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Abstract—The Message Passing Interface is the de facto
standard in high-performance computing (HPC) for inter-process
communication. MPI libraries employ numerous algorithms for
each collective communication pattern whose behavior is largely
affected by the underlying hardware, communication pattern,
message size, and number of processes involved. Choosing the
“best” algorithm for every possible scenario is a non-trivial
task. MPI libraries primarily depend on heuristics for algo-
rithm selection on previously unseen clusters, often resulting in
evident slowdowns. Although offline micro-benchmarking tools
can exhaustively identify optimal algorithms for all configura-
tions, this is an excessively time-consuming approach. Machine
Learning (ML) emerged as an alternate approach. However, most
ML-based approaches employ online methods that introduce
additional runtime overhead, which makes this impractical at
scale. To address this challenge, we propose a pre-trained ML
framework that eliminates runtime overhead. Our model requires
only a quick inference for each new cluster without necessitating
model retraining. It incorporates various hardware features to
enhance its adaptability across diverse clusters. Our model’s
training utilizes tuning data from a broad range of architectures,
promoting its versatility and our proposed system exhibits up
to 6.3% speedup over default heuristics on systems of up to
1024 cores while significantly minimizing model overhead in
comparison to existing methodologies.

Index Terms—MPI, collective communication, auto-tuning,
Machine Learning

I. INTRODUCTION

As MPI-based applications continue to scale, communica-
tion efficiency has become a top priority. Collective com-
munication operations, which enable efficient data exchange
and synchronization among processes, are critical to MPI
communication. Most MPI libraries, including popular im-
plementations such as Intel MPI [1], Open MPI [2], and
MVAPICH [3], provide multiple algorithms for each collective
operation. However, selecting the optimal algorithm for these
collective operations can be challenging, as it depends on
various factors, including MPI-specific parameters (number of
nodes, process-per-node, and message size), hardware features
(CPU clock speed, cache size, interconnect and etc.), and
network situations. The selection of sub-optimal algorithms
can have a substantial impact on performance, leading to an
average degradation of up to 35%-45% [4].
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Several approaches have been proposed to automate this
process, including analytical models [5], [6], [7], [8], offline
micro-benchmarking [9], [10], and machine learning (ML) ap-
proach [4], [11], [12]. Analytical models, which use statistical
functions to approximate the runtime of existing algorithms,
have shown limited accuracy and present challenges to ex-
panding to new algorithms in production environments. Offline
micro-benchmarking, which requires exhaustive pruning of
the entire search space, imposes considerable demands on
computational resources. Prior studies in machine learning
approaches have predominately adopted online training frame-
works. Despite attempts to streamline the training process [11],
online data collection and subsequent model training following
each node allocation can significantly negate the advantages
conferred by optimal algorithm selection.

To address the limitations of existing methods, we intro-
duce a novel offline model training framework. This diverges
from traditional ML methodologies that solely consider MPI-
specific parameters. Contrary to the prevalent belief that the
hardware feature space is too complex to explore [11], our
framework integrates hardware features into model training.
This empowers the ML models to generalize effectively to
new clusters and entirely eliminates the necessity of online
data collection and model training.

Broadly speaking, there are two categories of collective
algorithms: flat and two-level. Two-level collectives introduce
additional complexities by distinguishing intra/inter-node com-
munication algorithms. For the purpose of our research, we
will focus solely on flat collectives [13]. This focus will
streamline our analysis and allow us to effectively evaluate
the impact of our machine learning-based approach.

This paper makes the following contributions:

o We have compiled a comprehensive dataset with a wide
variety of CPU architectures and interconnects from 18
different clusters.

o We propose a low-overhead ML-based collective auto-
tuning framework that can be integrated into MPI li-
braries. On a system with 8,192 nodes, each featuring 56
cores, our framework can use up to six orders of mag-
nitude fewer core-hours in startup overhead compared to
offline micro-benchmarking and the state-of-the-art ML
approaches.

979-8-3503-6460-6/24/$31.00 ©2024 IEEE 761
DOI 10.1109/IPDPSW63119.2024.00140
Authorized licensed use limited to: The Ohio State University. Downloaded on January 06,2025 at 21:12:21 UTC from IEEE Xplore. Restrictions apply.



o We thoroughly study the performance of the proposed
framework using an elaborate train-test-split methodol-
ogy. In terms of collective performance, we demonstrate
up to 0.5x - 2x speedups compared to MVAPICH2-2.3.7
and OpenMPI 5.1.0a.

To the best of our knowledge, our proposed design is the
first to provide an efficient collective algorithm selection
at the lowest MPI application runtime overhead (i.e. in
constant time) on unseen clusters and unexplored large-
scale node counts.
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Fig. 1: Core Hours spent by offline micro-benchmarking and
ACCLAIM evaluated on TACC Frontera with Intel Xeon
Platinum 8280 CPU nodes and Mellanox InfiniBand (EDR)
interconnect. Core Hours(hr): number of processes x actual
runtime

II. MOTIVATION

Currently, offline micro-benchmarking is the standard
methodology for achieving optimal collective algorithm selec-
tion [9]. This method generates tuning tables, which are look-
up tables mapping particular input parameters to the optimal
collective algorithm, enabling fast optimal algorithm selection
during application runtime. However, this approach is time-
consuming and often takes enormous computing resources to
run on a cluster.

Consider a scenario where a user tries to run an MPI-
supported application on a new cluster, where no tuning
tables are available. Prior to application execution, user must
invest substantial time in running the offline micro-benchmarks
and generating tuning tables. For application scientists and
engineers who operate in a more transient manner, this time-
consuming tuning phase is a significant impediment. This
challenge is exacerbated in today’s HPC landscape, where
users frequently migrate their applications across different
clusters due to resource availability, cost-effectiveness, or
specific hardware requirements.

Machine Learning has offered a faster alternative to offline
micro-benchmarking. However, the state-of-the-art ML frame-
work, ACCLAIM [11], requires data collection and model
training and inference at application runtime, which poses a
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significant constraint, particularly for workflows that require
frequent job submissions.

Fig. 1 demonstrates the core hours spent for an offline
micro-benchmarking tool and ACCLAiM, as the number of
nodes evaluated increases. Core hours are the product of the
number of processes and actual runtime. We evaluate those
frameworks’ core hours on TACC Frontera [14] with Intel
Xeon Platinum 8280 CPU nodes and Mellanox InfiniBand
(EDR) interconnect. MPI_Allgather is chosen for the model
overhead evaluation. We calculate the core hours of offline
micro-benchmarking with runtime results of our in-house tool
that represent such classes. It is important to note that the
runtime presented here is derived purely from benchmark
results and hence does not include other overhead associated
with software implementation. The core hours of ACCLAIM
are computed by the model overhead, 5.62 minutes on 128
nodes for MPI_Allgather [11]. Given the limited information,
we deliberately ignore the communication overhead, so the
actual core hours of ACCLAIM are lower-bounded by the
orange line in Fig. 1.

To overcome this significant runtime overhead, we have
proposed a pre-trained ML approach by incorporating hard-
ware features, requiring less than a second of model inference
overhead during the compilation time. It is important to note
that this compilation process is a one-time occurrence for each
cluster.

III. BACKGROUND

Most MPI libraries offer more than one algorithm for each
collective operation. The focus of our research paper revolves
around flat algorithms for MPI_Allgather and MPI_Alltoall
found in the MVAPICH library. The following paragraphs
provide brief descriptions of those algorithms. For more in-
formation, readers are encouraged to consult this papers [13].

MPI_Allgather employs a variety of algorithms includ-
ing Recursive Doubling, Ring, Bruck, and Recursive Dou-
bling Communication algorithms. Recursive Doubling algo-
rithm performs pairwise exchanges between processes, us-
ing a recursive halving and doubling approach, resulting in
O(log(p)) communication steps. In Ring algorithm, processes
are organized in a logical ring structure, and each process
iteratively sends its data to its neighboring process until all
processes have received the complete gathered data. Bruck
algorithm is a simple and efficient algorithm for implementing
MPI_Allgather. In each iteration k, process i sends data to
process (i—2*) and receives data from process (i+2*). Recur-
sive Doubling Communication is a variation of the Recursive
Doubling algorithm. Through exchanging subsets of data, this
algorithm reduces the amount of data that needs to be sent
and received at each communication step, resulting in lower
communication overhead compared to the basic Recursive
Doubling algorithm.

MPI_Alltoall consists of various algorithms like Bruck,
Scatter_Dest (Scatter Destination), Pairwise (Pairwise Ex-
change), RD (Recursive Doubling), and Inplace (in-place)
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Algorithms. The Scatter_Dest Algorithm operates in a scatter-
like manner, where each process sends a distinct message to
the designated destination process. The Scatter Destination
[15] algorithm aims to optimize the distribution of data among
processes by minimizing communication overhead and ensur-
ing efficient data exchange. The Pairwise Exchange algorithm
requires p — 1 steps. In each step k&, where 1 < k < p, each
process determines its target process as (rank@ k) (using XOR
operation) and proceeds to exchange data directly with that
target process. In the in-place algorithm, the memory usage is
optimized by sending and receiving data to the same buffer.

Given an MPI job with a specific number of nodes (#nodes),
processes per node (PPN), and message size, which algorithm
would be the optimal selection on the current system? Most
MPI libraries employ heuristic methods or some form of
decision knowledge to choose the “best” algorithm in a given
context; however, this is a nontrivial task. As highlighted by
Hunold et al., empirical decision trees built on benchmark
results form the default tuning strategy of Open MPI 4.0.2,
but this can lead to a 30-45% slowdown due to sub-optimal
algorithm selection [4]. The challenge lies in the fact that the
optimal choice of algorithm heavily depends on the machine’s
hardware features. Empirical knowledge acquired from one
machine cannot be fully transferred to another, even with
an identical job size and scale. As illustrated in Fig. 2,
the performance of MPI_Alltoall algorithms fluctuates when
running on different hardwares, as observed on TACC Frontera
and internal cluster, MRI. Frontera has Intel Xeon Platinum
8280 CPU nodes and Mellanox InfiniBand (EDR) intercon-
nect, while MRI is equipped with AMD EPYC 7713 64-
Core Processor and Mellanox InfiniBand (HDR) interconnect.
Despite implementing identical configurations and runtime
parameters, noteworthy variations in their performance exist.
For instance, Bruck’s algorithm, represented by the blue line,
significantly outperforms other algorithms on Frontera for
message sizes ranging from 32 to 1024, but its performance
degrades on MRI for the same message range. On the contrary,
Scatter_Dest’s algorithm, depicted as the grey line, has a
relatively long runtime for smaller message sizes on Frontera,
while it performs exceptionally well for the same range on
MRI and even emerges as the optimal algorithm at message
size 256 and 512.
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Fig. 2: Runtime comparison between various MPI_Alltoall

algorithms on 2 nodes and 16 process-per-node across different
clusters
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Apart from hardware factors, network congestion can also
impact collective algorithm selection. In order to mitigate the
impact of the dynamic factors, we gathered the training and
testing dataset as in Table I and the performance results by av-
eraging multiple iterations of experiments. Recent approaches
in [11], [16] primarily adopt online methods where dynamic
factors can be circumvented. However, these online approaches
often come with ineligible model overhead. In this work, we
acknowledge the noise in our data caused by dynamic factors
but posit that by considering static hardware features, we can
still improve over the default tuning strategies, which only take
into account MPI-specific features.

IV. DESIGN

The proposed framework mainly comprises two stages:
offline training and online inference. As shown in Fig. 3, the
proposed ML training framework involves collecting cluster-
specific and MPI-specific features using a feature extraction
script which uses built-in Linux commands to obtain cluster-
specific features such as CPU Clock Frequency, L3 Cache,
core count, and number of nodes. These features are sub-
sequently employed by the ML model during the inference
process. Notably, this ML model is pre-trained and then
shipped along with the MPI library, thereby obviating the
necessity for end-users to train the model independently.

HPC
Clusters

- — — — - T TN
| Feature |
| Extractor |
| Hardware Features MPI Specific |
| (e.g., Interconnect Features (e.g., |
Bandwidth, CPU Clock PPN, #Nodes.etc.)

| Frequency) |
(o - 2

Input

¥
B ML
[ ML Classification }Output—» Model

Fig. 3: Offline Training Framework

As depicted in Fig. 4, the framework examines whether
a tuning table for the current cluster exists during the MPI
library compilation. If such a table is present, the framework
bypasses the ML tuning process, opting to use the existing
tuning table instead. Conversely, if no such tuning table exists
for the cluster, the framework initiates the process of extracting
the MPI-specific features and hardware features. The pre-
trained ML model from offline training stage subsequently
takes both sets of features as input and generates the tuning
tables. These tables are stored in a readily accessible JSON
format for use during the MPI application runtime.
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V. IMPLEMENTATION
A. Hardware Features

Hardware features play a crucial role in collective algo-
rithm selection for efficient performance of MPI collective
operations in HPC systems. Bandwidth and latency of the
communication network have a significant impact on col-
lective operation performance, favoring different algorithms
for different network configurations. The core/thread count,
cache size, and memory bandwidth also influence collective
algorithm performance. For example, pipelined algorithms
that divide data into smaller chunks and process them in a
pipelined manner can efficiently overlap communication and
computation, leading to improved performance in multicore
systems with high memory bandwidth.

Therefore, The hardware features we integrate into our study
include CPU maximum clock speed, L3 cache size, memory
bandwidth, core-count, thread-count, number of sockets, num-
ber of NUMA nodes, number of PCle lanes, PCle version, and
Host Channel Adapter (HCA)’s link speed and link width. We
chose the maximum clock speed over the base clock speed
because most processors adapt their clock speeds based on
the current workload. Since MPI jobs typically have high
workloads, the maximum clock speed is a more accurate
feature to simulate MPI runtime environments. The output of
the 1scpu command also reveals another processor-related
feature: the number of threads per core. However, we exclude
this because it is CPU-dependent and would lead to feature
dependency in model training. Instead of using categorical
features for the HCA names, we opted for the underlying
features: link speed and width.

The current challenge is to determine the most relevant
features for each collective. Feature importance is calculated
by measuring the decrease in Gini impurity for each feature
used to split nodes in the decision trees. This decrease in
impurity is accumulated for each feature across all trees in
the Random Forest model. The accumulated values are then

normalized to obtain the relative importance of each feature.
The greater the decrease in impurity, the more important
the feature is for making predictions. The feature importance
scores for those hardware features and MPI-specific features
are displayed in Fig. 5 and Fig. 6. The top 5 features are
selected based on this ranking to avoid overfitting issues.

C
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Fig. 5: Feature Importance Score of MPI-Specific Features and
Hardware Features Based on Gini Impurity for MPI_Allgather
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Figures 5 and 6 show how MPI-specific features like
message size are the dominant parameters for determining
the algorithms. However, certain hardware features also play
crucial roles, such as L3 cache size for MPI_Allgather and
interconnect bandwidth for MPI_Alltoall. The interconnect
bandwidth is represented in the figures as interconnect speed
and the number of interconnect lanes.

Since MPI_Allgather involves fewer and smaller data trans-
fers between processes, cache size can have a more significant
impact on performance. A larger cache size can help reduce
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cache misses and the time spent waiting for data to be fetched
from memory. On the other hand, MPI_Alltoall involves
sending data to all other processes and receiving data from
all other processes, resulting in a higher total amount of
data exchanged compared to MPI_Allgather. Therefore, in-
terconnect bandwidth becomes more critical for MPI_Alltoall
to ensure efficient communication and minimize bottlenecks.
These findings highlight the importance of considering MPI
parameters and specific hardware features when selecting
algorithms for different collective communication patterns.

B. Dataset

Investigating the inherent correlation between hardware
features and collective algorithms requires a broad spectrum
of distinct clusters into the training data. The list of clusters
encompasses RI2, RI, HASWELL, Catalyst, Spock ORNL,
ROME, TACC Frontera, LLNL, Frontera RTX partition, ARM
Hartree, Mayer, Ray, Sierra, Bridges, Bebop, TACC KNL,
TACC Skylake, and MRI. RI2, RI, and MRI are inter-
nal clusters. Comprehensive information about this dataset,
consisting of over 9000 records for both MPI_Alltoall and
MPI_Allgather, can be found in Table I. This dataset covers a
wide variety of architectures. It covers many Intel, AMD, and
ARM processors and a plethora of InfiniBand and OmniPath
interconnects. Our ML model can leverage this dataset to more
accurately capture the relationship between hardware features
and collective algorithms, leading to better algorithm selection
and improved HPC application performance.

C. Model Selection

The choice of the model is the next critical step following
the selection of the dataset and hardware features. For the
complexity of this dataset (fewer than 10,000 data points)
with limited number of features (14), it is common practice
to use ML instead of neural networks which incurs under-
fitting and larger inference overhead. Therefore, we focused
on traditional Machine Learning models, specifically Gradi-
ent Boosting (GradientBoost), K-Nearest Neighbors (KNN),
Support Vector Machines (SVM), and Random Forest (RF).
Before delving into the specifics of our approach, we first
provide an overview of the machine learning models selected
for evaluation in this study.

K-nearest Neighbor (KNN) [17] classifies a new instance
based on the majority label of its nearest neighbors in the fea-
ture space. While KNN is easy to understand and implement, it
can suffer from high computational costs in high-dimensional
spaces and is sensitive to irrelevant or redundant features.

Support Vector Machine (SVM) [18] is a binary classi-
fication algorithm that aims to find the optimal hyperplane
that maximizes the margin between the two classes. SVMs
are effective in high-dimensional spaces and when the classes
are linearly separable. However, they may underperform when
the data is noisy or overlaps significantly.

Gradient Boosting [19] is a powerful ensemble method that
builds a robust predictive model by combining multiple weak
models, typically decision trees. The algorithm iteratively adds
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new models to the ensemble to correct the errors made by the
existing ensemble.

Random Forest [20] is another ensemble learning method
that operates by constructing multiple decision trees during
training and outputting the class that is the mode of the
classes (classification) or mean prediction (regression) of the
individual trees. It introduces randomness into the model-
building process, which helps to create more diverse trees and
reduce overfitting. Random Forests are robust to outliers and
can handle unbalanced datasets.

We initiated the experiments with simpler models like KNN
and SVM but encountered issues of underfitting. Consequently,
we experimented with more complex models like Gradient
Boosting and Random Forest. These experiments were CPU-
based and made use of the Scikit-learn 1.2.2 package [21]. Af-
ter conducting extensive hyperparameter tuning for each ML
model, we observed that Random Forest outperformed other
models in test accuracy for MPI_Alltoall and MPI_Allgather,
as shown in Table II. Hence, we selected Random Forest for
our framework due to its superior understanding of the dataset.

The algorithm selection task in this work is formulated
as a classification problem. One of the major challenges in
such a problem setting is the potential class imbalance, which
could lead to overfitting issues. To circumvent this, we employ
the Area Under the Curve (AUC) metric as an evaluation
criterion during the cross-validation stage of model training,
as opposed to the conventional accuracy metric. This choice
of metric is more robust to class imbalance and offers a more
comprehensive view of the model’s predictive performance.

D. Accuracy Metrics

The classification accuracy of the ML model is evaluated
in three different ways. The dataset mentioned in the previous
section was split into training and testing datasets using three
different methods: split based on the number of nodes, split
based on the cluster names, and random split. The correspond-
ing test accuracy is shown in Table III.

« Random Test Accuracy: This is the test accuracy based
on the conventional training/testing data split method,
which randomly selects 70% of the total dataset as
training data and uses the remaining 30% as testing data.
This classification accuracy showcases how the model
performs as a traditional ML model.

o Cluster Test Accuracy: In addition to the above, we
split the dataset based on cluster. As shown in Table I,
the dataset is comprised of data derived from different
clusters. We selected around 70% of the total dataset that
only belongs to specific clusters as training data. Since
the test data belongs to clusters not exposed to the ML
model during the training and validation procedure, we
can test the model’s adaptability to new, unseen clusters.

o Node Test Accuracy: The third test accuracy derives
from splitting the data based on the number of nodes, and
the model is trained on a smaller number of nodes and
tested on a larger number of nodes. This test accuracy
demonstrates the scalability of the ML model’s tuning
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TABLE I

Dataset Overview

Cluster Name Processor Interconnect #nodes  #ppn  #msg size  #samples
RI2 Intel Xeon CPU E5-2680 v4 @ 2.40GHz Mellanox InfiniBand (EDR) 5 6 21 609
RI Intel Xeon CPU E5630 @ 2.53GHz Mellanox InfiniBand (QDR) 1 2 21 42
Haswell Intel Xeon CPU E5-2687 Mellanox InfiniBand (HDR) 3 6 21 336
Catalyst FUNITSU A64FX Mellanox InfiniBand (EDR) 4 6 21 483
Spock AMD EPYC 7763 64-Core Mellanox InfiniBand (HDR) 5 8 21 756
Rome AMD EPYC 7601 32-Core Mellanox InfiniBand (EDR) 4 10 21 777
Frontera Intel Xeon Platinum 8280 CPU @ 2.70GHz  Mellanox InfiniBand (EDR) 5 8 21 756
LLNL AMD EPYC 7401 48-Core Mellanox InfiniBand (EDR) 5 6 21 588
Frontera RTX Intel Xeon CPU E5-2620 v4 @ 2.10GHz Mellanox InfiniBand (FDR) 5 5 21 504
Hartree Cavium ThunderX2 CN9975 Mellanox InfiniBand (FDR) 3 5 21 294
Mayer Cavium ThunderX2 CN9975 Mellanox InfiniBand (EDR) 4 7 21 567
Ray IBM POWERS S822L.C Mellanox InfiniBand (EDR) 4 3 21 168
Sierra IBM POWERY9 AC922 Mellanox InfiniBand (EDR) 5 8 21 819
Bridges Intel Xeon CPU E5-2695 v3 @ 2.30GHz Intel Omni-Path 5 6 21 567
Bebop Intel Xeon CPU E5-2695 v4 @ 2.10GHz Intel Omni-Path 6 5 21 525
TACC KNL Intel Xeon Phi CPU 7250 @ 1.40GHz Intel Omni-Path 6 6 21 567
TACC Skylake Intel Xeon Platinum 8170 Intel Omni-Path 5 8 21 756
MRI AMD EPYC 7713 64-Core Mellanox InfiniBand (HDR) 4 8 16 491

TABLE II: Test Accuracy Comparison among GradientBoost,
RF, KNN and SVM after Hyperparameter Tuning

RF GradientBoost KNN

80.5% 64.1%
78.4% 61.9%

SVM

67.3%
60.4%

Collective

MPI_Allgather 88.8%
MPI_Alltoall  89.9%

TABLE III: Classification Accuracy

Node Test
Accuracy

79.8%
86.7%

Cluster Test
Accuracy

84.4%
82.7%

Random Test
Accuracy

MPI_Allgather 88.8%
MPI_Alltoall ~ 89.9%

Collective

strategies when scaled up to exascale systems. Hence,
while the experiments conducted in this paper were
limited to 16 compute nodes, we have observed analogous
outcomes when implementing the framework on larger
scales.

VI. EVALUATION SETUP

The previous section outlines the design of the ML model
and the dataset. This section focuses on the hardware systems,
benchmark tools, and applications used for runtime evaluation,
comparing our tuning strategy with the baseline framework.

A. Hardware

Our experimental evaluations were performed on two HPC
systems: MRI and TACC Frontera. The basic properties of
these machines are displayed in Table I. TACC Frontera is
ranked 19th on the TOPS500 list of Supercomputers located at
the University of Texas. MRI is an internal cluster with a larger
number of processes per node (PPN), which helps examine
the performance of the tuning strategies when dealing with a
greater number of processes.

B. Software

We utilize the OSU Micro-Benchmark Suite (OMB) [22],
a widely-used tool for MPI performance evaluation, as our
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benchmark tool. The applications chosen for evaluation are
Gromacs and MiniFE.

Gromacs [23] is a versatile package for performing molecu-
lar dynamics simulations, primarily designed for biochemical
molecules such as proteins, lipids, and nucleic acids. It is
widely used in computational chemistry and biophysics to
study the dynamic behavior of biomolecules and understand
their interactions.

MiniFE [24], or the Mini Finite-Element application, is
an HPC proxy application that models the computation and
data movement characteristics of unstructured implicit finite
element codes. It is a simplified version of a real-world
application, providing an easy-to-understand environment for
evaluating HPC systems and optimization strategies.

VII. EXPERIMENT RESULTS

This section delves into the discussion of the evaluation
results on the proposed framework, PML-MPI. We use the
OSU-micro-benchmark tools and conduct experiments on two
systems: Frontera and MRI, as introduced in Section VI. The
ultimate goal of this research is to accelerate applications
through a better selection of collective algorithms. Thus, we
evaluate the actual runtime performance. In this section, we
evaluate the performance of an open-source MPI Library,
MVAPICH2 2.3.7 [3] developed by the Ohio State University
with ML-based tuning strategies on both micro-benchmark and
application levels.

A. Addressing the Overhead in Previous Work

Fig. 7 illustrates the core hours expended for offline micro-
benchmarking, ACCLAiM, and our proposed design, as the
number of evaluated nodes expands. We assess these frame-
works’ core hours on the TACC Frontera system, which
employs Intel Xeon Platinum 8280 CPU nodes and Mellanox
InfiniBand (EDR) interconnect. MPI_Allgather is selected
for the model overhead evaluation. The core hours of the
proposed design remain nearly constant, primarily because
it only involves the ML model inference time, which only
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requires one process. Thus, scaling up to a larger number
of nodes does not noticeably increase this inference time. As
depicted in Fig. 7, compared to offline micro-benchmarking at
32 nodes, our proposed design exhibits a speedup of 10E+06 in
model overhead. When juxtaposed with ACCLAiM’s runtime
model overhead at 128 nodes, our design delivers a speedup
of 10E+04. While our proposed framework can potentially
demonstrate a much more significant speedup in overhead
for larger system sizes (such as 8k nodes), we confine the
discussion to a comparison with offline micro-benchmarking
at 32 nodes and ACCLAIM at 128 nodes. This approach
ensures objectivity, as these points of comparison are directly
calculated or derived from published results [11].
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Fig. 7: Core Hours spent by offline micro-benchmarking,
ACCLAiIM and the Proposed Framework evaluated on TACC
Frontera with Intel Xeon Platinum 8280 CPU nodes and
Mellanox InfiniBand (EDR) interconnect. Core Hours(hr):
number of processes X actual runtime

B. Model Applicability

The ML model is redundant if the random selection of
algorithms also leads to comparable runtime performance.
Fig. 8a and 8b have demonstrated that the proposed
framework is compared with random algorithm selection
on Frontera for #node=16 and PPN=56. Choosing the al-
gorithms randomly has caused substantial slowdowns for
MPI_Allgather and MPI_Alltoall on different message sizes.
For the MPI_Allgather operation, our framework demonstrates
a speedup of 15.48x and 9.39x, while for the MPI_Alltoall
operation, we observe a speedup of 8.32x and 3.73x on large
message sizes. The overall performance comparison between
the proposed framework and random selection can be found
in the next section. Similar trends are observable across
other configurations. Therefore, a strategy relying solely on
random algorithm selection is insufficient for real-world use
cases and a robust decision model is crucial to optimize MPI
performance.

C. Cluster-Based Benchmark Results

The ML model is trained utilizing the dataset delineated
in Section V, with any data associated with Frontera and
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Fig. 8: Normalized Runtime Comparison Between the Pro-
posed and Random Selection of Algorithms for MVAPICH2
2.3.7 on TACC Frontera

MRI expressly excluded during the respective experiments.
This methodology enables us to evaluate the model’s runtime
performance on previously unencountered clusters.

As shown in Fig. 9, our proposed framework demon-
strates a clear performance advantage over MVAPICH2 2.3.7-
default for certain message sizes on Frontera. For instance, in
Fig.6.(b), when message sizes are 4096 and 8192 bytes, our
framework selects faster algorithms for MPI_Alltoall, showing
36.6% and 36.33% speedup. A similar trend is observed for
MPI_Allgather on Frontera, with runtime advantages at mes-
sage sizes of 4 and 2048 bytes, achieving 59.97% and 44.29%
speedup. It’s critical to highlight that when both frameworks
choose the same algorithms, any variances in runtime are
primarily attributable to network conditions. For message sizes
of 4096 and 8192, our method tends to select more efficient
algorithms, reflecting the sensitivity of collective algorithms
to message size, as illustrated by Fig. 9. These findings
underscore our approach’s enhanced ability to adapt algorithm
selection in response to changes in message size.

One may wonder if this is purely a serendipitous occurrence.
The same pattern is also observed for the MRI cluster, as
shown in Fig. 10. For both MPI_Alltoall and MPI_Allgather,
our proposed framework selects better algorithms as in Fig. 10.
(c) and . (d), where 150.11% and 154.46% speedup is observed
as it considers the hardware features of the current hardware
system, whereas MVAPICH2 2.3.7 default tuning tables rely
on a static tuning table, which lacks optimization for the
specific cluster.

For Frontera, we tested various configurations, including 1,
2, 4, 8, and 16 nodes, with process-per-node (PPN) settings of
28 (half-subscription) and 56 (full-subscription). For MRI, we
tested various configurations, including 1, 2, 4, and 8 nodes,
with process-per-node (PPN) settings of 64 (half-subscription)
and 128 (full-subscription).

Compared to the exhaustive offline micro-benchmarking of
the optimal algorithms, our proposed method still shows an
acceptable slowdown. On Frontera, the proposed method has
a 0.6% slowdown for MPI_Allgather and a 5.6% slowdown
for MPI_Alltoall. On MRI, the proposed method shows a 5.1%
slowdown for MPI_Allgather and 5.8% for MPI_Alltoall. The
slowdown of the ML-based approach is bounded by 6%,
and our approach significantly curtails the time expended on
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running offline micro-benchmarking.

These diverse configurations allow us to assess the perfor-
mance of our tuning strategies across different levels of system
utilization and concurrency, providing valuable insights into
the effectiveness of our machine learning-based approach in
optimizing application performance.

On MRI, the average speedup of the proposed approach for
MPI_Allgather and MPI_Alltoall is 6.3% and 2.5%, respec-
tively, while the average speedup compared to the random
tuning strategy for MPI_Allgather and MPI_Alltoall is 2.96x
and 2.76x respectively.

To provide a more exhaustive evaluation of the model’s
performance on unencountered clusters, we also juxtapose
the performance of our proposed method with that of Open
MPI 5.1.0a. (OMPI). As shown in Fig. 11, our proposed
approach shows speedup for larger message sizes, particu-
larly beyond 4k, where 49.12% and 57.67% speedup can be
found for MPI_Alltoall , and 54.01% and 36.22% speedup
for MPI_Allgather. Fig. 11 .(a) and .(b) indicate a slight
slowdown with our method when the message size is 1, which
is attributable not to suboptimal algorithm selection but to
prevailing network conditions.

D. Node-Based Benchmark Results

Following the evaluation of the model’s adaptability to
unencountered clusters, the subsequent metric to consider is
the model’s scalability on larger clusters. We conduct this
evaluation by training the model with the dataset, specifically
excluding any data involving a larger number of nodes.

On Frontera, we train the ML model with #nodes=1,2,4,8,
and the runtime performance is compared with the MVA-
PICH2 2.3.7 default for #nodes=16. Fig. 12c¢/12d shows
13.2% and 43.45% improvement with 2048 and 4096-byte
messages, respectively. On MRI, we train the ML model with
#nodes=1,2,4, and the performance is assessed at #nodes=8,
as shown in Fig. 12a and 12b, we can see 74.07% speedup
at message size 1024 bytes for MPI_Allgather and 58.55%
and 49.63% speedup at message 16384 and 32768 bytes for
MPI_Alltoall.

E. Application Results

Since the model’s adaptability and scalability have been
established in the above sections, we employ Gromacs and
MiniFE to investigate the actual speedup within production
environments.

We compile Gromacs on the Frontera with
the configuration flags 7-DGMX_MPI=on” and -
DGMX_BUILD_OWN_FFTW=0ON.” As of Fig. 13, the

number of processes is denoted as #Processes. We use the
BenchMEM benchmark [25] to gather runtime data. For
strong scaling, the runtime diminishes as we increase the
number of processes. Scalability is forfeited when scaling up
to approximately 224 processes.

As shown from Fig. 13, our proposed framework demon-
strates performance benefits compared to the MVAPICH2
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2.3.7 default for both Gromacs and MiniFE. The speedups
are consistent with the OMB benchmark results.

For Gromacs, our design achieves a speedup of 2.90%
compared to the default tuning strategy and a speedup of
19.39% compared to the random selection. For MiniFE, our
design’s speedup compared to the default tuning strategy is
4.43%, and the speedup compared to the random selection is
20.66%.

VIII. RELATED WORK

The optimization of MPI collectives has been a subject of
extensive research, dating back over two decades [26], [27].
This field has become even more active in the past ten years
as MPI collective operations have grown to meet the demands
of HPC and Deep Learning applications [28], [29].

Several efforts have been made regarding analytical models.
Pjesivac-Grbovic et al. [5] extend accepted point-to-point com-
munication models like Hockney, LogP/LogGP, and PLogP
to collective operations. They compare predictions from these
models against experimental data and use the results to con-
struct an optimal decision function for the broadcast collective.

Nuriyev et al. [6] furthered this by developing analyti-
cal models derived from code implementation in place of
abstract mathematical definitions. they separately estimated
model parameters such as latency and bandwidth for each
collective algorithm, integrating them into the corresponding
communication experiment.

The most recent progress made with analytical models is
HAN [7]. HAN uses homogeneous collective communication
modules as submodules for each hardware level and treats
them as tasks. These tasks are then organized to perform effi-
cient hierarchical collective operations. HAN’s design enables
easy substitution of submodules to adapt to new hardware,
offering a resilient and flexible solution for contemporary
platforms while future-proofing upcoming HPC systems.

OMPICollTune [16] employs an online probability model
which incorporates the testing of different algorithms directly
into the MPI library. Recorded performance results are used
to update this model, with the tuner adjusting the probabilities
of selecting an algorithm so that slower algorithms are less
likely to be chosen.

IX. CONCLUSION

In this work, we develop an ML tuning framework on
top of a comprehensive dataset spanning a broad array of
architectural variations and introduce a pre-trained ML model
for the optimal selection of MPI collective algorithms. This
method significantly minimizes model overhead while enhanc-
ing performance compared to default heuristics and state-of-
the-art techniques. The proposed system exhibits a speedup of
up to 6.3% over default heuristics on systems with up to 16
nodes. While this study is performed against the MVAPICH2-
2.3.7 software, it is applicable to any MPI library. This work
provides an alternative solution to the challenges of incor-
porating hardware features in machine learning models and
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sets a new standard for optimizing MPI collective algorithm
selection.

I
on

n future work, we intend to build upon our current research
MPI_Alltoall and MPI_Allgather by advancing the ML

framework for selecting collective algorithms across a broader
range of MPI collective communication, especially those with
more intricate communication hierarchies.

1

2

[3]

[4]

[5

[6]

[7

[8

[9

=
S

[11]

[12]

REFERENCES

[Online]. Available: https://www.intel.com/content/www/us/en/
developer/tools/oneapi/mpi-library.html

E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine er al.,
“Open MPI: Goals, concept, and design of a next generation MPI
implementation,” in Recent Advances in Parallel Virtual Machine and
Message Passing Interface: 11th European PVM/MPI Users’ Group
Meeting Budapest, Hungary, September 19-22, 2004. Proceedings 11.
Springer, 2004, pp. 97-104.

D. K. Panda, H. Subramoni, C.-H. Chu, and M. Bayatpour, “The
mvapich project: Transforming research into high-performance mpi
library for hpc community,” Journal of Computational Science, vol. 52,
p. 101208, 2021.

S. Hunold, A. Bhatele, G. Bosilca, and P. Knees, “Predicting MPI
collective communication performance using machine learning,” in 2020
IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 2020, pp. 259-269.

J. Pjesivac-Grbovi¢, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel,
and J. J. Dongarra, “Performance analysis of MPI collective operations,”
Cluster Computing, vol. 10, pp. 127-143, 2007.

E. Nuriyev and A. Lastovetsky, “Efficient and accurate selection of op-
timal collective communication algorithms using analytical performance
modeling,” IEEE Access, vol. 9, pp. 109 355-109 373, 2021.

X. Luo, W. Wu, G. Bosilca, Y. Pei, Q. Cao, T. Patinyasakdikul,
D. Zhong, and J. Dongarra, “Han: a hierarchical autotuned collective
communication framework,” in 2020 IEEE International Conference on
Cluster Computing (CLUSTER). 1EEE, 2020, pp. 23-34.

A. Faraj, X. Yuan, and D. Lowenthal, “STAR-MPI: self tuned adaptive
routines for MPI collective operations,” in Proceedings of the 20th
annual international conference on Supercomputing, 2006, pp. 199-208.
M. Chaarawi, J. M. Squyres, E. Gabriel, and S. Feki, “A tool for
optimizing runtime parameters of Open MPL” in Recent Advances in
Parallel Virtual Machine and Message Passing Interface: 15th European
PVM/MPI Users’ Group Meeting, Dublin, Ireland, September 7-10,
2008. Proceedings 15. Springer, 2008, pp. 210-217.

“Intel MPI library developer reference for linux os,” Available at
https://www.intel.com/content/www/us/en/content-details/740630/intel-
mpi-library-developer-reference- for-linux-os.html (2022/08/26).

M. Wilkins, Y. Guo, R. Thakur, P. Dinda, and N. Hardavellas, “AC-
CLAiIM: Advancing the practicality of mpi collective communication
autotuning using machine learning,” in 2022 IEEE International Con-
ference on Cluster Computing (CLUSTER). 1EEE, 2022, pp. 161-171.
M. Wilkins, Y. Guo, R. Thakur, N. Hardavellas, P. Dinda, and M. Si, “A
FACT-based approach: Making machine learning collective autotuning
feasible on exascale systems,” in 2021 Workshop on Exascale MPI
(ExaMPI). 1EEE, 2021, pp. 36-45.

770

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in MPICH,” The International Journal of
High Performance Computing Applications, vol. 19, no. 1, pp. 49-66,
2005.

D. Stanzione, J. West, R. T. Evans, T. Minyard, O. Ghattas, and D. K.
Panda, “Frontera: The evolution of leadership computing at the national
science foundation,” in Practice and Experience in Advanced Research
Computing, 2020, pp. 106-111.

R. Kumar, A. Mamidala, and D. K. Panda, “Scaling alltoall collective on
multi-core systems,” in 2008 IEEE International Symposium on Parallel
and Distributed Processing, 2008, pp. 1-8.

S. Hunold and S. Steiner, “Ompicolltune: Autotuning mpi collectives by
incremental online learning,” in 2022 IEEE/ACM International Work-
shop on Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS), 2022, pp. 123-128.

N. S. Altman, “An introduction to kernel and nearest-neighbor non-
parametric regression,” The American Statistician, vol. 46, no. 3, pp.
175-185, 1992.

C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273-297, 1995.

J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 11891232, 2001.

T. K. Ho, “Random decision forests,” in Proceedings of 3rd international
conference on document analysis and recognition, vol. 1. 1EEE, 1995,
pp. 278-282.

[Online]. Available: https://scikit-learn.org/stable/whats_new/v1.2.html
“OSU Micro Benchmarks,” Available at https://mvapich.cse.ohio-
state.edu/benchmarks (2023/06/23).

. Abraham, A. Alekseenko, C. Bergh, C. Blau, E. Briand, M. Doijade,
. Fleischmann, V. Gapsys, G. Garg, S. Gorelov, G. Gouaillardet,
Gray, M. E. Irrgang, F. Jalalypour, J. Jordan, C. Junghans,
Kanduri, S. Keller, C. Kutzner, J. A. Lemkul, M. Lundborg,
Merz, V. Mileti¢, D. Morozov, S. Pall, R. Schulz, M. Shirts,
. Shvetsov, B. Soproni, D. van der Spoel, P. Turner, C. Uphoff,
. Villa, S. Wingbermiihle, A. Zhmurov, P. Bauer, B. Hess, and
Lindahl, “Gromacs 2023.1 manual,” Apr. 2023. [Online]. Available:
https://doi.org/10.5281/zenodo.7852189

“Mini finite element application (miniFE),” Available at https:/
github.com/Mantevo/miniFE.

Kutzner, Péll, Hess, d. Groot, Bock, and Matthes, “A free GROMACS
benchmark set” [Online]. Available: https://www.mpinat.mpg.de/
grubmueller/bench

S. Sistare, R. Vandevaart, and E. Loh, “Optimization of MPI collectives
on clusters of large-scale smp’s,” in Proceedings of the 1999 ACM/IEEE
conference on Supercomputing, 1999, pp. 23—es.

L. P. Huse, “MPI optimization for smp based clusters interconnected
with sci,” in Recent Advances in Parallel Virtual Machine and Message
Passing Interface: 7th European PVM/MPI Users’ Group Meeting Bal-
atonfiired, Hungary, September 10-13, 2000 Proceedings 7. Springer,
2000, pp. 56-63.

J. Jose, K. Hamidouche, J. Zhang, A. Venkatesh, and D. K. Panda, “Op-
timizing collective communication in UPC,” in 2014 IEEE International
Parallel & Distributed Processing Symposium Workshops. 1EEE, 2014,
pp. 361-370.

S. Li, T. Hoefler, and M. Snir, “NUMA-aware shared-memory collective
communication for MPL” in Proceedings of the 22nd international
symposium on High-performance parallel and distributed computing,
2013, pp. 85-96.

merp»oTpoz

Authorized licensed use limited to: The Ohio State University. Downloaded on January 06,2025 at 21:12:21 UTC from IEEE Xplore. Restrictions apply.



