
OMB-CXL: A Micro-Benchmark Suite for Evaluating MPI
Communication Utilizing Compute Express Link Memory Devices

Tu Tran
tran.839@osu.edu

The Ohio State University
Columbus, Ohio, USA

Mustafa Abduljabbar
abduljabbar.1@osu.edu

The Ohio State University
Columbus, Ohio, USA

Hooyoung Ahn
ahnhy@etri.re.kr

Electronics and Telecommunications
Research Institute

South Korea

Seonyoung Kim
seonyoung8436@etri.re.kr

Electronics and Telecommunications
Research Institute

South Korea

Yoomi Park
parkym@etri.re.kr

Electronics and Telecommunications
Research Institute

South Korea

Woojong Han
woojong.han@etri.re.kr

Electronics and Telecommunications
Research Institute

South Korea

Shinyoung Ahn
syahn@etri.re.kr

Electronics and Telecommunications
Research Institute

South Korea

Hari Subramoni
subramoni.1@osu.edu

The Ohio State University
Columbus, Ohio, USA

Dhabaleswar K. Panda
panda@cse.ohio-state.edu
The Ohio State University
Columbus, Ohio, USA

ABSTRACT
Compute Express Link (CXL) is a promising technology providing
connectivity between host processors and peripheral devices like
accelerators or memory modules. Compute nodes are usually con-
nected through a high-speed network like Ethernet or Infiniband.
CXL provides another way for connectivity by having compute
nodes connected through CXL switches. CXL devices can connect
to the switches, granting resource pooling and sharing across nodes.
Access latency to CXL memory is ∼10x smaller than access to the
memory of another node through network operations. This enables
a more efficient way to communicate between nodes. Currently, no
existing Message Passing Interface (MPI) libraries utilize CXL for
inter-node communication. In this paper, we propose the usage of
CXL memory devices to enhance message-passing communication
across nodes. To demonstrate the benefit of CXL, we extend OSU
Micro-Benchmark (OMB), a well-known MPI benchmark suite, to
evaluate point-to-point communication going over CXL; the ex-
tended OMB is named OMB-CXL. As CXL technology is evolving
and still under development, the availability of a CXL system with
switches and memory devices is limited. We describe how to set up
an emulated CXL system using QEMU, a virtualization software,
for early experience. The experimental results show that communi-
cation over CXL is 15x better for small messages and 4x for larger
ones in latency and bandwidth than over the network on average.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PEARC ’24, July 21–25, 2024, Providence, RI, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0419-2/24/07
https://doi.org/10.1145/3626203.3670533

CCS CONCEPTS
• Networks → Network performance analysis; Network mea-
surement; Network simulations; • Computer systems organi-
zation→ Interconnection architectures; •Hardware→ Networking
hardware; • Computing methodologies → Parallel computing
methodologies; Distributed computing methodologies.

KEYWORDS
MPI, CXL, micro-benchmarks, memory devices
ACM Reference Format:
Tu Tran, Mustafa Abduljabbar, Hooyoung Ahn, Seonyoung Kim, Yoomi
Park, Woojong Han, Shinyoung Ahn, Hari Subramoni, and Dhabaleswar
K. Panda. 2024. OMB-CXL: A Micro-Benchmark Suite for Evaluating MPI
Communication Utilizing Compute Express Link Memory Devices. In Prac-
tice and Experience in Advanced Research Computing (PEARC ’24), July
21–25, 2024, Providence, RI, USA. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3626203.3670533

1 INTRODUCTION
Modern computing systems consist of compute nodes, with multi-
core processors, connected through a high-speed network like Eth-
ernet or InfiniBand. Such systems work under parallel and dis-
tributed computing schemes. Communication between processes is
expressed in forms of memory access within or across nodes. While
intra-node communication is done through memory copies over
the internal memory bus of local memory, inter-node communica-
tion is done through network operations. Access latency to local
memory is at least an order of magnitude faster than to remote
memory through the network [7]. This leads to performance bottle-
necks in inter-node communication. Compute Express Link (CXL)
[6] is expected to bridge the latency gap between local memory
and memory access over network; CXL serves as a cache coherent
interconnect between compute nodes and peripheral devices like
network adapters or accelerators. A preliminary study showed that

https://doi.org/10.1145/3626203.3670533
https://doi.org/10.1145/3626203.3670533
https://doi.org/10.1145/3626203.3670533
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626203.3670533&domain=pdf&date_stamp=2024-07-17

PEARC ’24, July 21–25, 2024, Providence, RI, USA Tran et al.

access latency to CXL memory is 5x slower than local memory but
6x faster than remote memory over the network [10]. When access
data can fit into cache, CXL memory has a similar latency to the
one of local memory.

1.1 Motivation and Challenge
Compute nodes typically utilize high-speed networks such as Eth-
ernet or InfiniBand for connectivity. CXL offers an alternative ap-
proach by connecting compute nodes through CXL switches. CXL
devices can then connect to the switches, facilitating resource pool-
ing and sharing across nodes. In addition, access latency to CXL
memory is significantly lower, approximately one-tenth, compared
to accessing the memory of another node via network operations.
This enables more efficient inter-node communication using CXL
rather the network.

Message Passing Interface (MPI) [18] is the de facto program-
ming model for developing and executing applications in a par-
allel and distributed fashion. MPI provides a set of routines for
expressing fundamental communication patterns; they can be clas-
sified into two main groups: point-to-point and collectives. While
point-to-point involves send and receive operations between two
processes, collectives allow us to perform group communication.
MPI libraries utilize shared memory and network for intra-node
and inter-node communication, respectively. To assess communi-
cation performance using MPI, the OSU Micro-Benchmark suite
(OMB) [20] is widely recognized within the MPI community for this
purpose. Currently, no existing libraries utilize CXL underneath
for inter-node communication despite CXL delivering 10x lower
latency than network [7]. This motivates us to extend OMB to eval-
uate the performance of MPI over CXL, a system software that we
refer to as OMB-CXL.

CXL is a fresh evolving technology and still under development;
most of the available CXL machines and devices are prototypes and
commercial products. The limited availability of CXL-enabled sys-
tems poses a challenge in doing system-level performance studies
on CXL environment. Software development is always one step
behind hardware availability. Software for CXL cannot be fully
developed until there is an actual CXL-ready system for study and
development. This motivates us to adopt an emulated CXL sys-
tem in QEMU for preliminary study evaluation, and development.
QEMU (Quick EMUlator) [24] is an open-source machine emula-
tor and virtualizer; it can emulate hardware components such as
processors, memory, or input/output devices.

Despite the evaluation in this paper being conducted in an emu-
lated CXL environment, OMB-CXL is compatible with actual CXL-
enabled hardware systems and can work out of the box. In this
paper, we propose a proof of concept, through benchmarking, on
how CXL can be leveraged for inter-node communication with
lower latency than network operations. The contributions of this
paper are as follows:

• We propose OMB-CXL to evaluate MPI performance using
CXL for internode data exchanges.

• We demonstrate how to utilize CXL for the implementations
MPI send/recv operations.

• We enhance the performance of P2P communication in terms
of latency, bandwidth, and bi-bandwidth when using CXL
instead of network.

• We present a detailed description of how we set up an emu-
lated CXL system.

To the best of our knowledge, OMB-CXL is the first MPI
micro-benchmark suite that supports the evaluation of com-
munication performance through CXL. The remainder of this
paper is organized as follows: Section 2 gives an overview of the
CXL technology with a focus on CXL memory devices. Section 3
describes (1) the architecture of a CXL system sharing memory de-
vices and (2) the extension of OMB, called OMB-CXL, to benchmark
communication over CXL. Section 4 presents how we can set up an
emulated system in QEMU for evaluation with two compute nodes
sharing a CXL memory device; the two nodes are also connected
through Ethernet. Section 5 presents the performance evaluation
of OMB-CXL with analysis. The literature of CXL is presented in
Section 6. We conclude the work in Section 7.

2 COMPUTE EXPRESS LINK - CXL
In this section, an overview of Compute Express Link (CXL) is
provided. Since the focus of this paper is on the usage of type-3
CXL memory devices instead of network channel to better facilitate
message-passing communication, relevant information on CXL
memory and other memory types is discussed. Finally, we report
the status of CXL support and implementations for host CPUs and
devices. We also mention relevant technologies to CXL.

CXL is an open standard interconnect for processors, devices
such as accelerators, network adapters, and memory expansion de-
vices [6]. In the simplest terms, CXL is an improved version of PCIe
with cache coherency and memory semantics. Cache coherency
provides a consistent view of shared data to host processors and
CXL devices. Memory semantics in CXL enables a unified memory
address space between host processors and devices. Processors can
directly load/store from/to devices’ memory and devices can do the
same to host memory. CXL leverages the physical layer of PCIe
and is built on top of it. A CXL device can directly plug in a PCIe
slot and operate out of the box as long as both the host central
processing unit (CPU) and the device support CXL protocols. CXL
consists of three protocols: (1) CXL.io for device management such
as device discovery, and configuration, (2) CXL.cache providing
device access to host CPU memory, (3) CXL.memory providing host
CPU access to device memory.

CXL defines three types of devices. The first type is a caching
device; an example is a Network Interface Card (NIC) having a small
amount of cache with no memory. The second type is an accelerator
such as a Graphics Processing Unit (GPU) or Field-Programmable
Gate Array (FPGA). In contrast to type 1 device, type 2 not only
has cache but also memory. The third type is a memory device; it is
mainly used for memory capacity or bandwidth expansion. It can
be also used as a storage class memory, also known as non-volatile
memory.

CXL has evolved through three generations since its first release
in 2019. CXL 1.0 & 1.1 main focus on a single-machine case to pro-
vide cache coherence and memory semantics on top of PCIe. CXL
2.0 enables resource pooling between a small number of machines

OMB-CXL: Evaluating MPI Communication Utilizing CXL Memory Devices PEARC ’24, July 21–25, 2024, Providence, RI, USA

Table 1: Characteristics of CXL memory, main memory, and disaggregated memory (memory accessed over a network), and
latency increase factor compared to local DRAM access

Memory Type Latency (ns) Connection Type Latency Increase Factor
Main memory 80-140 CPU-attached 1x
CXL 170-250 CPU-independent ∼ 2 - 3x
Disaggregated memory 2000-4000 Network-attached ∼ 25 - 50x

with a single CXL switch. CXL 3.0 and 3.1 focus on large-scale
pooling and sharing with multiple CXL switches.

This paper focuses on the usage of type-3 CXL memory devices
over network channels to facilitate communication across nodes
for better performance. Characteristics of CXL and other memory
types are demonstrated in Table 1 [7]. CXL memory is expected
to bridge the gap between main memory and disaggregated mem-
ory and overcome their disadvantages. Main memory like DRAM
is attached to CPU through the Double Data Rate (DDR) paral-
lel interface. As compute capabilities grow exponentially, so does
the demand for memory capacity and bandwidth. However, the
DDR has not been able to keep up with the demand due to the
requirement of a large number of signal pins. CXL leveraging the
PCIe physical layer provides a promising solution. An x16 Gen5
PCIe port provides 256 GB/s with just 64 signal pins compared to 50
GB/s of DDR5-6400 with around 200 signal pins [26]. Disaggregated
memory refers to a distributed system architecture in which mem-
ory resources are physically located on different compute nodes
and connected through a high-speed network such as Ethernet or
InfiniBand. Memory accesses happen over the network, hence this
memory type is network-attached. Despite its advantages of having
better resource utilization and being more scalable, it is roughly
one order of magnitude slower than main memory or CXL.

For CXL to work, it requires support in both host CPUs and
devices. For CPU, CXL 1.1 is supported in recent architectures like
Intel Sapphire Rapids [1] and AMD EPYC Genoa [3]. On the device
side, many IP vendors such as Synopsys, Cadence, PLDA/Rambus,
Mobiveil, Samsung, Micron, SK Hynix, and others have announced
their CXL-ready devices [26]. Intel Agilex7 FPGA [11] provides
support for all three CXL protocols.

There are similar technologies to CXL that provide cache co-
herency such as NVLink [21], OpenCAPI (Coherent Accelerator
Processor Interface) [22] and Gen-Z [9], CCIX (Cache coherent
interconnect for accelerators) [5]. NVLink is a proprietary intercon-
nect of Nvidia, providing connectivity between GPUs. OpenCAPI
and Gen-Z are absorbed by CXL [22]. Many CPU vendors origi-
nally announced CCIX support. However, this support was never
released.

3 DESIGNING OMB-CXL
3.1 Architecture of a CXL system
CXL memory devices can provide connectivity between multiple
compute nodes besides their ability for memory capacity and band-
width expansion. Figure 1 depicts a distributed system with two
nodes connected through two channels: network and CXL. As a
result, there are two ways to communicate between the nodes. CXL
memory is interleaved and formed by multiple memory devices just
like the main memory of a computer node is formed by multiple

NIC

PCIe

DRAM NIC

PCIe

DRAM

CXL switch

CXL
Device

CXL
Device

CXL Memory
. . .

CPU CPU

Internal bus

Network link

CXL link

Node 0 Node 1

Figure 1: A distributed system connecting two nodes through
a network and CXL memory.

DRAM sticks. CXL memory is managed using "cxl" utility; more
detail is discussed in Section 4. CXL supports both memory pooling
and sharing. In this paper, we are interested in the usage of mem-
ory sharing to facilitate communication. In memory sharing, CXL
memory becomes a shared memory region that compute nodes can
directly access with load/store instructions.

3.2 Extending OMB to support CXL
In this paper, we are interested in benchmarking message-passing
performance through the CXL channel since CXL provides one
order of magnitude lower in latency than the network (Table 1).
This enables a more efficient way to communicate across nodes.
Currently, there is no existing libraries utilizing CXL under neath
for inter-node communication. As a result, all inter-node communi-
cation goes through the network in MPI. To assess communication
performance using MPI, the OSU Micro-Benchmark suite (OMB)
[20] is widely recognized within the MPI community for this pur-
pose. This motivates us to extend OMB to evaluate the performance
of MPI over CXL. We refer to it as OMB-CXL.

Figure 2 describes how latency, bandwidth, and bi-bandwidth are
benchmarked in OMB through MPI send and receive operations.

• The latency test measures the time it takes to send a message
size M from one process to another. The test is performed in
a ping-pong fashion. Process P0 sends a message size M to
P1. P1 waits for the message before sending another message
of the same size to P0. The time it takes for P0 to send and
receive a message from P1 is called round-trip time (RTT).
Latency is calculated by dividing RRT by half.

PEARC ’24, July 21–25, 2024, Providence, RI, USA Tran et al.

P0 P1

RTT

Latency = RTT /2

Send

Send

Recv

Recv

P0 P1

BW = Time / (M*window_size)

Send

Recv

Time window size
of 3 messages

Recv

Send

P0 P1

BI-BW = Time / (2*M*window_size)

Send

Time

Send

Recv Recv
window size
of 3 messages

Control message

Data message
of size M

Figure 2: Benchmarking latency, bandwidth, and bi-bandwidth with OMB.

Node 0

s_buf_0

Node 1

r_buf_1

CXL Memory

tmp_buf_0

HH Node 0

s_buf_0

Node 1

r_buf_1

CXL Memory

HD

Node 0

s_buf_0

Node 1

r_buf_1

CXL Memory

DHNode 0 Node 1

CXL Memory
s_buf_0 r_buf_1

DD

Network link

CXL link

Network path

CXL path

send buf
of proc. 0

recv buf
of proc. 1

Figure 3: Comparison of different communication paths of a send operation through network and CXL channels under different
buffer placement configurations.

• The bandwidth test is used to measure the data transfer
rate or throughput between two endpoints or processes in a
network. Process P0 sends multiple messages back-to-back
in order to saturate the network bandwidth between two
processes. The number of messages P0 sends is referred to as
window size. After P1 receives all the messages of size M, P1
sends a control message of four bytes to P0 to indicate the
successful receive of all messages. The time taken from the
start of the first message P0 sent to the arrival of the control
message is measured; it is used to calculate the unidirectional
bandwidth from P0 to P1 of the network connecting two
processes. The formula for the calculation is stated in Figure
2.

• The bi-bandwidth test is similar to the bandwidth test; it
measures the bi-directional bandwidth of the network link
between P0 to P1. Each process sends𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒 messages
of size M to each other. The time from the start of the first
message being sent to the last one being received is measured
in P0 for the evaluation of bi-directional bandwidth. The bi-
directional bandwidth value is expected to be two times the
value of the uni-directional bandwidth due to the full duplex
property of the network.

We demonstrate the usage of CXL to improve point-to-point com-
munication through the aforementioned tests: latency, bandwidth,
and bi-bandwidth. Figure 3 demonstrates communication paths
between send and receive processes on two compute nodes: node
0 and 1, respectively, using MPI over CXL and network channels.
Send and receive buffers can be allocated on host or CXL mem-
ory, resulting in 4 variants for buffer placement: host-host(HH),
device-device(DD), host-device (HD), and device-host (DH). When
using the network channel, communication always goes through
the network link between two nodes; depending on where send
and receive buffers are allocated, read and write to local and CXL
memory are also performed. For CXL, the communication path for
each variant is as follows:

• HH: both send and receive buffers are allocated on the local
memory of each node. In the CXL channel, the sender can
put the data in a temporary buffer in the CXL memory for
the receiver to copy out.

• DD: both send and receive buffers are allocated on the CXL
shared memory. Either sender or receiver can invoke a mem-
ory copy to put data from the send buffer to receive buffer.

OMB-CXL: Evaluating MPI Communication Utilizing CXL Memory Devices PEARC ’24, July 21–25, 2024, Providence, RI, USA

Compared to the network path, CXL path does not go through
the network link and, hence shorter.

• HD: send and receive buffers are allocated on the local mem-
ory of node 0 and CXL memory, respectively. Sender can
direct copy send buffer to receive buffer. CXL path does not
go through the network link, hence shorter than network
path.

• DH: send and receive buffers are allocated on CXL memory
and the local memory of node 1, respectively. Receiver can
direct copy send buffer to receive buffer. CXL path here is
also shorter than network path.

Listing 1: A code snip of how to utilize CXL to send amessage
from process 0 to process 1 under DD buffer placement

// P0 sends to P1

memcpy(r_buf , s_buf , size);

// After data being copied , P0 sets a flag in the shared

memory indicate data availability for P1 to use.

SET_DATA_FLAG(dataflag);

// P1 receives from P0

// P1 waits for data ready signal from P0

WAIT_TIL_DATA_FLAG_SET(dataflags);

Listing 1 demonstrates how to utilize CXL to implement a send
from one process to another under DD buffer placement. The same
idea is applied to other variants. Process P0 can simply invoke a
memory copy to put data from send buffer to recv buffer. Once the
operation is complete, P0 must set a flag in the shared CXL memory
region indicating data availability for P1 to use. Before the arrival
of the data, P1 will poll the status of the data flag to check for the
ready signal. Because a process either reads or writes to the data
flag, we must add appropriate memory fence instructions to avoid
compiler reordering instructions and out-of-order execution.

3.3 OMB-CXL benchmarks usage
Based on what we discussed above, the point-to-point benchmarks
are modified to support four variants of buffer placement running
over CXL. Users now can specify running over CXL using ’-C’ op-
tion passed in as an argument to osu_latency, osu_bw, and osu_bibw.
Following the option, users must specify where the send and recv
buffers are allocated using ’H’- allocated on host memory or D -
allocated on CXL device memory. As a result, there are four variants
that we can specify after the ’-C’ option with a space: HH, HD, DD,
or DH.

4 EMULATING A CXL SYSTEMWITH QEMU
Quick EMUlator (QEMU) [24] is an open-source machine emulator
and virtualizer; it can emulate hardware components such as proces-
sors, memory, or input/output devices. QEMU supports CXL2.0 and
above with the capability to create single-level switching and mem-
ory devices [25]. Willis and Price from Memverge demonstrated
how to set up a CXL system with QEMU [17]. In this section, we
discuss what is not covered in their instruction. Specifically, we
discuss how to emulate a CXL system with two nodes connected
through Ethernet and sharing a CXL memory device. We also dis-
cuss how to manage CXL memory devices in Linux with ’cxl’ utility
and make it a direct access (DAX) device for memory sharing.

Listing 2: QEMU configuration for constructing a machine
connected to a CXL memory device and Ethernet

$ qemu -system -x86_64 \

...

-machine type=q35 ,cxl=on \

-device pxb -cxl ,id=cxl.0,bus=pcie.0,bus_nr =52 \

-device cxl -rp ,id=rp0 ,bus=cxl.0,chassis=0,port=0,slot=0 \

-device cxl -type3 ,bus=rp0 ,volatile -memdev=mem0 ,id=cxl -

mem0 \

-object memory -backend -file ,id=mem0 ,mem -path=/tmp/mem0 ,

size=4G,share=true \

-M cxl -fmw.0. targets .0=cxl.0,cxl -fmw.0. size=4G \

-netdev socket ,mcast =230.0.0.1:1234 , id=net1 \

-device virtio -net -pci ,mac =52:54:00:12:34:01 , netdev=net1

Listing 2 shows the QEMU configuration for creating a machine
connected to a CXL device of 4GB. The command instructs QEMU
to create a CXL Host Bridge which has a CXL Root Port directly
attaching to a CXLmemory device. A CXL Root Port can also attach
to a CXL switch by creating a single upstream port (cxl-upstream)
and several downstream ports (cxl-downstream). The command
also instructs to create an Ethernet interface. The command is
run two times to create a CXL system with two nodes connected
through Ethernet and sharing a CXL memory device.

Listing 3: Configuring a CXL memory device and it a DAX
device

$ sudo cxl create -region -m -t ram -d decoder0 .0 -w 1 -g

4096 mem0

$ sudo daxctl reconfigure -device -m devdax dax0.0

CXL devices in Linux systems are managed through "cxl" com-
mand. It is similar to non-volatile device control (ndctl) utility; they
are under the same project encompassing tools and libraries for
managing and configuring CXL and non-volatile memory devices
[23]. Listing 3 shows how to configure a CXL memory device us-
ing "cxl" and "daxctl" commands to make it Direct Access (DAX).
The first command is used to create a memory region using CXL
memory device "mem0" and decoder "decoder0.0". The "-w" and
"-g" options allow us to specify the number of interleave ways and
the interleave granularity. As a result, we can create a multi-way
interleaved memory region across multiple CXL devices with a
certain interleave granularity. The CXL memory region appears to
Linux as a remote NUMA node with processors. The next command
in the Listing 3 makes the CXL memory region DAX. This allows
applications to directly access the memory as a memory-mapped
file (use mmap() function), making it a shared memory region to
which machines can have access.

5 PERFORMANCE EVALUATIONWITH
OMB-CXL

5.1 Experimental environment
All the experiments are evaluated on an emulated CXL system with
an architecture similar to Figure 1. The system has two x86_64 com-
pute nodes, with 4 cores each, interconnected through an Ethernet
adatper. The two nodes are also connected to a CXL memory de-
vice. The host machine used to emulate the CXL system is equipped
with dual Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz CPU of 28

PEARC ’24, July 21–25, 2024, Providence, RI, USA Tran et al.

Table 2: Memory access latency and bandwidth over CXL and Ethernet under the emulated CXL system using QEMU

Memory type Latency Bandwidth
CXL memory 7us 7MB/s

Remote memory over Ethernet 150us 60MB/s

0

5

10

15

20

0

50

100

150

200

250

300

0 1 2 4 8 16 32 64 12
8

25
6

51
2 1K

Sp
ee
du

p

La
te
nc
y
(u
s)

Msg size (B)

Emulated MPI over Ethernet
Emulated MPI over CXL
Speedup

(a) HH - small message range

0

0.2

0.4

0.6

0.8

1

1.2

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

2K 4K 8K 16K 32K 64K

Sp
ee
du

p

La
te
nc
y
(u
s)

Msg size (B)

Emulated MPI over Ethernet
Emulated MPI over CXL
Speedup

(b) HH - medium message range

0

0.05

0.1

0.15

0.2

0.25

0

100000

200000

300000

400000

500000

600000

128K 256K 512K 1M 2M 4M

Sp
ee
du

p

La
te
nc
y
(u
s)

Msg size (B)

Emulated MPI over Ethernet
Emulated MPI over CXL
Speedup

(c) HH - large message range

0
2
4
6
8
10
12
14
16
18

0
100
200
300
400
500
600
700
800

0 1 2 4 8 16 32 64 12
8

25
6

51
2 1K

Sp
ee
du

p

La
te
nc
y
(u
s)

Msg size (B)

Emulated MPI over Ethernet
Emulated MPI over CXL
Speedup

(d) DD - small message range

3.6

3.8

4

4.2

4.4

4.6

4.8

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

2K 4K 8K 16K 32K 64K

Sp
ee
du

p

La
te
nc
y
(u
s)

Msg size (B)

Emulated MPI over
Ethernet
Emulated MPI over CXL

(e) DD - medium message range

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

0

500000

1000000

1500000

2000000

2500000

128K 256K 512K 1M 2M 4M

Sp
ee
du

p

La
te
nc
y
(u
s)

Msg size (B)

Emulated MPI over Ethernet
Emulated MPI over CXL
Speedup

(f) DD - large message range

0

5

10

15

20

25

30

0
50

100
150
200
250
300
350
400
450

0 1 2 4 8 16 32 64 12
8

25
6

51
2 1K

Sp
ee
du

p

La
te
nc
y
(u
s)

Msg size (B)

Emulated MPI over Ethernet
Emulated MPI over CXL
Speedup

(g) HD - small message range

0
0.5
1
1.5
2
2.5
3
3.5
4

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

2K 4K 8K 16K 32K 64K

Sp
ee
du

p

La
te
nc
y
(u
s)

Msg size (B)

Emulated MPI over Ethernet
Emulated MPI over CXL
Speedup

(h) HD - medium message range

1.35
1.4
1.45
1.5
1.55
1.6
1.65
1.7
1.75

0
50000

100000
150000
200000
250000
300000
350000
400000
450000

128K 256K 512K 1M 2M 4M

Sp
ee
du

p

La
te
nc
y
(u
s)

Msg size (B)

Emulated MPI over Ethernet
Emulated MPI over CXL
Speedup

(i) HD - large message range

0

5

10

15

20

25

0
100
200
300
400
500
600
700
800

0 1 2 4 8 16 32 64 12
8

25
6

51
2 1K

Sp
ee
du

p

La
te
nc
y
(u
s)

Msg size (B)

Emulated MPI over Ethernet
Emulated MPI over CXL
Speedup

(j) DH - small message range

6.5

7

7.5

8

8.5

9

0
5000

10000
15000
20000
25000
30000
35000
40000

2K 4K 8K 16K 32K 64K

Sp
ee
du

p

La
te
nc
y
(u
s)

Msg size (B)

Emulated MPI over Ethernet
Emulated MPI over CXL
Speedup

(k) DH - medium message range

7.9

8

8.1

8.2

8.3

8.4

8.5

0

500000

1000000

1500000

2000000

2500000

128K 256K 512K 1M 2M 4M

Sp
ee
du

p

La
te
nc
y
(u
s)

Msg size (B)

Emulated MPI over Ethernet
Emulated MPI over CXL
Speedup

(l) DH - large message range

Figure 4: Inter-node latency test of different buffer placements of send buffer of process 0 and recv buffer of process 1. Send
and recv buffers can be allocated on host(H) or device (D) memory, resulting in four configurations: HH, DD, HD, and DH.

cores and 128 GB of DDR4 memory. The two emulated nodes run
Fedora Linux 38. The MPI library used in this paper is MVAPICH
v3.0-rc [19] along with UCX 1.15.0 [28], and the OMB-CXL we use
for experimenting is extended from OMB v7.0 [20]. We run each
experiment five times to remove any noise or fluctuation. Within

each OMB-CXL run, each message has an average of 1000 iterations
for small size and 100 iterations for large.

5.2 Performance evaluation
After setting up the emulated CXL system connected by Ethernet
with two nodes sharing a CXL device, we perform basic low-level

OMB-CXL: Evaluating MPI Communication Utilizing CXL Memory Devices PEARC ’24, July 21–25, 2024, Providence, RI, USA

0

5

10

15

20

25

30

35

0
2
4
6
8

10
12
14
16

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K

Sp
ee
du

p

Ba
nd

w
id
th
 (M

B/
s)

Msg (B)

Emulated MPI over Ethernet
Emulated MPI over CXL
Speedup

(a) HH - small message range

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0
10
20
30
40
50
60
70

4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

Sp
ee
du

p

Ba
nd

w
id
th
 (M

B/
s)

Msg (B)

Emulated MPI over Ethernet
Emulated MPI over CXL
Speedup

(b) HH - large message range

0

5

10

15

20

25

30

0
1
2
3
4
5
6
7
8

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K

Sp
ee
du

p

Ba
nd

w
id
th
 (M

B/
s)

Msg (B)

Emulated MPI
over Ethernet
Emulated MPI
over CXL
Speedup

(c) DD - small message range

2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

0
1
2
3
4
5
6
7
8

4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

Sp
ee
du

p

Ba
nd

w
id
th
 (M

B/
s)

Msg (B)

Emulated MPI over Ethernet
Emulated MPI over CXL
Speedup

(d) DD - large message range

0

10

20

30

40

50

0
2
4
6
8

10
12
14
16

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K

Sp
ee
du

p

Ba
nd

w
id
th
 (M

B/
s)

Msg (B)

Emulated MPI over Ethernet
Emulated MPI over CXL
Speedup

(e) HD - small message range

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8

0
2
4
6
8

10
12
14
16
18

4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

Sp
ee
du

p

Ba
nd

w
id
th
 (M

B/
s)

Msg (B)

Emulated MPI over Ethernet
Emulated MPI over CXL
Speedup

(f) HD - large message range

0

10

20

30

40

50

60

0
2
4
6
8

10
12
14
16
18

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K

Sp
ee
du

p

Ba
nd

w
id
th
 (M

B/
s)

Msg (B)

Emulated MPI over Ethernet
Emulated MPI over CXL
Speedup

(g) DH - small message range

0
1
2
3
4
5
6
7
8
9

0
2
4
6
8

10
12
14
16
18

4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

Sp
ee
du

p

Ba
nd

w
id
th
 (M

B/
s)

Msg (B)

Emulated MPI over Ethernet
Emulated MPI over CXL
Speedup

(h) DH - large message range

Figure 5: Inter-node bandwidth test of different buffer placements of send buffer of process 0 and recv buffer of process 1. Send
and recv buffers can be allocated on host(H) or device (D) memory, resulting in four configurations: HH, DD, HD, and DH.

latency and bandwidth tests using the network and CXL channels
to access memory. The results are reported in Table 2. CXL memory
is tested with Intel®Memory Latency Checker v3.11 [12] reporting
latency of 7us with 7MB/s of access bandwidth. The network chan-
nel to access a remote memory is tested with iPerf [13] reporting
latency of 150us with 60MB/s of uni-directional bandwidth. The
above performance values of the emulated system summarized in
Table 2 are worse than the performance values a real system should
have in Table 1 due to overhead for emulation. However, the em-
ulated CXL system maintains a latency ratio between the
CXL-connected memory device and the remote memory ac-
cessed over the network that is nearly identical to theoretical
estimates as shown in Table 1.

We next perform latency, bandwidth, and bi-bandwidth tests of
point-to-point communication with two MPI processes located on
two nodes. Figures 4 and 5 show the performance comparison of
emulated MPI over CXL and Ethernet channels under four variants
of buffer placement. The performance numbers are not to be
interpreted in absolute values due to overhead for emulating
the CXL environment. An actual system will have lower la-
tency as presented in Table 1. A more reasonable metric for
analysis should be based on the speedup of MPI over CXL
and Ethernet.

Among the MPI experiments, we first discuss the latency test
illustrated in Figure 4. In the HH case, CXL has lower latency than
Ethernet for the small message range with an average speedup
of 9.5x. As the message size increases, the trend reverses with
Ethernet performing better in latency than CXL due to the CXL
channel having lower bandwidth than Ethernet in the emulated
system. In an actual system, we expect that the bandwidth of a
CXL channel should be at least equal to or better than any network,
depending on the memory technology being used. CXL memory
devices equipped with DDR4-2400 and DDR5-4800 are expected to
deliver 19.2 GB/s and 38.4 GB/s per memory channel theoretically
[27]; the bandwidth of a high-speed network is around 100 to 200
Gbps. In the DD, HD, and HD cases, CXL performs better in latency
than Ethernet across all message ranges. The CXL communication
path being shorter than one over the Ethernet leads to a speedup of
about 9x. The detailed communication paths over CXL and Ethernet
are illustrated in Figure 3.

In the bandwidth test depicted in Figure 5, we observe similar
trends to the ones of the latency test. In the HH case, CXL performs
better than MPI in bandwidth for small messages with an average
speedup of 9x until CXL bandwidth is saturated. In other cases:
DD, HD, and HD, CXL shows higher bandwidth than MPI with an
average speedup of about 10x. Since the bi-bandwidth test shows

PEARC ’24, July 21–25, 2024, Providence, RI, USA Tran et al.

the same trends as the bandwidth test, the charts for them are not
shown here.

6 RELATED WORK
CXL is a promising technology providing cache coherency between
host processors and devices like network adapters or accelerators.
It also provides scale-out capability by having many compute nodes
connected through a CXL network. Compared to a conventional
way of scale-out using a high-speed network like Ethernet or In-
finiBand, CXL is expected to deliver one order of magnitude lower
in latency. The CXL technology has direct implications on memory.
Ahm et al. have demonstrated the benefits of using CXL type 3
devices as a memory expansion for in-memory computing [2]. CXL
memory devices can also be used as persistent [8] or disaggregated
memory [10]. On a broader scale, CXL influences system-level oper-
ations. CXL enables memory pooling for better resource utilization
in HPC systems [29]. In cloud systems, memory pooling is used
to eliminate memory stranding [16]; free memory in a compute
node with no available processors can not be allocated to users.
CXL technology is still evolving and has its limitations in latency,
scalability, and capital cost [15, 16]. Due to limited availability in
CXL-ready machines, several studies have been done in an emu-
lated or simulated environment [2, 4, 8, 14, 16, 29]. In the context of
MPI, we have not been able to find any study that utilizes CXL for
communication. To the best of our knowledge, our work is the first
CXL-enabled MPI work that leverages CXL for faster inter-node
communication compared to using network.

7 CONCLUSION
CXL provides a more efficient to connect compute nodes than a
conventional high-speed network like Ethernet or Infiniband. The
technology is expected to bridge the gap in latency between local
memory and remote memory accessed over network operations.
In this paper, we demonstrate the benefits of using CXL for inter-
node communication. We propose OMB-CXL, a benchmark suite
to evaluate point-to-point communication in MPI through CXL
channel. As CXL technology is still under development, there are
few CXL systems with switches and memory devices for usage.
We show how to set up an emulated CXL system using QEMU
for early experience. Experiments using OMB-CXL show that CXL
delivers a promising performance improvement of 4-15x compared
to network for latency and bandwidth tests.

ACKNOWLEDGMENTS
This research was supported by the Electronics and Telecommu-
nications Research Institute (ETRI) grant funded by the Korean
government (No. 23YS1700). It is also supported in part by NSF
grants #1818253, #1854828, #2007991, #2018627, #2311830, #2312927,
and XRAC grant #NCR-130002.

REFERENCES
[1] 4th Gen Intel Xeon Scalable Sapphire Rapids 2024. 4th Gen Intel Xeon Scalable

Sapphire Rapids. https://www.intel.com/content/www/us/en/developer/articles/
technical/fourth-generation-xeon-scalable-family-overview.html. Accessed June
14, 2024.

[2] Minseon Ahn, Andrew Chang, Donghun Lee, Jongmin Gim, Jungmin Kim, Jaemin
Jung, Oliver Rebholz, Vincent Pham, Krishna Malladi, and Yang Seok Ki. 2022.
Enabling CXL memory expansion for in-memory database management systems.

In Proceedings of the 18th International Workshop on Data Management on New
Hardware. 1–5.

[3] AMD EPYC 9004 Genoa 2024. AMD EPYC 9004 Genoa CXL Overview.
https://www.servethehome.com/amd-epyc-genoa-gaps-intel-xeon-in-stunning-
fashion/amd-epyc-9004-genoa-cxl-overview/. Accessed June 14, 2024.

[4] Moiz Arif, Kevin Assogba, M Mustafa Rafique, and Sudharshan Vazhkudai. 2022.
Exploiting CXL-based memory for distributed deep learning. In Proceedings of
the 51st International Conference on Parallel Processing. 1–11.

[5] CCIX 2024. CCIX. https://www.ccixconsortium.com/. Accessed June 14, 2024.
[6] Compute Express Link 2024. Compute Express Link. https://computeexpresslink.

org/. Accessed June 14, 2024.
[7] CXL Memory Hierarchy 2024. The Expanding Cxl Memory Hierarchy Is Inevitable

– And Good Enough. https://www.nextplatform.com/2022/08/22/the-expanding-
cxl-memory-hierarchy-is-inevitable-and-good-enough/. Accessed June 14, 2024.

[8] Yehonatan Fridman, Suprasad Mutalik Desai, Navneet Singh, Thomas Willhalm,
and Gal Oren. 2023. CXL Memory as Persistent Memory for Disaggregated HPC:
A Practical Approach. In Proceedings of the SC’23 Workshops of The International
Conference on High Performance Computing, Network, Storage, and Analysis. 983–
994.

[9] Gen-Z 2024. Finally, A Coherent Interconnect Strategy: CXL Absorbs Gen-
Z. https://www.nextplatform.com/2021/11/23/finally-a-coherent-interconnect-
strategy-cxl-absorbs-gen-z/. Accessed June 14, 2024.

[10] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo Jung. 2022.
Direct access,{High-Performance} memory disaggregation with {DirectCXL}.
In 2022 USENIX Annual Technical Conference (USENIX ATC 22). 287–294.

[11] Intel Agilex® 7 FPGAs 2024. Intel® FPGA Compute Express Link (CXL) IP.
https://www.intel.com/content/www/us/en/products/details/fpga/intellectual-
property/interface-protocols/cxl-ip.html. Accessed June 14, 2024.

[12] Intel MLC 2024. Intel® Memory Latency Checker.
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-
memory-latency-checker.html. Accessed June 14, 2024.

[13] iPerf 2024. iPerf - The ultimate speed test tool for TCP, UDP and SCTP.
https://iperf.fr/. Accessed June 14, 2024.

[14] Mikhail Isaev, Nic McDonald, and Richard Vuduc. 2023. Scaling infrastructure
to support multi-trillion parameter LLM training. In Architecture and System
Support for Transformer Models (ASSYST@ ISCA 2023).

[15] Philip Levis, Kun Lin, and Amy Tai. 2023. A Case Against CXL Memory Pooling.
In Proceedings of the 22nd ACM Workshop on Hot Topics in Networks. 18–24.

[16] Huaicheng Li, Daniel S Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti, Stanko
Novakovic, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal, et al. 2023.
Pond: Cxl-based memory pooling systems for cloud platforms. In Proceedings of
the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2. 574–587.

[17] Memverge 2024. Emulating CXL Shared Memory Devices in QEMU.
https://memverge.com/cxl-qemuemulating-cxl-shared-memory-devices-
in-qemu/. Accessed June 14, 2024.

[18] Message Passing Interface Forum. 2021.MPI: AMessage-Passing Interface Standard
Version 4.0. https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

[19] Network-Based Computing Laboratory 2024. MVAPICH: MPI over InfiniBand,
10GigE/iWARP and RoCE. http://mvapich.cse.ohio-state.edu/. Accessed June 14,
2024.

[20] Network-Based Computing Laboratory 2024. OSU Micro-Benchmarks. https:
//mvapich.cse.ohio-state.edu/benchmarks/. Accessed June 14, 2024.

[21] NVLink 2024. NVLink & NVSwitch: Fastest HPC Data Center Platform.
https://www.nvidia.com/en-us/data-center/nvlink/. Accessed June 14, 2024.

[22] OpenCAPI 2024. OpenCAPI to Be Folded into CXL.
https://www.hpcwire.com/2022/08/01/opencapi-to-be-folded-into-cxl/. Accessed
June 14, 2024.

[23] pmem/ndctl 2024. A device memory enabling project encompassing tools and
libraries for CXL, NVDIMMs, DAX, memory tiering and other platform memory
device topics. https://github.com/pmem/ndctl. Accessed June 14, 2024.

[24] QEMU 2024. QEMU - A generic and open source machine emulator and virtualizer.
https://www.qemu.org. Accessed June 14, 2024.

[25] QEMU-CXL 2024. Compute Express Link (CXL) - QEMU Documentation. https:
//www.qemu.org/docs/master/system/devices/cxl.html. Accessed June 14, 2024.

[26] Debendra Das Sharma, Robert Blankenship, and Daniel S Berger. 2023. An
Introduction to the Compute Express Link (CXL) Interconnect. arXiv preprint
arXiv:2306.11227 (2023).

[27] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Chihun Song, Jinghan Huang,
Houxiang Ji, Siddharth Agarwal, Jiaqi Lou, Ipoom Jeong, et al. 2023. Demystifying
cxl memory with genuine cxl-ready systems and devices. In Proceedings of the
56th Annual IEEE/ACM International Symposium on Microarchitecture. 105–121.

[28] UCX 2024. Unified Communication X. https://openucx.org/. Accessed June 14,
2024.

[29] Jacob Wahlgren, Maya Gokhale, and Ivy B Peng. 2022. Evaluating emerging
CXL-enabled memory pooling for HPC systems. In 2022 IEEE/ACM Workshop on
Memory Centric High Performance Computing (MCHPC). IEEE, 11–20.

https://www.intel.com/content/www/us/en/developer/articles/technical/fourth-generation-xeon-scalable-family-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/fourth-generation-xeon-scalable-family-overview.html
https://computeexpresslink.org/
https://computeexpresslink.org/
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
 http://mvapich.cse.ohio-state.edu/
https://mvapich.cse.ohio-state.edu/benchmarks/
https://mvapich.cse.ohio-state.edu/benchmarks/
https://www.qemu.org
https://www.qemu.org/docs/master/system/devices/cxl.html
https://www.qemu.org/docs/master/system/devices/cxl.html

	Abstract
	1 Introduction
	1.1 Motivation and Challenge

	2 Compute Express Link - CXL
	3 Designing OMB-CXL
	3.1 Architecture of a CXL system
	3.2 Extending OMB to support CXL
	3.3 OMB-CXL benchmarks usage

	4 Emulating a CXL system with QEMU
	5 Performance Evaluation with OMB-CXL
	5.1 Experimental environment
	5.2 Performance evaluation

	6 Related work
	7 Conclusion
	Acknowledgments
	References

