43) eP (�)�1(�R+ �2
A

) : Hs,�3/2��

b
! |�|�2�Hs�1,�3/2��

b
, s > 2 + �.

5.3. Conormal estimates. We begin by stating the low-frequency estimates on the
twisted resolvent that are essential to our energy decay results. We will employ the
notation {} 2 [0, 1) for the fractional part of  and bc 2 Z for the floor function,
so that

 = {}+ bc.

Proposition 20. Let s > 0. The twisted resolvent enjoys the following low-frequency

asymptotics: If f 2 Hs,+3/2
b

, then

(�@�)
M eP (�)�1f 2 |�|1+�L1((�1, 1)�;H

2
loc) + C

1((�1, 1)�;H
2
loc)

for
M  s+ bc.

Proof. Suppose eP (�)u = f. We approximate the solution by applying a formal Neu-
mann series argument: using the decomposition (34), we have for all N,

(44)

( eP (0)� �R)�1 =
�
(Id��R eP (0)�1) eP (0)

��1

= eP (0)�1
�
Id+ · · ·+ (� eP (0)�1R)N

�

+ eP (0)�1(Id��R eP (0)�1)�1(�R eP (0)�1)N+1

= eP (0)�1
�
Id+ · · ·+ (�R eP (0)�1)N

�

+ ( eP (0)� �R)�1(�R eP (0)�1)N+1.

Define fn := (R eP (0)�1)nf so that

u = eP (0)�1f0 + · · ·+ �N eP (0)�1fN + �N+1 eP (�)�1fN+1.

By (37),

f1 = R eP (0)�1f 2

1X

j=3

⇢jYj�2 +H
s+1,+ 1

2�
b

+ �H
s+2,� 1

2�
b

.

(Recall that we will use Yj to denote finite linear combination of spherical harmonics
of the given weight, without changing notation for each occurrence.)

Then (38), (39), (40) yield3

f2 = R eP (0)�1f1

=
1X

3

⇢j(Yj�2 + �Yj�2 + Yj�1) +H
s+2,� 1

2�
b

+ �H
s+3,� 3

2�
b

+ �2H
s+4,� 1

2�
b

.

We will frequently be faced with terms that have polynomial dependence on �, and
will not be especially interested in the degrees of the resulting polynomials (which

3
We let the upper index of the sum of ⇢j terms equal infinity for brevity; in fact of course we could

rewrite this as a finite sum, with all terms beyond j = bc + 2 being absorbed in the H
s+2,� 1

2�
b

term, with the caveat that polynomial dependence on � must then be allowed in that term.
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could be bounded in terms of  in the iteration below if desired). To streamline the
resulting notation, we therefore write

C[�]Yj , C[�]Hs,l

b

to indicate respectively polynomials in � with coe�cients in Yj or Hs,l

b
. In this nota-

tion, then, we continue applying R eP (0)�1 to establish inductively that

fn 2

1X

j=3

⇢j

0

@
j+n�3X

`=j�2

C[�]Y`

1

A+H
s+n,+ 3

2�n�
b

+ �C[�]Hs+1+n,+1/2�n�
b

for 1  n  bc. Hence, absorbing all terms in the first sum beyond j = 3 in the
following term,

fbc 2 ⇢3

0

@
bcX

`=1

C[�]Y`

1

A+ C[�]Hs+bc,{}+ 3
2�

b
+ �C[�]Hs+bc+1,{}+1/2�

b
.

We can continue one more step with the iteration: setting

J = bc+ 1,

we obtain

fJ 2 C[�]Hs+bc+1,{}+ 1
2�

b
+ �C[�]Hs+bc+2,{}� 1

2�
b

+ �2C[�]Hs+3+bc,{}+ 1
2�

b

where the terms containing the spherical harmonics Y` have been absorbed into the
first term in fJ . We split this term into pieces

fJ = FJ + �GJ

FJ 2 C[�]Hs+bc+1,{}+ 1
2�

b
+ �2C[�]Hs+3+bc,{}+ 1

2�
b

,

GJ 2 C[�]Hs+bc+2,{}� 1
2�

b
.

Then

(45)

eP (�)�1f = eP (0)�1(f0 + · · ·+ �J�1fJ�1) + �J eP (�)�1(FJ + �GJ)

= eP (0)�1(f0 + · · ·+ �J�1fJ�1) + �J eP (0)�1FJ

+ �J+1 eP (�)�1(R eP (0)�1FJ) + �J eP (�)�1(�GJ)

= eP (0)�1(f0 + · · ·+ �J�1fJ�1) + �J eP (0)�1FJ

+ �J+1 eP (�)�1(R eP (0)�1FJ +GJ)

where we have applied (44) with N = 0 in the penultimate step. Note that the terms
with polynomial dependence in � will be favorable for obtaining regularity of the
resolvent at � = 0: it is the final term

eP (�)�1(R eP (0)�1FJ +GJ) ⌘ eP (�)�1W

with

W = (R eP (0)�1FJ +GJ)

that will require finer analysis.
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We now analyze the regularity of the terms above. For n = 1, . . . , J � 1 = bc, we
have

eP (0)�1fn =
1X

j=1

⇢j
j+n�1X

`=j�1

C[�]Y` +H
s+n+2,� 1

2�n�
b

+ �C[�]Hs+1+n,�n� 3
2�

b
,

using Lemmas 15, 16, and 17. Likewise, by Lemmas 15 and 16,

eP (0)�1FJ 2 C[�]Hs+bc+3,{}�3/2�
b

,

while using (38) gives

R eP (0)�1FJ 2 C[�]Hs+bc+2,{}�1/2�
b

.

In particular, we have now established

W 2 C[�]Hs+bc+2,{}�1/2�
b

.

hence Lemma 18 yields

(46) eP (�)�1W 2 |�|�1+{}�L1
�
H

s+bc+2,� 3
2�

b
.

where L1
�
H ·,·

b
denotes a bounded function of � 2 (�1, 1) with values in the given

Sobolev space. We now sharpen this to obtain a partial conormality in � at � = 0 :
in particular, we claim

(47) (�@�)
M eP (�)�1W 2 |�|�1+{}�L1

�
H

s+bc+2�M,� 3
2�

b

for all integers
M < s+ bc+ 1.

To accomplish this, we will need a small result about commutators of �@� with
eP (�)�1. In what follows, we use the letter Q to denote an operator of the form
(constant) · (��R + �2

A
k) but with the specific operator allowed to change in each

occurrence.

Lemma 21. For all M 2 N, there exist constants C`m such that

(�@�)
M eP (�)�1 =

X

`+mM

C`m( eP (�)�1Q)` eP (�)�1(�@�)
m.

(Note that some of the C`m are in fact zero.)

Proof. By induction on M , using the crucial fact (42) that iterated commutators of
�@� with eP (�) all have the form of Q. ⇤

Now for any m, Lemma 18 yields

eP (�)�1(�@�)
mW 2 |�|�1+{}�L1

�
H

s+bc+2,� 3
2�

b

(since �@� passes harmlessly through a C[�] factor). Hence repeated use of (43) yields
for `  M,

( eP (�)�1Q)` eP (�)�1(�@�)
mW 2 |�|�1+{}�L1

�
H

s+bc+2�`,� 3
2�

b
;

the constraint on M follows is the requirement that the b-regularity index, which is
s+ bc+ 2� (M � 1) after the application of of ( eP (�)�1Q)M�1 still remain greater
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than 2 as required for the M ’th and final application of (43). Thus by Lemma 21 we
obtain (47).

Since the terms other than eP (�)�1W in (45) are smooth (indeed, polynomial) in
�, we finally arrive at the estimate

(48) f 2 Hs,+3/2�
b

=) (�@�)
M eP (�)�1f 2 |�|1+�L1((�1, 1)) + C

1((�1, 1))

(implicitly with values in the space Hs+bc+2�M,�3/2�
b

) for

(49) M  s+ bc.

Since our estimates are with respect to the spaces Hs+bc+2�M,�3/2�
b

, the constraint
(49) ensures that these lie in H2

loc. ⇤

The following lemma allows us to estimate b regularity of data with the oscillatory
factor e�i�/⇢ inserted.

Lemma 22. Let s � 0. If f 2 Hs,�+s

b
then e�i�/⇢f 2 Hs,�

b
, uniformly for � in a

compact set.

Proof. We compute
���(⇢@⇢)↵@�

✓
e�i�/⇢f

��� =
���(⇢@⇢ � i�/⇢)↵@�

✓
f
���.

As long as ↵ + |�|  m, then, the di↵erential operator in question is in ⇢�m Di↵m

b

(with coe�cients uniformly bounded for bounded �) hence is the RHS is bounded by
the Hm,�+m

b
norm. Thus we have obtained the result for integer s. The general case

follows by interpolation. ⇤

We may thus translate our estimates back to the setting of the ordinary (unconju-
gated) resolvent:

Corollary 23. Let s > 0. The resolvent enjoys the following low-frequency asymp-

totics: If f 2 Hs,+3/2+s

b
then

(�@�)
MP�1

�
f 2 |�|1+�L1((�1, 1)�;H

2
loc) + C

1((�1, 1)�;H
2
loc)

for

M  s+ bc.

Proof. Note that

P�1
�

f = ei�/⇢ eP (�)�1e�i�/⇢f.

The leading factor ei�/⇢ is smooth in � 2 (�1, 1) uniformly on compact sets in X�,
hence it su�ces to verify that e�i�/⇢f satisfies the hypotheses of Proposition 20. This
in turn follows from Lemma 22.

⇤
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6. Proof of Main Theorem

Recall by Proposition 5 that if u solves the initial value problem, then

(2⇡)1/2ǔ(�, •) = P�1
�

(�i�u0 + P1u0 � u1) ⌘ P�1
�

(�f0 + g0)

with

(50) f0 = �iu0, g0 = P1u0 � u1.

We take the Fourier transform to recover u and split the solution into low and high
frequency parts (denoted uL and uH , respectively). Let �<1(|�|) be a cuto↵ function
equal to 1 on (�1/2, 1/2) and supported in (�1, 1) and take �>1(|�|) = 1��<1(|�|).
We write u = uL + uH where

(51) uL =

Z 1

�1
�<1(�)e

�i�tP�1
�

(�f0 + g0) d�

and

(52) uH =

Z 1

�1
�>1(�)e

�i�tP�1
�

(�f0 + g0) d�.

It now su�ces to treat the asymptotic behavior of the high and low-frequency
contributions separately. We begin with uL.

By Lemma 26 in Appendix B and Sobolev embedding, it will su�ce in estimating
uL to show that

(53) ǔL(�, x) 2 |�|+1�IML1
loc + C

1

for some M � + 1 (where all spaces in � are valued in H2
loc).

To this end, we begin by noting (with a view to potential future applications) the
sharp hypotheses that are necessary to obtain the estimate (53) for the low-frequency
part of the solution: what we will in fact use is

(54)
u0 2 H3,+7/2

b
,

u1 2 H2,+7/2
b

.

Now apply Corollary 23 with s = 2 to

g0 = P1u0 � u1 2 H2,+7/2
b

to obtain

(�@�)
MP�1

�
g0 2 |�|1+�L1((�1, 1)�;H

2
loc) + C

1((�1, 1)�;H
2
loc), M  2 + bc.

Apply Corollary 23 with with  replaced by 0 =  � 1 (hence the hypotheses on
the perturbation are a fortiori satisfied for 0) and with s = 3 to

�f0 = �i�u0 2 �H3,0+9/2
b

to obtain for M  3 + b0
c

(�@�)
MP�1

�
�f0 2 |�|2+

0�L1((�1, 1)�;H
2
loc) + C

1((�1, 1)�;H
2
loc),

i.e. for M  2 + bc

(�@�)
MP�1

�
�f0 2 |�|1+�L1((�1, 1)�;H

2
loc) + C

1((�1, 1)�;H
2
loc).
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By Lemma 26, as noted above (and since 2 + bc > 1 + ), this concludes the
proof that uL has the desired decay, and we now turn our attention to uH , the high-
frequency component of the solution.

We will decompose the expression P�1
�

(�f0+g0) in (52) via an iterative argument.
We approximate P�1

�
(�f0 + g0) ⇡ ��1f0 and let v1 denote the error. Recall f0 2

H
s+1,+ 7

2
b

and g0 2 H
s,+ 7

2
b

. Direct calculation shows

P�v1 = (g0 � iP 1f0) + ��1(�+ P 2)(�f0) =: f1 + ��1g1

where f1 2 H
s,+ 7

2
b

and g1 2 H
s�1,+ 11

2
b

(since P 1 : Hm,`

b
! Hm�1,`++1

b
and (� +

P 2) : Hm,`

b
! Hm�2,`+2

b
). Now we have

P�1
�

(�f0 + g0) = ��1f0 + P�1
�

(f1 + ��1g1).

Next we iterate the process and approximate P�1
�

(f1 + ��1g1) ⇡ ��2f1:

P�1
�

(f1 + ��1g1) = ��2f1 + P�1
�

(��1(g1 � iP 1f1) + ��2(�+ P 2)(�f1))

=: ��2f1 + P�1
�

(��1f2 + ��2g2)

where f2 2 H
s�1,+ 11

2
b

and g2 2 H
s�2,+ 11

2
b

. Thus we have

(55) P�1
�

(�f0 + g0) = ��1f0 + ��2f1| {z }
=:ǔa

+P�1
�

�
��1f2 + ��2g2

�
| {z }

=:ǔb

We plug (55) into our expression for uH (see equation (52)) and bound each term
separately. Note |f0|+ |f1| . hri�5� so we calculate for any M � 1:

����
Z

�2R
�>1(|�|)ǔa(�)e

�it� d�

����

. hri��5
hti�M

����
Z

@M

�

⇥
�>1(|�|)(�

�1 + ��2)
⇤
e�i�t d�

����

. hti�M
hri��5.

By Proposition 10, we have |(�@�)M (ǔb(�)e�i�r)| . |�|M�2
hri�1+M(1�" for s�2 �

($ + 1)(2M + 5) and M < + 5 with " 2 (0, 1]. We use this to calculate
����
Z

�2R
�>1(�)ǔb(�)e

�it� d�

����

⇡ ht� ri�M

�����

Z
��M

"
MX

`=0

(�@�)
`(�>1(|�|)ǔbe

�ir�)

#
ei(r�t)� d�

�����

. hri�1+M(1�")
ht� ri�M .

Combining the above results, we find

|uH(t, x)| . hti�M
hri��1 + hri�1+M(1�")

ht� ri�M .

The main theorem (and indeed a finer estimate near the light cone for this part of
the solution) then follows in the high frequency case when we take M =  + 2 � ✏
(and thus the b-regularity requirement is s > ($ + 1)(2+ 9) + 2). ⇤
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Appendix A. Mellin transforms and b-Sobolev spaces

In this appendix, we describe the Mellin transform characterization of the b-
Sobolev spaces defined in Section 2 above.

If u is a function of ⇢, ✓ (⇢ 2 [0,1)) set

Mu(⇠, ✓) =

Z 1

0
⇢�i⇠u(⇢, ✓)

d⇢

⇢
.

Let H(⌦) denote the space of holomorphic functions on the domain ⌦ ⇢ C with
values in L2(S2).

Let L2
bb

denote the space of u that are L2 with respect to the “b”-density d⇢/⇢.
Let L2

bb,A
denote the subspace of functions supported in ⇢ 2 [0, A].

Lemma 24. The range of M on L2
bb,A

is

�
w(⇠, ✓) : w holomorphic in Im ⇠ > 0, sup

µ>0
A2µ

Z

Im ⇠=µ

kw(⇠, ✓)k2
L2(S2) d⇠ < 1

 
.

Proof. Set x = log ⇢. Then

Mu(⇠) =

Z 1

�1
e�i⇠xu(ex, ✓) dx = (2⇡)1/2F(u � exp)(⇠),

with u � exp 2 L2(Rx ⇥ S2
✓
) and supported in x 2 (�1, logA]. Let us take A = 1 for

now, hence the support of u� exp is (�1, 0]. The Paley–Wiener theorem tells us that
the Fourier transforms of such functions are precisely the space

�
w(⇠, ✓) : w 2 H(Im ⇠ > 0), sup

µ>0

Z

Im ⇠=µ

kw(⇠, ✓)k2
L2(S2) d⇠ < 1

 
.

This establishes the result for A = 1. More generally, u 2 L2
bb,A

i↵ u(A�1⇢, ✓) 2 L2
bb,1,

so the result follows from the fact that M[u(A�1⇢, ✓)](⇠) = Ai⇠
Mu. ⇤

Now we observe that adding a weight simply shifts the domain of holomorphy,
since M⇢↵u(⇠) = Mu(⇠ + i↵) hence

M⇢↵L2
bb,A

!
�
w(⇠, ✓) : w 2 H(Im ⇠ > �↵), sup

µ>�↵

A2µ

Z

Im ⇠=µ

kw(⇠, ✓)k2
L2(S2) d⇠ < 1}.

Finally, we aim to keep track of b-regularity. Recall that Hm

b
denotes the (un-

weighted) b-Sobolev space of order m, measured with respect to the metric volume
form, which is proportional to d⇢/⇢4 d✓; note in particular that this entails the nu-
merology

H0
b
= ⇢3/2L2

bb
.

More generally, recall that Hm,`

b
= ⇢`Hm,0

b
. We write H•

b,A
as before to denote the

functions supported in ⇢  A.

Proposition 25. For m � 0 the Mellin transform is an isomorphism

(56) M : Hm,`

b,A
!
�
w(⇠, ✓) : w 2 H(Im ⇠ > �`� 3/2),

sup
µ>�`�3/2

A2µ

Z

Im ⇠=µ

k(⇠2 +�✓)
m/2w(⇠, ✓)k

2

L2(S2) d⇠ < 1
 
.
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Proof. For m an even integer, the result follows by the b-elliptic regularity of the
di↵erential operator ((rDr)2+�✓)m/2. For general m, it follows by interpolation and
duality. ⇤

Appendix B. Fourier transforms of finite-regularity conormal
distributions

We consider distributions in |�|↵ImL1
c
(R; 0); this is defined as the space of distri-

butions on R lying in |�|↵L1
c

(with c denoting compact support) and enjoying m-fold
iterated regularity under vector fields tangent to the origin, which is to say, under
powers up to the mth of �@�. We will only deal with m 2 N in order to keep the
discussion simple. Thus u 2 |�|↵ImL1

c
(R; 0) if u is compactly supported and enjoys

the estimate ��@j

�
u
��  Cj |�|

↵�j , j = 0, . . . ,m.

Lemma 26. Let u 2 |�|↵ImL1
c
(R; 0), and assume ↵ > 0 and m � ↵+ 1. Then

F(u) = O(hti�1�↵).

Proof. (cf. Lemma 3.6 of [19].) We write

Fu = (2⇡)�1/2

Z
u(�)ei�t dt = w0 + w1

where

w0 = (2⇡)�1/2

Z

|�|<t�1

u(�)ei�t dt, w1 = Fu� w0.

Then

|w0| . |t|�1�↵

since u 2 |�|↵L1. On the other hand, integration by parts using the operator
(t�1D�)m in the integral expression for w1 yields a bulk term bounded by

t�m

Z

t�1<|�|<C

�↵�m d�

(where C depends on the support of u), as well as boundary terms bounded by

t�m��↵�m
0 ��
�=t�1 , m0 = 0, . . . ,m� 1.

Since m � ↵+1, these terms are all bounded by multiples of |t|�1�↵ for |t| large. ⇤
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