
PML-MPI: A Pre-Trained ML Framework for
Efficient Collective Algorithm Selection in MPI

Mingzhe Han, Goutham Kalikrishna Reddy Kuncham, Ben Michalowicz, Rahul Vaidya,
Mustafa Abduljabbar, Aamir Shafi, Hari Subramoni, Dhabaleswar K. (DK) Panda

Department of Computer Science and Engineering
The Ohio State University, Columbus, Ohio, USA

{han.1453, kuncham.2, michalowicz.2, vaidya.64, abduljabbar.1, shafi.16, subramoni.1, panda.2}@osu.edu

Abstract—The Message Passing Interface is the de facto
standard in high-performance computing (HPC) for inter-process
communication. MPI libraries employ numerous algorithms for
each collective communication pattern whose behavior is largely
affected by the underlying hardware, communication pattern,
message size, and number of processes involved. Choosing the
“best” algorithm for every possible scenario is a non-trivial
task. MPI libraries primarily depend on heuristics for algo-
rithm selection on previously unseen clusters, often resulting in
evident slowdowns. Although offline micro-benchmarking tools
can exhaustively identify optimal algorithms for all configura-
tions, this is an excessively time-consuming approach. Machine
Learning (ML) emerged as an alternate approach. However, most
ML-based approaches employ online methods that introduce
additional runtime overhead, which makes this impractical at
scale. To address this challenge, we propose a pre-trained ML
framework that eliminates runtime overhead. Our model requires
only a quick inference for each new cluster without necessitating
model retraining. It incorporates various hardware features to
enhance its adaptability across diverse clusters. Our model’s
training utilizes tuning data from a broad range of architectures,
promoting its versatility and our proposed system exhibits up
to 6.3% speedup over default heuristics on systems of up to
1024 cores while significantly minimizing model overhead in
comparison to existing methodologies.

Index Terms—MPI, collective communication, auto-tuning,
Machine Learning

I. INTRODUCTION

As MPI-based applications continue to scale, communica-

tion efficiency has become a top priority. Collective com-

munication operations, which enable efficient data exchange

and synchronization among processes, are critical to MPI

communication. Most MPI libraries, including popular im-

plementations such as Intel MPI [1], Open MPI [2], and

MVAPICH [3], provide multiple algorithms for each collective

operation. However, selecting the optimal algorithm for these

collective operations can be challenging, as it depends on

various factors, including MPI-specific parameters (number of

nodes, process-per-node, and message size), hardware features

(CPU clock speed, cache size, interconnect and etc.), and

network situations. The selection of sub-optimal algorithms

can have a substantial impact on performance, leading to an

average degradation of up to 35%-45% [4].

This research is supported in part by NSF grants #1818253, #1854828,
#2007991, #2018627, #2311830, #2312927, and XRAC grant #NCR-130002.

Several approaches have been proposed to automate this

process, including analytical models [5], [6], [7], [8], offline

micro-benchmarking [9], [10], and machine learning (ML) ap-

proach [4], [11], [12]. Analytical models, which use statistical

functions to approximate the runtime of existing algorithms,

have shown limited accuracy and present challenges to ex-

panding to new algorithms in production environments. Offline

micro-benchmarking, which requires exhaustive pruning of

the entire search space, imposes considerable demands on

computational resources. Prior studies in machine learning

approaches have predominately adopted online training frame-

works. Despite attempts to streamline the training process [11],

online data collection and subsequent model training following

each node allocation can significantly negate the advantages

conferred by optimal algorithm selection.

To address the limitations of existing methods, we intro-

duce a novel offline model training framework. This diverges

from traditional ML methodologies that solely consider MPI-

specific parameters. Contrary to the prevalent belief that the

hardware feature space is too complex to explore [11], our

framework integrates hardware features into model training.

This empowers the ML models to generalize effectively to

new clusters and entirely eliminates the necessity of online

data collection and model training.

Broadly speaking, there are two categories of collective

algorithms: flat and two-level. Two-level collectives introduce

additional complexities by distinguishing intra/inter-node com-

munication algorithms. For the purpose of our research, we

will focus solely on flat collectives [13]. This focus will

streamline our analysis and allow us to effectively evaluate

the impact of our machine learning-based approach.

This paper makes the following contributions:

• We have compiled a comprehensive dataset with a wide

variety of CPU architectures and interconnects from 18

different clusters.

• We propose a low-overhead ML-based collective auto-

tuning framework that can be integrated into MPI li-

braries. On a system with 8,192 nodes, each featuring 56

cores, our framework can use up to six orders of mag-

nitude fewer core-hours in startup overhead compared to

offline micro-benchmarking and the state-of-the-art ML

approaches.

761

2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

979-8-3503-6460-6/24/$31.00 ©2024 IEEE
DOI 10.1109/IPDPSW63119.2024.00140

20
24

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
ist

rib
ut

ed
 P

ro
ce

ss
in

g
Sy

m
po

siu
m

 W
or

ks
ho

ps
 (I

PD
PS

W
) |

 9
79

-8
-3

50
3-

64
60

-6
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IP

DP
SW

63
11

9.
20

24
.0

01
40

Authorized licensed use limited to: The Ohio State University. Downloaded on January 06,2025 at 21:12:21 UTC from IEEE Xplore. Restrictions apply.

• We thoroughly study the performance of the proposed

framework using an elaborate train-test-split methodol-

ogy. In terms of collective performance, we demonstrate

up to 0.5x - 2x speedups compared to MVAPICH2-2.3.7

and OpenMPI 5.1.0a.

To the best of our knowledge, our proposed design is the
first to provide an efficient collective algorithm selection
at the lowest MPI application runtime overhead (i.e. in
constant time) on unseen clusters and unexplored large-
scale node counts.

Fig. 1: Core Hours spent by offline micro-benchmarking and

ACCLAiM evaluated on TACC Frontera with Intel Xeon

Platinum 8280 CPU nodes and Mellanox InfiniBand (EDR)

interconnect. Core Hours(hr): number of processes x actual

runtime

II. MOTIVATION

Currently, offline micro-benchmarking is the standard

methodology for achieving optimal collective algorithm selec-

tion [9]. This method generates tuning tables, which are look-

up tables mapping particular input parameters to the optimal

collective algorithm, enabling fast optimal algorithm selection

during application runtime. However, this approach is time-

consuming and often takes enormous computing resources to

run on a cluster.

Consider a scenario where a user tries to run an MPI-

supported application on a new cluster, where no tuning

tables are available. Prior to application execution, user must

invest substantial time in running the offline micro-benchmarks

and generating tuning tables. For application scientists and

engineers who operate in a more transient manner, this time-

consuming tuning phase is a significant impediment. This

challenge is exacerbated in today’s HPC landscape, where

users frequently migrate their applications across different

clusters due to resource availability, cost-effectiveness, or

specific hardware requirements.

Machine Learning has offered a faster alternative to offline

micro-benchmarking. However, the state-of-the-art ML frame-

work, ACCLAiM [11], requires data collection and model

training and inference at application runtime, which poses a

significant constraint, particularly for workflows that require

frequent job submissions.

Fig. 1 demonstrates the core hours spent for an offline

micro-benchmarking tool and ACCLAiM, as the number of

nodes evaluated increases. Core hours are the product of the

number of processes and actual runtime. We evaluate those

frameworks’ core hours on TACC Frontera [14] with Intel

Xeon Platinum 8280 CPU nodes and Mellanox InfiniBand

(EDR) interconnect. MPI Allgather is chosen for the model

overhead evaluation. We calculate the core hours of offline

micro-benchmarking with runtime results of our in-house tool

that represent such classes. It is important to note that the

runtime presented here is derived purely from benchmark

results and hence does not include other overhead associated

with software implementation. The core hours of ACCLAiM

are computed by the model overhead, 5.62 minutes on 128

nodes for MPI Allgather [11]. Given the limited information,

we deliberately ignore the communication overhead, so the

actual core hours of ACCLAiM are lower-bounded by the

orange line in Fig. 1.

To overcome this significant runtime overhead, we have

proposed a pre-trained ML approach by incorporating hard-

ware features, requiring less than a second of model inference

overhead during the compilation time. It is important to note

that this compilation process is a one-time occurrence for each

cluster.

III. BACKGROUND

Most MPI libraries offer more than one algorithm for each

collective operation. The focus of our research paper revolves

around flat algorithms for MPI Allgather and MPI Alltoall

found in the MVAPICH library. The following paragraphs

provide brief descriptions of those algorithms. For more in-

formation, readers are encouraged to consult this papers [13].

MPI Allgather employs a variety of algorithms includ-

ing Recursive Doubling, Ring, Bruck, and Recursive Dou-

bling Communication algorithms. Recursive Doubling algo-

rithm performs pairwise exchanges between processes, us-

ing a recursive halving and doubling approach, resulting in

O(log(p)) communication steps. In Ring algorithm, processes

are organized in a logical ring structure, and each process

iteratively sends its data to its neighboring process until all

processes have received the complete gathered data. Bruck

algorithm is a simple and efficient algorithm for implementing

MPI Allgather. In each iteration k, process i sends data to

process (i−2k) and receives data from process (i+2k). Recur-

sive Doubling Communication is a variation of the Recursive

Doubling algorithm. Through exchanging subsets of data, this

algorithm reduces the amount of data that needs to be sent

and received at each communication step, resulting in lower

communication overhead compared to the basic Recursive

Doubling algorithm.

MPI Alltoall consists of various algorithms like Bruck,

Scatter Dest (Scatter Destination), Pairwise (Pairwise Ex-

change), RD (Recursive Doubling), and Inplace (in-place)

762

Authorized licensed use limited to: The Ohio State University. Downloaded on January 06,2025 at 21:12:21 UTC from IEEE Xplore. Restrictions apply.

Algorithms. The Scatter Dest Algorithm operates in a scatter-

like manner, where each process sends a distinct message to

the designated destination process. The Scatter Destination

[15] algorithm aims to optimize the distribution of data among

processes by minimizing communication overhead and ensur-

ing efficient data exchange. The Pairwise Exchange algorithm

requires p − 1 steps. In each step k, where 1 ≤ k < p, each

process determines its target process as (rank⊕k) (using XOR

operation) and proceeds to exchange data directly with that

target process. In the in-place algorithm, the memory usage is

optimized by sending and receiving data to the same buffer.

Given an MPI job with a specific number of nodes (#nodes),

processes per node (PPN), and message size, which algorithm

would be the optimal selection on the current system? Most

MPI libraries employ heuristic methods or some form of

decision knowledge to choose the “best” algorithm in a given

context; however, this is a nontrivial task. As highlighted by

Hunold et al., empirical decision trees built on benchmark

results form the default tuning strategy of Open MPI 4.0.2,

but this can lead to a 30-45% slowdown due to sub-optimal

algorithm selection [4]. The challenge lies in the fact that the

optimal choice of algorithm heavily depends on the machine’s

hardware features. Empirical knowledge acquired from one

machine cannot be fully transferred to another, even with

an identical job size and scale. As illustrated in Fig. 2,

the performance of MPI Alltoall algorithms fluctuates when

running on different hardwares, as observed on TACC Frontera

and internal cluster, MRI. Frontera has Intel Xeon Platinum

8280 CPU nodes and Mellanox InfiniBand (EDR) intercon-

nect, while MRI is equipped with AMD EPYC 7713 64-

Core Processor and Mellanox InfiniBand (HDR) interconnect.

Despite implementing identical configurations and runtime

parameters, noteworthy variations in their performance exist.

For instance, Bruck’s algorithm, represented by the blue line,

significantly outperforms other algorithms on Frontera for

message sizes ranging from 32 to 1024, but its performance

degrades on MRI for the same message range. On the contrary,

Scatter Dest’s algorithm, depicted as the grey line, has a

relatively long runtime for smaller message sizes on Frontera,

while it performs exceptionally well for the same range on

MRI and even emerges as the optimal algorithm at message

size 256 and 512.

(a) MPI Alltoall on Frontera (b) MPI Alltoall on MRI

Fig. 2: Runtime comparison between various MPI Alltoall

algorithms on 2 nodes and 16 process-per-node across different

clusters

Apart from hardware factors, network congestion can also

impact collective algorithm selection. In order to mitigate the

impact of the dynamic factors, we gathered the training and

testing dataset as in Table I and the performance results by av-

eraging multiple iterations of experiments. Recent approaches

in [11], [16] primarily adopt online methods where dynamic

factors can be circumvented. However, these online approaches

often come with ineligible model overhead. In this work, we

acknowledge the noise in our data caused by dynamic factors

but posit that by considering static hardware features, we can

still improve over the default tuning strategies, which only take

into account MPI-specific features.

IV. DESIGN

The proposed framework mainly comprises two stages:

offline training and online inference. As shown in Fig. 3, the

proposed ML training framework involves collecting cluster-

specific and MPI-specific features using a feature extraction

script which uses built-in Linux commands to obtain cluster-

specific features such as CPU Clock Frequency, L3 Cache,

core count, and number of nodes. These features are sub-

sequently employed by the ML model during the inference

process. Notably, this ML model is pre-trained and then

shipped along with the MPI library, thereby obviating the

necessity for end-users to train the model independently.

Fig. 3: Offline Training Framework

As depicted in Fig. 4, the framework examines whether

a tuning table for the current cluster exists during the MPI

library compilation. If such a table is present, the framework

bypasses the ML tuning process, opting to use the existing

tuning table instead. Conversely, if no such tuning table exists

for the cluster, the framework initiates the process of extracting

the MPI-specific features and hardware features. The pre-

trained ML model from offline training stage subsequently

takes both sets of features as input and generates the tuning

tables. These tables are stored in a readily accessible JSON

format for use during the MPI application runtime.

763

Authorized licensed use limited to: The Ohio State University. Downloaded on January 06,2025 at 21:12:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Online Inference Framework

V. IMPLEMENTATION

A. Hardware Features

Hardware features play a crucial role in collective algo-

rithm selection for efficient performance of MPI collective

operations in HPC systems. Bandwidth and latency of the

communication network have a significant impact on col-

lective operation performance, favoring different algorithms

for different network configurations. The core/thread count,

cache size, and memory bandwidth also influence collective

algorithm performance. For example, pipelined algorithms

that divide data into smaller chunks and process them in a

pipelined manner can efficiently overlap communication and

computation, leading to improved performance in multicore

systems with high memory bandwidth.

Therefore, The hardware features we integrate into our study

include CPU maximum clock speed, L3 cache size, memory

bandwidth, core-count, thread-count, number of sockets, num-

ber of NUMA nodes, number of PCIe lanes, PCIe version, and

Host Channel Adapter (HCA)’s link speed and link width. We

chose the maximum clock speed over the base clock speed

because most processors adapt their clock speeds based on

the current workload. Since MPI jobs typically have high

workloads, the maximum clock speed is a more accurate

feature to simulate MPI runtime environments. The output of

the lscpu command also reveals another processor-related

feature: the number of threads per core. However, we exclude

this because it is CPU-dependent and would lead to feature

dependency in model training. Instead of using categorical

features for the HCA names, we opted for the underlying

features: link speed and width.

The current challenge is to determine the most relevant

features for each collective. Feature importance is calculated

by measuring the decrease in Gini impurity for each feature

used to split nodes in the decision trees. This decrease in

impurity is accumulated for each feature across all trees in

the Random Forest model. The accumulated values are then

normalized to obtain the relative importance of each feature.

The greater the decrease in impurity, the more important

the feature is for making predictions. The feature importance

scores for those hardware features and MPI-specific features

are displayed in Fig. 5 and Fig. 6. The top 5 features are

selected based on this ranking to avoid overfitting issues.

IG(p) = 1−
C∑

i=1

p2i (1)

IG(p) is the Gini Impurity, C is the number of classes, and

pi is the probability of class i at the node.

� ��� ��� ��� ���

�	
��
	����
��������

����
�������
������
� ��!���"#$�%�&

�������������
' ���
������������
(���
�)���
#$�%�&

�����
(���
���

*"�� ��

���

�����
���������+�
� ,
�'���
�)���#$-.&

�	����
��	

(�
� �"�
��.�#��&
���� /�
��.�#�����&

�������
�	
�����
�
�
���

Fig. 5: Feature Importance Score of MPI-Specific Features and

Hardware Features Based on Gini Impurity for MPI Allgather

� ���� ��� ���� ��� ���� ��� ����

����
�������
�����
(���

���

*"�� ��
��������

���

�����
(�
� �"�
��.�#��&

�	
��
	����
���������+�
� ,
�'���
�)���#$-.&

������
� ��!���"#$�%�&
�	����

������������
(���
�)���
#$�%�&
�������������
' ���

��	
���� /�
��.�#�����&

�������
�	
�����
�
�
���

Fig. 6: Feature Importance Score of MPI-Specific Features and

Hardware Features Based on Gini Impurity for MPI Alltoall

Figures 5 and 6 show how MPI-specific features like

message size are the dominant parameters for determining

the algorithms. However, certain hardware features also play

crucial roles, such as L3 cache size for MPI Allgather and

interconnect bandwidth for MPI Alltoall. The interconnect

bandwidth is represented in the figures as interconnect speed

and the number of interconnect lanes.

Since MPI Allgather involves fewer and smaller data trans-

fers between processes, cache size can have a more significant

impact on performance. A larger cache size can help reduce

764

Authorized licensed use limited to: The Ohio State University. Downloaded on January 06,2025 at 21:12:21 UTC from IEEE Xplore. Restrictions apply.

cache misses and the time spent waiting for data to be fetched

from memory. On the other hand, MPI Alltoall involves

sending data to all other processes and receiving data from

all other processes, resulting in a higher total amount of

data exchanged compared to MPI Allgather. Therefore, in-

terconnect bandwidth becomes more critical for MPI Alltoall

to ensure efficient communication and minimize bottlenecks.

These findings highlight the importance of considering MPI

parameters and specific hardware features when selecting

algorithms for different collective communication patterns.

B. Dataset

Investigating the inherent correlation between hardware

features and collective algorithms requires a broad spectrum

of distinct clusters into the training data. The list of clusters

encompasses RI2, RI, HASWELL, Catalyst, Spock ORNL,

ROME, TACC Frontera, LLNL, Frontera RTX partition, ARM

Hartree, Mayer, Ray, Sierra, Bridges, Bebop, TACC KNL,

TACC Skylake, and MRI. RI2, RI, and MRI are inter-

nal clusters. Comprehensive information about this dataset,

consisting of over 9000 records for both MPI Alltoall and

MPI Allgather, can be found in Table I. This dataset covers a

wide variety of architectures. It covers many Intel, AMD, and

ARM processors and a plethora of InfiniBand and OmniPath

interconnects. Our ML model can leverage this dataset to more

accurately capture the relationship between hardware features

and collective algorithms, leading to better algorithm selection

and improved HPC application performance.

C. Model Selection

The choice of the model is the next critical step following

the selection of the dataset and hardware features. For the

complexity of this dataset (fewer than 10,000 data points)

with limited number of features (14), it is common practice

to use ML instead of neural networks which incurs under-

fitting and larger inference overhead. Therefore, we focused

on traditional Machine Learning models, specifically Gradi-

ent Boosting (GradientBoost), K-Nearest Neighbors (KNN),

Support Vector Machines (SVM), and Random Forest (RF).

Before delving into the specifics of our approach, we first

provide an overview of the machine learning models selected

for evaluation in this study.

K-nearest Neighbor (KNN) [17] classifies a new instance

based on the majority label of its nearest neighbors in the fea-

ture space. While KNN is easy to understand and implement, it

can suffer from high computational costs in high-dimensional

spaces and is sensitive to irrelevant or redundant features.

Support Vector Machine (SVM) [18] is a binary classi-

fication algorithm that aims to find the optimal hyperplane

that maximizes the margin between the two classes. SVMs

are effective in high-dimensional spaces and when the classes

are linearly separable. However, they may underperform when

the data is noisy or overlaps significantly.

Gradient Boosting [19] is a powerful ensemble method that

builds a robust predictive model by combining multiple weak

models, typically decision trees. The algorithm iteratively adds

new models to the ensemble to correct the errors made by the

existing ensemble.

Random Forest [20] is another ensemble learning method

that operates by constructing multiple decision trees during

training and outputting the class that is the mode of the

classes (classification) or mean prediction (regression) of the

individual trees. It introduces randomness into the model-

building process, which helps to create more diverse trees and

reduce overfitting. Random Forests are robust to outliers and

can handle unbalanced datasets.

We initiated the experiments with simpler models like KNN

and SVM but encountered issues of underfitting. Consequently,

we experimented with more complex models like Gradient

Boosting and Random Forest. These experiments were CPU-

based and made use of the Scikit-learn 1.2.2 package [21]. Af-

ter conducting extensive hyperparameter tuning for each ML

model, we observed that Random Forest outperformed other

models in test accuracy for MPI Alltoall and MPI Allgather,

as shown in Table II. Hence, we selected Random Forest for

our framework due to its superior understanding of the dataset.

The algorithm selection task in this work is formulated

as a classification problem. One of the major challenges in

such a problem setting is the potential class imbalance, which

could lead to overfitting issues. To circumvent this, we employ

the Area Under the Curve (AUC) metric as an evaluation

criterion during the cross-validation stage of model training,

as opposed to the conventional accuracy metric. This choice

of metric is more robust to class imbalance and offers a more

comprehensive view of the model’s predictive performance.

D. Accuracy Metrics

The classification accuracy of the ML model is evaluated

in three different ways. The dataset mentioned in the previous

section was split into training and testing datasets using three

different methods: split based on the number of nodes, split

based on the cluster names, and random split. The correspond-

ing test accuracy is shown in Table III.

• Random Test Accuracy: This is the test accuracy based

on the conventional training/testing data split method,

which randomly selects 70% of the total dataset as

training data and uses the remaining 30% as testing data.

This classification accuracy showcases how the model

performs as a traditional ML model.

• Cluster Test Accuracy: In addition to the above, we

split the dataset based on cluster. As shown in Table I,

the dataset is comprised of data derived from different

clusters. We selected around 70% of the total dataset that

only belongs to specific clusters as training data. Since

the test data belongs to clusters not exposed to the ML

model during the training and validation procedure, we

can test the model’s adaptability to new, unseen clusters.

• Node Test Accuracy: The third test accuracy derives

from splitting the data based on the number of nodes, and

the model is trained on a smaller number of nodes and

tested on a larger number of nodes. This test accuracy

demonstrates the scalability of the ML model’s tuning

765

Authorized licensed use limited to: The Ohio State University. Downloaded on January 06,2025 at 21:12:21 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Dataset Overview

Cluster Name Processor Interconnect #nodes #ppn #msg size #samples

RI2 Intel Xeon CPU E5-2680 v4 @ 2.40GHz Mellanox InfiniBand (EDR) 5 6 21 609
RI Intel Xeon CPU E5630 @ 2.53GHz Mellanox InfiniBand (QDR) 1 2 21 42
Haswell Intel Xeon CPU E5-2687 Mellanox InfiniBand (HDR) 3 6 21 336
Catalyst FUIJITSU A64FX Mellanox InfiniBand (EDR) 4 6 21 483
Spock AMD EPYC 7763 64-Core Mellanox InfiniBand (HDR) 5 8 21 756
Rome AMD EPYC 7601 32-Core Mellanox InfiniBand (EDR) 4 10 21 777
Frontera Intel Xeon Platinum 8280 CPU @ 2.70GHz Mellanox InfiniBand (EDR) 5 8 21 756
LLNL AMD EPYC 7401 48-Core Mellanox InfiniBand (EDR) 5 6 21 588
Frontera RTX Intel Xeon CPU E5-2620 v4 @ 2.10GHz Mellanox InfiniBand (FDR) 5 5 21 504
Hartree Cavium ThunderX2 CN9975 Mellanox InfiniBand (FDR) 3 5 21 294
Mayer Cavium ThunderX2 CN9975 Mellanox InfiniBand (EDR) 4 7 21 567
Ray IBM POWER8 S822LC Mellanox InfiniBand (EDR) 4 3 21 168
Sierra IBM POWER9 AC922 Mellanox InfiniBand (EDR) 5 8 21 819
Bridges Intel Xeon CPU E5-2695 v3 @ 2.30GHz Intel Omni-Path 5 6 21 567
Bebop Intel Xeon CPU E5-2695 v4 @ 2.10GHz Intel Omni-Path 6 5 21 525
TACC KNL Intel Xeon Phi CPU 7250 @ 1.40GHz Intel Omni-Path 6 6 21 567
TACC Skylake Intel Xeon Platinum 8170 Intel Omni-Path 5 8 21 756
MRI AMD EPYC 7713 64-Core Mellanox InfiniBand (HDR) 4 8 16 491

TABLE II: Test Accuracy Comparison among GradientBoost,

RF, KNN and SVM after Hyperparameter Tuning

Collective RF GradientBoost KNN SVM

MPI Allgather 88.8% 80.5% 64.1% 67.3%
MPI Alltoall 89.9% 78.4% 61.9% 60.4%

TABLE III: Classification Accuracy

Collective Random Test
Accuracy

Cluster Test
Accuracy

Node Test
Accuracy

MPI Allgather 88.8% 84.4% 79.8%
MPI Alltoall 89.9% 82.7% 86.7%

strategies when scaled up to exascale systems. Hence,

while the experiments conducted in this paper were

limited to 16 compute nodes, we have observed analogous

outcomes when implementing the framework on larger

scales.

VI. EVALUATION SETUP

The previous section outlines the design of the ML model

and the dataset. This section focuses on the hardware systems,

benchmark tools, and applications used for runtime evaluation,

comparing our tuning strategy with the baseline framework.

A. Hardware

Our experimental evaluations were performed on two HPC

systems: MRI and TACC Frontera. The basic properties of

these machines are displayed in Table I. TACC Frontera is

ranked 19th on the TOP500 list of Supercomputers located at

the University of Texas. MRI is an internal cluster with a larger

number of processes per node (PPN), which helps examine

the performance of the tuning strategies when dealing with a

greater number of processes.

B. Software

We utilize the OSU Micro-Benchmark Suite (OMB) [22],

a widely-used tool for MPI performance evaluation, as our

benchmark tool. The applications chosen for evaluation are

Gromacs and MiniFE.

Gromacs [23] is a versatile package for performing molecu-

lar dynamics simulations, primarily designed for biochemical

molecules such as proteins, lipids, and nucleic acids. It is

widely used in computational chemistry and biophysics to

study the dynamic behavior of biomolecules and understand

their interactions.

MiniFE [24], or the Mini Finite-Element application, is

an HPC proxy application that models the computation and

data movement characteristics of unstructured implicit finite

element codes. It is a simplified version of a real-world

application, providing an easy-to-understand environment for

evaluating HPC systems and optimization strategies.

VII. EXPERIMENT RESULTS

This section delves into the discussion of the evaluation

results on the proposed framework, PML-MPI. We use the

OSU-micro-benchmark tools and conduct experiments on two

systems: Frontera and MRI, as introduced in Section VI. The

ultimate goal of this research is to accelerate applications

through a better selection of collective algorithms. Thus, we

evaluate the actual runtime performance. In this section, we

evaluate the performance of an open-source MPI Library,

MVAPICH2 2.3.7 [3] developed by the Ohio State University

with ML-based tuning strategies on both micro-benchmark and

application levels.

A. Addressing the Overhead in Previous Work

Fig. 7 illustrates the core hours expended for offline micro-

benchmarking, ACCLAiM, and our proposed design, as the

number of evaluated nodes expands. We assess these frame-

works’ core hours on the TACC Frontera system, which

employs Intel Xeon Platinum 8280 CPU nodes and Mellanox

InfiniBand (EDR) interconnect. MPI Allgather is selected

for the model overhead evaluation. The core hours of the

proposed design remain nearly constant, primarily because

it only involves the ML model inference time, which only

766

Authorized licensed use limited to: The Ohio State University. Downloaded on January 06,2025 at 21:12:21 UTC from IEEE Xplore. Restrictions apply.

requires one process. Thus, scaling up to a larger number

of nodes does not noticeably increase this inference time. As

depicted in Fig. 7, compared to offline micro-benchmarking at

32 nodes, our proposed design exhibits a speedup of 10E+06 in

model overhead. When juxtaposed with ACCLAiM’s runtime

model overhead at 128 nodes, our design delivers a speedup

of 10E+04. While our proposed framework can potentially

demonstrate a much more significant speedup in overhead

for larger system sizes (such as 8k nodes), we confine the

discussion to a comparison with offline micro-benchmarking

at 32 nodes and ACCLAiM at 128 nodes. This approach

ensures objectivity, as these points of comparison are directly

calculated or derived from published results [11].

��������
��������
�������	
��������
�����
��
�����
��
�����
�	
�����
��
�����
��
�����
��
�����
��
�����
�

� 	 � � �� �	 �� �	
�

	�
�

��
	

��
	�

	�
��

��
��

��
�	��
��
��
��
	

�
��
	

�

��
�
�
��
�

������
�	
��
��

�������
��	
����	
��
���� ������� �
������

����� �����

Fig. 7: Core Hours spent by offline micro-benchmarking,

ACCLAiM and the Proposed Framework evaluated on TACC

Frontera with Intel Xeon Platinum 8280 CPU nodes and

Mellanox InfiniBand (EDR) interconnect. Core Hours(hr):

number of processes x actual runtime

B. Model Applicability

The ML model is redundant if the random selection of

algorithms also leads to comparable runtime performance.

Fig. 8a and 8b have demonstrated that the proposed

framework is compared with random algorithm selection

on Frontera for #node=16 and PPN=56. Choosing the al-

gorithms randomly has caused substantial slowdowns for

MPI Allgather and MPI Alltoall on different message sizes.

For the MPI Allgather operation, our framework demonstrates

a speedup of 15.48x and 9.39x, while for the MPI Alltoall

operation, we observe a speedup of 8.32x and 3.73x on large

message sizes. The overall performance comparison between

the proposed framework and random selection can be found

in the next section. Similar trends are observable across

other configurations. Therefore, a strategy relying solely on

random algorithm selection is insufficient for real-world use

cases and a robust decision model is crucial to optimize MPI

performance.

C. Cluster-Based Benchmark Results

The ML model is trained utilizing the dataset delineated

in Section V, with any data associated with Frontera and

(a) #node=16, PPN=56 on
MPI Allgather

(b) #node=16, PPN=56 on
MPI Alltoall

Fig. 8: Normalized Runtime Comparison Between the Pro-

posed and Random Selection of Algorithms for MVAPICH2

2.3.7 on TACC Frontera

MRI expressly excluded during the respective experiments.

This methodology enables us to evaluate the model’s runtime

performance on previously unencountered clusters.

As shown in Fig. 9, our proposed framework demon-

strates a clear performance advantage over MVAPICH2 2.3.7-

default for certain message sizes on Frontera. For instance, in

Fig.6.(b), when message sizes are 4096 and 8192 bytes, our

framework selects faster algorithms for MPI Alltoall, showing

36.6% and 36.33% speedup. A similar trend is observed for

MPI Allgather on Frontera, with runtime advantages at mes-

sage sizes of 4 and 2048 bytes, achieving 59.97% and 44.29%

speedup. It’s critical to highlight that when both frameworks

choose the same algorithms, any variances in runtime are

primarily attributable to network conditions. For message sizes

of 4096 and 8192, our method tends to select more efficient

algorithms, reflecting the sensitivity of collective algorithms

to message size, as illustrated by Fig. 9. These findings

underscore our approach’s enhanced ability to adapt algorithm

selection in response to changes in message size.

One may wonder if this is purely a serendipitous occurrence.

The same pattern is also observed for the MRI cluster, as

shown in Fig. 10. For both MPI Alltoall and MPI Allgather,

our proposed framework selects better algorithms as in Fig. 10.

(c) and . (d), where 150.11% and 154.46% speedup is observed

as it considers the hardware features of the current hardware

system, whereas MVAPICH2 2.3.7 default tuning tables rely

on a static tuning table, which lacks optimization for the

specific cluster.

For Frontera, we tested various configurations, including 1,

2, 4, 8, and 16 nodes, with process-per-node (PPN) settings of

28 (half-subscription) and 56 (full-subscription). For MRI, we

tested various configurations, including 1, 2, 4, and 8 nodes,

with process-per-node (PPN) settings of 64 (half-subscription)

and 128 (full-subscription).

Compared to the exhaustive offline micro-benchmarking of

the optimal algorithms, our proposed method still shows an

acceptable slowdown. On Frontera, the proposed method has

a 0.6% slowdown for MPI Allgather and a 5.6% slowdown

for MPI Alltoall. On MRI, the proposed method shows a 5.1%

slowdown for MPI Allgather and 5.8% for MPI Alltoall. The

slowdown of the ML-based approach is bounded by 6%,

and our approach significantly curtails the time expended on

767

Authorized licensed use limited to: The Ohio State University. Downloaded on January 06,2025 at 21:12:21 UTC from IEEE Xplore. Restrictions apply.

running offline micro-benchmarking.

These diverse configurations allow us to assess the perfor-

mance of our tuning strategies across different levels of system

utilization and concurrency, providing valuable insights into

the effectiveness of our machine learning-based approach in

optimizing application performance.

On MRI, the average speedup of the proposed approach for

MPI Allgather and MPI Alltoall is 6.3% and 2.5%, respec-

tively, while the average speedup compared to the random

tuning strategy for MPI Allgather and MPI Alltoall is 2.96x

and 2.76x respectively.

To provide a more exhaustive evaluation of the model’s

performance on unencountered clusters, we also juxtapose

the performance of our proposed method with that of Open

MPI 5.1.0a. (OMPI). As shown in Fig. 11, our proposed

approach shows speedup for larger message sizes, particu-

larly beyond 4k, where 49.12% and 57.67% speedup can be

found for MPI Alltoall , and 54.01% and 36.22% speedup

for MPI Allgather. Fig. 11 .(a) and .(b) indicate a slight

slowdown with our method when the message size is 1, which

is attributable not to suboptimal algorithm selection but to

prevailing network conditions.

D. Node-Based Benchmark Results

Following the evaluation of the model’s adaptability to

unencountered clusters, the subsequent metric to consider is

the model’s scalability on larger clusters. We conduct this

evaluation by training the model with the dataset, specifically

excluding any data involving a larger number of nodes.

On Frontera, we train the ML model with #nodes=1,2,4,8,

and the runtime performance is compared with the MVA-

PICH2 2.3.7 default for #nodes=16. Fig. 12c/12d shows

13.2% and 43.45% improvement with 2048 and 4096-byte

messages, respectively. On MRI, we train the ML model with

#nodes=1,2,4, and the performance is assessed at #nodes=8,

as shown in Fig. 12a and 12b, we can see 74.07% speedup

at message size 1024 bytes for MPI Allgather and 58.55%

and 49.63% speedup at message 16384 and 32768 bytes for

MPI Alltoall.

E. Application Results

Since the model’s adaptability and scalability have been

established in the above sections, we employ Gromacs and

MiniFE to investigate the actual speedup within production

environments.

We compile Gromacs on the Frontera with

the configuration flags ”-DGMX MPI=on” and ”-

DGMX BUILD OWN FFTW=ON.” As of Fig. 13, the

number of processes is denoted as #Processes. We use the

BenchMEM benchmark [25] to gather runtime data. For

strong scaling, the runtime diminishes as we increase the

number of processes. Scalability is forfeited when scaling up

to approximately 224 processes.

As shown from Fig. 13, our proposed framework demon-

strates performance benefits compared to the MVAPICH2

2.3.7 default for both Gromacs and MiniFE. The speedups

are consistent with the OMB benchmark results.

For Gromacs, our design achieves a speedup of 2.90%

compared to the default tuning strategy and a speedup of

19.39% compared to the random selection. For MiniFE, our

design’s speedup compared to the default tuning strategy is

4.43%, and the speedup compared to the random selection is

20.66%.

VIII. RELATED WORK

The optimization of MPI collectives has been a subject of

extensive research, dating back over two decades [26], [27].

This field has become even more active in the past ten years

as MPI collective operations have grown to meet the demands

of HPC and Deep Learning applications [28], [29].

Several efforts have been made regarding analytical models.

Pjesivac-Grbovic et al. [5] extend accepted point-to-point com-

munication models like Hockney, LogP/LogGP, and PLogP

to collective operations. They compare predictions from these

models against experimental data and use the results to con-

struct an optimal decision function for the broadcast collective.

Nuriyev et al. [6] furthered this by developing analyti-

cal models derived from code implementation in place of

abstract mathematical definitions. they separately estimated

model parameters such as latency and bandwidth for each

collective algorithm, integrating them into the corresponding

communication experiment.

The most recent progress made with analytical models is

HAN [7]. HAN uses homogeneous collective communication

modules as submodules for each hardware level and treats

them as tasks. These tasks are then organized to perform effi-

cient hierarchical collective operations. HAN’s design enables

easy substitution of submodules to adapt to new hardware,

offering a resilient and flexible solution for contemporary

platforms while future-proofing upcoming HPC systems.

OMPICollTune [16] employs an online probability model

which incorporates the testing of different algorithms directly

into the MPI library. Recorded performance results are used

to update this model, with the tuner adjusting the probabilities

of selecting an algorithm so that slower algorithms are less

likely to be chosen.

IX. CONCLUSION

In this work, we develop an ML tuning framework on

top of a comprehensive dataset spanning a broad array of

architectural variations and introduce a pre-trained ML model

for the optimal selection of MPI collective algorithms. This

method significantly minimizes model overhead while enhanc-

ing performance compared to default heuristics and state-of-

the-art techniques. The proposed system exhibits a speedup of

up to 6.3% over default heuristics on systems with up to 16

nodes. While this study is performed against the MVAPICH2-

2.3.7 software, it is applicable to any MPI library. This work

provides an alternative solution to the challenges of incor-

porating hardware features in machine learning models and

768

Authorized licensed use limited to: The Ohio State University. Downloaded on January 06,2025 at 21:12:21 UTC from IEEE Xplore. Restrictions apply.

(a) MPI Allgather, #nodes=16,
PPN=56

(b) MPI Alltoall, #nodes=16,
PPN=56

(c) MPI Allgather, #nodes=16,
PPN=28

(d) MPI Alltoall, #nodes=16,
PPN=28

Fig. 9: Comparison of the algorithm selection strategies between the Proposed design and MVAPICH2 2.3.7 default on TACC

Frontera using Cluster-Based Benchmarks

(a) MPI Allgather, #nodes=8,
PPN=128

(b) MPI Alltoall, #nodes=8,
PPN=128

(c) MPI Allgather, #nodes=8,
PPN=64

(d) MPI Alltoall, #nodes=8,
PPN=64

Fig. 10: Comparison of the algorithm selection strategies between the Proposed design and MVAPICH2 2.3.7 default on MRI

using Cluster-Based Benchmark Results

(a) MPI Allgather, #nodes=16 (b) MPI Allgather, #nodes=8 (c) MPI Alltoall, #nodes=16 (d) MPI Alltoall, #nodes=8

Fig. 11: Comparison of the algorithm selection strategies between the Proposed design and Open MPI 5.1.0a at PPN=56

(full-subscription) on TACC Frontera using Cluster-Based Benchmark Results

(a) MPI Allgather, MRI,
#nodes=8

(b) MPI Alltoall, MRI,
#nodes=8

(c) MPI Allgather, Frontera,
#nodes=16

(d) MPI Alltoall, Frontera,
#nodes=16

Fig. 12: Comparison of the algorithm selection strategies between the Proposed design and MVAPICH2 2.3.7 default at PPN=56

(full-subscription) using Node-Based Benchmark Results

769

Authorized licensed use limited to: The Ohio State University. Downloaded on January 06,2025 at 21:12:21 UTC from IEEE Xplore. Restrictions apply.

(a) MiniFE, PPN=28 (b) MiniFE, PPN=56 (c) Gromacs, PPN=28 (d) Gromacs, PPN=56

Fig. 13: Actual Runtime Comparison between the Proposed design and MVAPICH2 2.3.7 default on MiniFE and Gromacs

sets a new standard for optimizing MPI collective algorithm

selection.

In future work, we intend to build upon our current research

on MPI Alltoall and MPI Allgather by advancing the ML

framework for selecting collective algorithms across a broader

range of MPI collective communication, especially those with

more intricate communication hierarchies.

REFERENCES

[1] [Online]. Available: https://www.intel.com/content/www/us/en/
developer/tools/oneapi/mpi-library.html

[2] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine et al.,
“Open MPI: Goals, concept, and design of a next generation MPI
implementation,” in Recent Advances in Parallel Virtual Machine and
Message Passing Interface: 11th European PVM/MPI Users’ Group
Meeting Budapest, Hungary, September 19-22, 2004. Proceedings 11.
Springer, 2004, pp. 97–104.

[3] D. K. Panda, H. Subramoni, C.-H. Chu, and M. Bayatpour, “The
mvapich project: Transforming research into high-performance mpi
library for hpc community,” Journal of Computational Science, vol. 52,
p. 101208, 2021.

[4] S. Hunold, A. Bhatele, G. Bosilca, and P. Knees, “Predicting MPI
collective communication performance using machine learning,” in 2020
IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 2020, pp. 259–269.

[5] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel,
and J. J. Dongarra, “Performance analysis of MPI collective operations,”
Cluster Computing, vol. 10, pp. 127–143, 2007.

[6] E. Nuriyev and A. Lastovetsky, “Efficient and accurate selection of op-
timal collective communication algorithms using analytical performance
modeling,” IEEE Access, vol. 9, pp. 109 355–109 373, 2021.

[7] X. Luo, W. Wu, G. Bosilca, Y. Pei, Q. Cao, T. Patinyasakdikul,
D. Zhong, and J. Dongarra, “Han: a hierarchical autotuned collective
communication framework,” in 2020 IEEE International Conference on
Cluster Computing (CLUSTER). IEEE, 2020, pp. 23–34.

[8] A. Faraj, X. Yuan, and D. Lowenthal, “STAR-MPI: self tuned adaptive
routines for MPI collective operations,” in Proceedings of the 20th
annual international conference on Supercomputing, 2006, pp. 199–208.

[9] M. Chaarawi, J. M. Squyres, E. Gabriel, and S. Feki, “A tool for
optimizing runtime parameters of Open MPI,” in Recent Advances in
Parallel Virtual Machine and Message Passing Interface: 15th European
PVM/MPI Users’ Group Meeting, Dublin, Ireland, September 7-10,
2008. Proceedings 15. Springer, 2008, pp. 210–217.

[10] “Intel MPI library developer reference for linux os,” Available at
https://www.intel.com/content/www/us/en/content-details/740630/intel-
mpi-library-developer-reference-for-linux-os.html (2022/08/26).

[11] M. Wilkins, Y. Guo, R. Thakur, P. Dinda, and N. Hardavellas, “AC-
CLAiM: Advancing the practicality of mpi collective communication
autotuning using machine learning,” in 2022 IEEE International Con-
ference on Cluster Computing (CLUSTER). IEEE, 2022, pp. 161–171.

[12] M. Wilkins, Y. Guo, R. Thakur, N. Hardavellas, P. Dinda, and M. Si, “A
FACT-based approach: Making machine learning collective autotuning
feasible on exascale systems,” in 2021 Workshop on Exascale MPI
(ExaMPI). IEEE, 2021, pp. 36–45.

[13] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in MPICH,” The International Journal of
High Performance Computing Applications, vol. 19, no. 1, pp. 49–66,
2005.

[14] D. Stanzione, J. West, R. T. Evans, T. Minyard, O. Ghattas, and D. K.
Panda, “Frontera: The evolution of leadership computing at the national
science foundation,” in Practice and Experience in Advanced Research
Computing, 2020, pp. 106–111.

[15] R. Kumar, A. Mamidala, and D. K. Panda, “Scaling alltoall collective on
multi-core systems,” in 2008 IEEE International Symposium on Parallel
and Distributed Processing, 2008, pp. 1–8.

[16] S. Hunold and S. Steiner, “Ompicolltune: Autotuning mpi collectives by
incremental online learning,” in 2022 IEEE/ACM International Work-
shop on Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS), 2022, pp. 123–128.

[17] N. S. Altman, “An introduction to kernel and nearest-neighbor non-
parametric regression,” The American Statistician, vol. 46, no. 3, pp.
175–185, 1992.

[18] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[19] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[20] T. K. Ho, “Random decision forests,” in Proceedings of 3rd international
conference on document analysis and recognition, vol. 1. IEEE, 1995,
pp. 278–282.

[21] [Online]. Available: https://scikit-learn.org/stable/whats new/v1.2.html
[22] “OSU Micro Benchmarks,” Available at https://mvapich.cse.ohio-

state.edu/benchmarks (2023/06/23).
[23] M. Abraham, A. Alekseenko, C. Bergh, C. Blau, E. Briand, M. Doijade,

S. Fleischmann, V. Gapsys, G. Garg, S. Gorelov, G. Gouaillardet,
A. Gray, M. E. Irrgang, F. Jalalypour, J. Jordan, C. Junghans,
P. Kanduri, S. Keller, C. Kutzner, J. A. Lemkul, M. Lundborg,
P. Merz, V. Miletić, D. Morozov, S. Páll, R. Schulz, M. Shirts,
A. Shvetsov, B. Soproni, D. van der Spoel, P. Turner, C. Uphoff,
A. Villa, S. Wingbermühle, A. Zhmurov, P. Bauer, B. Hess, and
E. Lindahl, “Gromacs 2023.1 manual,” Apr. 2023. [Online]. Available:
https://doi.org/10.5281/zenodo.7852189

[24] “Mini finite element application (miniFE),” Available at https://
github.com/Mantevo/miniFE.

[25] Kutzner, Páll, Hess, d. Groot, Bock, and Matthes, “A free GROMACS
benchmark set.” [Online]. Available: https://www.mpinat.mpg.de/
grubmueller/bench

[26] S. Sistare, R. Vandevaart, and E. Loh, “Optimization of MPI collectives
on clusters of large-scale smp’s,” in Proceedings of the 1999 ACM/IEEE
conference on Supercomputing, 1999, pp. 23–es.

[27] L. P. Huse, “MPI optimization for smp based clusters interconnected
with sci,” in Recent Advances in Parallel Virtual Machine and Message
Passing Interface: 7th European PVM/MPI Users’ Group Meeting Bal-
atonfüred, Hungary, September 10–13, 2000 Proceedings 7. Springer,
2000, pp. 56–63.

[28] J. Jose, K. Hamidouche, J. Zhang, A. Venkatesh, and D. K. Panda, “Op-
timizing collective communication in UPC,” in 2014 IEEE International
Parallel & Distributed Processing Symposium Workshops. IEEE, 2014,
pp. 361–370.

[29] S. Li, T. Hoefler, and M. Snir, “NUMA-aware shared-memory collective
communication for MPI,” in Proceedings of the 22nd international
symposium on High-performance parallel and distributed computing,
2013, pp. 85–96.

770

Authorized licensed use limited to: The Ohio State University. Downloaded on January 06,2025 at 21:12:21 UTC from IEEE Xplore. Restrictions apply.

