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Abstract—There has been growing interest in computing rate-
distortion functions for real-world data, as they can provide a
theoretical benchmark for compression problems. However, a
generalized form of rate-distortion that includes side information
and coding for computing has been underexplored, despite
its relevance in modern compression problems. To address
this gap, we propose a new method for estimating the rate-
distortion function for computing with side information, using
a Lagrangian framework with neural network-parametrized
encoding and decoding strategies. This approach enables targeting
specific points on the rate-distortion curve through gradient-
based optimization. Our methodology is validated in synthetic
environments where rate-distortion functions are known, ensuring
accuracy in estimation. Additionally, we extend its application to
practical, high-dimensional channel state information compression
scenarios. We provide rate-distortion estimation results on these
scenarios, which in turn enables us to quantify the usefulness of
side information in the practical scenarios. '

I. INTRODUCTION

The rate-distortion function [1], which characterizes the opti-
mal rate-distortion trade-off, serves as a theoretical benchmark
for assessing the effectiveness of compression algorithms, as
highlighted in recent studies [?], [2]-[4]. However, accurately
computing Shannon’s information measures, such as entropy
and mutual information which form the basis of rate-distortion
function, is notably challenging. This is particularly true in
scenarios involving real-world distributions where one must
rely solely on samples without any additional knowledge of
the distributions, or in cases involving high-dimensional input
sources. Closed-form solutions for these measures are generally
limited to specific circumstances, e.g., Gaussian sources.

A. Computing rate-distortion functions

An approach to numerically compute the rate-distortion
functions and associated information measures for general
distributions has been devised based on iterative algorithms
in 1972 by Blahut [5] and Arimoto [6]. Known collectively
as the Blahut-Arimoto algorithms, they have been adapted to
address multiterminal source coding settings [7].

However, these conventional iterative approaches face limita-
tions, especially when applied to high-dimensional or con-
tinuous sources [3]. To overcome these challenges, recent

IThe code is available at https://github.com/Heasung-Kim/rate-distortion-
side-information.

Z,D
L} Encoder v > Decoder %
I
(A) B)
Y

Fig. 1. Coding for Computing with Side Information. We consider a
configuration where switch (A) remains open while switch (B) is closed,
permitting access to side information at the decoder. The decoder aims to
compute a function Z = g(X,Y); we let Z and D denote the decoder’s
output and distortion, respectively.

studies have explored solutions utilizing neural networks or
advanced optimization techniques. The Restricted Boltzmann
Machines is integrated with neural networks to estimate
rate-distortion functions [2]. In [3], rate-distortion function
duality concepts, e.g., [8], is utilized in estimation methods. A
sandwich bound for rate-distortion function is introduced in [4]
through distribution parameterization with neural networks.
In [9], neural estimation methods with generative model
framework are used. Notably, the Wasserstein gradient descent
algorithm proposed in [?], has demonstrated state-of-the-art
performance for rate-distortion estimation, without relying on
neural networks.

B. Rate-distortion function for computing with side information

The rate-distortion function concept can be extended to
encompass scenarios where side information, correlated with
the input source, is available at the decoder, or at both the
encoder and decoder, as illustrated in Figure 1. This adaptation
is widely recognized as the Wyner-Ziv rate-distortion function
[10]. Additionally, the notion of the rate-distortion is further
broadened by considering communication systems where the
goal is to compute a function of the source. Such applications of
the Wyner-Ziv rate-distortion function are commonly referred
to as Coding for Computing [11].

Such a broader perspective of the rate-distortion function
is crucial for evaluating compression algorithms in practical
scenarios and understanding side information’s role in various
contexts. It also offers a way to quantify the relevance of
different types of side information for various sources.

While recent compression techniques increasingly incor-
porate side information [12]-[14] with specific objectives,
research on rate-distortion estimation with side information,
especially for continuous or large-dimensional distributions,



remains limited. Prior studies have focused on discrete sources
and side information [15], extending the Blahut-Arimoto Al-
gorithm but often struggle with high-dimensional distributions
particularly when there is no a priori knowledge of the
distributions. Recently, [16] introduced neural network-based
methods for estimation of rate-distortion function with side
information with discrete codewords, however, prioritizing
variational upper bounds of the rate-disstortion functions
optimization.

Our contributions address these gaps through a neural
network-based direct estimation method for the rate-distortion
function for computing with side information, along with
applicable methodologies:

C. Contributions

We present a generalized framework for estimating the rate-
distortion function for computing with side information. We
formulate a Lagrangian loss function where the minimization
of this function is achieved through specific encoding and
decoding schemes that can achieve point(s) on the rate-
distortion function. Our algorithm focuses on minimizing the
loss by parameterizing the conditional distributions of the
codewords for a given source and side information, as well as
the decoder. The algorithm is designed to alternatively update
these parameters to efficiently minimize the Lagrangian loss.

The effectiveness of our algorithm is validated through
numerical evaluation, particularly in cases where the rate-
distortion function is known, such as with correlated Gaussian
distributions for the source and side information. These sim-
ulations demonstrate that our algorithm consistently provides
a precise estimation of the rate-distortion function. Extending
beyond the synthetic data, we also apply our approach to
practical scenarios. This includes assessing the possible gains
when side information is available when considering channel
state information compression problems and illustrating the
practical relevance and applicability of our method to high-
dimensional sources.

II. SYSTEM MODEL AND PROPOSED METHOD

Consider the communication system illustrated in Fig. 1,
where switch (A) is open and (B) is closed. The primary
source and side information pair (X,Y) is assumed to be
independently and identically distributed (i.i.d.), following a
joint distribution px y (x,y). Here,  and y are realizations
of X and Y from the domains X and ), respectively. The
codeword is represented by U from the domain ¢/ and the
output of the decoder is Z € Z, with D denoting a distortion
level and d being a distortion measure defined as a mapping
as d : Z x Z — RT. For readability, we also let X denote the
output of the decoder when the system aims to reconstruct the
original information X. This system implies a Markov chain
Y-X-U.

In our general framework we assume the objective is to
reconstruct a function Z = ¢g(X,Y), where Z is not necessarily
identical to X. In this setting, the corresponding rate-distortion
function determines the minimum necessary rate to compute

Fig. 2.  Rp, is convex with respect to distortion D. For a given slope s,
minimizing the y-intercept of a line originating from an achievable point
(Ds, Rs) in the rate-distortion region leads to a new y-intercept, which
corresponds to a line that is tangent to the Rp ¢ curve at point(s) with the
same slope s.

g(X,Y) within a given distortion threshold D. The rate-
distortion function, denoted Rpc, is given as follows [17].

Definition 1 (Rate-distortion function for computing with side
information).

min

Rpc(D) = X
qu|x (ulz), f(u,y): E[d(Z,Z)]<D

I(x;0ly) 1)

where qy|x (u|r) is a conditional probability distribution of
U given X. Z and Z are the desired function output and the
decoder output, respectively. f is a decoder taking w and side
information y as an input pair as f(u,y) = 2.

In this paper, we focus on developing a method to estimate
Rp (D) for a general function, particularly in scenarios where
the joint distribution px y (x,y) is unknown and a dataset of
N data points (x;, ;)Y that are sampled from px y (z,y) is
available. This setup is typical in real-world contexts, where
the exact distribution underlying a dataset is often not known.

We start with a Lagrangian formulation to address the
optimization problem defined in (1) by exploiting convexity
and non-increasing property of Rpc(D) with respect to the
distortion D. We can formulate an optimization problem for
finding the vertical intercept of the tangent with slope s(< 0)
to the rate-distortion curve as follows.

Rpc(Ds) — sDy = min {I(X;U|Y) — sE[d(Z, Z)]}. (2)

qu|x,f

For a given slope s and a corresponding achievable (distortion,
rate) pair, (ﬁs, ]?S) illustrated in Fig. 2, the y-intercept
at this line is Ry — sD,. This intercept is equivalent to
I(X;U|Y) — sE[d(Z, Z)], attained by the specific encoding
and decoding schemes associated with ;| x, f corresponding
to (D,, R,). This y-intercept can be minimized through
optimization, adjusting the encoding and decoding schemes
accordingly.

Due to the convexity of Rpc, the lowest achievable value
of the vertical intercept corresponds to Rp (D) — sDy where
the distortion Dy and rate Rpc(Ds) is a point lies on the Rp ¢
curve itself. By determining a point on the Rp ¢ curve for each
slope s and then varying s, we can estimate the Rpc curve.



Algorithm 1 Estimation of Rate-Distortion Function for Computing with Side Information at Decoder

: Input: Slope s, dataset {z;, yi}ij\il, initialized sets of parameters 00, O, Oycc, number of iterations 7, T’ batch size b

:fort=0to T do

for t' =0to T’ do

Update 6, < 0, — Ve, L2

Sample minibatch B = {(z;,;)}}_; and sample {u;}}_; from {q|x=z,}’_;

1

2

3

4 | Compute VL; = V13" [log(qu)x (wi|zi; 8p0) — log quiy (wilyi; Opr)] —
5: Update 6y, <= 6y, — Vg, L1 and Ogec < Oaec — V. L1
6

7

8

9

s[d(g(ws, yi), (i, yi; Oaec))]

Sample minibatch B’ = {(x;,y;)}’_; and sample {u;}’_; from {qu|x—s, }’y
Compute VL, = V3 Zgzl[log(qU|X(ui|$i; 00) — log quy (uilys; Opr))

To facilitate estimation using a given dataset, we reformulate
the optimization term as follows.

QU|X(U‘X)
QU\Y(U|Y>

where qyjy (uly) = 3 ,.c v x|y (#[y)qu|x (u]z) (when X is a
discrete random variable) and Z = f(U,Y). This formulation
enables the computation of expectation terms using Monte
Carlo estimation with data points following the distribution
gx,v,u(z,y,u). Here, we use the notation ¢ to represent a
probability distribution influenced by ¢y x and f, while p has
been used to denote distributions independent of gy x and f.

To proceed with this approach, we parameterize the key
components of the optimization problem using a neural network
based model. First, we represent the conditional distribution
quix (ulz) as qu|x(u|z;60p) where 6,, denotes a set of
parameters for qi7|x. Similarly, we parameterize the decoding
function with a set of parameters Oge. as f(u, y; Ogec)-

It should be noted that the parameterization of g/ x (u|; 6po)
directly determines the related marginal and joint distributions,
such as gy x v, qu|y, and gx,y,u under the fixed px y. These
distributions, governed by the parameter set 6, are thus
denoted as qu|x,y.6,,» qU|Y:6,> a0 GX v,U;6,,-

In summary, we begin with the Lagrangian optimization
problem for the rate-distortion function, also known as the
supporting hyperplane method. We employ neural networks to
parameterize the key components of our loss function. This
optimization strategy draws parallels with the conventional
Blahut-Arimoto algorithms [5], [6] in terms of formulating the
Lagrangian loss, while also drawing inspiration from recent
works [4], which has achieved state-of-the-art results in rate-
distortion estimation through neural networks.

In the following subsections, we delve into a comprehensive
explanation of our proposed algorithm, detailing the steps and
techniques involved. We will also discuss the methods used
for parameterizing the components in our framework.

A. Algorithm

The proposed method is detailed in Algorithm 1. This algo-
rithm iteratively computes the gradient of the loss function (3)
over T training iterations and updates the relevant parameters
to minimize the the loss.

Line 3. Specifically, in each iteration, a minibatch with size
b, B = {(xi,y:)}%_,, is sampled. To estimate the expectation

min ) {EX,Y,U |:10g

qu|xf

~sE[d(Z,2)]}, @)

Ex,y,ullog qux (U|X) — log qujy (U]Y)], it is necessary to
generate data point triples (z;, y;, u;) following the distribution
px,y (2, 9)qu|x (u|r; @y ). For each sampled pair (z;,y;), a
corresponding w; is drawn from the distribution g/ | x (u|2; @po).
This sampling results in triples (x;,y;, u;) that adhere to the
joint distribution gx y,u (z,y,u) = px,y (2, y)qu|x (u|z; Opo).

Utilizing these samples, we compute the average gradient
of the loss function, which involves the computation of

the expected value of 1ogM. This corresponds to

1% 8) quy (UY)
Au|x V1% 3%0) iati
401y oy (UTV) based on the parameterization where gy .g,,

is formulated as

lo

qu |y, (uly) = Z x|y (Z|Y)qu|x,v 0, (1|2, y)
TEX

= ZpX|Y(x|y)QU|X(u|x;0po)'
rzeX

“

The efficient computation of g7y ,e,, is critical, as it needs to
be executed for multiple instances to obtain the average of the
log probability. However, this computation of (4) presents
a substantial challenge due to the unknown nature of the
distribution py|y, with only sample-based access available.
Furthermore, using sampling approaches for the estimation
of the sum over X is non-trivial when domain X" is a high-
dimensional space and the data instances are limited. To address
this issue, we leverage the following lemma.

Lemma 1. Consider a fixed set of parameters 6, and scenario
where the side information Y is available only at the decoder.
Then we have

QU|X(U|X7 Opo)
quy (U]Y)

Based on this lemma, we conclude that instead of exe-
cuting the summation in (4) to derive qyy,p,, for a given
qu|x (u]x; 60 ), we can model the distribution of U given Y as
qU|y(u\y; 0,:) where 0, denotes a set of free parameters and
then use the parameterized distribution qy|y (uly; 8)) as an
argument for the problem (5). The solution of (5) will lead to
quly (u|y; Opr) = quye,, (uly) as long as the parametrization
of quy (uly; Op) is expressive enough.

Lines 4-5. By wusing the parametrized functions
QUlX(u|x§0po)s QU\Y(u|y§0pr)s and f(u,¥y; Ogec), in Line 4,

&)

argminEx y ¢ |log

£ = qU|Y;6,,-
qu|y



we compute the gradient of (3). Subsequently, in Line 5, the
parameters ), and 8y are updated to minimize the loss.

Lines 6-9. At the end of each iteration, we update
qu|y (u|y; @) by solving (5) based on the newly updated
qu|x (u|z; 8yo) to correctly compute the main loss function
(3) in the subsequent iteration. Problem (5) can be solved
through gradient descent updates of the set of parameters 6,
as described in Lines 7-9 of Algorithm 1. More specifically,
for each inner-iteration (occurring 7’ times), we sample a
minibatch and obtain pairs {(z;,y;,u;)}’_,. We then update
0, to minimize the objective in (5). Practically, we have found
that setting 7/ = 1 and reusing the same minibatch B for B’
not only offers computational efficiency but also provides a
tight upper bound on the rate-distortion function relative to
theoretical optimality (as detailed in Sec. III).

B. Parameterization

In Algorithm 1, we utilize three distinct parameterized
models: qux (ul: 0p0). qufy (uly; Byr). and f(u, y: Bucc). A
conventional approach to parameterizing distributions involves
assuming a specific distribution form and then parameteriz-
ing its moments, such as the mean and variance. Various
parameterization setups exist, including Gaussian, uniform
distribution-based parameterizations, and more sophisticated
forms relevant to modern machine learning research [18]. In our
study, we opt for Gaussian distributions for parameterization.
For example, in sampling from the distribution gy x (u|2; Op),
the random variable U is assumed to follow a Gaussian
distribution characterized by mean f(x;0p,) and variance
¥(x; 6p0), both of which depend on the given realization z. The
functions p and ¥ can be designed in various ways, depending
on the specifics of the problem, where they take x as input
and output the corresponding mean and variance.

We provide more details on the implementation in Sec. III.
The choice of parameterization and the construction of these
functions yield a point that represents an upper bound on the
rate-distortion curve. This is because the variable spaces for the
minimization problem in (3) is constrained by the assumptions
inherent in the chosen distribution models. Thus, while these
parameterizations facilitate the computational tractability of the
problem, they also inherently define the limits of the solution
space explored in the optimization process.

III. NUMERICAL EVALUATION

In order to evaluate our algorithm’s efficacy, our initial
step involves scenarios where the true rate-distortion function
for computing with side information is known in closed
form. Beyond these environments, we consider estimating the
rate-distortion function for practical problem associated with
channel state information (CSI) compression [19], incorporating
side information.

A. 2-Component White Gaussian Noise

We adapt a scenario from [11, Sec. 21.1], featuring
a 2-component White Gaussian Noise (2-WGN(P,p))
source, where (X,Y) forms pairs of i.id. jointly

p=0.6 p=0.8

Rate
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Fig. 3. Compression of Gaussian sources: Rate-distortion functions for
computing with side information for various p and the estimated points.
The solid lines represent the known rate-distortion functions based on (6)
Gaussian random variables. Each pair in the sequence
(X1, Y1), (X2, Y2),...,(Xn,Yo) has zero mean
(E[X] = E[Y] = 0), equal variance (E[X?] = E[Y?] = P),
and a correlation coefficient p = E[XY]/P. With
a squared error distortion measure d and a function
9(X,Y)=(X+Y)/2, Rpc is given by

2
M) , 0}.
4D

To implement our approach, we employed a multi-layer
perceptron (MLP) to model gy x (u|®;6p0), quiy (u|y; Op)s
and  f(u,y;04c). Specifically, for gy x(u|z;60p) and
quiy (uly; O), we use a single-layer MLP that takes an n-
dimensional input and outputs a 2n-dimensional vector, half
for mean and half for variance, to model an n-dimensional in-
dependent multivariate Gaussian distribution. For f(u, y; Ogec),
we used a 2-layer MLP with leaky ReLU activation, which
takes (u,y) as an input and outputs an n-dimensional 2.

In Fig. 3, we set P =1,n =100, and provide simulation
results for various p values in {0.2,0.4,0.6,0.8}. Each subplot
displays the Rpc curves, alongside four rate-distortion points
estimated by our algorithm for different slopes s. We also plot
Rpc curves with p=0. y-axis has natural units (Nats) and z-
axis represents mean squared error distortion. The dashed lines
associated with RD,C(D) corresponds to the learning trajectory,
i.e., the achieved (distortion, rate) points during the training
process.

Our algorithm consistently estimates points on Rp ¢ within
a small tolerance of less than 5x 1073 in average. A decrease
in the s value corresponds to points on the left side of the
curve, indicating higher rates and lower distortion. As can be
seen, a higher correlation p results in a reduced rate for a given

1
Rpc(D) = max {5 log ( (6)
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Fig. 4. CSI Compression: Comparison of the estimated rate-distortion function,
estimated rate-distortion function with side information, and (distortion, rate)
points achieved by the neural compression algorithm.

distortion, and our method effectively estimates points on Rp c
regardless of various p values.

B. Applications to CSI Compression

This subsection focuses on the compression of Frequency
Division Duplex Downlink (DL) Channel State Information
(CSI), an area of growing interest in wireless research [19].

1) Setup: The objective is to compress the DL CSI, X, at
the User Equipment (UE) side. The UE then transmits this
compressed information, or codeword U, to the Base Station
(BS). The aim is to minimize the Normalized Mean Squared
Error (NMSE), defined as E[|| X — X||2/] X 3], where X is
the decoder output and || - ||2 is elementwise square norm.

To enhance compression efficiency, uplink (UL) CSI can
be utilized as side information Y. This is based on the
observation that UL CSI is typically acquired (available) via
pilot transmissions from the UE to BS, and is correlated with
DL CSI due to frequency-invariant characteristics [20], [21].

2) Simulation environment configuration: A CSI instance X
characterized by the setting (ny,nsc), With ni = 8 represents
the number of transmit (Tx) antennas and ny. = 667 denotes the

number of subcarriers. UL CSI also has the same parameters.

Our numerical evaluation use the CDL-C model specified
in [22]. We utilize inception block-based [23] encoding and

decoding schemes [24] for the distribution parameterization.

In [25], detailed configurations for parameterizing distributions
[23], [24], data preprocessing methods, and neural network
training methods are provided.

3) Constructive neural CSI compression algorithms: For
further analysis, we implement CSI compression algorithms
having fixed rates (codeword lengths) with the same architecture
used in Sec. III-B2. Specifically, replacing the encoder’s output
with a deterministic function, rather than providing mean and
variance for probability distributions, facilitates the design of
deterministic codewords. This modification involves adapting
the encoder to directly output a codeword. Subsequently, a
discretization technique, as outlined in [26], is employed to
generate fixed [.-bit codeword for a given CSI instance.

4) Results: In Figure 4, four distinct curves are presented:
the estimated rate-distortion curve with side information, RD,C,
the one without side information, RC, the rate-distortion curve
derived from the constructive compression algorithm with side
information (compression with SI), and the curve without
side information (compression). The points plotted on RD,C
and RC denote distinct estimated rate-distortion points, with
their positions corresponding to specific s values: -100, -
10, -1, -0.1, and -0.01 arranged from left to right. RC is
obtained by [4] and using the same neural architectures but
which ignores the side information. By adjusting s values, we
explore distortion levels from 0dB to approximately -23dB,
connecting these points linearly to serve as an upper bound for
the estimated rate-distortion curves. The rate-distortion curves
from the constructive algorithms are generated by varying the
compression bit rates as I € {16,32,64,128} and connecting
the points.

As expected, introducing UL CSI for DL CSI compression
is beneficial as RD,C < Re, especially at lower CSI feedback
rates. For instance, with near 0 nats/sample rate, the BS can still
retrieve reasonable information from UL CSI, achieving better
than -2dB NMSE. This advantage diminishes with increased
feedback resources; for example, at 150 Nats/Sample, the gain
is observed to be near zero.

The neural compression algorithm incorporating side in-
formation, achieved a rate-distortion curve that establishes an
upper bound of }?D,C, and the discrepancy between RD,C and the
constructive CSI compression algorithm’s performance signals
room for improvement. For example, in the case of around 80
Nats/sample, we may anticipate a potential improvement about
1dB. Notably, this gap is less pronounced in scenarios with
lower rates, allowing one to have a conjecture that the actual
performance of the CSI compression algorithms is closer to
RD,C-

IV. DISCUSSION

In this paper, we propose a new algorithm for estimating the
generalized rate-distortion function, with a specific emphasis on
the rate-distortion function for computing with side information.
This approach can offer estimated rates for given distortion
levels and also enables the formulation of reliable conjectures
about the benefits of side information at varying compression
rates. Such a methodology is anticipated to be valuable in
practical system design, allowing system designers to effectively
measure the potential gains from side information against its
processing costs through informed estimations.
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