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REDUCING OPERATOR COMPLEXITY OF GALERKIN
COARSE-GRID OPERATORS WITH MACHINE LEARNING

RU HUANG*, KAI CHANG*, HUAN HEf, RUI PENG LI, AND YUANZHE XI*

Abstract. We propose a data-driven and machine-learning-based approach to compute non-
Galerkin coarse-grid operators in multigrid (MG) methods, addressing the well-known issue of in-
creasing operator complexity. Guided by the MG theory on spectrally equivalent coarse-grid opera-
tors, we have developed novel machine learning (ML) algorithms that utilize neural networks (NNs)
combined with smooth test vectors from multigrid eigenvalue problems. The proposed method
demonstrates promise in reducing the complexity of coarse-grid operators while maintaining overall
MG convergence for solving parametric partial differential equation (PDE) problems. Numerical
experiments on anisotropic rotated Laplacian and linear elasticity problems are provided to show-
case the performance and comparison with existing methods for computing non-Galerkin coarse-grid
operators.
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1. Introduction. Multigrid (MG) methods are one of the most efficient and
scalable iterative methods for solving linear systems of equations

(1.1) Au=f

where the coefficient matrix A € RN*V is sparse and large, and v € RY and f € RY
are the solution and right-hand-side vectors respectively. For the systems that arise
from elliptic-type partial differential equations (PDEs), MG methods often exhibit
optimal linear computational complexities. Nevertheless, there is ongoing research
focused on further improving the efficiency and scalability of MG methods, in par-
ticular for large-scale and challenging problems. By and large, the overall efficiency
of iterative methods is determined by not only the convergence rate of the iterations
but also the arithmetic complexity per iteration and the corresponding throughput on
the underlying computing platform. In this work, we address a common issue in MG
methods which is the growth of the coarse-grid operator complexity in the hierarchy.
This operator is typically computed as the (Petrov—)Galerkin product from the oper-
ators in the fine level. Assuming A is symmetric positive definite (SPD) and R = PT,
the Galerkin operator is optimal in the sense that it yields an orthogonal projector as
the coarse-grid correction that guarantees to reduce the A-norm of the error. How-
ever, this operator can lead to the issue of decreasing operator sparsity, particularly
at deeper levels of the MG hierarchy. This can impair the overall performance of
MG by introducing challenges in terms of computational efficiency, memory require-
ments, and the communication cost in distributed computing environments [28, 2].
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2 R. HUANG, K. CHANG, H. HE, R. LI AND Y. XI

Moreover, the increasing operator complexity can also affect the effectiveness and ro-
bustness of other MG components such as the coarsening and interpolation algorithms
[26]. To demonstrate this problem, we consider classical MG methods for solving the
3-D Poisson’s equation discretized on a 100 x 100 x 100 grid with a 7-point stencil.
The sparsity patterns of the operator matrix A% at the levels I = 0, 3,5 are shown
in Table 1. From these patterns, it is evident that the matrix bandwidth increases as
the level goes deeper, as well as the stencil size (i.e., the average number of nonzeros
per row). The increased sparsity often leads to not only a growth in computational
cost but also an increase in data movement, which corresponds to the communication
expense in parallel solvers. Figure 1 shows the time spent in the computation and
communication in the first 6 levels of the MG hierarchies for solving a 3-D Poisson’s
problem. As depicted, there is a steep increase in the computational cost at level 2,
coinciding with the level where the communication cost reaches its maximum.

TABLE 1
The sparsity patterns of A©, A®) and A®) in o Multigrid hierarchy for solving the 8-D
Poisson’s equation on 4 processes (top). The size of the operator matriz (N), the number of nonzeros
(NNZ) and the average number of nonzeros per row (RNZ) from the top 4 levels (bottom).

level N NNZ | RNZ
0 | 1,000,000 | 6,940,000 7
1| 499,801 | 8,418,739 17
2| 115,515 | 5,328,543 46
3 14,479 1,125,707 78
B Computation
. Communication
()
£
'_
]
|
0 1 2 3 4 5

Levels in multigrid hierarchy

Fic. 1. The cost of computation and communication in the first 6 levels of parallel Algebraic
MG methods for solving the 3-D Poisson’s equation on 8192 processes of Blue Waters, a Cray
XK/XE supercomputer at the National Center for Supercomputing Applications. Image source: [5]
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ML APPROACH FOR NON-GALERKIN COARSE-GRID OPERATOR 3

One approach to reducing the coarse-grid operator complexity is to “sparsify”
the (Petrov—)Galerkin operator after it is computed, i.e., removing some nonzeros
outside a given sparsity pattern. The obtained sparsified operator is often called
a ‘“non-Galerkin” coarse-grid operator. The methods developed in [36, 33] leverage
algebraically smooth basis vectors and the approximations to the fine grid operator
to explicitly control the coarse grid sparsity pattern. The algorithms introduced in
[11, 32] first determine the patterns of the sparsified operator based on heuristics
on the path of edges in the corresponding graph and then compute the numerical
values to ensure the spectral equivalence to the Galerkin operator for certain types of
PDEs. Improving the parallel efficiency of AMG by reducing the communication cost
with the non-Galerkin operator was discussed in [4]. These existing algorithms for
computing non-Galerkin operators are usually based on heuristics on the associated
graph and the characteristic of the underlying PDE problem, such as the information
of the near kernels of A. Therefore, they are problem-dependent, and often times
it can be difficult to devise such heuristics that are suitable for a broader class of
problems.

Recently, there has been a line of work in the literature to leverage data-driven and
machine learning (ML) based methods to improve the robustness of MG. In particu-
lar, [27, 24, 12] deal with learning better prolongation operators. Techniques of deep
reinforcement learning (DRL) are exploited in [31] to better tackle the problem of Al-
gebraic MG coarsening combined with the diagonal dominance ratio of the F-F block.
Both the works in [21] and [25] focus on the problem of designing better smoothers.
In [21], smoothers are directly parameterized by multi-layer convolution neural net-
works (CNNs) while [25] optimizes the weights in the weighted Jacobi smoothers. In
this paper, we follow this line of research and propose a data-driven and ML-based
method for non-Galerkin operators. In this work, we restrict our focus on problems
on structured meshes and with constant coefficients. The innovations and features
of the proposed method are summarized as follows: 1) Introduction of a multi-level
algorithm based on ML methods to sparsify all coarse-grid operators in the multigrid
hierarchy; 2) Successful reduction of operator density while preserving the conver-
gence behavior of the employed multigrid method; 3) Applicability of the proposed
NN model to a class of parametric PDEs with parameters following specific probabil-
ity distributions; 4) Ability to train the sparsified coarse-grid operator on each level
in parallel once the training data is prepared; 5) Flexibility for the user to choose
the average number of non-zero entries per row in the coarse-grid operators, with a
minimum threshold requirement. To the best of our knowledge, our proposed work is
the first to utilize ML models for controlling sparsity within multigrid hierarchies.

The rest of the paper is organized as follows. We first briefly review the prelimi-
naries of AMG methods and the non-Galerkin algorithms in section 2. We elaborate
on our proposed sparsification algorithm in section 3. Numerical experiments and
results are presented in section 4. Finally, we conclude in section 5.

2. MG preliminaries and coarse-grid operators. In this section, we give
a brief introduction to MG methods and the Galerkin coarse-grid operators. The
MG method is a multilevel method that utilizes a hierarchy of grids, consisting of
fine and coarse levels, and constructs coarse-level systems at different scales that can
capture the essential information of the fine-level system while reducing the problem
size. MG algorithms employ techniques such as coarsening, relaxation, restriction and
interpolation to transfer information between the grid levels to accelerate the solution
process. Algorithm 2.1 presents the most commonly used MG V-cycle scheme. It uses
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4 R. HUANG, K. CHANG, H. HE, R. LI AND Y. XI

v steps of pre- and post-smoothing, where M and M are the smoothing operators.
Matrices R and P are the restriction and prolongation operators, respectively. The
coarse-grid operator is computed in Step 3 via the Galerkin product, A, = RAP.
The aim of smoothing is to quickly annihilate the high-frequency errors via simple
iterative methods such as relaxation, whereas the low-frequency errors are targeted
by the Coarse-Grid Correction (CGC) operator, I — P(RAP)"'RA. When A is SPD
and R = PT, the CGC operator is A-orthogonal with the Galerkin operator A,.

Algorithm 2.1 Multigrid V-Cycle for solving AW u® = ) at level I

1: Pre-smoothing: u® := (I — (M®)=tAO)y® + (MO)=1fD for v steps

2: Compute residual ) = fO — AWy and the restriction r+1) = RO#O)
3: Compute Galerkin operator 4, = RO AW PO and let AUHD = Ay

4: if | = L — 1 then

5. Solve AUFD (41 = p(+1) with an arbitrary method

6: else

7. Let u™) =0 and fU+D =+ Go to Step 1 with 1 :=1+ 1.

8: end if

9: Prolongate and correct: u(t) := u®) 4 Py (i+1)

10: Post-smoothings: u® := (I — (M®)=TAO) O 4 (MO)=T O for v steps

2.1. Non-Galerkin operators. Naive approaches, such as indiscriminately re-
moving nonzero entries in the Galerkin operators based on the magnitude often result
in slow convergence of the overall MG method (see the example provided in Section 3
of [11]). To address the aforementioned challenges arising from the increased operator
complexity, alternative operators, denoted by A., that are not only sparser than A,
but also spectrally equivalent have been studied and have been used in lieu of the
Galerkin operator A, [11, 23]. We say two matrices are spectrally equivalent defined
in [11] as follows:

DEFINITION 2.1. SPD matrices Ay and A. are spectrally equivalent if
(2.1) 0<a<MA A < B,

with « and B both close to 1, where A(-) denotes eigenvalues of a matriz.

The convergence rate of MG can be analyzed through the spectral radius of the error
propagation matrix. For example, the two-grid error propagation matrix correspond-
ing to the V-cycle in Algorithm 2.1 reads

(2.2) Eq=(—-M"TA)"(I - PA;'RA)I— M "A)".
With the replacement of A, by A, it becomes
(2.3) E.=(I-M"TA"(I - PA'RA)I - M 'A)".

The spectrum property of F, is analyzed in the following theorem.

THEOREM 2.2 ([11]). Denoting by B, and B. respectively the corresponding
preconditioning matrices defined as By' = (I — Eg)A™" and B;' = (I — E.)A™" and
assuming A. and Ay are both SPD and

(2.4) n=|1-AA 2= |1 - A7 A2 <1,
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ML APPROACH FOR NON-GALERKIN COARSE-GRID OPERATOR 5

for the preconditioned matriz, we have

(2.5) k(B;'A) < EK(BQ A),
and moreover
)\max B_lA AInin B_lA
(2.6) p(E:) < max # —1,1— M 7
L—=n 1+n

where Amax(+) and Amin(+) are the largest and smallest eigenvalues respectively, k()
denotes the condition number and p(-) denotes the spectrum radius.

The quantity n measures the degree of spectral equivalence between the operators
Ay and A, i.e., only when 7 is small, these operators are spectrally equivalent, since
p(-) < || - |l2. Clearly, the condition number of the preconditioned matrix and the
two-grid convergence with respect to E. deteriorate as n increases. With fixed B LA,
we can establish a criterion for the convergence of E. with respect to 7, as shown in
the next result.

COROLLARY 2.3. Suppose n < 1 — )\max(Bg_lA)/Z. Then, the two-grid method
(2.3) converges.

Proof. Note that n < 1—)\max(Bg_1A)/2 implies that Amax (B, 'A)/(1 —n)—1 < 1.
Since A(B;'A4) > 0, 1 — Amin(B; 'A)/(1+ 1) < 1. Therefore, from (2.6), it follows
that p(E.) < 1. O

2.2. Spectrally equivalent stencils. In this paper, we focus on structured
matrices that can be represented by stencils and grids, for the definitions and no-
tations, see, e.g., [34]. These structured matrices exhibit a unique property wherein
two spectrally equivalent stencils can determine two sequences of spectrally equivalent
matrices with increasing sizes and thus ensures the convergence of E. with increasing
matrix sizes.

DEFINITION 2.4 ([1, 6]). Let {A;} and {B;} be two sequences of (positive defi-
nite) matrices with increasing size Nj, where A; and B; € RNi*Ni_ [f A; and B; are
spectrally equivalent as defined in (2.1) for all j with o and (8 that are independent
of Nj, then the sequences {A;} and {B;} are called spectrally equivalent sequences of
matrices.

The above definition yields the definition of spectrally equivalent stencils given
as follows.

DEFINITION 2.5 ([6]). Suppose the sequences of matrices {A;} and {B;} are con-
structed with the stencils A and B respectively, where for any given j, A; and Bj
have the same size. We call A and B are spectrally equivalent if {A;} and {B;} are
spectrally equivalent sequences of matrices.

At the end of this section, we provide an example of spectrally equivalent stencils.
Consider the following 9-point stencil that was used in the study of the MG method
for circulant matrices [6]:

(2.7) a —2(a+b)—4c a
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6 R. HUANG, K. CHANG, H. HE, R. LI AND Y. XI

It was proved that the associated 5-point stencil

b+ 2c
(2.8) a+2c —2(a+b)—8 a+2c
b+ 2c

is spectrally equivalent to (2.7). Results for the 7-point stencil in 3-D that is spectrally
equivalent to a 27-point stencil can also be found in [6].

2.3. Numerical heuristics for spectral equivalence. Directly optimizing
(2.4), which involves a matrix norm, to find a spectrally equivalent A, to A, appears
to be challenging. Instead, a more viable approach is via test vectors that correspond
to the low-frequency modes of A, (see, e.g., [11, 36]). These low-frequency modes
represent the algebraically smooth modes at a coarse level, which are important for
the interpolation to transfer to the fine level within the MG hierarchy. From the
perturbed error propagation operator (2.3), it follows that after the pre-smoothing
steps, the remaining error, denoted by e, that is algebraically smooth in terms of A
(i.e., Ae = 0) needs to be efficiently annihilated by the coarse-grid. This smooth error
(of low frequency) is ideally in the range of interpolation operator P, meaning that,
e = Pe. with some coarse-grid error e.. Furthermore, e. is smooth with respect to
A, with a proper R, since Aje. = RAPe, = RAe is small. Therefore, for an effective
CGC with non-Galerkin coarse-grid operator A, it is essential for (I — PAZ!RA)e =
(I — PA;'RA)Pe. = P(I — A7'A,)e. to be small, which implies Agje. ~ A.e.. That
is to enforce the accuracy of A.e. compared to Age. with the low-frequency vector e,
on the coarse level.

In this paper, we adopt the approach of multigrid eigensolver (MGE) [7] to com-
pute the smooth vectors in the MG hierarchy. First, consider two-grid MG methods.
The Rayleigh quotient of Pe. with respect to A reads

(APe., Pe.) (PTAPe.e.) (Agec, ec)
2.9 A, Pe,) = _ _ (4 7
(2.9) r(4, Pec) (Pe,, Pe..) (PT Peg,e.) (Te., e.)

where T = PTP. Therefore, the desired smooth modes that minimize (2.9) relate to
the eigenvectors that correspond to the small eigenvalues of the generalized eigenvalue
problem

(2.10) Agu=XTu, T=P'P.

For MG methods with more than 2 levels, we can compute the smooth vectors at each
coarse level by recursively applying (2.10) at the previous fine level.

3. An ML method for coarse-grid operators. We aim to utilize ML tech-
niques to compute non-Galerkin operators in the MG method for solving (1.1), where
A is a stencil-based coefficient matrix that corresponds to PDE problems discretized
on Cartesian grids. On a given MG level [ > 1, with stencil Agl) associated with
the Galerkin matrix Aél), we construct a sparser stencil .Agl) in the following 3 steps,
which are explained in detail below and illustrated in Figure 2.

Step 1. Select the pattern of Aé”, where the corresponding entries are assumed
to be nonzero. The NN in this step, denoted by Fgq), is parametrized by oW, 1t
computes the location probability, i.e., the probability of a nonzero entry appears at
a location, for each of the stencil entries of Aél). We apply the NN Fgu) to the
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ML APPROACH FOR NON-GALERKIN COARSE-GRID OPERATOR 7

vectorized stencil vél) = veC(A!(,l)), i.e., the vector reshaped from the stencil array,
followed by a softmaz layer. Therefore, the output of the NN can be written as

(3.1) P = softmax(Few (vi)),

which is then reshaped back to match the shape of .A,(]l). Given that 0 < P < 1, each
entry can be interpreted as the probability of the entry appearing (being nonzero) in

the sparsified stencil Aﬁ”. With that, we select the largest k entries of P!,

(3.2) 70 = {Z ’ PW (i) is one of the largest k entries of P(l)} ,

where Z() denotes the set of the indices of those entries, from which we build a mask
Boolean vector M®) defined as

. . (l)

. )
0, otherwise

that determines the positions of the nonzeros in the non-Galerkin stencil.

Step 2. Compute the numerical values of the nonzero entries. The NN in this
step, denoted by Gy, is parametrized by U which is applied to the same input as
in Step 1. The output from NN of this step reads

(34) V(l) = G\I,(z) (Uél)),

which determines the numerical values of the nonzero entries.
Step 3. Construct Aff’ by point-wise multiplication. The non-Galerkin stencil is
computed by the Hadamard (or element-wise) product

(3.5) AD = pm® o Y0,

We summarize these steps in Algorithm 3.1. The MG V-cycle using the sparsi-
fied coarse grid is outlined in Algorithm 3.2, which closely resembles Algorithm 2.1,
whereas, instead of using the Galerkin operator for coarser levels, the non-Galerkin
operator A, is constructed from the sparsified stencil generated by Algorithm 3.1.

Remark 3.1. A few remarks on Algorithm 3.1 and Algorithm 3.2 follow. To begin
with, the parameter k of Algorithm 3.1 signifies the number of the nonzero entries
in the sparsified stencil. This effectively gives us the ability to directly manipulate
the complexity of the resulting non-Galerkin operator. Secondly, in the NN imple-
mentations, we ensure that the shapes of M®) and V¥ are identical. This enables
the proper application of the Hadamard product. Lastly, it is assumed that the NNs,
Fo, and Gy,, have undergone sufficient training. Therefore, Step 7 of Algorithm 3.2
involves merely the application of the trained NNs.

Algorithm 3.1 SparsifyStencil

Input: Ay, Fo,Gu, k
1: Apply the NNs to compute P = Fg(Ay) and V = Gy (Ay)
2: M has the same shape as V and has a value of 1 at the entries corresponding to
the k largest values of P, with 0 elsewhere.
3: return A.= MoV

This manuscript is for review purposes only.
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Smoothing + Projection Correction + Smoothing Level 1

AT \ ose A® /

Smoothing + Projection

e Correction + Smoothing Level 2
.
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" - Ay) \ K ALG) /
L] . [ A}
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Ay /! A

/
5
8

Fic. 2. Illustration of the ML algorithm for computing coarse-grid operators with NNs.

Algorithm 3.2 MG V-Cycle with sparsified coarse-grid operator

1: Pre-smoothing: u® := (I — (M®)=1 Ay O 4+ (MO)=1 £ for v steps

2. Compute the residual 7 = fO — AWy and restriction ) = RO#O
3: Compute the Galerkin operator AgH) = RO AW pWY)

4: if =L —1 then

5. Solve AVTVy(+D = (4D with an arbitrary method

6: else

7. Apply Algorithm 3.1: ALY = SparsifyStencil(A(gl+1),F@(z+1),Gq,(z+1>,k)
8  Let AU+ = AUTD 3,0+1) — g and f0+D = 0+D . Go to Step 1 with I := [ +1
9: end if

10: Prolongate and correct: u(® := u(®) 4 Py (+1)

11: Post-smoothings: u(®) := (I — (M®)=TAO) O 4 (MO)=T O for v steps

3.1. NN training algorithm. In this section, we delve into the specifics of the
training algorithm that enables NNs to generate a sparser coarse-grid operator stencil
than the Galerkin operator stencil, without impairing the overall convergence of the
MG method. A key component of Algorithm 3.2 is line 7 where Fg and Gy are
the pre-trained NNs. The loss function, another crucial component, is pivotal to the
training procedure. Based on the discussion in subsection 2.3, we aim to minimize
the discrepancy between Ajv and A.v where v is an algebraically smooth vector.

Denote by 8 € RP parameters of the problem to solve, which possesses a proba-
bility distribution pg in 4. The loss function tied to Fig and Gy is defined as:

(3.6) L (Fo, Gu, A5 {0 }5my) = SoI1A00) — A2,
j=1

where {vf } represents the set of algebraically smooth vectors, s is the number of these
vectors, and A? is computed by Algorithm 3.1. The objective is to minimize the
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expectation of Lg under the distribution of 3, symbolized as Eg~,, [£s], throughout
the training. It is worth mentioning that instead of explicitly forming the matrices Ag
and Af7 we adopt a stencil-based approach where the matrix-vector multiplications
are performed as the convolutions of the stencils Ag and A? with vectors that are
padded with zero layers, assuming zero boundary conditions are used. The stencil-
based approach and the convolution formulation greatly enhance memory efficiency

during training.

3.2. Details of Training and Testing. In this section, we provide details of
the training and testing algorithms.

Architecture of the multi-head attention. We use multi-head attention [35] to com-
pute both location probability in Step 1 with Figu) and numerical values in Step 2 with
Gy as discussed in section 3. We adopt the standard architecture that comprises a
set of nj, independent attention heads, each of which extracts different features from
each stencil entry of A,(]l). In essence, each head generates a different learned weighted
sum of the input values, where the weights are determined by the attention mech-
anism and reflect the importance of each value. The weights are calculated using a
softmax function applied to the scaled dot-product of the input vectors. The output
from each head is then concatenated and linearly transformed to produce the final

output.
The multi-head attention mechanism in our study is formally defined as follows:
Let vél) denote the input vectors. For each attention head h;,i = 1,...,ny, we first

transform the inputs using parameterized linear transformations, WiQ, WK and WY
to produce the vectors of query @Q;, key K;, and value V; as follows:

(37) Q1 — ,U!(]l)WiQ7 [(7 — U;Z)WiK, ‘/1 — ,Uél)WiV'

The attention scores for each input vector in head h; are then computed using the
scaled dot-product of the query and key vectors, followed by a softmax function:

T
(3.8) Attention; = softmax (QiKi ) V;
Vi,
where dj, is the dimension of the key vectors. This process captures the dependencies
among the input vectors based on their similarities. The output of each attention head
h; is then concatenated, and a linear transformation is applied using a parameterized
weight matrix WO with softmax activation, which ensures positive outputs:

(3.9) MultiHead(v!(]l)) — Concat(Attention,, ..., Attention,,, )W .

This architecture empowers the model to learn complex PDE stencil patterns effec-
tively. The design is flexible, and the number of heads can be adjusted as per the
complexity of the task.

Intuition of selection of multi-head attention. We first briefly explain why multi-
head attention is beneficial for PDE stencil learning than other types of NNs. This
work is about teaching the NNs to generate stencils, which are essentially small pat-
terns or templates used in the discretization of PDEs. These stencils represent the
relationship between a grid point and its neighbors. In the context of PDE stencil
learning, multi-head attention can be highly beneficial for several reasons:

1. Feature diversification: The multi-head attention allows the model to focus on
various features independently, and thus, can capture a wider variety of patterns
in the data. For PDE stencil learning, this means that the model can understand
the relationships between different grid points more comprehensively.

This manuscript is for review purposes only.
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2. Context awareness: Attention mechanisms inherently have the capacity to consider
the context, i.e., the relationships between different parts of the input data. In
PDE stencil learning, this translates to understanding the interactions between a
grid point and its surrounding neighboring points.

3. Flexibility: Multi-head attention adds flexibility to the model. Each head can
learn to pay attention to different features, making the model more adaptable. In
the context of PDEs, this means that one head can learn to focus on local features
(such as the values of nearby points), while another might focus more on global
or structural aspects.

We observed empirically that our proposed architecture outperforms standard
deep NNs (vanilla deep NNs) in stencil learning. This improvement is primarily
attributed to the attention mechanism, which effectively addresses local structure
capturing challenge inherent in fully connected layers. PDE problems often involve
spatial and temporal structures that are local in nature. Fully connected networks,
due to their global connectivity pattern, may struggle to effectively learn these lo-
cal structures. They treat input data as a flattened array without considering the
spatial correlations, which are critical in PDEs and yield sub-optimal performance.
Through our empirical experiments, we found that the MG method, enhanced with
attention-based operator learning, significantly outperforms models based solely on
fully connected layers. Specifically, it achieved a 30% reduction in the number of
iterations required to converge on a 2-D linear elasticity problem. This finding aligns
with other studies, such as [13], which demonstrated that fully connected layers suffer
from learning the complex dependencies among a grid.

Details of training and testing. Parameters 8; of PDE problems are sampled from
distribution % according to the probability density function pg to get the set of N,
parameters, {8;}, 4 = 1,..., N;. Then, we construct the corresponding set of fine-grid
stencils {A”}. For all the tests in this paper, we use full coarsening, full-weighting
restriction, and the corresponding bi-linear interpolation for all the levels of MG. At
each level | > 1, the ML model is built with the Galerkin stencils {(Agi)(l)} and a

set of smooth test vectors {(vfi)(l)}, j=1,...,s, associated with each of the stencil,
using the loss function

N,
1 ) )
(3.10) L= N, ; Lg, (F@m Gy, (AFHD, {(Uf’)(l)})

that is used to approximate Eg~,, [£5]. The complete training procedure is summa-
rized in Algorithm 3.3. It is important to note that the NN trainings are independent
of each other on different levels. Therefore, the training of the NNs for each level
can be carried out simultaneously once the training data is prepared, taking advan-
tage of parallel computing resources. The testing set is constructed with parameters
that differ from those in the training set. This means that we test the model on a
set of PDE parameters {§;}, j = 1,..., N,, that have not been encountered by the
models during training. The purpose of the testing set is to assess the generalization
capability of new problem instances.

4. Numerical Results. We report the numerical results of the proposed ML-
based non-Galerkin coarse-grid method in this section. All the ML models in the
work! were written with PyTorch 1.9.0 [29]. We use PyAMG 4.2.3 [3] to build the

IThe codes is available at https://anonymous.4open.science/r/Sparse-Coarse-Operator-11C7
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Algorithm 3.3 Training NNs for computing coarse-grid operator at level [

Input: Interpolation operator P, Galerkin coarse-grid stencils {(.Agi)(l)}, the num-
ber of test vectors s; and the target stencil complexity &
Output: NNs Fgu and Gy
1: Generate test vectors (vf")(l), j=1,...,s, for each (Ag'i)(l) as follows
e Compute 7% = (PO)TpO)
e Compute the eigenvalues and vectors of

(A7) Du = AT,

where (Agi))(l) is the coefficient matrix at level [ corresponding to stencil
e The test vectors are the eigenvectors associated with the s; smallest eigenvalues
Initialize Gguy and Gy
repeat
Apply Algorithm 3.1: (A%)®) = SparsifyStencil ((Agi)(l), Fow,Gyw, k)
Compute the gradient of the loss (3.10)
Update the weights ©®) and T(®)
until the prescribed number of training epochs is reached

MG hierarchy. All the experiments were performed on a workstation with Intel Core
i7-6700 CPUs. The multi-head attention model we implemented has a total dimension
of 256 and comprises 8 heads, which is also incorporated a dropout scheme with the
rate of 0.7.

4.1. Evaluation Metrics. In this section, we evaluate the performance of the
proposed ML-based approach by comparing the average number of iterations required
by the MG method using different coarse-grid operators to converge. Additionally,
we verify the spectral equivalence of the Galerkin and sparsified non-Galerkin stencils
by computing the spectra of the corresponding matrices on meshes of various sizes.

4.2. Spectrally equivalent stencils. We first examine the proposed ML-based
method on the 9-point stencil problem (2.7) that allows direct evaluation of the learned
non-Galerkin operator by the comparison with the theoretical result (2.8), which is a
spectrally equivalent 5-point stencil. We use the 9-point stencil A of the form (2.7)
with a = 1.417, b = 2.720 and ¢ = 0.000114, i.e.,

0.000114 2.720 0.000114
(4.1) A= 1.417 —8.27456 1.417
0.000114 2.720 0.000114

as the fine-level A-operator, and the 2-D full-weighting stencil,

BERE
(4.2) R=1s|2 4 2],
12 1

for the restriction operator. Thus, the stencil of the Galerkin operator is

0.129294125 0.42140075 0.129294125
(4.3) Ag = | 0.095650750 —1.55182350 0.095650750 | ,
0.129294125 0.42140075 0.129294125
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which has the same form as A. From (2.8), a 5-point stencil that is spectrally equiv-
alent to (4.3) is given by

0 0.679989 0
(4.4) A. = | 0.354239 —2.068456 0.354239
0 0.679989 0

Using Algorithm 3.3 with the prescribed number of nonzeros in the stencil £k = 5 on
the 31 x 31 grid, the pre-trained NNs produced the following 5-point stencil

0 0.663 0
(4.5) Apn = | 0347 —2.024 0.348 |,
0 0.666 0

denoted by A, which is close to the theoretical result (4.4). To assess the con-
vergence behavior of the MG method, we solve a linear system using the coefficient
matrix defined by (4.1). We conduct these tests on larger-sized grids and use the
two-grid MG methods employing Ay, A., and A,, as the coarse-level operators, re-
spectively. The right-hand-side vector is generated randomly. The stopping criterion
of MG iterations with respect to the relative residual norm is set to be 107%. The
results are shown in Table 2, from which we can observe that all three methods require
the same number of iterations.

TABLE 2
The number of iterations required by the two-level MG methods for solving a linear system
corresponding to the coefficient matriz stencil (4.1) to 1076 accuracy in terms of the relative residual
and the oo and B in (2.1) for different grid sizes. The MG methods utilize Ag, Ac, and Ann as the
coarse-level operator respectively. The tests are carried out on grid sizes up to 511 x 511.

grid size
63 95 127 191 255 383 511
A «a | 1.0073 | 1.0021 | 1.0018 | 1.0013 | 1.0011 | 1.0004 | 1.0002
€| 8| 1.9990 | 1.9996 | 1.9998 | 2.0000 | 2.0001 | 2.0001 | 2.0002
A o | 0.9771 | 0.9804 | 0.9796 | 0.9780 | 0.9778 | 0.9776 | 0.9776
"B 1.9556 | 1.9563 | 1.9566 | 1.9567 | 1.9568 | 1.9569 | 1.9568

grid size
63 | 95 | 127 | 191 | 255 | 383 | 511
g |11 }10| 10 | 10 | 10 | 10 | 10
c |11 )10 10 | 10 | 10 | 10 | 10
Apn | 11110 10 | 10 | 10 | 10 | 10

4.3. 2-D rotated Laplacian problem. In this section, we consider the 2-D
anisotropic rotated Laplacian problem

(4'6) -V (T9>§vu(x7 y)) = f(:v,y),
where the 2 x 2 vector field Ty ¢ parameterized by ¢ and & is defined as

T cos? @ + £sin® 0 cosfsinf(1 — §)
967 lcosOsinf(1 — €)  sin 60+ £ cos? 0

with € being the angle of the anisotropy and & being the conductivity.
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We show that the proposed approach is not limited to a particular set of parame-
ters but remains effective across a range of values for both £ and 6. In the first set of
experiments, we fix the value £ while allowing 6 to follow a uniform distribution within
a specified interval. We conduct 12 experiments where each & € {100, 200, 300,400} is
paired up with 6 sampled from intervals {(7/4,7/3), (7 /3,57/12), (/2,77 /12)}. The
MG methods for solving these problems use full-coarsening, full-weighting restriction,
and the Gauss-Seidel method for both pre-smoothing and post-smoothing. MG V-
cycles are executed until the residual norm is reduced by 6 orders of magnitude. The
number of the nonzero elements is 9 in the Galerkin coarse-grid stencil across the MG
levels, whereas we choose to reduce the number to 5 for the non-Galerkin operator.

During the training phase of each experiment, the model is provided with 5 in-
stances for a given £ with different 6 values evenly distributed within a chosen interval.
For example, for £ = 100 and 6 € (7/4,7/3), the parameters for the 5 instances of
(&, 0) are selected as follows:

(4.7)  {(100,7/4), (100, 3.257/12), (100, 3.57/12), (100, 3.757 /12), (100, 7/3)} .

The size of the fine-level matrix in the training instances is set to be 31 x 31. In the
testing phase, 10 distinct 6 values are randomly selected from the chosen interval. The
MG parameters are the same as those used in the training phase. In the testing, it
should be noted that the fine-level problem size is 511 x 511, which is approximately
256 times larger than that in the training instances. This larger problem size in
the testing allows for a more rigorous evaluation of the performance of MG and the
ability to handle larger-scale problems. We record the number of iterations required
by the 3-level MG method to converge with the Galerkin and non-Galerkin operators,
shown in Table 3. These results indicate that the convergence behavior of the MG
method remains largely unchanged when the alternative sparser non-Galerkin coarse-
grid operators are used as replacements.

TABLE 3
The average number of iterations required by the 3-level MG to converge with the Galerkin and
non-Galerkin coarse-grid operators for solving (4.6) with different PDE parameter & and 6. The
mesh size is 511 x 511. The parameters are selected so that & € {100,200, 300,400} s fized and 0 is
randomly sampled from a uniform distribution in each interval. The iteration number is averaged
over 10 different sampled 6 values.

0
S /6, 7/A) [ /aa/3) [ (7/2, T /12)
Ag 100 92.1 102.8 126.9
Ann 89.0 93.0 135.2
Ag g0 | 1OLT 196.6 203.1
A, 174.2 177.8 204.9
Ag [ a00 | 2480 269.7 3423
Aon 246.5 231.4 356.2
Ag 400 337.1 351.1 438.2
Ann 326.3 327.7 441.5

In the second set of experiments, we keep the parameter 6 fixed and vary & fol-
lowing a uniform distribution within the selected intervals. A total of 12 experiments
were conducted where each § € {n/6,7/4,7/3,57/12} is paired with & sampled from
the intervals {(5,10), (80, 100), (100,200)}. The MG configurations used in these ex-
periments remain the same as in the previous set. The training and testing processes
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are also similar. For each experiment, we train the model using 5 different instances
evenly distributed within the selected intervals and then test it with 10 randomly
sampled ¢ values from the same interval. The size of the fine-level linear system in
the training instances is set to be 31 x 31, while in each testing instance, it has a
much larger size that is 511 x 511. The averaged numbers of iterations from all the
experiments are presented in Table 4.

TABLE 4
The average number of iterations required by the 3-level MG to converge with the Galerkin and
non-Galerkin coarse-grid operators for solving (4.6) with different PDE parameter & and 0. The
mesh size is 511 x 511. The parameters are selected such that 6 € {n/6,7/4,7/3,57/12} is fized
and & is randomly sampled from a uniform distribution in each interval. The iteration number is
averaged over 10 different sampled £ values.

§
0 (100, 200 | (80, 100) | (5, 10)
A, /6 90.4 72.1 135
Ann 100.2 84.4 13.8
A, 1 172.5 105.2 141
A | T 123.1 79.0 15.9
A, 99.4 0.9 143
A | /3 79.1 88.8 15.4
A, 92.5 76.4 165
Ann 57/12 107.4 88.2 16.6

In the subsequent experiment, we specifically consider the Laplacian problem with
parameters § = /6 and £ = 0.1 as an example to demonstrate the measurement of
spectral equivalence as defined in (2.1). We examine the eigenvalues of A, !4, on
meshes of varying sizes. The real parts of the eigenvalues are depicted in Figure 3.
We observe that all the eigenvalues are bounded by @ = 0.65, 8 = 0.9 in Definition 2.4,
and the distribution of eigenvalues remains consistent regardless of the mesh size. This
observation suggests the presence of spectral equivalence between the two coarse-grid

operators across meshes of different sizes.

n=31 n=47
1 T PR i s NN N e 0 DD EE DR REE TR URn L0y O
0.I70 O.I75 0.|80 0.é5 O.l70 O.|75 O.|80 0.|85
n=63 n=95
[meeemile 0y gL | |n iy g ey .|
0.|70 0.|75 O.éO O.éS 0.|70 0.|75 0.|80 0.235

Fic. 3. The real parts of the eigenvalues of A;%Ag on meshes of different sizes (n x m) for
solving the rotated Laplacian problem with 6 = 7/6 and £ = 0.1.

The target stencil complexity &k in Algorithm 3.1 is a parameter left to be chosen by
the users. It is an adjustable parameter that allows users to control the sparsity level
in the trained NN-model and of the resulting coarse-grid operator. The appropriate
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value of k typically depends on the problem domain and the desired balance between
accuracy and computational efficiency. It may be necessary to perform experiments to
determine the optimal value of k for a particular application. In the final experiment,
we perform this study for the rotated Laplacian problem with £ = 10 and 6§ = 7 /4.
Note that the Galerkin operator has a 9-point stencil, so we vary the stencil complexity
from 4 to 6 in the non-Galerkin operator and record the convergence behavior of the
corresponding MG method. The results, as depicted in Figure 4, show the findings
regarding the convergence behavior of the MG method with different values of k in
the sparsified stencil A,,,. Notably, when k = 4, the MG method fails to converge.
However, for k = 5 and k = 6, the convergence behavior closely resembles that of
the 9-point Galerkin operator. This observation suggests that a minimum number of
nonzeros in the stencil of k = 5 appears to be required for A,,,, to achieve convergence,
which coincides with the operator complexity of the fine-grid operator.

e \
~
3 ‘9 hd A \ 2 Py
g 1 % * —e
—
o \‘"&~.
< 1024 .Q'.{.i‘
© S
S \‘:*.
O 10ty Lo,
m <
g \'\&5\
(0] 10° 5 . \k\.
> —e— 4-point S,
= ) .5
D 104 - 5-point Sk,
. s,
o o -~4- 6-point \'\.\Qi':zu
—=- 9-point '\7'\".‘3‘
0 1 2 3 2 5 6
Iterations

Fi1G. 4. The convergence in terms of the residual norm of the two-grid MG methods using the
coarse-grid operator from the NN model of stencil complexity k = 4,5,6 and the Galerkin operator
for solving the rotated Laplacian problem with & =10 and 6 = 7 /4.

4.4. 2-D linear elasticity problem. In this section, we consider the 2-D time-
independent linear elasticity problem in an isotropic homogeneous medium:

0u 0%
2 —_— —_— =
(4.8) pV=u 4 (n+A) <8a:2 + awy) + fa=0,
0%v 0%u
2 _— —_— =
(4.9) pV=v 4+ (14 X) (81:2 + axay) + fy =0,

where u and v are the solution in the direction of z- and y-axis respectively, f, and f,
are forcing terms, and p and A are Lame coefficients that are determined by Young’s
modulus E and Poisson’s ratio v as
E FEv
M = — )\ =
1+v)1-2v)

20+ v)
In our tests, we set £ = 107° and vary the value of v. For the discretization, we adopt
the optimal 2-D 9-point stencil in terms of local truncation errors [22] on rectangular

(4.10)
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Cartesian grid with the mesh step sizes h and byh, respectively, along the z- and
y-axes (b, is the aspect ratio of the mesh),

nw n ne nw ne
Ay Ayy Ay Ay 0 Ay
— w € —
(411) AUU - Ay 1 Ay | 5 Auv - 0 0 0 ’
sw s se sw se
Ay Ay, uu Ay 0 Ay

where the coeflicients are given by
b2 — DA +2(b2 — 2
(4.12) a’, =a’, = (92) (y2 n_
202002 + A +4(b2 + 1))
2002 + 4ub? + X +
(4.13) Gy = Qs = — - M2y 5 a ,
202002 + A +4(b2 + 1)p)

—AbZ —2ub? + X+
(4.14) at = = a’ = a’¢, = y — “HYy H 7
42705 + A + 407 + 1)p)

X 3by (A + 1)
4.15 nw _ gse _ _ gne _ _ SW _ y .
( ) a (2298 ([ Qo 8(2Ab§ n ) +4(b22/ T 1)‘U,)

These stencils define the 2 x 2 block linear system

Auu Auv ul fz
@10 ] =)
where A,, = A,, and A,, = A}l . A node-based MG approach is used to solve

(4.16), where the same red-black coarsening is used in u-u and v-v blocks and the
interpolation and restriction operators have the same block form

Ruyuw Ruw _ | Puu Puy
(417) = {Rw Rw} , P= {Pw PUJ :
which interpolate and restrict within and across the two types of variables u and v.
The stencils of the operators in (4.17) are given by, respectively,

1| L 1] L
(4.18) Ruu=Row=-141|, Pou=Pow=-|141],
8 4
1 1
1 1
1 1
(4.19) Ruw=-|-10-1], Pup=-|-10-1],
8 4
! 1
[ -1 -1
1 1
(4.20) Row=-110 1|, Puu=-]101
81 1 ol B

Here we use the reversed bracket notation [34] to represent column stencils as a fan-
out operation as opposed to the fan-in operation of row stencils. As stated in [8],
to interpolate exactly the smoothest function that is locally constant, it requires the
interpolation weights for u-u and v-v to sum to 1 and for the u-v and v-u weights to
sum to 0. The Gauss-Seidel smoother is used with the MG V-cycle and the iterations
are stopped when the relative residual norm is below 1076,
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We train the NN model on 4 different instances with v € {0.1,0.2,0.3,0.4} to
reduce the complexity of the Galerkin operator by 50%. The coarse-grid Galerkin
operator has the same block structure as (4.16) and only 2 distinct stencils due to the
symmetry of the matrix. In the training, we combine these 2 stencils and pass them
to the NNs as the input. It turns out that the NN model trained in this way yields
better coarse-grid operators than learning the stencils of u-u and u-v separately.

The mesh size used in the training set is set to be 9 x 9. We test the model on
instances with v randomly drawn from each interval of {(0.1,0.2), (0.2,0.3), (0.3,0.4) }.
The size of the mesh used in the testing is 65 x 65. The average numbers of iterations
are presented in Table 5. Similar to the results observed in the rotated Laplacian
problems, the convergence behavior of the two-grid MG method is not negatively
affected by the replacement with the non-Galerkin coarse-grid operator obtained from
the NN model.

TABLE 5
The average number of iterations required by the 2-grid MG to converge with the Galerkin and
non-Galerkin coarse-grid operators for solving (4.8) with 10 different Poisson’s ratios v randomly
sampled from each interval. The mesh size is set to be 65 X 65.

v | (0.1,0.2) | (0.2,0.3) | (0.3,0.4)
10.1 10.2 10.6

‘Ag
A | 11.0 10.7 11.5

4.5. Comparison with existing non-Galerkin methods. In this section,
we compare the performance of the proposed NN-based algorithm with the Spar-
sified Smooth Aggregation (SpSA) method proposed in [32] for solving the rotated
Laplacian problem. The SpSA method is based on Smooth Aggregation (SA) AMG
methods. In these methods, a tentative aggregation-based interpolation operator P;
is first constructed, followed by a few steps of smoothing of P; that generate the final
interpolation operator P, which is typically considerably denser than P;. The SpSA
algorithm aims to reduce the complexity of the Galerkin operator PT AP to have the
same sparsity pattern as P, AP,. Given that we utilize the standard Ruge-Stiiben MG
(as opposed to SA AMG) combined with the NN-based approach, conducting a direct
comparison between the two approaches becomes challenging due to the different MG
hierarchies obtained. To ensure an equitable comparison, we impose a requirement
that the number of nonzero entries per row in the coarse-level operator generated
by SpSA should not be smaller than the operator produced by our algorithm. Con-
sequently, any observed disparities in performance can be attributed to the specific
characteristics of the selected sparsity pattern and numerical values of the coarse-
grid operator, rather than the variations in the level of the sparsity. The number of
iterations required by the GMRES method preconditioned by 3-level MG methods
with different coarse-grid operators for solving the rotated Laplacian problem (4.6)
are presented in Table 6 and Table 7, with varied PDE coefficients. For more than
70% of cases, the MG method with NN-based coarse-grid operators exhibits better
performance compared to SpSA, as it requires fewer iterations to converge to the
10~ stopping tolerance and achieves a convergence rate that is much closer to that
using the Galerkin operator. There are a few exceptions where SpSA outperforms the
NN-based method, and in some cases, it performs even better than the MG method
using the Galerkin operator.
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TABLE 6

The average number of iterations required by the GMRES method preconditioned by 3-level MG
methods with different coarse-grid operators for solving (4.6) with different sets of PDE parameters.
The mesh size is 511 X 511. The parameters are selected so that 0 € {w/6,7/4,7/3,57/12} is fized
and & is randomly sampled from a uniform distribution in each interval. The iteration number is
averaged over 10 different sampled 6’s. Ay denotes the Galerkin coarse-grid operator, Ann is the
coarse-grid operator obtained from Algorithm 3.3, and SpSA refers to the coarse-grid operator from
the Sparsified Smooth Aggregation (SpSA) algorithm [32]. The numbers in the brackets are the
operator complexities.

0
§ TG, 7 | /a3y | (7/2, 7 /1)

A, 11.3 (1.31) | 111 (1.31) | 1L5 (1.31)

Awn | 100 | 165 (117) | 169 (117) | 19.9 (1.17)
SA 35.5 (1.65) | 35.0 (1.70) | 10.2 (2.14)

SpSA 41.7 (1.29) 38.7 (1.21) 13.2 (1 42)
A, 159 (1.31) | 15.3 (L31) | 145 (1.31)

Aun | 50 | 205 (117) | 19.6 (1.17) 29 8 (1.17)
SA 44.1 (1.65) | 44.8 (1.66) 6 (2.31)

SpSA 51.8 (1.19) | 47.9 (1.19) 14 9 (1.42)
A, 181 (1.31) | 215 (1.31) | 17.9 (1.31)

Aun | 500 | 2544 (117) | 831 (117) | 25.6 (1.17)
SA 45.7 (1.72) | 51.3 (1.63) | 11.2 (2.08)

SpSA 54.7 (1.23) | 53.5 (1.17) | 16.7 (1.43)
A, 21.1 (1.31) | 202 (1.31) | 19.9 (1.31)

Awn | 400 | 272 (117) | 300 (117) | 262 (1.17)
SA 52.7 (1.63) | 53.5 (1.66) | 11.0 (2.11)

SpSA 61.3 (1.19) | 57.6 (1.19) | 18.2 (1.42)

5. Conclusion. In this work, we propose an ML-based approach for computing
non-Galerkin coarse-grid operators to address the issue of increasing operator com-
plexity in MG methods by sparsifying the Galerkin operator in different MG levels.
The algorithm consists of two main steps: choosing the sparsity pattern of the stencil
and computing the numerical values. We employ NNs in both steps and combine
their results to construct a non-Galerkin coarse-grid operator with the desired lower
complexity. The NN training algorithm is guided by the MG convergence theory, en-
suring the spectral equivalence of coarse-grid operators with respect to the Galerkin
operator. We showed that spectrally equivalent sparser stencils can be learned by
advanced ML techniques that exploit multi-head attention.

The NN model is trained on parametric PDE problems that cover a wide range
of parameters. The training dataset consists of small-size problems, while the testing
problems are significantly larger. Empirical studies conducted on rotated Laplacian
and linear elasticity problems provide evidence that the proposed ML method can con-
struct non-Galerkin operators with reduced complexity while maintaining the overall
convergence behavior of MG. A key feature of our method is its ability to generalize to
problems of larger sizes and with different PDE parameters that were not encountered
in the training for in-distribution test sets. This means that the algorithm can effec-
tively handle a wide range of problem settings, expanding its practical applicability.
By generalizing to new problem instances, the algorithm amortizes the training cost
and reduces the need for retraining for every specific problem scenario. It is impor-
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TABLE 7

The average number of iterations required by the GMRES method preconditioned by 3-level MG
methods with different coarse-grid operators for solving (4.6) with different sets of PDE parameters.
The mesh size is 511 X 511. The parameters are selected so that 0 € {w/6,7/4,7/3,57/12} is fized
and & is randomly sampled from a uniform distribution in each interval. The iteration number is
averaged over 10 different sampled ’s. Ay denotes the Galerkin coarse-grid operator, Ann is the
coarse-grid operator obtained from Algorithm 3.3, and SpSA refers to the coarse-grid operator from
the Sparsified Smooth Aggregation (SpSA) algorithm [32]. The numbers in the brackets are the
operator complexities.

S
o (100,200) | (80, 100) (5 10)
A, 11.6 (1.31) | 10.4 (1.31) | 4.4 (1.31)
A 6 | 199 (1L17) | 164 (1.17) | 7.1 (117)
sa | ™0 | 218 (1.98) | 22.4 (1.98) 11 5 (1.98)
SpSA 32.2 (1.38) | 29.0 (1.38) | 13.7 (1.38)
A, 14.2 (1.31) | 11.3 (1.31) | 4.6 (1.31)
Apn L | 182 (117) | 155 (1.17) 10 0 (1.17)
sa | ™| 392 (1.63) | 331 (1.63) | 13.3 (1.62)
SpSA 42.8 (1.17) | 35.8 (1.17) | 14.2 (1.17)
A, 11.2 (1.31) | 10.2 (1.31) | 4.7 (1.31)
A 5 | 188(L17) | 164 (1.17) | 7.1 (117)
sa | ™3 | 265 (1.98) | 242 (1.98) 12 1 (1.98)
SpSA 34.1 (1.38) | 30.9 (1.38) | 14.5 (1.38)
A, 11.2 (1.31) | 10.1 (1.31) | 4.8 (1.31)
Aun | 5oy | 288 (117) 191 (117) 1 (1.17)
SA 13.9 (1.93) | 12.8 (1.93) 10 0 (1.91)
SpSA 18.5 (1.38) | 17.1 (1.38) | 10.8 (1.37)

tant to note that the true generalizability capability (out-of distribution test sets) for
deep learning approaches requires the development of large-scale foundation models, a
large-scale pretrained-model that can be used to conduct unseen tasks. This work is
an initial step towards that goal.

In the future, we plan to extend this work to sparsify unstructured coarse grid
operators by exploiting the Graph Convolution Networks (GCNs). We also plan to
explore the Equivariant Neural Networks [10] to enforce the symmetry in the sparsified
coarse-grid operators if the fine level operator is symmetric. In addition, we plan
to investigate the real-world applications including saddle point system[18], efficient
tensor algebra [16, 20, 14], modern generative models [9, 19, 17], multi-time series
analysis techniques [15, 30] to solve time-dependent PDEs.
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