

REDUCING OPERATOR COMPLEXITY OF GALERKIN COARSE-GRID OPERATORS WITH MACHINE LEARNING

RU HUANG*, KAI CHANG*, HUAN HE[†], RUI PENG LI[‡], AND YUANZHE XI*

Abstract. We propose a data-driven and machine-learning-based approach to compute non-Galerkin coarse-grid operators in multigrid (MG) methods, addressing the well-known issue of increasing operator complexity. Guided by the MG theory on spectrally equivalent coarse-grid operators, we have developed novel machine learning (ML) algorithms that utilize neural networks (NNs) combined with smooth test vectors from multigrid eigenvalue problems. The proposed method demonstrates promise in reducing the complexity of coarse-grid operators while maintaining overall MG convergence for solving parametric partial differential equation (PDE) problems. Numerical experiments on anisotropic rotated Laplacian and linear elasticity problems are provided to showcase the performance and comparison with existing methods for computing non-Galerkin coarse-grid operators.

Key words. machine learning, multigrid methods, operator complexity, neural networks

AMS subject classifications. 65M55, 65F08, 65F10, 15A60

16 **1. Introduction.** Multigrid (MG) methods are one of the most efficient and
17 scalable iterative methods for solving linear systems of equations

$$18 \quad (1.1) \quad \quad \quad Au = f$$

where the coefficient matrix $A \in \mathbb{R}^{N \times N}$ is sparse and large, and $u \in \mathbb{R}^N$ and $f \in \mathbb{R}^N$ are the solution and right-hand-side vectors respectively. For the systems that arise from elliptic-type partial differential equations (PDEs), MG methods often exhibit optimal linear computational complexities. Nevertheless, there is ongoing research focused on further improving the efficiency and scalability of MG methods, in particular for large-scale and challenging problems. By and large, the overall efficiency of iterative methods is determined by not only the convergence rate of the iterations but also the arithmetic complexity per iteration and the corresponding throughput on the underlying computing platform. In this work, we address a common issue in MG methods which is the growth of the coarse-grid operator complexity in the hierarchy. This operator is typically computed as the (Petrov–)Galerkin product from the operators in the fine level. Assuming A is symmetric positive definite (SPD) and $R = P^\top$, the Galerkin operator is optimal in the sense that it yields an orthogonal projector as the coarse-grid correction that guarantees to reduce the A -norm of the error. However, this operator can lead to the issue of decreasing operator sparsity, particularly at deeper levels of the MG hierarchy. This can impair the overall performance of MG by introducing challenges in terms of computational efficiency, memory requirements, and the communication cost in distributed computing environments [28, 2].

*Department of Mathematics, Emory University, Atlanta, GA 30322
 ({ru.huang,kai.chang,yxi26}@emory.edu). The work is supported by NSF awards OAC 2003720 and DMS 2208412.

[†]Department of Biomedical Informatics, Harvard University, Boston, MA 02130
(huan.he@hms.harvard.edu)

[†]Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, P. O. Box 808, L-561, Livermore, CA 94551 (li50@llnl.gov). This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was supported by the LLNL-LDRD program under Project No. 23-FS-031 and 24-ERD-033.

37 Moreover, the increasing operator complexity can also affect the effectiveness and robustness of other MG components such as the coarsening and interpolation algorithms
 38 [26]. To demonstrate this problem, we consider classical MG methods for solving the
 39 3-D Poisson's equation discretized on a $100 \times 100 \times 100$ grid with a 7-point stencil.
 40 The sparsity patterns of the operator matrix $A^{(l)}$ at the levels $l = 0, 3, 5$ are shown
 41 in [Table 1](#). From these patterns, it is evident that the matrix bandwidth increases as
 42 the level goes deeper, as well as the stencil size (i.e., the average number of nonzeros
 43 per row). The increased sparsity often leads to not only a growth in computational
 44 cost but also an increase in data movement, which corresponds to the communication
 45 expense in parallel solvers. [Figure 1](#) shows the time spent in the computation and
 46 communication in the first 6 levels of the MG hierarchies for solving a 3-D Poisson's
 47 problem. As depicted, there is a steep increase in the computational cost at level 2,
 48 coinciding with the level where the communication cost reaches its maximum.
 49

TABLE 1

The sparsity patterns of $A^{(0)}$, $A^{(3)}$, and $A^{(5)}$ in a Multigrid hierarchy for solving the 3-D Poisson's equation on 4 processes (top). The size of the operator matrix (N), the number of nonzeros (NNZ) and the average number of nonzeros per row (RNZ) from the top 4 levels (bottom).

level	N	NNZ	RNZ
0	1,000,000	6,940,000	7
1	499,891	8,418,739	17
2	115,515	5,328,543	46
3	14,479	1,125,707	78

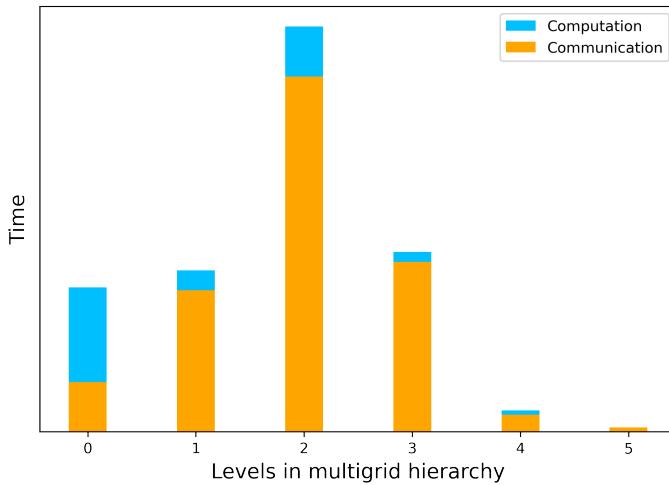


FIG. 1. *The cost of computation and communication in the first 6 levels of parallel Algebraic MG methods for solving the 3-D Poisson's equation on 8192 processes of Blue Waters, a Cray XK/XE supercomputer at the National Center for Supercomputing Applications. Image source: [5]*

50 One approach to reducing the coarse-grid operator complexity is to “sparsify”
 51 the (Petrov–)Galerkin operator after it is computed, i.e., removing some nonzeros
 52 outside a given sparsity pattern. The obtained sparsified operator is often called
 53 a “non-Galerkin” coarse-grid operator. The methods developed in [36, 33] leverage
 54 algebraically smooth basis vectors and the approximations to the fine grid operator
 55 to explicitly control the coarse grid sparsity pattern. The algorithms introduced in
 56 [11, 32] first determine the patterns of the sparsified operator based on heuristics
 57 on the path of edges in the corresponding graph and then compute the numerical
 58 values to ensure the spectral equivalence to the Galerkin operator for certain types of
 59 PDEs. Improving the parallel efficiency of AMG by reducing the communication cost
 60 with the non-Galerkin operator was discussed in [4]. These existing algorithms for
 61 computing non-Galerkin operators are usually based on heuristics on the associated
 62 graph and the characteristic of the underlying PDE problem, such as the information
 63 of the near kernels of A . Therefore, they are problem-dependent, and often times
 64 it can be difficult to devise such heuristics that are suitable for a broader class of
 65 problems.

66 Recently, there has been a line of work in the literature to leverage data-driven and
 67 machine learning (ML) based methods to improve the robustness of MG. In particu-
 68 lar, [27, 24, 12] deal with learning better prolongation operators. Techniques of deep
 69 reinforcement learning (DRL) are exploited in [31] to better tackle the problem of Al-
 70 gebraic MG coarsening combined with the diagonal dominance ratio of the F-F block.
 71 Both the works in [21] and [25] focus on the problem of designing better smoothers.
 72 In [21], smoothers are directly parameterized by multi-layer convolution neural net-
 73 works (CNNs) while [25] optimizes the weights in the weighted Jacobi smoothers. In
 74 this paper, we follow this line of research and propose a data-driven and ML-based
 75 method for non-Galerkin operators. In this work, we restrict our focus on problems
 76 on *structured meshes* and with *constant coefficients*. The innovations and features
 77 of the proposed method are summarized as follows: 1) Introduction of a multi-level
 78 algorithm based on ML methods to sparsify all coarse-grid operators in the multigrid
 79 hierarchy; 2) Successful reduction of operator density while preserving the conver-
 80 gence behavior of the employed multigrid method; 3) Applicability of the proposed
 81 NN model to a class of parametric PDEs with parameters following specific probabil-
 82 ity distributions; 4) Ability to train the sparsified coarse-grid operator on each level
 83 in parallel once the training data is prepared; 5) Flexibility for the user to choose
 84 the average number of non-zero entries per row in the coarse-grid operators, with a
 85 minimum threshold requirement. To the best of our knowledge, our proposed work is
 86 the first to utilize ML models for controlling sparsity within multigrid hierarchies.

87 The rest of the paper is organized as follows. We first briefly review the prelimi-
 88 naries of AMG methods and the non-Galerkin algorithms in section 2. We elaborate
 89 on our proposed sparsification algorithm in section 3. Numerical experiments and
 90 results are presented in section 4. Finally, we conclude in section 5.

91 **2. MG preliminaries and coarse-grid operators.** In this section, we give
 92 a brief introduction to MG methods and the Galerkin coarse-grid operators. The
 93 MG method is a multilevel method that utilizes a hierarchy of grids, consisting of
 94 fine and coarse levels, and constructs coarse-level systems at different scales that can
 95 capture the essential information of the fine-level system while reducing the problem
 96 size. MG algorithms employ techniques such as coarsening, relaxation, restriction and
 97 interpolation to transfer information between the grid levels to accelerate the solution
 98 process. Algorithm 2.1 presents the most commonly used MG V-cycle scheme. It uses

99 ν steps of pre- and post-smoothing, where M and M^T are the smoothing operators.
100 Matrices R and P are the restriction and prolongation operators, respectively. The
101 coarse-grid operator is computed in Step 3 via the Galerkin product, $A_g = RAP$.
102 The aim of smoothing is to quickly annihilate the high-frequency errors via simple
103 iterative methods such as relaxation, whereas the low-frequency errors are targeted
104 by the Coarse-Grid Correction (CGC) operator, $I - P(RAP)^{-1}RA$. When A is SPD
105 and $R = P^T$, the CGC operator is A -orthogonal with the Galerkin operator A_g .

Algorithm 2.1 Multigrid V-Cycle for solving $A^{(l)}u^{(l)} = f^{(l)}$ at level l

- 1: Pre-smoothing: $u^{(l)} := (I - (M^{(l)})^{-1}A^{(l)})u^{(l)} + (M^{(l)})^{-1}f^{(l)}$ for ν steps
- 2: Compute residual $r^{(l)} = f^{(l)} - A^{(l)}u^{(l)}$ and the restriction $r^{(l+1)} = R^{(l)}r^{(l)}$
- 3: Compute Galerkin operator $A_g = R^{(l)}A^{(l)}P^{(l)}$ and let $A^{(l+1)} = A_g$
- 4: **if** $l = L - 1$ **then**
- 5: Solve $A^{(l+1)}u^{(l+1)} = r^{(l+1)}$ with an arbitrary method
- 6: **else**
- 7: Let $u^{(l+1)} = 0$ and $f^{(l+1)} = r^{(l+1)}$. Go to Step 1 with $l := l + 1$.
- 8: **end if**
- 9: Prolongate and correct: $u^{(l)} := u^{(l)} + P^{(l)}u^{(l+1)}$
- 10: Post-smoothings: $u^{(l)} := (I - (M^{(l)})^{-T}A^{(l)})u^{(l)} + (M^{(l)})^{-T}f^{(l)}$ for ν steps

106 **2.1. Non-Galerkin operators.** Naive approaches, such as indiscriminately re-
107 moving nonzero entries in the Galerkin operators based on the magnitude often result
108 in slow convergence of the overall MG method (see the example provided in Section 3
109 of [11]). To address the aforementioned challenges arising from the increased operator
110 complexity, alternative operators, denoted by A_c , that are not only sparser than A_g
111 but also spectrally equivalent have been studied and have been used in lieu of the
112 Galerkin operator A_g [11, 23]. We say two matrices are spectrally equivalent defined
113 in [11] as follows:

114 DEFINITION 2.1. *SPD matrices A_g and A_c are spectrally equivalent if*

115 (2.1) $0 < \alpha \leq \lambda(A_g^{-1}A_c) \leq \beta,$

116 *with α and β both close to 1, where $\lambda(\cdot)$ denotes eigenvalues of a matrix.*

117 The convergence rate of MG can be analyzed through the spectral radius of the error
118 propagation matrix. For example, the two-grid error propagation matrix correspond-
119 ing to the V-cycle in Algorithm 2.1 reads

120 (2.2) $E_g = (I - M^{-T}A)^\nu(I - PA_g^{-1}RA)(I - M^{-1}A)^\nu.$

121 With the replacement of A_g by A_c , it becomes

122 (2.3) $E_c = (I - M^{-T}A)^\nu(I - PA_c^{-1}RA)(I - M^{-1}A)^\nu.$

123 The spectrum property of E_c is analyzed in the following theorem.

124 THEOREM 2.2 ([11]). *Denoting by B_g and B_c respectively the corresponding
125 preconditioning matrices defined as $B_g^{-1} = (I - E_g)A^{-1}$ and $B_c^{-1} = (I - E_c)A^{-1}$ and
126 assuming A_c and A_g are both SPD and*

127 (2.4) $\eta = \|I - A_cA_g^{-1}\|_2 = \|I - A_g^{-1}A_c\|_2 < 1,$

128 for the preconditioned matrix, we have

129 (2.5)
$$\kappa(B_c^{-1}A) \leq \frac{1+\eta}{1-\eta} \kappa(B_g^{-1}A),$$

130 and moreover

131 (2.6)
$$\rho(E_c) \leq \max \left(\frac{\lambda_{\max}(B_g^{-1}A)}{1-\eta} - 1, 1 - \frac{\lambda_{\min}(B_g^{-1}A)}{1+\eta} \right),$$

132 where $\lambda_{\max}(\cdot)$ and $\lambda_{\min}(\cdot)$ are the largest and smallest eigenvalues respectively, $\kappa(\cdot)$ denotes the condition number and $\rho(\cdot)$ denotes the spectrum radius.

134 The quantity η measures the degree of spectral equivalence between the operators
135 A_g and A_c , i.e., only when η is small, these operators are spectrally equivalent, since
136 $\rho(\cdot) \leq \|\cdot\|_2$. Clearly, the condition number of the preconditioned matrix and the
137 two-grid convergence with respect to E_c deteriorate as η increases. With fixed $B_g^{-1}A$,
138 we can establish a criterion for the convergence of E_c with respect to η , as shown in
139 the next result.

140 COROLLARY 2.3. Suppose $\eta < 1 - \lambda_{\max}(B_g^{-1}A)/2$. Then, the two-grid method
141 (2.3) converges.

142 Proof. Note that $\eta < 1 - \lambda_{\max}(B_g^{-1}A)/2$ implies that $\lambda_{\max}(B_g^{-1}A)/(1-\eta)-1 < 1$.
143 Since $\lambda(B_g^{-1}A) > 0$, $1 - \lambda_{\min}(B_g^{-1}A)/(1+\eta) < 1$. Therefore, from (2.6), it follows
144 that $\rho(E_c) < 1$. \square

145 **2.2. Spectrally equivalent stencils.** In this paper, we focus on structured
146 matrices that can be represented by stencils and grids, for the definitions and notations,
147 see, e.g., [34]. These structured matrices exhibit a unique property wherein
148 two spectrally equivalent stencils can determine two sequences of spectrally equivalent
149 matrices with increasing sizes and thus ensures the convergence of E_c with increasing
150 matrix sizes.

151 DEFINITION 2.4 ([1, 6]). Let $\{A_j\}$ and $\{B_j\}$ be two sequences of (positive definite)
152 matrices with increasing size N_j , where A_j and $B_j \in \mathbb{R}^{N_j \times N_j}$. If A_j and B_j are
153 spectrally equivalent as defined in (2.1) for all j with α and β that are independent
154 of N_j , then the sequences $\{A_j\}$ and $\{B_j\}$ are called spectrally equivalent sequences of
155 matrices.

156 The above definition yields the definition of spectrally equivalent stencils given
157 as follows.

158 DEFINITION 2.5 ([6]). Suppose the sequences of matrices $\{A_j\}$ and $\{B_j\}$ are con-
159 structed with the stencils \mathcal{A} and \mathcal{B} respectively, where for any given j , A_j and B_j
160 have the same size. We call \mathcal{A} and \mathcal{B} are spectrally equivalent if $\{A_j\}$ and $\{B_j\}$ are
161 spectrally equivalent sequences of matrices.

162 At the end of this section, we provide an example of spectrally equivalent stencils.
163 Consider the following 9-point stencil that was used in the study of the MG method
164 for circulant matrices [6]:

165 (2.7)
$$\begin{bmatrix} c & b & c \\ a & -2(a+b) - 4c & a \\ c & b & c \end{bmatrix}.$$

166 It was proved that the associated 5-point stencil

167 (2.8)
$$\begin{bmatrix} b+2c \\ a+2c & -2(a+b)-8c & a+2c \\ & b+2c \end{bmatrix}.$$

168 is spectrally equivalent to (2.7). Results for the 7-point stencil in 3-D that is spectrally
169 equivalent to a 27-point stencil can also be found in [6].

170 **2.3. Numerical heuristics for spectral equivalence.** Directly optimizing
171 (2.4), which involves a matrix norm, to find a spectrally equivalent A_c to A_g appears
172 to be challenging. Instead, a more viable approach is via test vectors that correspond
173 to the low-frequency modes of A_g (see, e.g., [11, 36]). These low-frequency modes
174 represent the algebraically smooth modes at a coarse level, which are important for
175 the interpolation to transfer to the fine level within the MG hierarchy. From the
176 perturbed error propagation operator (2.3), it follows that after the pre-smoothing
177 steps, the remaining error, denoted by e , that is algebraically smooth in terms of A
178 (i.e., $Ae \approx 0$) needs to be efficiently annihilated by the coarse-grid. This smooth error
179 (of low frequency) is ideally in the range of interpolation operator P , meaning that,
180 $e = Pe_c$ with some coarse-grid error e_c . Furthermore, e_c is smooth with respect to
181 A_g with a proper R , since $A_g e_c = RAPe_c = RAe$ is small. Therefore, for an effective
182 CGC with non-Galerkin coarse-grid operator A_c , it is essential for $(I - PA_c^{-1}RA)e =$
183 $(I - PA_c^{-1}RA)Pe_c = P(I - A_c^{-1}A_g)e_c$ to be small, which implies $A_g e_c \approx A_c e_c$. That
184 is to enforce the accuracy of $A_c e_c$ compared to $A_g e_c$ with the low-frequency vector e_c
185 on the coarse level.

186 In this paper, we adopt the approach of multigrid eigensolver (MGE) [7] to com-
187 pute the smooth vectors in the MG hierarchy. First, consider two-grid MG methods.
188 The Rayleigh quotient of Pe_c with respect to A reads

189 (2.9)
$$r(A, Pe_c) = \frac{(APe_c, Pe_c)}{(Pe_c, Pe_c)} = \frac{(P^\top APe_c, e_c)}{(P^\top Pe_c, e_c)} = \frac{(A_g e_c, e_c)}{(Te_c, e_c)},$$

190 where $T = P^\top P$. Therefore, the desired smooth modes that minimize (2.9) relate to
191 the eigenvectors that correspond to the small eigenvalues of the generalized eigenvalue
192 problem

193 (2.10)
$$A_g u = \lambda T u, \quad T = P^\top P.$$

194 For MG methods with more than 2 levels, we can compute the smooth vectors at each
195 coarse level by recursively applying (2.10) at the previous fine level.

196 **3. An ML method for coarse-grid operators.** We aim to utilize ML tech-
197 niques to compute non-Galerkin operators in the MG method for solving (1.1), where
198 A is a stencil-based coefficient matrix that corresponds to PDE problems discretized
199 on Cartesian grids. On a given MG level $l > 1$, with stencil $\mathcal{A}_g^{(l)}$ associated with
200 the Galerkin matrix $A_g^{(l)}$, we construct a sparser stencil $\mathcal{A}_c^{(l)}$ in the following 3 steps,
201 which are explained in detail below and illustrated in Figure 2.

202 *Step 1. Select the pattern of $\mathcal{A}_c^{(l)}$, where the corresponding entries are assumed
203 to be nonzero.* The NN in this step, denoted by $F_{\Theta^{(l)}}$, is parametrized by $\Theta^{(l)}$. It
204 computes the *location probability*, i.e., the probability of a nonzero entry appears at
205 a location, for each of the stencil entries of $\mathcal{A}_g^{(l)}$. We apply the NN $F_{\Theta^{(l)}}$ to the

206 vectorized stencil $v_g^{(l)} = \text{vec}(\mathcal{A}_g^{(l)})$, i.e., the vector reshaped from the stencil array,
 207 followed by a *softmax* layer. Therefore, the output of the NN can be written as

208 (3.1)
$$\mathcal{P}^{(l)} = \text{softmax}(F_{\Theta^{(l)}}(v_g^{(l)})),$$

209 which is then reshaped back to match the shape of $\mathcal{A}_g^{(l)}$. Given that $0 < \mathcal{P}^{(l)} < 1$, each
 210 entry can be interpreted as the probability of the entry appearing (being nonzero) in
 211 the sparsified stencil $\mathcal{A}_c^{(l)}$. With that, we select the largest k entries of $\mathcal{P}^{(l)}$,

212 (3.2)
$$\mathcal{I}^{(l)} = \left\{ i \mid \mathcal{P}^{(l)}(i) \text{ is one of the largest } k \text{ entries of } \mathcal{P}^{(l)} \right\},$$

213 where $\mathcal{I}^{(l)}$ denotes the set of the indices of those entries, from which we build a mask
 214 Boolean vector $\mathcal{M}^{(l)}$ defined as

215 (3.3)
$$\mathcal{M}^{(l)}(i) = \begin{cases} 1, & \text{if } i \in \mathcal{I}^{(l)} \\ 0, & \text{otherwise} \end{cases},$$

216 that determines the positions of the nonzeros in the non-Galerkin stencil.

217 *Step 2. Compute the numerical values of the nonzero entries.* The NN in this
 218 step, denoted by $G_{\Psi^{(l)}}$, is parametrized by $\Psi^{(l)}$ which is applied to the same input as
 219 in Step 1. The output from NN of this step reads

220 (3.4)
$$\mathcal{V}^{(l)} = G_{\Psi^{(l)}}(v_g^{(l)}),$$

221 which determines the numerical values of the nonzero entries.

222 *Step 3. Construct $\mathcal{A}_c^{(l)}$ by point-wise multiplication.* The non-Galerkin stencil is
 223 computed by the Hadamard (or element-wise) product

224 (3.5)
$$\mathcal{A}_c^{(l)} = \mathcal{M}^{(l)} \odot \mathcal{V}^{(l)}.$$

225 We summarize these steps in [Algorithm 3.1](#). The MG V-cycle using the sparsified
 226 coarse grid is outlined in [Algorithm 3.2](#), which closely resembles [Algorithm 2.1](#),
 227 whereas, instead of using the Galerkin operator for coarser levels, the non-Galerkin
 228 operator A_c is constructed from the sparsified stencil generated by [Algorithm 3.1](#).

229 *Remark 3.1.* A few remarks on [Algorithm 3.1](#) and [Algorithm 3.2](#) follow. To begin
 230 with, the parameter k of [Algorithm 3.1](#) signifies the number of the nonzero entries
 231 in the sparsified stencil. This effectively gives us the ability to directly manipulate
 232 the complexity of the resulting non-Galerkin operator. Secondly, in the NN imple-
 233 mentations, we ensure that the shapes of $\mathcal{M}^{(l)}$ and $\mathcal{V}^{(l)}$ are identical. This enables
 234 the proper application of the Hadamard product. Lastly, it is assumed that the NNs,
 235 F_{Θ_l} and G_{Ψ_l} , have undergone sufficient training. Therefore, Step 7 of [Algorithm 3.2](#)
 236 involves merely the application of the trained NNs.

Algorithm 3.1 SparsifyStencil

Input: $\mathcal{A}_g, F_{\Theta}, G_{\Psi}, k$

- 1: Apply the NNs to compute $\mathcal{P} = F_{\Theta}(\mathcal{A}_g)$ and $\mathcal{V} = G_{\Psi}(\mathcal{A}_g)$
- 2: \mathcal{M} has the same shape as \mathcal{V} and has a value of 1 at the entries corresponding to
 the k largest values of \mathcal{P} , with 0 elsewhere.
- 3: **return** $\mathcal{A}_c = \mathcal{M} \odot \mathcal{V}$

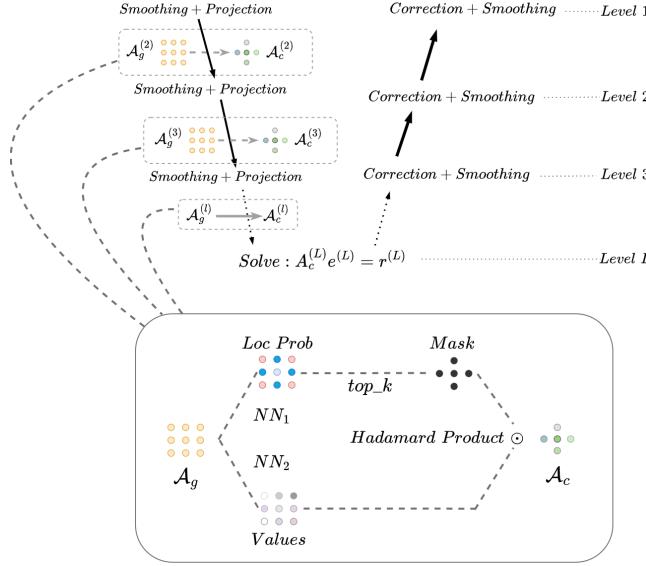


FIG. 2. Illustration of the ML algorithm for computing coarse-grid operators with NNs.

Algorithm 3.2 MG V-Cycle with sparsified coarse-grid operator

- 1: Pre-smoothing: $u^{(l)} := (I - (M^{(l)})^{-1} A^{(l)}) u^{(l)} + (M^{(l)})^{-1} f^{(l)}$ for ν steps
- 2: Compute the residual $r^{(l)} = f^{(l)} - A^{(l)} u^{(l)}$ and restriction $r^{(l+1)} = R^{(l)} r^{(l)}$
- 3: Compute the Galerkin operator $A_g^{(l+1)} = R^{(l)} A^{(l)} P^{(l)}$
- 4: **if** $l = L - 1$ **then**
- 5: Solve $A_g^{(l+1)} u^{(l+1)} = r^{(l+1)}$ with an arbitrary method
- 6: **else**
- 7: Apply [Algorithm 3.1](#): $A_c^{(l+1)} = \text{SparsifyStencil}(A_g^{(l+1)}, F_{\Theta^{(l+1)}}, G_{\Psi^{(l+1)}}, k)$
- 8: Let $A^{(l+1)} = A_c^{(l+1)}$, $u^{(l+1)} = 0$ and $f^{(l+1)} = r^{(l+1)}$. Go to Step 1 with $l := l + 1$
- 9: **end if**
- 10: Prolongate and correct: $u^{(l)} := u^{(l)} + P^{(l)} u^{(l+1)}$
- 11: Post-smoothings: $u^{(l)} := (I - (M^{(l)})^{-\top} A^{(l)}) u^{(l)} + (M^{(l)})^{-\top} f^{(l)}$ for ν steps

237 **3.1. NN training algorithm.** In this section, we delve into the specifics of the
238 training algorithm that enables NNs to generate a sparser coarse-grid operator stencil
239 than the Galerkin operator stencil, without impairing the overall convergence of the
240 MG method. A key component of [Algorithm 3.2](#) is line 7 where F_{Θ} and G_{Ψ} are
241 the pre-trained NNs. The loss function, another crucial component, is pivotal to the
242 training procedure. Based on the discussion in [subsection 2.3](#), we aim to minimize
243 the discrepancy between $A_g v$ and $A_c v$ where v is an algebraically smooth vector.

244 Denote by $\beta \in \mathbb{R}^p$ parameters of the problem to solve, which possesses a proba-
245 bility distribution p_{β} in \mathcal{B} . The loss function tied to F_{Θ} and G_{Ψ} is defined as:

246 (3.6)
$$\mathcal{L}_{\beta} \left(F_{\Theta}, G_{\Psi}, \mathcal{A}_g^{\beta}, \{v_j^{\beta}\}_{j=1}^s \right) = \sum_{j=1}^s \|A_g^{\beta} v_j^{\beta} - A_c^{\beta} v_j^{\beta}\|_2^2,$$

247 where $\{v_j^{\beta}\}$ represents the set of algebraically smooth vectors, s is the number of these
248 vectors, and \mathcal{A}_c^{β} is computed by [Algorithm 3.1](#). The objective is to minimize the

249 expectation of \mathcal{L}_β under the distribution of β , symbolized as $\mathbb{E}_{\beta \sim p_\beta} [\mathcal{L}_\beta]$, throughout
 250 the training. It is worth mentioning that instead of explicitly forming the matrices A_g^β
 251 and A_c^β , we adopt a stencil-based approach where the matrix-vector multiplications
 252 are performed as the convolutions of the stencils \mathcal{A}_g^β and \mathcal{A}_c^β with vectors that are
 253 padded with zero layers, assuming zero boundary conditions are used. The stencil-
 254 based approach and the convolution formulation greatly enhance memory efficiency
 255 during training.

256 **3.2. Details of Training and Testing.** In this section, we provide details of
 257 the training and testing algorithms.

258 *Architecture of the multi-head attention.* We use multi-head attention [35] to com-
 259 pute both location probability in Step 1 with $F_{\Theta^{(l)}}$ and numerical values in Step 2 with
 260 $G_{\Psi^{(l)}}$ as discussed in section 3. We adopt the standard architecture that comprises a
 261 set of n_h independent attention heads, each of which extracts different features from
 262 each stencil entry of $\mathcal{A}_g^{(l)}$. In essence, each head generates a different learned weighted
 263 sum of the input values, where the weights are determined by the attention mech-
 264 anism and reflect the importance of each value. The weights are calculated using a
 265 softmax function applied to the scaled dot-product of the input vectors. The output
 266 from each head is then concatenated and linearly transformed to produce the final
 267 output.

268 The multi-head attention mechanism in our study is formally defined as follows:
 269 Let $v_g^{(l)}$ denote the input vectors. For each attention head $h_i, i = 1, \dots, n_h$, we first
 270 transform the inputs using parameterized linear transformations, W_i^Q , W_i^K , and W_i^V
 271 to produce the vectors of query Q_i , key K_i , and value V_i as follows:

$$272 \quad (3.7) \quad Q_i = v_g^{(l)} W_i^Q, \quad K_i = v_g^{(l)} W_i^K, \quad V_i = v_g^{(l)} W_i^V.$$

273 The attention scores for each input vector in head h_i are then computed using the
 274 scaled dot-product of the query and key vectors, followed by a softmax function:

$$275 \quad (3.8) \quad \text{Attention}_i = \text{softmax} \left(\frac{Q_i K_i^T}{\sqrt{d_k}} \right) V_i,$$

276 where d_k is the dimension of the key vectors. This process captures the dependencies
 277 among the input vectors based on their similarities. The output of each attention head
 278 h_i is then concatenated, and a linear transformation is applied using a parameterized
 279 weight matrix W^O with softmax activation, which ensures positive outputs:

$$280 \quad (3.9) \quad \text{MultiHead}(v_g^{(l)}) = \text{Concat}(\text{Attention}_1, \dots, \text{Attention}_{n_h}) W^O.$$

281 This architecture empowers the model to learn complex PDE stencil patterns effec-
 282 tively. The design is flexible, and the number of heads can be adjusted as per the
 283 complexity of the task.

284 *Intuition of selection of multi-head attention.* We first briefly explain why multi-
 285 head attention is beneficial for PDE stencil learning than other types of NNs. This
 286 work is about teaching the NNs to generate stencils, which are essentially small pat-
 287 terns or templates used in the discretization of PDEs. These stencils represent the
 288 relationship between a grid point and its neighbors. In the context of PDE stencil
 289 learning, multi-head attention can be highly beneficial for several reasons:

290 1. Feature diversification: The multi-head attention allows the model to focus on
 291 various features independently, and thus, can capture a wider variety of patterns
 292 in the data. For PDE stencil learning, this means that the model can understand
 293 the relationships between different grid points more comprehensively.

294 2. Context awareness: Attention mechanisms inherently have the capacity to consider
 295 the context, i.e., the relationships between different parts of the input data. In
 296 PDE stencil learning, this translates to understanding the interactions between a
 297 grid point and its surrounding neighboring points.
 298 3. Flexibility: Multi-head attention adds flexibility to the model. Each head can
 299 learn to pay attention to different features, making the model more adaptable. In
 300 the context of PDEs, this means that one head can learn to focus on local features
 301 (such as the values of nearby points), while another might focus more on global
 302 or structural aspects.

303 We observed empirically that our proposed architecture outperforms standard
 304 deep NNs (vanilla deep NNs) in stencil learning. This improvement is primarily
 305 attributed to the attention mechanism, which effectively addresses local structure
 306 capturing challenge inherent in fully connected layers. PDE problems often involve
 307 spatial and temporal structures that are local in nature. Fully connected networks,
 308 due to their global connectivity pattern, may struggle to effectively learn these lo-
 309 cal structures. They treat input data as a flattened array without considering the
 310 spatial correlations, which are critical in PDEs and yield sub-optimal performance.
 311 Through our empirical experiments, we found that the MG method, enhanced with
 312 attention-based operator learning, significantly outperforms models based solely on
 313 fully connected layers. Specifically, it achieved a 30% reduction in the number of
 314 iterations required to converge on a 2-D linear elasticity problem. This finding aligns
 315 with other studies, such as [13], which demonstrated that fully connected layers suffer
 316 from learning the complex dependencies among a grid.

317 *Details of training and testing.* Parameters β_i of PDE problems are sampled from
 318 distribution \mathcal{B} according to the probability density function p_β to get the set of N_t
 319 parameters, $\{\beta_i\}$, $i = 1, \dots, N_t$. Then, we construct the corresponding set of fine-grid
 320 stencils $\{\mathcal{A}^{\beta_i}\}$. For all the tests in this paper, we use full coarsening, full-weighting
 321 restriction, and the corresponding bi-linear interpolation for all the levels of MG. At
 322 each level $l > 1$, the ML model is built with the Galerkin stencils $\{(\mathcal{A}_g^{\beta_i})^{(l)}\}$ and a
 323 set of smooth test vectors $\{(v_j^{\beta_i})^{(l)}\}$, $j = 1, \dots, s_l$, associated with each of the stencil,
 324 using the loss function

325 (3.10)
$$\mathcal{L} = \frac{1}{N_t} \sum_{i=1}^{N_t} \mathcal{L}_{\beta_i} \left(F_{\Theta^{(l)}}, G_{\Psi^{(l)}}, (\mathcal{A}_g^{\beta_i})^{(l)}, \{(v_j^{\beta_i})^{(l)}\} \right)$$

326 that is used to approximate $\mathbb{E}_{\beta \sim p_\beta} [\mathcal{L}_\beta]$. The complete training procedure is summa-
 327 rized in [Algorithm 3.3](#). It is important to note that the NN trainings are independent
 328 of each other on different levels. Therefore, the training of the NNs for each level
 329 can be carried out simultaneously once the training data is prepared, taking advan-
 330 tage of parallel computing resources. The testing set is constructed with parameters
 331 that differ from those in the training set. This means that we test the model on a
 332 set of PDE parameters $\{\beta_j\}$, $j = 1, \dots, N_v$, that have not been encountered by the
 333 models during training. The purpose of the testing set is to assess the generalization
 334 capability of new problem instances.

335 **4. Numerical Results.** We report the numerical results of the proposed ML-
 336 based non-Galerkin coarse-grid method in this section. All the ML models in the
 337 work¹ were written with PyTorch 1.9.0 [\[29\]](#). We use PyAMG 4.2.3 [\[3\]](#) to build the

¹The codes is available at <https://anonymous.4open.science/r/Sparse-Coarse-Operator-11C7>

Algorithm 3.3 Training NNs for computing coarse-grid operator at level l

Input: Interpolation operator $P^{(l)}$, Galerkin coarse-grid stencils $\{(\mathcal{A}_g^{\beta_i})^{(l)}\}$, the number of test vectors s_l and the target stencil complexity k

Output: NNs $F_{\Theta^{(l)}}$ and $G_{\Psi^{(l)}}$

- 1: Generate test vectors $(v_j^{\beta_i})^{(l)}$, $j = 1, \dots, s_l$, for each $(\mathcal{A}_g^{\beta_i})^{(l)}$ as follows
 - Compute $T^{(l)} = (P^{(l)})^T P^{(l)}$
 - Compute the eigenvalues and vectors of

$$(\mathcal{A}_g^{\beta_i})^{(l)} u = \lambda_i^{(l)} T^{(l)} u,$$

where $(\mathcal{A}_g^{\beta_i})^{(l)}$ is the coefficient matrix at level l corresponding to stencil $(\mathcal{A}_g^{\beta_i})^{(l)}$.

- The test vectors are the eigenvectors associated with the s_l smallest eigenvalues

- 2: Initialize $G_{\Theta^{(l)}}$ and $G_{\Psi^{(l)}}$

3: **repeat**

- 4: Apply **Algorithm 3.1**: $(\mathcal{A}_c^{\beta_i})^{(l)} = \text{SparsifyStencil}((\mathcal{A}_g^{\beta_i})^{(l)}, F_{\Theta^{(l)}}, G_{\Psi^{(l)}}, k)$

- 5: Compute the gradient of the loss (3.10)

- 6: Update the weights $\Theta^{(l)}$ and $\Psi^{(l)}$

- 7: **until** the prescribed number of training epochs is reached

338 MG hierarchy. All the experiments were performed on a workstation with Intel Core
 339 i7-6700 CPUs. The multi-head attention model we implemented has a total dimension
 340 of 256 and comprises 8 heads, which is also incorporated a dropout scheme with the
 341 rate of 0.7.

342 **4.1. Evaluation Metrics.** In this section, we evaluate the performance of the
 343 proposed ML-based approach by comparing the average number of iterations required
 344 by the MG method using different coarse-grid operators to converge. Additionally,
 345 we verify the spectral equivalence of the Galerkin and sparsified non-Galerkin stencils
 346 by computing the spectra of the corresponding matrices on meshes of various sizes.

347 **4.2. Spectrally equivalent stencils.** We first examine the proposed ML-based
 348 method on the 9-point stencil problem (2.7) that allows direct evaluation of the learned
 349 non-Galerkin operator by the comparison with the theoretical result (2.8), which is a
 350 spectrally equivalent 5-point stencil. We use the 9-point stencil \mathcal{A} of the form (2.7)
 351 with $a = 1.417$, $b = 2.720$ and $c = 0.000114$, i.e.,

$$352 \quad (4.1) \quad \mathcal{A} = \begin{bmatrix} 0.000114 & 2.720 & 0.000114 \\ 1.417 & -8.27456 & 1.417 \\ 0.000114 & 2.720 & 0.000114 \end{bmatrix}$$

354 as the fine-level A -operator, and the 2-D full-weighting stencil,

$$355 \quad (4.2) \quad \mathcal{R} = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix},$$

356 for the restriction operator. Thus, the stencil of the Galerkin operator is

$$357 \quad (4.3) \quad \mathcal{A}_g = \begin{bmatrix} 0.129294125 & 0.42140075 & 0.129294125 \\ 0.095650750 & -1.55182350 & 0.095650750 \\ 0.129294125 & 0.42140075 & 0.129294125 \end{bmatrix},$$

358 which has the same form as \mathcal{A} . From (2.8), a 5-point stencil that is spectrally equiv-
 359 alent to (4.3) is given by

360 (4.4)
$$\mathcal{A}_c = \begin{bmatrix} 0 & 0.679989 & 0 \\ 0.354239 & -2.068456 & 0.354239 \\ 0 & 0.679989 & 0 \end{bmatrix}.$$

361 Using [Algorithm 3.3](#) with the prescribed number of nonzeros in the stencil $k = 5$ on
 362 the 31×31 grid, the pre-trained NNs produced the following 5-point stencil

363 (4.5)
$$\mathcal{A}_{nn} = \begin{bmatrix} 0 & 0.663 & 0 \\ 0.347 & -2.024 & 0.348 \\ 0 & 0.666 & 0 \end{bmatrix},$$

364 denoted by \mathcal{A}_{nn} , which is close to the theoretical result (4.4). To assess the con-
 365 vergence behavior of the MG method, we solve a linear system using the coefficient
 366 matrix defined by (4.1). We conduct these tests on larger-sized grids and use the
 367 two-grid MG methods employing \mathcal{A}_g , \mathcal{A}_c , and \mathcal{A}_{nn} as the coarse-level operators, re-
 368 spectively. The right-hand-side vector is generated randomly. The stopping criterion
 369 of MG iterations with respect to the relative residual norm is set to be 10^{-6} . The
 370 results are shown in [Table 2](#), from which we can observe that all three methods require
 371 the same number of iterations.

TABLE 2

The number of iterations required by the two-level MG methods for solving a linear system corresponding to the coefficient matrix stencil (4.1) to 10^{-6} accuracy in terms of the relative residual and the α and β in (2.1) for different grid sizes. The MG methods utilize \mathcal{A}_g , \mathcal{A}_c , and \mathcal{A}_{nn} as the coarse-level operator respectively. The tests are carried out on grid sizes up to 511×511 .

		grid size						
		63	95	127	191	255	383	511
\mathcal{A}_c	α	1.0073	1.0021	1.0018	1.0013	1.0011	1.0004	1.0002
	β	1.9990	1.9996	1.9998	2.0000	2.0001	2.0001	2.0002
\mathcal{A}_{nn}	α	0.9771	0.9804	0.9796	0.9780	0.9778	0.9776	0.9776
	β	1.9556	1.9563	1.9566	1.9567	1.9568	1.9569	1.9568
grid size								
		63	95	127	191	255	383	511
\mathcal{A}_g	11	10	10	10	10	10	10	10
\mathcal{A}_c	11	10	10	10	10	10	10	10
\mathcal{A}_{nn}	11	10	10	10	10	10	10	10

372 **4.3. 2-D rotated Laplacian problem.** In this section, we consider the 2-D
 373 anisotropic rotated Laplacian problem

374 (4.6)
$$-\nabla \cdot (T_{\theta,\xi} \nabla u(x, y)) = f(x, y),$$

375 where the 2×2 vector field $T_{\theta,\xi}$ parameterized by θ and ξ is defined as

376
$$T_{\theta,\xi} = \begin{bmatrix} \cos^2 \theta + \xi \sin^2 \theta & \cos \theta \sin \theta (1 - \xi) \\ \cos \theta \sin \theta (1 - \xi) & \sin^2 \theta + \xi \cos^2 \theta \end{bmatrix}$$

377 with θ being the angle of the anisotropy and ξ being the conductivity.

378 We show that the proposed approach is not limited to a particular set of parameters but remains effective across a range of values for both ξ and θ . In the first set of 379 experiments, we fix the value ξ while allowing θ to follow a uniform distribution within 380 a specified interval. We conduct 12 experiments where each $\xi \in \{100, 200, 300, 400\}$ is 381 paired up with θ sampled from intervals $\{(\pi/4, \pi/3), (\pi/3, 5\pi/12), (\pi/2, 7\pi/12)\}$. The 382 MG methods for solving these problems use full-coarsening, full-weighting restriction, 383 and the Gauss-Seidel method for both pre-smoothing and post-smoothing. MG V- 384 cycles are executed until the residual norm is reduced by 6 orders of magnitude. The 385 number of the nonzero elements is 9 in the Galerkin coarse-grid stencil across the MG 386 levels, whereas we choose to reduce the number to 5 for the non-Galerkin operator. 387

388 During the training phase of each experiment, the model is provided with 5 instances 389 for a given ξ with different θ values evenly distributed within a chosen interval. 390 For example, for $\xi = 100$ and $\theta \in (\pi/4, \pi/3)$, the parameters for the 5 instances of 391 (ξ, θ) are selected as follows:

$$392 \quad (4.7) \quad \{(100, \pi/4), (100, 3.25\pi/12), (100, 3.5\pi/12), (100, 3.75\pi/12), (100, \pi/3)\}.$$

393 The size of the fine-level matrix in the training instances is set to be 31×31 . In the 394 testing phase, 10 distinct θ values are randomly selected from the chosen interval. The 395 MG parameters are the same as those used in the training phase. In the testing, it 396 should be noted that the fine-level problem size is 511×511 , which is approximately 397 256 times larger than that in the training instances. This larger problem size in 398 the testing allows for a more rigorous evaluation of the performance of MG and the 399 ability to handle larger-scale problems. We record the number of iterations required 400 by the 3-level MG method to converge with the Galerkin and non-Galerkin operators, 401 shown in [Table 3](#). These results indicate that the convergence behavior of the MG 402 method remains largely unchanged when the alternative sparser non-Galerkin coarse- 403 grid operators are used as replacements.

TABLE 3

The average number of iterations required by the 3-level MG to converge with the Galerkin and non-Galerkin coarse-grid operators for solving (4.6) with different PDE parameter ξ and θ . The mesh size is 511×511 . The parameters are selected so that $\xi \in \{100, 200, 300, 400\}$ is fixed and θ is randomly sampled from a uniform distribution in each interval. The iteration number is averaged over 10 different sampled θ values.

ξ	ξ	θ		
		$(\pi/6, \pi/4)$	$(\pi/4, \pi/3)$	$(\pi/2, 7\pi/12)$
\mathcal{A}_g	100	92.1	102.8	126.9
		89.0	93.0	135.2
\mathcal{A}_g	200	191.7	196.6	203.1
		174.2	177.8	204.9
\mathcal{A}_g	300	248.0	269.7	342.3
		246.5	231.4	356.2
\mathcal{A}_g	400	337.1	351.1	438.2
		326.3	327.7	441.5
\mathcal{A}_{nn}	100	92.1	102.8	126.9
		89.0	93.0	135.2
\mathcal{A}_{nn}	200	191.7	196.6	203.1
		174.2	177.8	204.9
\mathcal{A}_{nn}	300	248.0	269.7	342.3
		246.5	231.4	356.2
\mathcal{A}_{nn}	400	337.1	351.1	438.2
		326.3	327.7	441.5

404 In the second set of experiments, we keep the parameter θ fixed and vary ξ following 405 a uniform distribution within the selected intervals. A total of 12 experiments 406 were conducted where each $\theta \in \{\pi/6, \pi/4, \pi/3, 5\pi/12\}$ is paired with ξ sampled from 407 the intervals $\{(5, 10), (80, 100), (100, 200)\}$. The MG configurations used in these 408 experiments remain the same as in the previous set. The training and testing processes

409 are also similar. For each experiment, we train the model using 5 different instances
 410 evenly distributed within the selected intervals and then test it with 10 randomly
 411 sampled ξ values from the same interval. The size of the fine-level linear system in
 412 the training instances is set to be 31×31 , while in each testing instance, it has a
 413 much larger size that is 511×511 . The averaged numbers of iterations from all the
 414 experiments are presented in [Table 4](#).

TABLE 4

The average number of iterations required by the 3-level MG to converge with the Galerkin and non-Galerkin coarse-grid operators for solving (4.6) with different PDE parameter ξ and θ . The mesh size is 511×511 . The parameters are selected such that $\theta \in \{\pi/6, \pi/4, \pi/3, 5\pi/12\}$ is fixed and ξ is randomly sampled from a uniform distribution in each interval. The iteration number is averaged over 10 different sampled ξ values.

	θ	ξ		
		(100, 200)	(80, 100)	(5, 10)
\mathcal{A}_g	$\pi/6$	90.4	72.1	13.5
	\mathcal{A}_{nn}	100.2	84.4	13.8
\mathcal{A}_g	$\pi/4$	172.5	105.2	14.1
	\mathcal{A}_{nn}	123.1	79.0	15.9
\mathcal{A}_g	$\pi/3$	99.4	80.9	14.3
	\mathcal{A}_{nn}	79.1	88.8	15.4
\mathcal{A}_g	$5\pi/12$	92.5	76.4	16.5
	\mathcal{A}_{nn}	107.4	88.2	16.6

415 In the subsequent experiment, we specifically consider the Laplacian problem with
 416 parameters $\theta = \pi/6$ and $\xi = 0.1$ as an example to demonstrate the measurement of
 417 spectral equivalence as defined in [\(2.1\)](#). We examine the eigenvalues of $A_{nn}^{-1}A_g$ on
 418 meshes of varying sizes. The real parts of the eigenvalues are depicted in [Figure 3](#).
 419 We observe that all the eigenvalues are bounded by $\alpha = 0.65$, $\beta = 0.9$ in [Definition 2.4](#),
 420 and the distribution of eigenvalues remains consistent regardless of the mesh size. This
 421 observation suggests the presence of spectral equivalence between the two coarse-grid
 422 operators across meshes of different sizes.

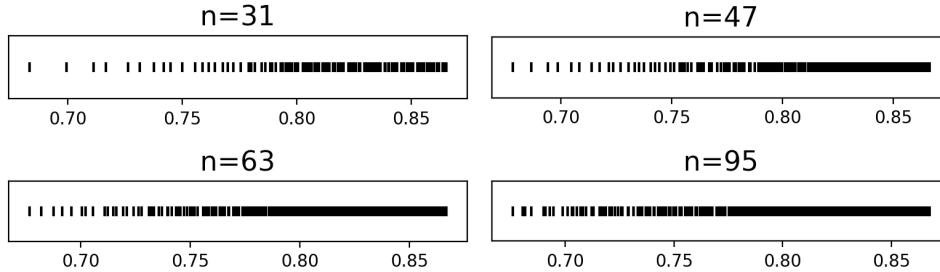


FIG. 3. The real parts of the eigenvalues of $A_{nn}^{-1}A_g$ on meshes of different sizes ($n \times n$) for solving the rotated Laplacian problem with $\theta = \pi/6$ and $\xi = 0.1$.

423 The target stencil complexity k in [Algorithm 3.1](#) is a parameter left to be chosen by
 424 the users. It is an adjustable parameter that allows users to control the sparsity level
 425 in the trained NN-model and of the resulting coarse-grid operator. The appropriate

426 value of k typically depends on the problem domain and the desired balance between
 427 accuracy and computational efficiency. It may be necessary to perform experiments to
 428 determine the optimal value of k for a particular application. In the final experiment,
 429 we perform this study for the rotated Laplacian problem with $\xi = 10$ and $\theta = \pi/4$.
 430 Note that the Galerkin operator has a 9-point stencil, so we vary the stencil complexity
 431 from 4 to 6 in the non-Galerkin operator and record the convergence behavior of the
 432 corresponding MG method. The results, as depicted in Figure 4, show the findings
 433 regarding the convergence behavior of the MG method with different values of k in
 434 the sparsified stencil \mathcal{A}_{nn} . Notably, when $k = 4$, the MG method fails to converge.
 435 However, for $k = 5$ and $k = 6$, the convergence behavior closely resembles that of
 436 the 9-point Galerkin operator. This observation suggests that a minimum number of
 437 nonzeros in the stencil of $k = 5$ appears to be required for \mathcal{A}_{nn} to achieve convergence,
 438 which coincides with the operator complexity of the fine-grid operator.

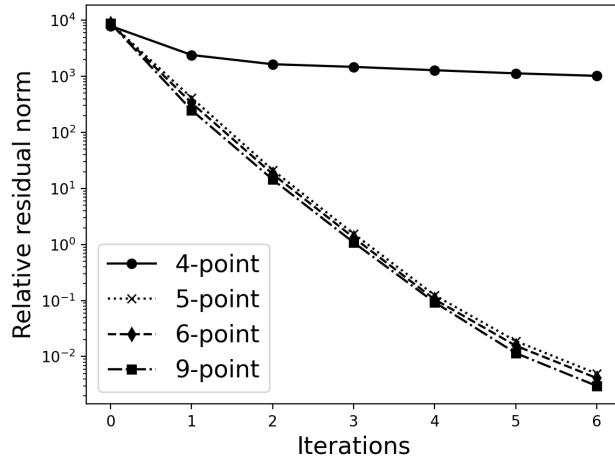


FIG. 4. The convergence in terms of the residual norm of the two-grid MG methods using the coarse-grid operator from the NN model of stencil complexity $k = 4, 5, 6$ and the Galerkin operator for solving the rotated Laplacian problem with $\xi = 10$ and $\theta = \pi/4$.

439 **4.4. 2-D linear elasticity problem.** In this section, we consider the 2-D time-
 440 independent linear elasticity problem in an isotropic homogeneous medium:

441 (4.8)
$$\mu \nabla^2 u + (\mu + \lambda) \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x \partial y} \right) + f_x = 0,$$

442 (4.9)
$$\mu \nabla^2 v + (\mu + \lambda) \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial x \partial y} \right) + f_y = 0,$$

444 where u and v are the solution in the direction of x - and y -axis respectively, f_x and f_y
 445 are forcing terms, and μ and λ are Lame coefficients that are determined by Young's
 446 modulus E and Poisson's ratio ν as

447 (4.10)
$$\mu = \frac{E}{2(1 + \nu)}, \quad \lambda = \frac{E\nu}{(1 + \nu)(1 - 2\nu)}.$$

448 In our tests, we set $E = 10^{-5}$ and vary the value of ν . For the discretization, we adopt
 449 the optimal 2-D 9-point stencil in terms of local truncation errors [22] on rectangular

450 Cartesian grid with the mesh step sizes h and $b_y h$, respectively, along the x - and
 451 y -axes (b_y is the aspect ratio of the mesh),

$$452 \quad (4.11) \quad \mathcal{A}_{uu} = \begin{bmatrix} a_{uu}^{nw} & a_{uu}^n & a_{uu}^{ne} \\ a_{uu}^w & 1 & a_{uu}^e \\ a_{uu}^{sw} & a_{uu}^s & a_{uu}^{se} \end{bmatrix}, \quad \mathcal{A}_{uv} = \begin{bmatrix} a_{uv}^{nw} & 0 & a_{uv}^{ne} \\ 0 & 0 & 0 \\ a_{uv}^{sw} & 0 & a_{uv}^{se} \end{bmatrix},$$

454 where the coefficients are given by

$$455 \quad (4.12) \quad a_{uu}^n = a_{uu}^s = \frac{(b_y^2 - 1)\lambda + 2(b_y^2 - 2)\mu}{2(2\lambda b_y^2 + \lambda + 4(b_y^2 + 1)\mu)},$$

$$456 \quad (4.13) \quad a_{uu}^w = a_{uu}^e = -\frac{2\lambda b_y^2 + 4\mu b_y^2 + \lambda + \mu}{2(2\lambda b_y^2 + \lambda + 4(b_y^2 + 1)\mu)},$$

$$457 \quad (4.14) \quad a_{uu}^{nw} = a_{uu}^{ne} = a_{uu}^{sw} = a_{uu}^{se} = \frac{-\lambda b_y^2 - 2\mu b_y^2 + \lambda + \mu}{4(2\lambda b_y^2 + \lambda + 4(b_y^2 + 1)\mu)},$$

$$458 \quad (4.15) \quad a_{uv}^{nw} = a_{uv}^{se} = -a_{uv}^{ne} = -a_{uv}^{sw} = \frac{3b_y(\lambda + \mu)}{8(2\lambda b_y^2 + \lambda + 4(b_y^2 + 1)\mu)}.$$

460 These stencils define the 2×2 block linear system

$$461 \quad (4.16) \quad \begin{bmatrix} A_{uu} & A_{uv} \\ A_{vu} & A_{vv} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix},$$

462 where $A_{uu} = A_{vv}$ and $A_{vu} = A_{uv}^\top$. A node-based MG approach is used to solve
 463 (4.16), where the same red-black coarsening is used in u - u and v - v blocks and the
 464 interpolation and restriction operators have the same block form

$$465 \quad (4.17) \quad R = \begin{bmatrix} R_{uu} & R_{uv} \\ R_{vu} & R_{vv} \end{bmatrix}, \quad P = \begin{bmatrix} P_{uu} & P_{uv} \\ P_{vu} & P_{vv} \end{bmatrix},$$

466 which interpolate and restrict within and across the two types of variables u and v .

467 The stencils of the operators in (4.17) are given by, respectively,

$$468 \quad (4.18) \quad \mathcal{R}_{uu} = \mathcal{R}_{vv} = \frac{1}{8} \begin{bmatrix} 1 & & \\ 1 & 4 & 1 \\ & 1 & \end{bmatrix}, \quad \mathcal{P}_{uu} = \mathcal{P}_{vv} = \frac{1}{4} \begin{bmatrix} 1 & & \\ 1 & 4 & 1 \\ & 1 & \end{bmatrix},$$

$$469 \quad (4.19) \quad \mathcal{R}_{uv} = \frac{1}{8} \begin{bmatrix} 1 & & \\ -1 & 0 & -1 \\ & 1 & \end{bmatrix}, \quad \mathcal{P}_{uv} = \frac{1}{4} \begin{bmatrix} 1 & & \\ -1 & 0 & -1 \\ & 1 & \end{bmatrix},$$

$$470 \quad (4.20) \quad \mathcal{R}_{vu} = \frac{1}{8} \begin{bmatrix} -1 & & \\ 1 & 0 & 1 \\ & -1 & \end{bmatrix}, \quad \mathcal{P}_{vu} = \frac{1}{4} \begin{bmatrix} -1 & & \\ 1 & 0 & 1 \\ & -1 & \end{bmatrix}.$$

472 Here we use the reversed bracket notation [34] to represent column stencils as a fan-
 473 out operation as opposed to the fan-in operation of row stencils. As stated in [8],
 474 to interpolate exactly the smoothest function that is locally constant, it requires the
 475 interpolation weights for u - u and v - v to sum to 1 and for the u - v and v - u weights to
 476 sum to 0. The Gauss-Seidel smoother is used with the MG V-cycle and the iterations
 477 are stopped when the relative residual norm is below 10^{-6} .

478 We train the NN model on 4 different instances with $\nu \in \{0.1, 0.2, 0.3, 0.4\}$ to
 479 reduce the complexity of the Galerkin operator by 50%. The coarse-grid Galerkin
 480 operator has the same block structure as (4.16) and only 2 distinct stencils due to the
 481 symmetry of the matrix. In the training, we combine these 2 stencils and pass them
 482 to the NNs as the input. It turns out that the NN model trained in this way yields
 483 better coarse-grid operators than learning the stencils of $u-u$ and $u-v$ separately.

484 The mesh size used in the training set is set to be 9×9 . We test the model on
 485 instances with ν randomly drawn from each interval of $\{(0.1, 0.2), (0.2, 0.3), (0.3, 0.4)\}$.
 486 The size of the mesh used in the testing is 65×65 . The average numbers of iterations
 487 are presented in Table 5. Similar to the results observed in the rotated Laplacian
 488 problems, the convergence behavior of the two-grid MG method is not negatively
 489 affected by the replacement with the non-Galerkin coarse-grid operator obtained from
 490 the NN model.

TABLE 5

The average number of iterations required by the 2-grid MG to converge with the Galerkin and non-Galerkin coarse-grid operators for solving (4.8) with 10 different Poisson's ratios ν randomly sampled from each interval. The mesh size is set to be 65×65 .

ν	(0.1, 0.2)	(0.2, 0.3)	(0.3, 0.4)
\mathcal{A}_g	10.1	10.2	10.6
\mathcal{A}_{nn}	11.0	10.7	11.5

491 **4.5. Comparison with existing non-Galerkin methods.** In this section,
 492 we compare the performance of the proposed NN-based algorithm with the Spar-
 493 sified Smooth Aggregation (SpSA) method proposed in [32] for solving the rotated
 494 Laplacian problem. The SpSA method is based on Smooth Aggregation (SA) AMG
 495 methods. In these methods, a tentative aggregation-based interpolation operator P_t
 496 is first constructed, followed by a few steps of smoothing of P_t that generate the final
 497 interpolation operator P , which is typically considerably denser than P_t . The SpSA
 498 algorithm aims to reduce the complexity of the Galerkin operator $P^T AP$ to have the
 499 same sparsity pattern as $P_t^T AP_t$. Given that we utilize the standard Ruge-Stüben MG
 500 (as opposed to SA AMG) combined with the NN-based approach, conducting a direct
 501 comparison between the two approaches becomes challenging due to the different MG
 502 hierarchies obtained. To ensure an equitable comparison, we impose a requirement
 503 that the number of nonzero entries per row in the coarse-level operator generated
 504 by SpSA should not be smaller than the operator produced by our algorithm. Con-
 505 sequently, any observed disparities in performance can be attributed to the specific
 506 characteristics of the selected sparsity pattern and numerical values of the coarse-
 507 grid operator, rather than the variations in the level of the sparsity. The number of
 508 iterations required by the GMRES method preconditioned by 3-level MG methods
 509 with different coarse-grid operators for solving the rotated Laplacian problem (4.6)
 510 are presented in Table 6 and Table 7, with varied PDE coefficients. For more than
 511 70% of cases, the MG method with NN-based coarse-grid operators exhibits better
 512 performance compared to SpSA, as it requires fewer iterations to converge to the
 513 10^{-6} stopping tolerance and achieves a convergence rate that is much closer to that
 514 using the Galerkin operator. There are a few exceptions where SpSA outperforms the
 515 NN-based method, and in some cases, it performs even better than the MG method
 516 using the Galerkin operator.

TABLE 6

The average number of iterations required by the GMRES method preconditioned by 3-level MG methods with different coarse-grid operators for solving (4.6) with different sets of PDE parameters. The mesh size is 511×511 . The parameters are selected so that $\theta \in \{\pi/6, \pi/4, \pi/3, 5\pi/12\}$ is fixed and ξ is randomly sampled from a uniform distribution in each interval. The iteration number is averaged over 10 different sampled θ 's. \mathcal{A}_g denotes the Galerkin coarse-grid operator, \mathcal{A}_{nn} is the coarse-grid operator obtained from Algorithm 3.3, and SpSA refers to the coarse-grid operator from the Sparsified Smooth Aggregation (SpSA) algorithm [32]. The numbers in the brackets are the operator complexities.

	ξ	θ		
		$(\pi/6, \pi/4)$	$(\pi/4, \pi/3)$	$(\pi/2, 5\pi/12)$
\mathcal{A}_g	100	11.3 (1.31)	11.1 (1.31)	11.5 (1.31)
		16.5 (1.17)	16.9 (1.17)	19.9 (1.17)
		35.5 (1.65)	35.0 (1.70)	10.2 (2.14)
		41.7 (1.29)	38.7 (1.21)	13.2 (1.42)
\mathcal{A}_{nn}	200	15.9 (1.31)	15.3 (1.31)	14.5 (1.31)
		20.5 (1.17)	19.6 (1.17)	29.8 (1.17)
		44.1 (1.65)	44.8 (1.66)	9.6 (2.31)
		51.8 (1.19)	47.9 (1.19)	14.9 (1.42)
\mathcal{A}_{nn}	300	18.1 (1.31)	21.5 (1.31)	17.9 (1.31)
		25.4 (1.17)	33.1 (1.17)	25.6 (1.17)
		45.7 (1.72)	51.3 (1.63)	11.2 (2.08)
		54.7 (1.23)	53.5 (1.17)	16.7 (1.43)
\mathcal{A}_{nn}	400	21.1 (1.31)	20.2 (1.31)	19.9 (1.31)
		27.2 (1.17)	30.9 (1.17)	26.2 (1.17)
		52.7 (1.63)	53.5 (1.66)	11.0 (2.11)
		61.3 (1.19)	57.6 (1.19)	18.2 (1.42)

517 **5. Conclusion.** In this work, we propose an ML-based approach for computing
 518 non-Galerkin coarse-grid operators to address the issue of increasing operator com-
 519 plexity in MG methods by sparsifying the Galerkin operator in different MG levels.
 520 The algorithm consists of two main steps: choosing the sparsity pattern of the stencil
 521 and computing the numerical values. We employ NNs in both steps and combine
 522 their results to construct a non-Galerkin coarse-grid operator with the desired lower
 523 complexity. The NN training algorithm is guided by the MG convergence theory, en-
 524 suring the spectral equivalence of coarse-grid operators with respect to the Galerkin
 525 operator. We showed that spectrally equivalent sparser stencils can be learned by
 526 advanced ML techniques that exploit multi-head attention.

527 The NN model is trained on parametric PDE problems that cover a wide range
 528 of parameters. The training dataset consists of small-size problems, while the testing
 529 problems are significantly larger. Empirical studies conducted on rotated Laplacian
 530 and linear elasticity problems provide evidence that the proposed ML method can con-
 531 struct non-Galerkin operators with reduced complexity while maintaining the overall
 532 convergence behavior of MG. A key feature of our method is its ability to generalize to
 533 problems of larger sizes and with different PDE parameters that were not encountered
 534 in the training for in-distribution test sets. This means that the algorithm can effec-
 535 tively handle a wide range of problem settings, expanding its practical applicability.
 536 By generalizing to new problem instances, the algorithm amortizes the training cost
 537 and reduces the need for retraining for every specific problem scenario. *It is impor-*

TABLE 7

The average number of iterations required by the GMRES method preconditioned by 3-level MG methods with different coarse-grid operators for solving (4.6) with different sets of PDE parameters. The mesh size is 511×511 . The parameters are selected so that $\theta \in \{\pi/6, \pi/4, \pi/3, 5\pi/12\}$ is fixed and ξ is randomly sampled from a uniform distribution in each interval. The iteration number is averaged over 10 different sampled ξ 's. \mathcal{A}_g denotes the Galerkin coarse-grid operator, \mathcal{A}_{nn} is the coarse-grid operator obtained from Algorithm 3.3, and SpSA refers to the coarse-grid operator from the Sparsified Smooth Aggregation (SpSA) algorithm [32]. The numbers in the brackets are the operator complexities.

	θ	ξ		
		(100, 200)	(80, 100)	(5, 10)
\mathcal{A}_g	$\pi/6$	11.6 (1.31)	10.4 (1.31)	4.4 (1.31)
\mathcal{A}_{nn}		19.9 (1.17)	16.4 (1.17)	7.1 (1.17)
SA		24.8 (1.98)	22.4 (1.98)	11.5 (1.98)
SpSA		32.2 (1.38)	29.0 (1.38)	13.7 (1.38)
\mathcal{A}_g	$\pi/4$	14.2 (1.31)	11.3 (1.31)	4.6 (1.31)
\mathcal{A}_{nn}		18.2 (1.17)	15.5 (1.17)	10.0 (1.17)
SA		39.2 (1.63)	33.1 (1.63)	13.3 (1.62)
SpSA		42.8 (1.17)	35.8 (1.17)	14.2 (1.17)
\mathcal{A}_g	$\pi/3$	11.2 (1.31)	10.2 (1.31)	4.7 (1.31)
\mathcal{A}_{nn}		18.8 (1.17)	16.4 (1.17)	7.1 (1.17)
SA		26.5 (1.98)	24.2 (1.98)	12.1 (1.98)
SpSA		34.1 (1.38)	30.9 (1.38)	14.5 (1.38)
\mathcal{A}_g	$5\pi/12$	11.2 (1.31)	10.1 (1.31)	4.8 (1.31)
\mathcal{A}_{nn}		28.8 (1.17)	19.1 (1.17)	9.1 (1.17)
SA		13.9 (1.93)	12.8 (1.93)	10.0 (1.91)
SpSA		18.5 (1.38)	17.1 (1.38)	10.8 (1.37)

538 *tant to note that the true generalizability capability (out-of distribution test sets) for*
 539 *deep learning approaches requires the development of large-scale foundation models, a*
 540 *large-scale pretrained-model that can be used to conduct unseen tasks. This work is*
 541 *an initial step towards that goal.*

542 In the future, we plan to extend this work to sparsify unstructured coarse grid
 543 operators by exploiting the Graph Convolution Networks (GCNs). We also plan to
 544 explore the Equivariant Neural Networks [10] to enforce the symmetry in the sparsified
 545 coarse-grid operators if the fine level operator is symmetric. In addition, we plan
 546 to investigate the real-world applications including saddle point system [18], efficient
 547 tensor algebra [16, 20, 14], modern generative models [9, 19, 17], multi-time series
 548 analysis techniques [15, 30] to solve time-dependent PDEs.

549

REFERENCES

550 [1] O. AXELSSON, *On multigrid methods of the two-level type*, in Multigrid methods, Springer,
 551 1982, pp. 352–367.

552 [2] A. H. BAKER, T. GAMBLIN, M. SCHULZ, AND U. M. YANG, *Challenges of scaling algebraic*
 553 *multigrid across modern multicore architectures*, in 2011 IEEE International Parallel &
 554 Distributed Processing Symposium, 2011, pp. 275–286, <https://doi.org/10.1109/IPDPS.2011.35>.

556 [3] N. BELL, L. N. OLSON, AND J. SCHRODER, *Pyamg: algebraic multigrid solvers in python*,
 557 *Journal of Open Source Software*, 7 (2022), p. 4142.

558 [4] A. BIENZ, R. D. FALGOUT, W. GROPP, L. N. OLSON, AND J. B. SCHRODER, *Reducing parallel*

559 communication in algebraic multigrid through sparsification, SIAM Journal on Scientific
 560 Computing, 38 (2016), pp. S332–S357.

561 [5] A. BIENZ, W. D. GROPP, AND L. N. OLSON, Reducing communication in algebraic multigrid
 562 with multi-step node aware communication, The International Journal of High Performance
 563 Computing Applications, 34 (2020), pp. 547–561.

564 [6] M. BOLTEN AND A. FROMMER, Structured grid AMG with stencil-collapsing for d-level circulant
 565 matrices. Bergische Universität Wuppertal, Wuppertal, Germany. Preprint BUW-SC 07/4,
 566 2007.

567 [7] A. BRANDT, J. BRANNICK, K. KAHL, AND I. LIVSHITS, Bootstrap AMG, SIAM Journal on
 568 Scientific Computing, 33 (2011), pp. 612–632.

569 [8] M. BREZINA, A. J. CLEARY, R. D. FALGOUT, V. E. HENSON, J. E. JONES, T. A. MANTEUFFEL,
 570 S. F. MCCORMICK, AND J. W. RUGE, Algebraic multigrid based on element interpolation
 571 (AMGe), SIAM Journal on Scientific Computing, 22 (2001), pp. 1570–1592.

572 [9] D. CAI, Y. JI, H. HE, Q. YE, AND Y. XI, Autm flow: atomic unrestricted time machine for
 573 monotonic normalizing flows, in Proceedings of the Thirty-Eighth Conference on Uncer-
 574 tainty in Artificial Intelligence, J. Cussens and K. Zhang, eds., vol. 180 of Proceedings of
 575 Machine Learning Research, PMLR, 01–05 Aug 2022, pp. 266–274.

576 [10] T. COHEN AND M. WELLING, Group equivariant convolutional networks, in Proceedings of The
 577 33rd International Conference on Machine Learning, M. F. Balcan and K. Q. Weinberger,
 578 eds., vol. 48 of Proceedings of Machine Learning Research, PMLR, 2016, pp. 2990–2999.

579 [11] R. D. FALGOUT AND J. B. SCHRODER, Non-galerkin coarse grids for algebraic multigrid, SIAM
 580 Journal on Scientific Computing, 36 (2014), pp. C309–C334.

581 [12] D. GREENFELD, M. GALUN, R. BASRI, I. YAVNEH, AND R. KIMMEL, Learning to optimize
 582 multigrid PDE solvers, in International Conference on Machine Learning, PMLR, 2019,
 583 pp. 2415–2423.

584 [13] A. GU, T. DAO, S. ERMON, A. RUDRA, AND C. RÉ, Hippo: recurrent memory with optimal
 585 polynomial projections, in Proceedings of the 34th International Conference on Neural
 586 Information Processing Systems, NIPS’20, Red Hook, NY, USA, 2020, Curran Associates
 587 Inc.

588 [14] H. HE, J. HENDERSON, AND J. C. HO, Distributed tensor decomposition for large scale health
 589 analytics, in The World Wide Web Conference, WWW ’19, New York, NY, USA, 2019,
 590 Association for Computing Machinery, p. 659–669.

591 [15] H. HE, O. QUEEN, T. KOKER, C. CUEVAS, T. TSILIGKARIDIS, AND M. ZITNIK, Domain adapta-
 592 tion for time series under feature and label shifts, in International Conference on Machine
 593 Learning, 2023.

594 [16] H. HE, Y. XI, AND J. C. HO, Fast and accurate tensor decomposition without a high per-
 595 formance computing machine, in 2020 IEEE International Conference on Big Data (Big
 596 Data), 2020, pp. 163–170.

597 [17] H. HE, S. ZHAO, Y. XI, AND J. HO, AGE: Enhancing the convergence on GANs using al-
 598 ternating extra-gradient with gradient extrapolation, in NeurIPS 2021 Workshop on Deep
 599 Generative Models and Downstream Applications, 2021.

600 [18] H. HE, S. ZHAO, Y. XI, J. HO, AND Y. SAAD, GDA-AM: ON THE EFFECTIVENESS OF
 601 SOLVING MIN-IMAX OPTIMIZATION VIA ANDERSON MIXING, in International
 602 Conference on Learning Representations, 2022.

603 [19] H. HE, S. ZHAO, Y. XI, AND J. C. HO, Meddiff: Generating electronic health records using
 604 accelerated denoising diffusion model, 2023, <https://arxiv.org/abs/2302.04355>.

605 [20] J. HENDERSON, H. HE, B. A. MALIN, J. C. DENNY, A. N. KHO, J. GHOSH, AND J. HO, Pheno-
 606 typing through semi-supervised tensor factorization (psst), AMIA ... Annual Symposium
 607 proceedings. AMIA Symposium, 2018 (2018), pp. 564–573.

608 [21] R. HUANG, R. LI, AND Y. XI, Learning optimal multigrid smoothers via neural networks, SIAM
 609 Journal on Scientific Computing, 45 (2023), pp. S199–S225.

610 [22] A. IDESMAN AND B. DEY, Compact high-order stencils with optimal accuracy for numerical
 611 solutions of 2-d time-independent elasticity equations, Computer Methods in Applied Me-
 612 chanics and Engineering, 360 (2020), p. 112699.

613 [23] T. JONSTHOVEL, A. LUKYANOV, E. WOBGES, AND C. VUIK, Monotone non-
 614 galerkin algebraic multigrid method applied to reservoir simulations, (2016),
 615 cp-494-00156, <https://doi.org/https://doi.org/10.3997/2214-4609.201601896>,
 616 <https://www.earthdoc.org/content/papers/10.3997/2214-4609.201601896>.

617 [24] A. KATRUTSA, T. DAULBAEV, AND I. OSELEDETS, Black-box learning of multigrid parameters,
 618 Journal of Computational and Applied Mathematics, 368 (2020), p. 112524.

619 [25] D. KUZNICHOV, Learning relaxation for multigrid, arXiv preprint arXiv:2207.11255, (2022).

620 [26] R. P. LI, B. SJÖGREEN, AND U. M. YANG, A new class of amg interpolation methods based on

621 *matrix-matrix multiplications*, SIAM Journal on Scientific Computing, 43 (2021), pp. S540–
622 S564, <https://doi.org/10.1137/20M134931X>, <https://doi.org/10.1137/20M134931X>, <https://arxiv.org/abs/https://doi.org/10.1137/20M134931X>.

623 [27] I. LUZ, M. GALUN, H. MARON, R. BASRI, AND I. YAVNEH, *Learning algebraic multigrid using*
624 *graph neural networks*, in International Conference on Machine Learning, PMLR, 2020,
625 pp. 6489–6499.

626 [28] W. B. MITCHELL, R. STRZODKA, AND R. D. FALGOUT, *Parallel performance of*
627 *algebraic multigrid domain decomposition*, Numerical Linear Algebra with Applications, 28 (2021), p. e2342, <https://doi.org/https://doi.org/10.1002/nla.2342>,
628 <https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.2342>, <https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nla.2342>.

629 [29] A. PASZKE, S. GROSS, F. MASSA, A. LERER, J. BRADBURY, G. CHANAN, T. KILLEEN, Z. LIN,
630 N. GIMELSHEIN, L. ANTIGA, ET AL., *Pytorch: An imperative style, high-performance deep*
631 *learning library*, Advances in neural information processing systems, 32 (2019).

632 [30] O. QUEEN, T. HARTVIGSEN, T. KOKER, H. HE, T. TSILIGKARIDIS, AND M. ZITNIK, *Encoding*
633 *time-series explanations through self-supervised model behavior consistency*, 2023, <https://arxiv.org/abs/2306.02109>.

634 [31] A. TAGHIBAKHSHI, S. MACLACHLAN, L. OLSON, AND M. WEST, *Optimization-based algebraic*
635 *multigrid coarsening using reinforcement learning*, Advances in Neural Information Pro-
636 *cessing Systems*, 34 (2021), pp. 12129–12140.

637 [32] E. TREISTER AND I. YAVNEH, *Non-galerkin multigrid based on sparsified smoothed aggregation*,
638 SIAM Journal on Scientific Computing, 37 (2015), pp. A30–A54.

639 [33] E. TREISTER, R. ZEMACH, AND I. YAVNEH, *Algebraic collocation coarse approximation*
640 *(acca) multigrid*, in 12th Copper Mountain Conference on Iterative Methods, 2012.

641 [34] U. TROTTERBERG, C. W. OOSTERLEE, AND A. SCHULLER, *Multigrid*, Elsevier, 2000.

642 [35] A. VASWANI, N. SHAZEER, N. PARMAR, J. USZKOREIT, L. JONES, A. N. GOMEZ, L. U. KAISER,
643 AND I. POLOSUKHIN, *Attention is all you need*, in Advances in Neural Information Process-
644 *ing Systems*, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
645 AND R. Garnett, eds., vol. 30, Curran Associates, Inc., 2017.

646 [36] R. WIENANDS AND I. YAVNEH, *Collocation coarse approximation in multigrid*, SIAM Journal
647 *on Scientific Computing*, 31 (2009), pp. 3643–3660.