
2023 IEEE International Conference on Big Data (BigData)

979-8-3503-2445-7/23/$31.00 ©2023 IEEE 2265

MPI4Spark Meets YARN: Enhancing MPI4Spark
through YARN support for HPC

Kinan Al-Attar
Department of Computer

Science Engineering
The Ohio State University

alattar.2@osu.edu

Aamir Shafi
Department of Computer

Science Engineering
The Ohio State University

shafi.16@osu.edu

Hari Subramoni
Department of Computer

Science Engineering
The Ohio State University

subramoni@cse.ohio-state.edu

Dhabaleswar K. Panda
Department of Computer

Science Engineering
The Ohio State University
panda@cse.ohio-state.edu

Abstract—The MPI4Spark effort was able to reconcile dispar-
ities that existed between High-Performance Computing (HPC)
environments and Big Data stacks, by adopting an MPI-based
solution inside of Apache Spark’s Netty communication layer that
was capable of better utilizing high-speed interconnects — such
as InfiniBand (IB), Intel Omni-Path (OPA), and HPE Slingshot
— across a variety of HPC systems. Apache Spark provides
support for several cluster managers, such as YARN, Mesos,
and Kubernetes, besides its internal standalone cluster manager.
MPI4Spark, however, does not support the YARN cluster man-
ager, instead only relying on Spark’s internal standalone cluster
manager. The YARN cluster manager is designed for running
large-scale clusters up to hundreds of nodes and provides better
scalability in an HPC environment. Therefore, support for the
YARN cluster manager is needed for MPI4Spark to provide a
solution more fitting for HPC in terms of scalability — this
paper addresses this problem. We present a new design for
MPI4Spark that supports both YARN and the internal standalone
cluster manager. The architectural framework of MPI4Spark
remains the same in the new YARN design with an MPI-based
Netty layer at its core. The new YARN design for MPI4Spark
outperforms both regular Spark and RDMA-Spark. Evaluation
of MPI4Spark’s new YARN design was conducted on two HPC
systems, TACC Frontera and TACC Stampede2. On Frontera,
looking at SortByTest weak-scaling numbers, and cluster size of
64 NodeManagers (3584 cores, 896GB), MPI4Spark outperforms
in total execution time both Spark by 4.52x and RDMA-Spark
by 2.33x. For GroupByTest strong scaling numbers, and cluster
size of 128 NodeManagers (7168 cores, 1344GB), MPI4Spark
performs better than Spark by 3.29x and by 2.32x compared
to RDMA-Spark. With Intel HiBench performance evaluations
on Frontera, on a cluster size of 32 NodeManagers (1792 cores),
MPI4Spark fairs better than Spark by 1.91x for the Logistic
Regression (LR) benchmark. On Stampede2, Speed-ups for the
overall total execution time for 192GB are 1.98x compared to
IPoIB for GroupByTest, and for SortByTest, 1.89x. For strong
scaling we see MPI4Spark outperforming Spark, on average, by
about 1.73x using OHB benchmarks.

Index Terms—YARN, Apache Spark, Netty, MPI
1

I. INTRODUCTION

The intersection of Big Data and High-Performance Com-
puting (HPC) is becoming more pronounced as data continues
to grow rapidly, and although solutions such as Big Data
frameworks like Apache Spark [1] exist to solve challenges

with processing and managing large sets of data in a parallel
and distributed fashion, they do not fully utilize the main
features that characterize HPC systems and environments such
as high-speed interconnects and the Message Passing Interface
(MPI) [2] programming model — the lingua franca program-
ming model for developing parallel scientific and engineering
applications on HPC.

MPI4Spark [3], developed at the Ohio State University
(OSU) by the Network Based Computing Lab (NOWLAB), is
a solution that aims at providing a ”Converged Communication
Stack“ for HPC and Big Data, by utilizing a MPI-based
design that is geared towards HPC — supporting multiple
interconnects such as InfiniBand (IB) [4], Intel Omni-Path
(OPA) [5], and HPE Slingshot [6]. MPI4Spark was able
to outperform Apache Spark [1] and RDMA-Spark [7] by
relying on MPI for the communication of shuffle data at
the Netty [8] layer of Spark (the communication backend of
Spark). However, MPI4Spark has its limitations, as it only
supports the standalone internal cluster manager.

When run in a cluster environment, Apache Spark can
support a number of different cluster managers, such as
YARN [9], Mesos [10], and Kubernetes [11]. Spark also
supports an internal standalone cluster manager. As of now, the
MPI4Spark effort only supports the standalone cluster man-
ager. In this paper, we present a new design that encompasses
both the standalone cluster manager and the YARN cluster
manager for MPI4Spark.

A. Motivation

Ideally, MPI4Spark should support all cluster managers
that Apache Spark supports. This, however, is not the main
motivating aspect for adding support for the YARN cluster
manager in MPI4Spark. As mentioned earlier, the YARN
cluster manager is able to run and manage large-scale clusters
for Spark. The standalone internal cluster manager that Spark
provides, and that MPI4Spark currently supports, does not
offer the capabilities that YARN provides in terms of scal-
ability. In that regards, support for the YARN cluster manager
is needed to provide a more scalable solution in MPI4Spark.

The main motivation behind this work is to provide a
solution that better accommodates the intersection of Big Data
and HPC. This is realized by expanding the MPI4Spark effort

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 B

ig
 D

at
a

(B
ig

D
at

a)
 |

97
9-

8-
35

03
-2

44
5-

7/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
B

ig
D

at
a5

90
44

.2
02

3.
10

38
61

20

Authorized licensed use limited to: The Ohio State University. Downloaded on January 06,2025 at 21:11:36 UTC from IEEE Xplore. Restrictions apply.

2266

and adding support for the YARN cluster manager to provide
better scalability in HPC environments.

B. Problem Statements

In introducing support for the YARN cluster manager in
MPI4Spark, several questions were relevant. In this paper, we
consider the following questions:

• Is MPI4Spark’s standalone cluster manager design ideal?
Can support for the YARN cluster manager avoid pitfalls
in MPI4Spark’s standalone cluster manager design?

• The YARN cluster manager relies on containers and
launcher scripts to launch executors for Spark. Can this
be mapped to an MPI-based solution where executors are
launched through MPI?

• How does the performance of MPI4Spark with YARN
compare with regular Spark and RDMA-Spark on dif-
ferent HPC systems such as TACC Frontera and TACC
Stampede2?

These questions are later discussed and answered in Sec-
tion III.

C. Overview

In this paper, we present a new design for MPI4Spark
that supports multiple cluster managers, the YARN cluster
manager and Spark’s internal standalone cluster manager.
Support for the YARN cluster manager is needed as it is
designed for launching large-scale clusters (up-to hundreds of
nodes). MPI4Spark, as a design that accomplishes the goal of
a “Converged Communication Stack” for HPC and Big Data,
should support the YARN cluster manager to better provide
scalable solutions in HPC. We focus on solving this limitation
that MPI4Spark has.

We present performance evaluation numbers with larger
cluster sizes with MPI4Spark on two HPC systems (TACC
Frontera and TACC Stampede2) and note that MPI4Spark
overall performs better than Spark and RDMA-Spark. In the
MPI4Spark paper [3], we presented numbers for a cluster
size up-to 32 worker nodes (using the standalone cluster
manager). With the new YARN design, we present numbers
for 64 NodeManager and 128 NodeManager nodes as well.
We also use the same benchmarking packages — the OSU
HiBD Benchmarks (OHB) package [12] and the Intel HiBench
benchmark suite [13] — used in the original MPI4Spark
paper in evaluating the performance of our new MPI4Spark
YARN design, and compare the performance against Spark
and RDMA-Spark.

On the Frontera HPC system, GroupByTest weak-scaling
numbers with 64 NodeManagers, we see that MPI4Spark
performs better than regular Spark by 3.8x and RDMA-Spark
by 2.5x. While for the same configuration for SortByTest,
MPI4Spark outperforms regular Spark by 4.5x and RDMA-
Spark by 2.3x. For GroupByTest strong-scaling numbers, 128
NodeManagers, MPI4Spark fairs better than regular Spark by
3.3x, and RDMA-Spark by 2.3x. Looking at the same configu-
ration, and for SortByTest and 64 NodeManagers, MPI4Spark
performs better by 2x against regular Spark, and by 1.2x

against RDMA-Spark. For performance evaluations with the
Intel HiBench suite, on a cluster size of 32 NodeManagers
(1792 cores), MPI4Spark outperforms Spark by 1.91x for the
Logistic Regression (LR) machine learning benchmark. On
Stampede2, we see that MPI4Spark performs better than Spark
for the GroupByTest benchmark by a factor of 1.98x for cluster
size 16 NodeManagers and data size 192GB. While for the
SortByTest benchmark, for the same cluster and data sizes, we
see MPI4Spark outperforms Spark by 1.89x. For strong scaling
we see MPI4Spark outperforming Spark, on average, by about
1.73x using GroupByTest and SortByTest OHB benchmarks.
More information about the performance evaluation can be
found in Section V.

D. Contributions

The paper makes the following contributions:
1) The paper presents a new design for the MPI4spark

effort carried that is capable of supporting both the
standalone and YARN cluster manager. The new YARN-
based effort provides a solution that better accommo-
dates the intersection of Big Data and HPC through
YARN’s inherent scalable design. The architecture of
MPI4Spark remains unchanged with Netty MPI at its
core.

2) The new YARN design avoids pitfalls in the standalone
cluster manager design in MPI4Spark. Since shuffle
communication takes place between executors, only ex-
ecutor processes are launched within an MPI environ-
ment. This paves the way for future implementations
of basic fault-tolerance in MPI4Spark. In the standalone
design, the entire Spark cluster is launched inside an
MPI environment.

3) The paper evaluates the performance of the new YARN
design on the TACC Frontera HPC system against the
RDMA-Spark effort and regular regular Spark using the
OSU HiBD Benchmarks (OHB) package and the Intel
HiBench benchmarks suite. The evaluation is carried out
on different sized clusters up-to a 7, 168-core cluster
with a total of 128 NodeManagers. Detailed perfor-
mance evaluation can be found in Section V.

The remaining sections of the paper are organized in the
following fashion. Section II refers to the background section
which covers some concepts in YARN along with MPI4Spark.
The next sections, Sections III and IV, refer to the chal-
lenges encountered and proposed design and implementation
details. Section V presents the performance evaluation of
MPI4Spark+YARN. Finally, section VII concludes and covers
the future work for the MPI4Spark project.

II. BACKGROUND

MPI4Spark is an effort carried out at the Ohio State
University (OSU) by the Network Based Computing Lab
(NOWLAB) that optimizes Apache Spark’s shuffle engine by
utilizing production-quality MPI libraries at the Netty layer
(MVAPICH [14]). Netty is a network application framework
that is asynchronous and event-based, and is used by Spark

Authorized licensed use limited to: The Ohio State University. Downloaded on January 06,2025 at 21:11:36 UTC from IEEE Xplore. Restrictions apply.

2267

to communicate RPC messages and shuffle data. By default,
Netty uses a Java New IO (NIO) transport. The NIO transport
utilizes a selector thread (single thread) to manage multiple
Java socket channels.

Apache Spark is an open-source Big Data framework
developed in UC Berkley by the AMPLab. It processes data in-
memory and relies on Resilient Distributed Datasets (RDDs)
which are fault-tolerant distributed data. User applications in
Spark run as JVM independent processes, managed by the
SparkContext object. The SparkConext object resides in the
main program — called the driver program — and can connect
to different types of cluster managers, such as Mesos, YARN,
Kubernetes, and Spark’s internal standalone cluster manager.

The role of the cluster manager is to allocate resources
across the cluster for user applications. Once the Spark-
Context object is connected to a cluster manager, executors
are launched on the cluster to execute a given application.
Meta information regarding a given application, such as JAR
or Python files, is passed to the executors. Tasks are then
created by the SparkContext and sent out to the executors for
execution.

The YARN cluster manager that Spark supports is part
of the Apache Hadoop framework and is used for resource
management and job scheduling and monitoring. The centering
idea of YARN is to provide a global ResourceManager (RM)
and an ApplicationMaster (AM) for each application — either
a single job or a directed cyclic graph (DAG) of jobs. Applica-
tionMaster is a framework specific library, and is responsible
for negotiating resources from the ResourceManager. The Ap-
plicationMaster communicates with NodeManagers to execute
and monitor the tasks.

Fig. 1: Spark using YARN cluster manager.

Figure 1 illustrates how Spark relies on the YARN cluster
manager. There are several components in the figure: Spark
User App, ResourceManager, NodeManager, ApplicationMas-
ter (App Master), and Exec Container. The ResourceMan-
ager and the NodeManager makeup the framework for data-
computation. The ResourceManager sets up the resources
for all the applications in the cluster. The NodeManager
(can be thought of as the worker process in Spark’s internal

standalone cluster manager) is concerned with launching con-
tainers (either the Exec Container or the ApplicationMaster),
and monitors each containers resource usage (cpu, memory,
disk, network) and reports it back to the ResourceManager.

MPI4Spark focuses on optimizing the performance of the
shuffle phase utilizing production-quality MPI libraries such as
MVAPICH inside of the Netty layer. MVAPICH supports var-
ious HPC interconnects, enabling portability for MPI4Spark
across multiple HPC systems that use different interconnects.

The shuffle phase is a phase during the runtime of a
Spark user application where intensive communication be-
tween Spark executors takes place. This phase is considered
a performance bottleneck [15] and has been the target for
multiple optimization efforts — for example, RDMA-Spark
and SparkUCX. The shuffle phase is triggered by RDD
transformation operations that produce wide data dependencies
across nodes in a Spark cluster.

Spark relies on two operations for manipulating RDDs,
actions and transformations. Actions perform computations
on data partitions and return the respective values back to
the Spark driver. Transformations transform existing data
partitions into new data partitions. Transformation opera-
tions create a Directed Acyclic Graph (DAG) for process-
ing dependencies among RDDs. Two types of dependencies
among RDDs exist, narrow and wide dependencies. Narrow
dependencies are created from using functions such as Map,
with one parent RDD partition directly mapping to only one
child RDD partition. This is different in wide dependencies,
whereby partitions in parent RDDs have several RDD child
partitions dependencies. Wide dependencies are created by
functions such as GroupByKey or SortByKey and produce the
communication intensive phase known as the shuffle phase.

Figure 2 provides an example of the shuffle phase between
four executor containers in Spark using the YARN cluster
manager, where a data partition depends on another data
partition that lives outside of the node that hosts the respec-
tive executor container. This shuffling of data blocks occurs
between executor container processes. Each NodeManager,
hosting an executor container, is a separate node on the cluster.

III. CHALLENGES

In this paper, a number of challenges were encountered in
providing support for the YARN cluster manager inside of
MPI4Spark. This involved redesigning the logic of launching
executors used in the ”standalone” cluster manager.

Challenge 1: Avoiding pitfalls of MPI4Spark’s stan-
dalone cluster manager design. In MPI4Spark’s standalone
cluster manager design, MPI communication is used across the
Spark cluster using both intra- and inter-communicators. MPI
point-to-point communication is used between executors and
with the driver process, along with MPI collective commu-
nication in launching executor processes dynamically using
Dynamic Process Management (DPM) [16] in MPI. This is
not ideal, as the whole Spark cluster needs to be launched
within an MPI environment in order for MPI communication
to take place. Spark’s promise of fault-tolerance is no longer

Authorized licensed use limited to: The Ohio State University. Downloaded on January 06,2025 at 21:11:36 UTC from IEEE Xplore. Restrictions apply.

2268

Fig. 2: Shuffle phase example in Spark using YARN cluster
manager.

viable in MPI4Spark, as MPI is not capable of conducting
fault-tolerance. If any failures occur within the MPI4Spark
cluster, the entire cluster will be terminated as it is launched
inside of an MPI environment.

With support for the YARN cluster manager, this is avoided.
MPI communication is conducted strictly between executors,
and there is no collective communication across the entire
cluster, as is the case with the standalone design. Spark
executor containers are the only components in the cluster
to be launched inside an MPI environment.

Challenge 2: Launching Executors with the YARN clus-
ter manager. With the YARN cluster manager, Spark executor
processes are launched inside of containers through launcher
scripts that are written during runtime. To accommodate this,
we rely on the Multiple-Program-Multiple-Data (MPMD) [17]
launcher mode that MPI launchers (i.e. mpirun) provide. A
config file is written that points to the executor launcher
scripts, which is then passed to the MPI launcher. The executor
containers are then launched within an MPI environment
where MPI communication can take place. We avoid using
DPM, and so collective MPI communication is not needed
here.

IV. DESIGN AND IMPLEMENTATION

MPI4Spark only supports Apache Spark’s standalone cluster
manager, which is Spark’s own internal cluster manager.
The standalone design utilizes MPI collective communica-
tion functions such as MPI Allgather() and Dynamic Pro-
cess Management (DPM) communication functions such as
MPI Comm spawn multiple() — used in launching executor
processes. The MPI4Spark package also relies on a Java
wrapper program that launches the Spark standalone cluster
using MPI launchers (i.e. mpirun). MPI point-to-point com-
munication also takes place in communicating shuffle data.

Apache Spark provides support for other cluster managers,
such as Mesos , YARN, and Kubernetes. In this section, we
present a new design for the MPI4Spark effort that supports

the YARN cluster manager. The new design relies on the same
architectural design of MPI4Spark, that is, using MPI at the
Netty communication layer. It also avoids certain aspects of
the older, standalone design.

To better accommodate for scalability for HPC, MPI4Spark
should support the YARN cluster manager, since YARN is
designed for large-scale clusters that consist of hundreds, even
thousands of nodes. Support for the YARN cluster manager
can also be helpful in workloads that rely on HDFS [18] or
Hadoop [19], allowing for easier integration of MPI4Spark in
those workloads.

In this new design, which supports YARN as the clus-
ter manager, the Java wrapper program used in launch-
ing Spark standalone clusters with MPI is no longer
needed, and DPM collective communication functions such
as MPI Comm spawn multiple() are no longer used. Other
MPI collective functions used in the standalone design, such
as MPI Allgather() (also used in dynamically launching ex-
ecutors), are not needed either.

Instead, since shuffle data is only communicated between
executor processes, the new design only launches executors for
Spark directly using the MPI launcher through the Multiple-
Program-Multiple-Data (MPMD) launcher mode. Only the
executors are launched in an MPI environment, as opposed
to the entire Spark cluster, as is the case in the standalone
design.

MPI point-to-point communication is carried out only be-
tween executor processes, as opposed to also with the driver
process, as is the case for the standalone design. Communi-
cation between the executor process and the driver was only
carried out for meta data, and occurred only once throughout
the runtime of a Spark application. For this reason, in the new
YARN design, MPI point-to-point communication takes place
only between executor processes.

This can be done as shuffle data, and the bulk of the
communication, occurs between executors. MPI point-to-point
communication continues to be conducted through the MPI-
based Netty transport. The new YARN design can be used
in future MPI4Spark work, as it allows for executors to
launch in an MPI environment without the complications of
DPM that are used in the standalone design. The new YARN
design can also potentially deliver on Spark’s promise of fault-
tolerance in a straight-forward fashion (i.e., if an executor
fails, all executors are automatically relaunched and the user
application is executed again). We plan to implement this in
the future.

Figure 3 showcases the YARN new design. RM and NM
stand for ResourceManager and NodeManager, respectively.
We call this new design MPI4Spark+YARN.

When YARN is used as a cluster manager for Spark, the
driver program executes tasks through executor processes that
are launched as containers on separate NodeManager pro-
cesses. NodeManager processes can be thought of as worker
processes in Spark’s standalone mode. The executors are
launched using launcher scripts created by the NodeManagers.
In the new design, the launcher scripts, and therefore the ex-

Authorized licensed use limited to: The Ohio State University. Downloaded on January 06,2025 at 21:11:36 UTC from IEEE Xplore. Restrictions apply.

2269

Fig. 3: MPI4spark+YARN Design. The exeuctors are only
launched in an MPI environment in the new YARN design.

ecutors, are launched using an MPI launcher (i.e. mpirun). This
is done using the Multiple-Program-Multiple-Data (MPMD)
launcher mode through the MPI launcher.

The launcher scripts created by each NodeManager are
not visible to other NodeManagers. Paths to these launcher
scripts, therefore, need to be shared. In MPI4Spark+YARN,
the Linux shared file system is used as a sharing mechanism.
We modified Hadoop YARN such that each NodeManager
creates a file mpmd.config.{HOSTNAME}. Each file is named
with a suffix of the respective node manager’s host name.
This host name suffix is later parsed and used in creating
a hostfile, which is needed by the MPI launcher. Inside
each mpmd.config.{HOSTNAME} file created, each NodeM-
anager writes the respective config information required by
the MPMD launcher mode is provided, such as the path to the
YARN executor container launcher script and the number of
processes to launch the script with.

Since the number of processes will always be 1, because
MPI4Spark only supports one executor per NodeManager,
each NodeManager is only concerned with writing to the
mpmd.config.{HOSTNAME} file its respective path to its ex-
ecutor container launcher script.

After all the NodeManagers have written their respective
mpmd.
config. {HOSTNAME} files in a location that is visible across
all the NodeManagers (this is done in a sub-directory labeled
mpmd-config in the respective Spark directory), the Node-
Manager that launches the ApplicationMaster container is
then tasked with executing the setup-and-run-yarn-mpmd.sh
script. The setup-and-run-yarn-mpmd.sh script is responsible
for creating the files, mpmd.config and hostfile. These files
are then used in launching the executor containers on all the
NodeManager nodes using MPI. This is illustrated in Figure 4.

Step 1 is concerned with writing the paths of the
YARN executor launcher scripts to a shared location vis-
ible to all NodeManagers. As mentioned earlier, This is
done in the SPARK HOME directory inside a sub-directory
called mpmd config. Step 2 executes the setup-and-run-yarn-
mpmd.sh script which creates the mpmd.config and hostfile
files, and step 3 launches the executor containers in their
respective NodeManager nodes through MPI. Launching of

the executors processes on their respective NodeManager
nodes is taken care by the MPI launcher as long as the hostfile
and mpmd.config file were properly generated.

Fig. 4: Implementation of MPI4Spark+YARN using a shared
file system. Each NodeManager writes to the shared file sys-
tem the path of the launcher script for the executor container.
After which, the MPI launcher takes as input the paths of
the launcher scripts and launches them inside of an MPI
environment using MPMD.

V. PERFORMANCE EVALUATION

Performance evaluation of the new MPI4Spark YARN
design was carried out on the Texas Advanced Computing
Center (TACC) Frontera system. Information regarding the
TACC Frontera HPC system can be found in table I. The
performance of the new YARN design was compared against
the performance of regular Spark and RDMA-Spark when
using the YARN cluster manager.

The OSU HiBD Benchmarks (OHB) package along with the
Intel HiBench benchmark suite were used in the evaluation.
Both weak and strong scaling numbers were collected on
different sized clusters up-to 128 NodeManager nodes, or in
standalone terminology, up-to 128 worker nodes, a total of
7168 cores. The Intel HiBench [13] benchmark suite was also
used in the evaluation.

Specification TACC Frontera TACC Stampede2
Cores/Socket 28 24
Sockets 2 2
Interconnect Infiniband HDR-100 Intel Omni-Path (OPA)
RAM 192GB 192GB
Processor Family Intel 8280 Intel Xeon Platinum 8160
Clock Speed 2.7GHz 2.1GHz

TABLE I: TACC Frontera and Stampede2 Hardware Specifi-
cation.

Table II lists the memory configuration used in the eval-
uation. For cluster size of 32 NodeManagers was 70g. Per-
formance numbers were obtained for two benchmarks in the
OHB package, GroupByTest and SortByTest. More information
on these benchmarks can be found in table III.

Spark version 3.3.0-SNAPSHOT was used for both regu-
lar Spark and MPI4Spark. For RDMA-Spark, Spark version
2.1.0 was used, as that is the version that RDMA-Spark

Authorized licensed use limited to: The Ohio State University. Downloaded on January 06,2025 at 21:11:36 UTC from IEEE Xplore. Restrictions apply.

2270

Config Parameter Description
SPARK DAEMON MEMORY 1g
SPARK WORKER MEMORY 90g
SPARK EXECUTOR MEMORY 90g
SPARK DRIVER MEMORY 1g

TABLE II: Benchmark input parameter configuration for 64
and 128 NodeManagers.

Benchmark Description

GroupByTest RDD-level benchmark to group the values for
each key in the RDD into a single sequence

SortByTest RDD-level benchmark to sort the RDD by key

TABLE III: OHB’s different benchmark description for
Apache Spark.

supports. MPI-based Netty relies on Netty version 4.1.67.
Hadoop YARN version 3.3.4 was used for all Spark versions.
OSU HiBD Benchmark (OHB) version 0.9.3 was used. Intel
HiBench version 8.0 was used, and finally, the MVAPICH MPI
library, version 2.3.7, was used in the performance evaluation.

A. Frontera OHB Weak Scaling

We varied the data size across different cluster sizes in
a weak-scaling fashion. The evaluation was conducted on
clusters with 32, 64, and 128 NodeManagers. Table IV lists the
benchmark input parameter configuration. Both GroupByTest
and SortByTest rely on the same input parameters, mappers
and reducers are defined along with a key size and a number
of key-value pairs. The mappers and reducers reflect the total
number of cores on all the NodeManagers.

Cluster
Size Input Parameters Value Data Size

32 NodeManagers
(1792 cores)

Mappers 1792
Reducers 1792
Key-Value Pairs 65536 448GB
Key Value 4096

64 NodeManagers
(3584 cores)

Mappers 3584
Reducers 3584
Key-Value Pairs 65536 896GB
Key Value 4096

128 NodeManagers
(7168 cores)

Mappers 7168
Reducers 7168
Key-Value Pairs 65536 1792GB
Key Value 4096

TABLE IV: Benchmark weak-scaling input configurations on
Frontera for the OHB benchmarks GroupByTest and Sort-
ByTest.

The following figures provide a breakdown of the per-
formance of Spark (IPoIB), RDMA-Spark (RDMA), and
MPI4Spark (MPI) using two OHB benchmarks, GroupByTest
and SortByTest. The performance is split up into multiple
stages or jobs. For GroupByTest, there are two jobs. Job0-
ResultStage is concerned with generating data and Job1-
ResultStage is the stage where intensive shuffle communication

takes place. The same applies to SortByTest, where Job2-
ResultStage is the stage where shuffle occurs.

Fig. 5: GroupByTest weak-scaling performance numbers on
Frontera. The evaluations were run on YARN cluster sizes of
32, 64, and 128 NodeManagers.

In Figure 5, considering the 448GB datasize (32 NodeM-
anagers), MPI4Spark outperforms Spark (IPoIB) by 4.04x
and RDMA-Spark (RDMA) by 2.00x. Moving to the 64
NodeManagers cluster size (896GB), MPI4Spark speeds up
total job execution compared to Spark by 3.81x and by 2.48x
compared to RDMA-Spark. For 128 NodeManagers (7168
cores and 1792GB), MPI4spark performs 1.44x times faster
than regular Spark, and 1.48x times faster than RDMA-Spark.

Fig. 6: SortByTest weak-scaling performance numbers on
Frontera. The numbers were collected on YARN cluster sizes
of 32, 64, and 128 NodeManagers.

In Figure 6, looking at 32 NodeManagers, MPI4Spark
outperforms Spark by 3.15x and RDMA-Spark by 1.58x. For
64 NodeManagers, MPI4Spark is faster than Spark by 4.52x
and RDMA-Spark by 2.34x. Finally, for 128 NodeManagers,
MPI4Spark performs faster than Spark by 1.47x and RDMA-
Spark by 1.36x.

Here the performance benefits that are seen are due in large
to the MPI-based Netty transport that MPI4Spark utilizes. The
MVAPICH MPI library is used and is capable of utilizing high-
speed interconnects such as Intel Omni-Path and InfiniBand
to optimize communication during the shuffle phase. We see,
for 1792GB, MPI4Spark optimizes the shuffle phase by 2.94x
and 2.72x compared to RDMA-Spark and Spark, respectively

Authorized licensed use limited to: The Ohio State University. Downloaded on January 06,2025 at 21:11:36 UTC from IEEE Xplore. Restrictions apply.

2271

for the GroupByTest benchmark. For SortByTest, looking at
the same data size and cluster size, MPI4Spark speeds up the
shuffle performance by 2.77x and 2.38x, compared against
Spark and RDMA-Spark, respectively.

B. Frontera OHB Strong Scaling
For this set of performance numbers, the total data size

remained constant across the different cluster sizes in a strong-
scaling fashion. The evaluation was conducted on cluster sizes
32, 64, and 128 NodeManagers. Table V lists the bench-
mark input parameter configuration. Both GroupByTest and
SortByTest rely on the same input parameters, mappers and
reducers are defined along with a key size and a number of
key-value pairs. The mappers and reducers reflect the total
number of cores on all the NodeManagers.

Cluster
Size Input Parameters Value Data Size

32 NodeManagers
(1792 cores)

Mappers 1792
Reducers 1792
Key-Value Pairs 196608 1344GB
Key Value 4096

64 NodeManagers
(3584 cores)

Mappers 3584
Reducers 3584
Key-Value Pairs 98304 1344GB
Key Value 4096

128 NodeManagers
(7168 cores)

Mappers 7168
Reducers 7168
Key-Value Pairs 49152 1344GB
Key Value 4096

TABLE V: Benchmark strong-scaling input configurations on
Frontera for the OHB benchmarks GroupByTest and Sort-
ByTest.

The following figures are similar to figures 5 and 6, in that
they provide a performance breakdown of the performance of
three different stacks, regular Spark (IPoIB), RDMA-Spark
(RDMA), and MPI4Spark (MPI). The significance of the
stages in the figures are explained in the previous subsec-
tion V-A.

Fig. 7: GroupByTest strong-scaling performance numbers on
Frontera. The experiments were run on YARN cluster sizes of
32, 64, and 128 NodeManagers.

In Figure 7, for 32 NodeManagers, MPI4Spark is perform-
ing better by 1.90x and 1.12x compared to Spark and RDMA-

Spark, respectively. For 64 NodeManagers, MPI4Spark per-
forms faster than Spark by 1.55x and RDMA-Spark by 1.74x.
For 128 NodeManagers, MPI4Spark outperforms Spark by
3.29x and RDMA-Spark by 2.32x.

Fig. 8: SortByTest strong-scaling performance numbers on
Frontera. The evaluations were run on YARN cluster sizes
of 32, 64, and 128 NodeManagers.

In Figure 8, for 32 NodeManagers, MPI4Spark fairs better
by 1.84x when compared to Spark and 1.22x when compared
to RDMA-Spark. Looking at 64 NodeManagers, MPI4Spark
is faster than Spark by 2.00x and RDMA-Spark by 1.23x. For
128 NodeManagers, MPI4Spark performs similarly to RDMA-
Spark but is faster than regular Spark by 2.41x. During the
shuffle phase, for 128 NodeManagers, it is worth noting that
MPI4Spark outperforms RDMA-Spark by 1.28x.

The benefits that are seen in performance are due to the
shuffle phase optimization that is carried out using the MPI-
based Netty communication backend that relies on the MVA-
PICH MPI library. The shuffle phase for 128 NodeManagers is
optimized by 3.52x and 5.11x for GroupByTest, respectively
compared against RDMA-Spark and Spark. For SortByTest,
also looking at 128 NodeManagers, the shuffle phase for
MPI4Spark runs faster by 1.28x and 3.45x, compared to
RDMA-Spark and Spark, respectively.

C. Stampede2 OHB Weak Scaling

In this section, we evaluate the performance of
MPI4Spark+YARN on the TACC Stampede2 HPC
system. The experiments were conducted using the OHB
benchmarks, GroupByTest and SortByTest. Table VI details
the configuration used for the input parameters for the
benchmarks used. Different cluster sizes were used in a
weak-scaling fashion using 16, 32, and 64 NodeManagers.
The values for the the mappers and reducers parameters
are set to reflect the total number of cores across all the
NodeManagers.

Since the Stampede2 HPC system is interconnected with
Intel Omni-Path (OPA), it is not possible to run RDMA-Spark.
This is the reason why RDMA-Spark nubmers are not included
in the following figures.

In Figure 9, MPI4spark is overall performing better than
Spark. We see for the GroupByTest benchmark, for data

Authorized licensed use limited to: The Ohio State University. Downloaded on January 06,2025 at 21:11:36 UTC from IEEE Xplore. Restrictions apply.

2272

Cluster
Size Input Parameters Value Data Size

16 NodeManagers
(768 cores)

Mappers 768
Reducers 768
Key-Value Pairs 65536 192GB
Key Value 4096

32 NodeManagers
(1536 cores)

Mappers 1536
Reducers 1536
Key-Value Pairs 65536 384GB
Key Value 4096

64 NodeManagers
(3072 cores)

Mappers 3072
Reducers 3072
Key-Value Pairs 65536 768GB
Key Value 4096

TABLE VI: Benchmark weak-scaling input configurations
on Stampede2 for the OHB benchmarks GroupByTest and
SortByTest.

Fig. 9: GroupByTest weak-scaling performance numbers on
Stampede2. The experiments were run on YARN cluster sizes
of 16, 32, and 64 NodeManagers.

size 192GB, MPI4Spark performs 1.98x faster. For data size
768GB, on a cluster of size 64 NodeManagers, MPI4Spark
outperforms Spark by 1.67x.

Fig. 10: SortByTest weak-scaling performance numbers on
Stampede2. The experiments were run on YARN cluster sizes
of 16, 32, and 64 NodeManagers.

In Figure 6, we see for the SortByTest benchmark,
MPI4Spark is outperforming Spark. For 384GB and cluster
size 32 NodeManagers, MPI4Spark is 1.94x faster than Spark.
For cluster size 64 NodeManagers and data size 768GB,
MPI4Spark outperforms Spark by 1.94x.

The performance benefits that we see are largely due to

the optimization of the shuffle stage communication using
the MVAPICH MPI library. Speed-ups for the shuffle read
stage for 768GB are 3.3x compared with IPoIB (Spark) for
GroupByTest, and for SortByTest, 3.9x.

D. Stampede2 OHB Strong Scaling

For strong scaling numbers, we used 3840 mappers and
reducers and 65536 key value pairs with key value 4096.
For both Figures 11 and 12, we see MPI4Spark performing
better than Spark on average by 1.75x and 1.71x, respectively
for GroupByTest and SrotByTest. RDMA-Spark does not run
on systems such as Stampede2 that use Intel Omni-Path
interconnects. This is why numbers for RDMA-Spark were
not collected.

Fig. 11: GroupByTest strong-scaling performance numbers on
Stampede2. The experiments were run on YARN cluster sizes
of 16, 32, and 64 NodeManagers.

Fig. 12: SortByTest strong-scaling performance numbers on
Stampede2. The experiments were run on YARN cluster sizes
of 16, 32, and 64 NodeManagers.

The performance benefits seen here are in part due to
the shuffle engine in MPI4Spark. The shuffle engine utilizes
MPI point-to-point communication to optimize Spark shuffle
performance. On average shuffle performance in optimized by
2.45x.

E. Performance Evaluation with Intel HiBench on Frontera

In this sub-section, performance evaluation of Spark and
MPI4Spark were carried out using the Intel HiBench suite.
A number of benchmarks were run on a Hadoop YARN
cluster of size 32 NodeManagers. Spark’s memory configu-
ration was changed such that SPARK EXECUTOR MEMORY

Authorized licensed use limited to: The Ohio State University. Downloaded on January 06,2025 at 21:11:36 UTC from IEEE Xplore. Restrictions apply.

2273

and SPARK WORKER MEMORY were set to 120g and
SPARK DRIVER MEMORY was set to 6g.

Table VII lists other configuration parameters used in the
MPI4Spark+YARN performance evaluation using the Intel
HiBench benchmark suite. RDMA-Spark numbers were not
collected here as the HiBench version used (v8.0) does not
support RDMA-Spark’s Spark version (v2.1.0), and certain
benchmarks like Repartition do not exist for older versions of
HiBench that support Spark version 2.1.0.

Config Parameter Description
spark.driver.maxResultSize 5g
spark.executor.memory 120g
spark.driver.memory 6g
hibench.yarn.executor.num 32
hibench.yarn.executor.cores 56
hibench.scale.profile huge
hibench.default.map.parallelism 1792
hibench.default.shuffle.parallelism 1792

TABLE VII: Benchmark input parameter configuration for the
Intel HiBench performance evaluation on the Frontera TACC
HPC system. The evaluation was carried out on a YARN
cluster of 32 NodeManagers.

In Figure 13, several benchmarks were run using the new
YARN design and regular Spark. Table VIII provides a quick
description for the benchmarks used here. Each benchmark has
its own set of configure parameters too. For this evaluation,
the default configurations that HiBench provides were used.

Looking at the Logistic Regression (LR) benchmark, it can
be noted that MPI4Spark is able to perform better than Spark
by a factor of 1.91x. Moving to the Singular Value Decom-
position (SVD), MPI4Spark is faster by a factor of 1.32x. For
Repartition, MPI4Spark outperforms Spark by a 1.15x. Finally,
for the Gradient Boosted Trees (GBT) benchmark, MPI4Spark
fairs better by 1.14x than Spark.

Fig. 13: Performance numbers for several Intel HiBench
benchmarks on the TACC Frontera HPC system. The eval-
uation was conducted on a YARN cluster size of 32 NodeM-
anagers.

VI. RELATED WORK

There have been many efforts in enhancing the performance
of the shuffle phase in Apache Spark, which is known as a

performance bottleneck [15] due to the intensive communica-
tion that takes place between executor processes in collecting
data in an all-to-all fashion.

Efforts like RDMA-Spark [7] and SparkUCX [20] en-
able communication using RDMA technology provided by
InifiniBand interconnects. The difference between the two
efforts, however, is their implementation. RDMA-Spark is im-
plemented through a new RDMABlockTransferService, while
SparkUCX relies on an RDMAShuffleManager.

MPI solutions also exist for Spark, such as MPI4Spark [3]
and Spark+MPI which uses the Hadoop Distributed File Sys-
tem (HDFS) [18] along with Linux shared memory to offload
Spark computations to an MPI environment. However, this is
implemented by adding high-level API. MPI4Spark does not
introduce any new high-level API for Apache Spark.

GPU solutions for Spark also exist. Spark-RAPIDS relies
on the RAPIDS [21] open source libraries in accelerating
the performance of Spark using GPUs. This paper discusses
certain limitations of the MPI4Spark effort developed at the
Ohio State University and introduces a new and leaner design
that supports the YARN [9] cluster manager which paves the
way for basic fault-tolerant solutions for MPI4Spark. We also
present performance evaluations using OHB benchmarks on
up to 7, 168-cores using a 128 NodeManagers cluster.

VII. CONCLUSION

In this paper, a new design is presented for MPI4Spark
that supports both the standalone and YARN cluster managers.
Support for the YARN cluster manager is needed as YARN
is designed for launching and managing large-scale clusters
(up-to hundreds of nodes). This better serves the intersection
of Big Data and HPC that MPI4Spark attempts to achieve in
terms of scalability.

Through support for the YARN cluster manager, new design
decisions had to be made in regards to launching executors.
Certain pitfalls were avoided that were present in the stan-
dalone design, and Dynamic Process Management (DPM) was
no longer needed for launching executor processes dynami-
cally. Executors in the YARN cluster manager were launched
directly using an MPI launcher using the Multiple-Program-
Multiple-Data (MPMD) launcher mode.

This allowed for a design that could potentially support
a simple fault-tolerant solution in the future, whereby failed
executor processes are relaunched automatically through MPI.
In the new YARN design, MPI point-to-point communication
is strictly between executors, as shuffling only occurs between
executor processes.

Performance evaluation of the new design was conducted
on the TACC Frontera System using different data and cluster
sizes. Cluster sizes ranging from 32 NodeManagers (1792
cores) up-to 128 NodeManagers (7168 cores) were used. The
OSU HiBD Benchmarks (OHB) package was used in the
evaluation step, mainly two benchmarks: GroupByTest and
SortByTest. Both benchmarks were used in the evaluation in a
weak- and strong-scaling fashion. The evaluation was carried
out against regular Spark and RDMA-Spark.

Authorized licensed use limited to: The Ohio State University. Downloaded on January 06,2025 at 21:11:36 UTC from IEEE Xplore. Restrictions apply.

2274

Benchmark Description
Logistic Regression (LR) Logistic Regression (LR) is a popular method to predict a categorical response.
Singular Value Decomposition (SVD) Singular value decomposition (SVD) factorizes a matrix into three matrices.

Repartition The workload randomly selects the post-shuffle partition for each record, performs
shuffle write and read, evenly repartitioning the records.

Gradient Boosted Trees (GBT) Gradient-boosted trees (GBT) is a popular regression method using ensembles of decision trees.

TABLE VIII: Intel HiBench benchmarks description used in the performance evaluation of the new YARN MPI4Spark design.

On the TACC Frontera HPC system, for both weak- and
strong-scaling numbers, MPI4Spark was overall performing
better than both Spark and RDMA-Spark. For 64 NodeMan-
agers weak-scaling numbers, with GroupByTest, MPI4Spark
was outperforming both Spark by 3.8x and RDMA-Spark by
2.5x. While for SortByTest, also for 64 NodeManagers (weak-
scaling), MPI4Spark performed better by 4.5x compared to
Spark and 2.3x compared to RDMA-Spark.

For strong-scaling, for 128 NodeManagers and Group-
ByTest, MPI4-Spark fairs better in performance by 3.3x against
Spark, and 2.3x against RDMA-Spark. While for SortByTest,
considering 64 NodeManagers and strong-scaling, MPI4Spark
outperforms Spark by 2x, and RDMA-Spark by 1.2x. For
HiBench performance evaluations, on a cluster size of 32
NodeManagers, MPI4Spark performed better than Spark by
1.91x for the Logistic Regression (LR) benchmark and by
1.32x for the Singular Value Decomposition (SVD) bench-
mark.

On the Stampede2 HPC system, looking at cluster size of
32 NodeManagers and data size of 384GB, MPI4Spark out-
performs Spark by 1.94x for the SortByTest benchmark. While
for the GroupByTest benchmark, for cluster size 64 NodeM-
anagers and data size of 768GB, we see that MPI4Spark per-
forms faster by 1.67x compared to Spark. For strong-scaling,
MPI4Spark outperforms Spark by 1.73x on average using the
OHB benchmarking package. The performance benefits we see
are largely in part due to the MPI-based Netty transport that
MPI4Spark utilizes.

MPI4Spark’s new YARN design has been release and is
available on the High-Performance Big Data (HiBD) page
(http://hibd.cse.ohio-state.edu/downloads/). We plan to extend
the MPI4Spark effort in the future by implementing fault-
tolerance, allowing for a solution that better suits both HPC
environments and Big Data programming models.

VIII. ACKNOWLEDGEMENT

This research is supported in part by NSF grants #1818253,
#1854828, #2007991, #2018627, #2311830, #2312927, and
XRAC grant #NCR-130002.

REFERENCES

[1] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica, “Apache spark: A unified engine
for big data processing,” Commun. ACM, vol. 59, no. 11, p. 56–65, oct
2016. [Online]. Available: https://doi.org/10.1145/2934664

[2] The MPI Forum, “The Message Passing Interface (MPI) 4.0 Standard,”
urlhttps://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf, 2023,
Accessed: November 26, 2023.

[3] K. A. Attar, A. Shafi, M. Abduljabbar, H. Subramoni, and D. Panda,
“Spark meets mpi: Towards high-performance communication frame-
work for spark using mpi,” September 2022.

[4] Nvidia, “InfiniBand Interconnect,” 2023, Ac-
cessed: November 26, 2023. [Online]. Available:
https://network.nvidia.com/pdf/whitepapers/IB Intro WP 190.pdf

[5] Intel, “Intel Omni-Path Interconnect,” 2023, Ac-
cessed: November 26, 2023. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/products/network-
io/high-performance-fabrics.html

[6] HPE, “HPE Slingshot Interconnect,” 2023, Ac-
cessed: November 26, 2023. [Online]. Available:
https://www.hpe.com/us/en/compute/hpc/slingshot-interconnect.html

[7] X. Lu, D. Shankar, S. Gugnani, and D. K. Panda, “High-performance
design of apache spark with rdma and its benefits on various workloads,”
pp. 253–262, 2016.

[8] “The Netty Project,” urlhttps://netty.io/, 2023, Accessed: November 26,
2023.

[9] Apache Software Foundation, “Apache Hadoop YARN,”
2023, Accessed: November 26, 2023. [Online]. Avail-
able: https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-
site/YARN.html

[10] ——, “Apache Mesos,” urlhttps://mesos.apache.org/, 2023, Accessed:
November 26, 2023.

[11] Kubernetes, “open-source system for automating deployment,”
2023, Accessed: November 26, 2023. [Online]. Available:
https://kubernetes.io/

[12] “OSU HiBD-Benchmarks (OHB),” 2023, accessed: Novem-
ber 26, 2023. [Online]. Available: http://hibd.cse.ohio-
state.edu/static/media/ohb/changelogs/ohb-0.9.3.txt

[13] Intel HiBench Suite, “Big Data Benchmark Suite,” 2023, Accessed:
November 26, 2023. [Online]. Available: https://github.com/Intel-
bigdata/HiBench

[14] D. K. Panda, H. Subramoni, C.-H. Chu, and M. Bayatpour,
“The MVAPICH project: Transforming research into high-
performance MPI library for HPC community,” Journal of
Computational Science, vol. 52, p. 101208, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877750320305093

[15] A. Davidson, “Optimizing shuffle performance in spark,” 2013.
[Online]. Available: https://api.semanticscholar.org/CorpusID:16322742

[16] W. Gropp and E. Lusk, “Dynamic process management in an mpi
setting,” pp. 530–533, 1995.

[17] Intel, “MPMD Launch Mode,” 2023, Ac-
cessed: November 26, 2023. [Online]. Available:
https://www.intel.com/content/www/us/en/docs/mpi-library/developer-
guide-linux/2021-6/mpmd-launch-mode.html

[18] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” pp. 1–10, 2010.

[19] Apache Software Foundation, “Apache Hadoop,” url-
https://hadoop.apache.org, 2023, Accessed: November 26, 2023.

[20] SparkUCX, “A high-performance, scalable and efficient ShuffleManager
plugin for Apache Spark, utilizing UCX communication layer,”
2023, Accessed: November 26, 2023. [Online]. Available:
https://github.com/openucx/sparkucx

[21] RAPIDS, “RAPIDS suite of open source software libraries and APIs,”
urlhttps://github.com/rapidsai, 2022, Accessed: November 26, 2023.

Authorized licensed use limited to: The Ohio State University. Downloaded on January 06,2025 at 21:11:36 UTC from IEEE Xplore. Restrictions apply.

