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Abstract. We propose a data-driven and machine-learning-based approach to compute non-4
Galerkin coarse-grid operators in multigrid (MG) methods, addressing the well-known issue of in-5
creasing operator complexity. Guided by the MG theory on spectrally equivalent coarse-grid opera-6
tors, we have developed novel machine learning (ML) algorithms that utilize neural networks (NNs)7
combined with smooth test vectors from multigrid eigenvalue problems. The proposed method8
demonstrates promise in reducing the complexity of coarse-grid operators while maintaining overall9
MG convergence for solving parametric partial differential equation (PDE) problems. Numerical10
experiments on anisotropic rotated Laplacian and linear elasticity problems are provided to show-11
case the performance and comparison with existing methods for computing non-Galerkin coarse-grid12
operators.13
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1. Introduction. Multigrid (MG) methods are one of the most efficient and16

scalable iterative methods for solving linear systems of equations17

(1.1) Au = f18

where the coefficient matrix A ∈ RN×N is sparse and large, and u ∈ RN and f ∈ RN19

are the solution and right-hand-side vectors respectively. For the systems that arise20

from elliptic-type partial differential equations (PDEs), MG methods often exhibit21

optimal linear computational complexities. Nevertheless, there is ongoing research22

focused on further improving the efficiency and scalability of MG methods, in par-23

ticular for large-scale and challenging problems. By and large, the overall efficiency24

of iterative methods is determined by not only the convergence rate of the iterations25

but also the arithmetic complexity per iteration and the corresponding throughput on26

the underlying computing platform. In this work, we address a common issue in MG27

methods which is the growth of the coarse-grid operator complexity in the hierarchy.28

This operator is typically computed as the (Petrov–)Galerkin product from the oper-29

ators in the fine level. Assuming A is symmetric positive definite (SPD) and R = PT,30

the Galerkin operator is optimal in the sense that it yields an orthogonal projector as31

the coarse-grid correction that guarantees to reduce the A-norm of the error. How-32

ever, this operator can lead to the issue of decreasing operator sparsity, particularly33

at deeper levels of the MG hierarchy. This can impair the overall performance of34

MG by introducing challenges in terms of computational efficiency, memory require-35

ments, and the communication cost in distributed computing environments [28, 2].36
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Moreover, the increasing operator complexity can also affect the effectiveness and ro-37

bustness of other MG components such as the coarsening and interpolation algorithms38

[26]. To demonstrate this problem, we consider classical MG methods for solving the39

3-D Poisson’s equation discretized on a 100 × 100 × 100 grid with a 7-point stencil.40

The sparsity patterns of the operator matrix A(l) at the levels l = 0, 3, 5 are shown41

in Table 1. From these patterns, it is evident that the matrix bandwidth increases as42

the level goes deeper, as well as the stencil size (i.e., the average number of nonzeros43

per row). The increased sparsity often leads to not only a growth in computational44

cost but also an increase in data movement, which corresponds to the communication45

expense in parallel solvers. Figure 1 shows the time spent in the computation and46

communication in the first 6 levels of the MG hierarchies for solving a 3-D Poisson’s47

problem. As depicted, there is a steep increase in the computational cost at level 2,48

coinciding with the level where the communication cost reaches its maximum.49

Table 1
The sparsity patterns of A(0), A(3), and A(5) in a Multigrid hierarchy for solving the 3-D

Poisson’s equation on 4 processes (top). The size of the operator matrix (N), the number of nonzeros
(NNZ) and the average number of nonzeros per row (RNZ) from the top 4 levels (bottom).

level N NNZ RNZ
0 1,000,000 6,940,000 7
1 499,891 8,418,739 17
2 115,515 5,328,543 46
3 14,479 1,125,707 78

Fig. 1. The cost of computation and communication in the first 6 levels of parallel Algebraic
MG methods for solving the 3-D Poisson’s equation on 8192 processes of Blue Waters, a Cray
XK/XE supercomputer at the National Center for Supercomputing Applications. Image source: [5]
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One approach to reducing the coarse-grid operator complexity is to “sparsify”50

the (Petrov–)Galerkin operator after it is computed, i.e., removing some nonzeros51

outside a given sparsity pattern. The obtained sparsified operator is often called52

a “non-Galerkin” coarse-grid operator. The methods developed in [36, 33] leverage53

algebraically smooth basis vectors and the approximations to the fine grid operator54

to explicitly control the coarse grid sparsity pattern. The algorithms introduced in55

[11, 32] first determine the patterns of the sparsified operator based on heuristics56

on the path of edges in the corresponding graph and then compute the numerical57

values to ensure the spectral equivalence to the Galerkin operator for certain types of58

PDEs. Improving the parallel efficiency of AMG by reducing the communication cost59

with the non-Galerkin operator was discussed in [4]. These existing algorithms for60

computing non-Galerkin operators are usually based on heuristics on the associated61

graph and the characteristic of the underlying PDE problem, such as the information62

of the near kernels of A. Therefore, they are problem-dependent, and often times63

it can be difficult to devise such heuristics that are suitable for a broader class of64

problems.65

Recently, there has been a line of work in the literature to leverage data-driven and66

machine learning (ML) based methods to improve the robustness of MG. In particu-67

lar, [27, 24, 12] deal with learning better prolongation operators. Techniques of deep68

reinforcement learning (DRL) are exploited in [31] to better tackle the problem of Al-69

gebraic MG coarsening combined with the diagonal dominance ratio of the F-F block.70

Both the works in [21] and [25] focus on the problem of designing better smoothers.71

In [21], smoothers are directly parameterized by multi-layer convolution neural net-72

works (CNNs) while [25] optimizes the weights in the weighted Jacobi smoothers. In73

this paper, we follow this line of research and propose a data-driven and ML-based74

method for non-Galerkin operators. In this work, we restrict our focus on problems75

on structured meshes and with constant coefficients. The innovations and features76

of the proposed method are summarized as follows: 1) Introduction of a multi-level77

algorithm based on ML methods to sparsify all coarse-grid operators in the multigrid78

hierarchy; 2) Successful reduction of operator density while preserving the conver-79

gence behavior of the employed multigrid method; 3) Applicability of the proposed80

NN model to a class of parametric PDEs with parameters following specific probabil-81

ity distributions; 4) Ability to train the sparsified coarse-grid operator on each level82

in parallel once the training data is prepared; 5) Flexibility for the user to choose83

the average number of non-zero entries per row in the coarse-grid operators, with a84

minimum threshold requirement. To the best of our knowledge, our proposed work is85

the first to utilize ML models for controlling sparsity within multigrid hierarchies.86

The rest of the paper is organized as follows. We first briefly review the prelimi-87

naries of AMG methods and the non-Galerkin algorithms in section 2. We elaborate88

on our proposed sparsification algorithm in section 3. Numerical experiments and89

results are presented in section 4. Finally, we conclude in section 5.90

2. MG preliminaries and coarse-grid operators. In this section, we give91

a brief introduction to MG methods and the Galerkin coarse-grid operators. The92

MG method is a multilevel method that utilizes a hierarchy of grids, consisting of93

fine and coarse levels, and constructs coarse-level systems at different scales that can94

capture the essential information of the fine-level system while reducing the problem95

size. MG algorithms employ techniques such as coarsening, relaxation, restriction and96

interpolation to transfer information between the grid levels to accelerate the solution97

process. Algorithm 2.1 presents the most commonly used MG V-cycle scheme. It uses98
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ν steps of pre- and post-smoothing, where M and MT are the smoothing operators.99

Matrices R and P are the restriction and prolongation operators, respectively. The100

coarse-grid operator is computed in Step 3 via the Galerkin product, Ag = RAP .101

The aim of smoothing is to quickly annihilate the high-frequency errors via simple102

iterative methods such as relaxation, whereas the low-frequency errors are targeted103

by the Coarse-Grid Correction (CGC) operator, I −P (RAP )−1RA. When A is SPD104

and R = PT, the CGC operator is A-orthogonal with the Galerkin operator Ag.105

Algorithm 2.1 Multigrid V-Cycle for solving A(l)u(l) = f (l) at level l

1: Pre-smoothing: u(l) := (I − (M (l))−1A(l))u(l) + (M (l))−1f (l) for ν steps
2: Compute residual r(l) = f (l) −A(l)u(l) and the restriction r(l+1) = R(l)r(l)

3: Compute Galerkin operator Ag = R(l)A(l)P (l) and let A(l+1) = Ag

4: if l = L− 1 then
5: Solve A(l+1)u(l+1) = r(l+1) with an arbitrary method
6: else
7: Let u(l+1) = 0 and f (l+1) = r(l+1). Go to Step 1 with l := l + 1.
8: end if
9: Prolongate and correct: u(l) := u(l) + P (l)u(l+1)

10: Post-smoothings: u(l) := (I − (M (l))−TA(l))u(l) + (M (l))−Tf (l) for ν steps

2.1. Non-Galerkin operators. Naive approaches, such as indiscriminately re-106

moving nonzero entries in the Galerkin operators based on the magnitude often result107

in slow convergence of the overall MG method (see the example provided in Section 3108

of [11]). To address the aforementioned challenges arising from the increased operator109

complexity, alternative operators, denoted by Ac, that are not only sparser than Ag110

but also spectrally equivalent have been studied and have been used in lieu of the111

Galerkin operator Ag [11, 23]. We say two matrices are spectrally equivalent defined112

in [11] as follows:113

Definition 2.1. SPD matrices Ag and Ac are spectrally equivalent if114

(2.1) 0 < α ≤ λ(A−1
g Ac) ≤ β,115

with α and β both close to 1, where λ(·) denotes eigenvalues of a matrix.116

The convergence rate of MG can be analyzed through the spectral radius of the error117

propagation matrix. For example, the two-grid error propagation matrix correspond-118

ing to the V-cycle in Algorithm 2.1 reads119

(2.2) Eg = (I −M−TA)ν(I − PA−1
g RA)(I −M−1A)ν .120

With the replacement of Ag by Ac, it becomes121

(2.3) Ec = (I −M−TA)ν(I − PA−1
c RA)(I −M−1A)ν .122

The spectrum property of Ec is analyzed in the following theorem.123

Theorem 2.2 ([11]). Denoting by Bg and Bc respectively the corresponding124

preconditioning matrices defined as B−1
g = (I −Eg)A

−1 and B−1
c = (I −Ec)A

−1 and125

assuming Ac and Ag are both SPD and126

(2.4) η = ∥I −AcA
−1
g ∥2 = ∥I −A−1

g Ac∥2 < 1,127
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for the preconditioned matrix, we have128

(2.5) κ(B−1
c A) ≤ 1 + η

1− η
κ(B−1

g A),129

and moreover130

(2.6) ρ(Ec) ≤ max

(
λmax(B

−1
g A)

1− η
− 1, 1−

λmin(B
−1
g A)

1 + η

)
,131

where λmax(·) and λmin(·) are the largest and smallest eigenvalues respectively, κ(·)132

denotes the condition number and ρ(·) denotes the spectrum radius.133

The quantity η measures the degree of spectral equivalence between the operators134

Ag and Ac, i.e., only when η is small, these operators are spectrally equivalent, since135

ρ(·) ≤ ∥ · ∥2. Clearly, the condition number of the preconditioned matrix and the136

two-grid convergence with respect to Ec deteriorate as η increases. With fixed B−1
g A,137

we can establish a criterion for the convergence of Ec with respect to η, as shown in138

the next result.139

Corollary 2.3. Suppose η < 1 − λmax(B
−1
g A)/2. Then, the two-grid method140

(2.3) converges.141

Proof. Note that η < 1−λmax(B
−1
g A)/2 implies that λmax(B

−1
g A)/(1− η)−1 < 1.142

Since λ(B−1
g A) > 0, 1 − λmin(B

−1
g A)/(1 + η) < 1. Therefore, from (2.6), it follows143

that ρ(Ec) < 1.144

2.2. Spectrally equivalent stencils. In this paper, we focus on structured145

matrices that can be represented by stencils and grids, for the definitions and no-146

tations, see, e.g., [34]. These structured matrices exhibit a unique property wherein147

two spectrally equivalent stencils can determine two sequences of spectrally equivalent148

matrices with increasing sizes and thus ensures the convergence of Ec with increasing149

matrix sizes.150

Definition 2.4 ([1, 6]). Let {Aj} and {Bj} be two sequences of (positive defi-151

nite) matrices with increasing size Nj, where Aj and Bj ∈ RNj×Nj . If Aj and Bj are152

spectrally equivalent as defined in (2.1) for all j with α and β that are independent153

of Nj, then the sequences {Aj} and {Bj} are called spectrally equivalent sequences of154

matrices.155

The above definition yields the definition of spectrally equivalent stencils given156

as follows.157

Definition 2.5 ([6]). Suppose the sequences of matrices {Aj} and {Bj} are con-158

structed with the stencils A and B respectively, where for any given j, Aj and Bj159

have the same size. We call A and B are spectrally equivalent if {Aj} and {Bj} are160

spectrally equivalent sequences of matrices.161

At the end of this section, we provide an example of spectrally equivalent stencils.162

Consider the following 9-point stencil that was used in the study of the MG method163

for circulant matrices [6]:164

(2.7)

 c b c
a −2(a+ b)− 4c a
c b c

 .165
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It was proved that the associated 5-point stencil166

(2.8)

 b+ 2c
a+ 2c −2(a+ b)− 8c a+ 2c

b+ 2c

 .167

is spectrally equivalent to (2.7). Results for the 7-point stencil in 3-D that is spectrally168

equivalent to a 27-point stencil can also be found in [6].169

2.3. Numerical heuristics for spectral equivalence. Directly optimizing170

(2.4), which involves a matrix norm, to find a spectrally equivalent Ac to Ag appears171

to be challenging. Instead, a more viable approach is via test vectors that correspond172

to the low-frequency modes of Ag (see, e.g., [11, 36]). These low-frequency modes173

represent the algebraically smooth modes at a coarse level, which are important for174

the interpolation to transfer to the fine level within the MG hierarchy. From the175

perturbed error propagation operator (2.3), it follows that after the pre-smoothing176

steps, the remaining error, denoted by e, that is algebraically smooth in terms of A177

(i.e., Ae ≈ 0) needs to be efficiently annihilated by the coarse-grid. This smooth error178

(of low frequency) is ideally in the range of interpolation operator P , meaning that,179

e = Pec with some coarse-grid error ec. Furthermore, ec is smooth with respect to180

Ag with a proper R, since Agec = RAPec = RAe is small. Therefore, for an effective181

CGC with non-Galerkin coarse-grid operator Ac, it is essential for (I −PA−1
c RA)e =182

(I − PA−1
c RA)Pec = P (I −A−1

c Ag)ec to be small, which implies Agec ≈ Acec. That183

is to enforce the accuracy of Acec compared to Agec with the low-frequency vector ec184

on the coarse level.185

In this paper, we adopt the approach of multigrid eigensolver (MGE) [7] to com-186

pute the smooth vectors in the MG hierarchy. First, consider two-grid MG methods.187

The Rayleigh quotient of Pec with respect to A reads188

(2.9) r(A,Pec) =
(APec, P ec)

(Pec, P ec)
=

(PTAPec, ec)

(PTPec, ec)
=

(Agec, ec)

(Tec, ec)
,189

where T = PTP . Therefore, the desired smooth modes that minimize (2.9) relate to190

the eigenvectors that correspond to the small eigenvalues of the generalized eigenvalue191

problem192

(2.10) Agu = λTu, T = PTP.193

For MG methods with more than 2 levels, we can compute the smooth vectors at each194

coarse level by recursively applying (2.10) at the previous fine level.195

3. An ML method for coarse-grid operators. We aim to utilize ML tech-196

niques to compute non-Galerkin operators in the MG method for solving (1.1), where197

A is a stencil-based coefficient matrix that corresponds to PDE problems discretized198

on Cartesian grids. On a given MG level l > 1, with stencil A(l)
g associated with199

the Galerkin matrix A
(l)
g , we construct a sparser stencil A(l)

c in the following 3 steps,200

which are explained in detail below and illustrated in Figure 2.201

Step 1. Select the pattern of A(l)
c , where the corresponding entries are assumed202

to be nonzero. The NN in this step, denoted by FΘ(l) , is parametrized by Θ(l). It203

computes the location probability, i.e., the probability of a nonzero entry appears at204

a location, for each of the stencil entries of A(l)
g . We apply the NN FΘ(l) to the205
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ML APPROACH FOR NON-GALERKIN COARSE-GRID OPERATOR 7

vectorized stencil v
(l)
g = vec(A(l)

g ), i.e., the vector reshaped from the stencil array,206

followed by a softmax layer. Therefore, the output of the NN can be written as207

(3.1) P(l) = softmax(FΘ(l)(v(l)g )),208

which is then reshaped back to match the shape of A(l)
g . Given that 0 < P(l) < 1, each209

entry can be interpreted as the probability of the entry appearing (being nonzero) in210

the sparsified stencil A(l)
c . With that, we select the largest k entries of P(l),211

(3.2) I(l) =
{
i
∣∣∣P(l)(i) is one of the largest k entries of P(l)

}
,212

where I(l) denotes the set of the indices of those entries, from which we build a mask213

Boolean vector M(l) defined as214

(3.3) M(l) (i) =

{
1, if i ∈ I(l)

0, otherwise
,215

that determines the positions of the nonzeros in the non-Galerkin stencil.216

Step 2. Compute the numerical values of the nonzero entries. The NN in this217

step, denoted by GΨ(l) , is parametrized by Ψ(l) which is applied to the same input as218

in Step 1. The output from NN of this step reads219

(3.4) V(l) = GΨ(l)(v(l)g ),220

which determines the numerical values of the nonzero entries.221

Step 3. Construct A(l)
c by point-wise multiplication. The non-Galerkin stencil is222

computed by the Hadamard (or element-wise) product223

(3.5) A(l)
c = M(l) ⊙ V(l).224

We summarize these steps in Algorithm 3.1. The MG V-cycle using the sparsi-225

fied coarse grid is outlined in Algorithm 3.2, which closely resembles Algorithm 2.1,226

whereas, instead of using the Galerkin operator for coarser levels, the non-Galerkin227

operator Ac is constructed from the sparsified stencil generated by Algorithm 3.1.228

Remark 3.1. A few remarks on Algorithm 3.1 and Algorithm 3.2 follow. To begin229

with, the parameter k of Algorithm 3.1 signifies the number of the nonzero entries230

in the sparsified stencil. This effectively gives us the ability to directly manipulate231

the complexity of the resulting non-Galerkin operator. Secondly, in the NN imple-232

mentations, we ensure that the shapes of M(l) and V(l) are identical. This enables233

the proper application of the Hadamard product. Lastly, it is assumed that the NNs,234

FΘl
and GΨl

, have undergone sufficient training. Therefore, Step 7 of Algorithm 3.2235

involves merely the application of the trained NNs.236

Algorithm 3.1 SparsifyStencil

Input: Ag, FΘ, GΨ, k
1: Apply the NNs to compute P = FΘ(Ag) and V = GΨ(Ag)
2: M has the same shape as V and has a value of 1 at the entries corresponding to

the k largest values of P, with 0 elsewhere.
3: return Ac = M⊙V
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Fig. 2. Illustration of the ML algorithm for computing coarse-grid operators with NNs.

Algorithm 3.2 MG V-Cycle with sparsified coarse-grid operator

1: Pre-smoothing: u(l) := (I − (M (l))−1A(l))u(l) + (M (l))−1f (l) for ν steps
2: Compute the residual r(l) = f (l) −A(l)u(l) and restriction r(l+1) = R(l)r(l)

3: Compute the Galerkin operator A
(l+1)
g = R(l)A(l)P (l)

4: if l = L− 1 then
5: Solve A

(l+1)
g u(l+1) = r(l+1) with an arbitrary method

6: else
7: Apply Algorithm 3.1: A(l+1)

c = SparsifyStencil(A(l+1)
g , FΘ(l+1) , GΨ(l+1) , k)

8: Let A(l+1) = A
(l+1)
c , u(l+1) = 0 and f (l+1) = r(l+1). Go to Step 1 with l := l+1

9: end if
10: Prolongate and correct: u(l) := u(l) + P (l)u(l+1)

11: Post-smoothings: u(l) := (I − (M (l))−TA(l))u(l) + (M (l))−Tf (l) for ν steps

3.1. NN training algorithm. In this section, we delve into the specifics of the237

training algorithm that enables NNs to generate a sparser coarse-grid operator stencil238

than the Galerkin operator stencil, without impairing the overall convergence of the239

MG method. A key component of Algorithm 3.2 is line 7 where FΘ and GΨ are240

the pre-trained NNs. The loss function, another crucial component, is pivotal to the241

training procedure. Based on the discussion in subsection 2.3, we aim to minimize242

the discrepancy between Agv and Acv where v is an algebraically smooth vector.243

Denote by β ∈ Rp parameters of the problem to solve, which possesses a proba-244

bility distribution pβ in B. The loss function tied to FΘ and GΨ is defined as:245

(3.6) Lβ

(
FΘ, GΨ,Aβ

g , {v
β
j }

s
j=1

)
=

s∑
j=1

∥Aβ
g v

β
j −Aβ

c v
β
j ∥

2
2,246

where {vβj } represents the set of algebraically smooth vectors, s is the number of these247

vectors, and Aβ
c is computed by Algorithm 3.1. The objective is to minimize the248
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expectation of Lβ under the distribution of β, symbolized as Eβ∼pβ
[Lβ ], throughout249

the training. It is worth mentioning that instead of explicitly forming the matrices Aβ
g250

and Aβ
c , we adopt a stencil-based approach where the matrix-vector multiplications251

are performed as the convolutions of the stencils Aβ
g and Aβ

c with vectors that are252

padded with zero layers, assuming zero boundary conditions are used. The stencil-253

based approach and the convolution formulation greatly enhance memory efficiency254

during training.255

3.2. Details of Training and Testing. In this section, we provide details of256

the training and testing algorithms.257

Architecture of the multi-head attention. We use multi-head attention [35] to com-258

pute both location probability in Step 1 with FΘ(l) and numerical values in Step 2 with259

GΨ(l) as discussed in section 3. We adopt the standard architecture that comprises a260

set of nh independent attention heads, each of which extracts different features from261

each stencil entry of A(l)
g . In essence, each head generates a different learned weighted262

sum of the input values, where the weights are determined by the attention mech-263

anism and reflect the importance of each value. The weights are calculated using a264

softmax function applied to the scaled dot-product of the input vectors. The output265

from each head is then concatenated and linearly transformed to produce the final266

output.267

The multi-head attention mechanism in our study is formally defined as follows:268

Let v
(l)
g denote the input vectors. For each attention head hi, i = 1, . . . , nh, we first269

transform the inputs using parameterized linear transformations, WQ
i , WK

i , and WV
i270

to produce the vectors of query Qi, key Ki, and value Vi as follows:271

(3.7) Qi = v(l)g WQ
i , Ki = v(l)g WK

i , Vi = v(l)g WV
i .272

The attention scores for each input vector in head hi are then computed using the273

scaled dot-product of the query and key vectors, followed by a softmax function:274

(3.8) Attentioni = softmax

(
QiK

T
i√

dk

)
Vi ,275

where dk is the dimension of the key vectors. This process captures the dependencies276

among the input vectors based on their similarities. The output of each attention head277

hi is then concatenated, and a linear transformation is applied using a parameterized278

weight matrix WO with softmax activation, which ensures positive outputs:279

(3.9) MultiHead(v(l)g ) = Concat(Attention1, . . . ,Attentionnh
)WO.280

This architecture empowers the model to learn complex PDE stencil patterns effec-281

tively. The design is flexible, and the number of heads can be adjusted as per the282

complexity of the task.283

Intuition of selection of multi-head attention. We first briefly explain why multi-284

head attention is beneficial for PDE stencil learning than other types of NNs. This285

work is about teaching the NNs to generate stencils, which are essentially small pat-286

terns or templates used in the discretization of PDEs. These stencils represent the287

relationship between a grid point and its neighbors. In the context of PDE stencil288

learning, multi-head attention can be highly beneficial for several reasons:289

1. Feature diversification: The multi-head attention allows the model to focus on290

various features independently, and thus, can capture a wider variety of patterns291

in the data. For PDE stencil learning, this means that the model can understand292

the relationships between different grid points more comprehensively.293
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2. Context awareness: Attention mechanisms inherently have the capacity to consider294

the context, i.e., the relationships between different parts of the input data. In295

PDE stencil learning, this translates to understanding the interactions between a296

grid point and its surrounding neighboring points.297

3. Flexibility: Multi-head attention adds flexibility to the model. Each head can298

learn to pay attention to different features, making the model more adaptable. In299

the context of PDEs, this means that one head can learn to focus on local features300

(such as the values of nearby points), while another might focus more on global301

or structural aspects.302

We observed empirically that our proposed architecture outperforms standard303

deep NNs (vanilla deep NNs) in stencil learning. This improvement is primarily304

attributed to the attention mechanism, which effectively addresses local structure305

capturing challenge inherent in fully connected layers. PDE problems often involve306

spatial and temporal structures that are local in nature. Fully connected networks,307

due to their global connectivity pattern, may struggle to effectively learn these lo-308

cal structures. They treat input data as a flattened array without considering the309

spatial correlations, which are critical in PDEs and yield sub-optimal performance.310

Through our empirical experiments, we found that the MG method, enhanced with311

attention-based operator learning, significantly outperforms models based solely on312

fully connected layers. Specifically, it achieved a 30% reduction in the number of313

iterations required to converge on a 2-D linear elasticity problem. This finding aligns314

with other studies, such as [13], which demonstrated that fully connected layers suffer315

from learning the complex dependencies among a grid.316

Details of training and testing. Parameters βi of PDE problems are sampled from317

distribution B according to the probability density function pβ to get the set of Nt318

parameters, {βi}, i = 1, . . . , Nt. Then, we construct the corresponding set of fine-grid319

stencils {Aβi}. For all the tests in this paper, we use full coarsening, full-weighting320

restriction, and the corresponding bi-linear interpolation for all the levels of MG. At321

each level l > 1, the ML model is built with the Galerkin stencils {(Aβi
g )(l)} and a322

set of smooth test vectors {(vβi

j )(l)}, j = 1, . . . , sl, associated with each of the stencil,323

using the loss function324

(3.10) L =
1

Nt

Nt∑
i=1

Lβi

(
FΘ(l) , GΨ(l) , (Aβi

g )(l), {(vβi

j )(l)}
)

325

that is used to approximate Eβ∼pβ
[Lβ ]. The complete training procedure is summa-326

rized in Algorithm 3.3. It is important to note that the NN trainings are independent327

of each other on different levels. Therefore, the training of the NNs for each level328

can be carried out simultaneously once the training data is prepared, taking advan-329

tage of parallel computing resources. The testing set is constructed with parameters330

that differ from those in the training set. This means that we test the model on a331

set of PDE parameters {βj}, j = 1, . . . , Nv, that have not been encountered by the332

models during training. The purpose of the testing set is to assess the generalization333

capability of new problem instances.334

4. Numerical Results. We report the numerical results of the proposed ML-335

based non-Galerkin coarse-grid method in this section. All the ML models in the336

work1 were written with PyTorch 1.9.0 [29]. We use PyAMG 4.2.3 [3] to build the337

1The codes is available at https://anonymous.4open.science/r/Sparse-Coarse-Operator-11C7
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Algorithm 3.3 Training NNs for computing coarse-grid operator at level l

Input: Interpolation operator P (l), Galerkin coarse-grid stencils {(Aβi
g )(l)}, the num-

ber of test vectors sl and the target stencil complexity k
Output: NNs FΘ(l) and GΨ(l)

1: Generate test vectors (vβi

j )(l), j = 1, . . . , sl, for each (Aβi
g )(l) as follows

• Compute T (l) = (P (l))TP (l)

• Compute the eigenvalues and vectors of

(Aβi
g )(l)u = λ

(l)
i T (l)u,

where (Aβi
g ))(l) is the coefficient matrix at level l corresponding to stencil

(Aβi
g )(l).

• The test vectors are the eigenvectors associated with the sl smallest eigenvalues
2: Initialize GΘ(l) and GΨ(l)

3: repeat
4: Apply Algorithm 3.1: (Aβi

c )(l) = SparsifyStencil
(
(Aβi

g )(l), FΘ(l) , GΨ(l) , k
)

5: Compute the gradient of the loss (3.10)
6: Update the weights Θ(l) and Ψ(l)

7: until the prescribed number of training epochs is reached

MG hierarchy. All the experiments were performed on a workstation with Intel Core338

i7-6700 CPUs. The multi-head attention model we implemented has a total dimension339

of 256 and comprises 8 heads, which is also incorporated a dropout scheme with the340

rate of 0.7.341

4.1. Evaluation Metrics. In this section, we evaluate the performance of the342

proposed ML-based approach by comparing the average number of iterations required343

by the MG method using different coarse-grid operators to converge. Additionally,344

we verify the spectral equivalence of the Galerkin and sparsified non-Galerkin stencils345

by computing the spectra of the corresponding matrices on meshes of various sizes.346

4.2. Spectrally equivalent stencils. We first examine the proposed ML-based347

method on the 9-point stencil problem (2.7) that allows direct evaluation of the learned348

non-Galerkin operator by the comparison with the theoretical result (2.8), which is a349

spectrally equivalent 5-point stencil. We use the 9-point stencil A of the form (2.7)350

with a = 1.417, b = 2.720 and c = 0.000114, i.e.,351

A =

 0.000114 2.720 0.000114
1.417 −8.27456 1.417

0.000114 2.720 0.000114

(4.1)352

353

as the fine-level A-operator, and the 2-D full-weighting stencil,354

(4.2) R =
1

16

 1 2 1
2 4 2
1 2 1

 ,355

for the restriction operator. Thus, the stencil of the Galerkin operator is356

(4.3) Ag =

 0.129294125 0.42140075 0.129294125
0.095650750 −1.55182350 0.095650750
0.129294125 0.42140075 0.129294125

 ,357
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which has the same form as A. From (2.8), a 5-point stencil that is spectrally equiv-358

alent to (4.3) is given by359

(4.4) Ac =

 0 0.679989 0
0.354239 −2.068456 0.354239

0 0.679989 0

 .360

Using Algorithm 3.3 with the prescribed number of nonzeros in the stencil k = 5 on361

the 31× 31 grid, the pre-trained NNs produced the following 5-point stencil362

(4.5) Ann =

 0 0.663 0
0.347 −2.024 0.348

0 0.666 0

 ,363

denoted by Ann, which is close to the theoretical result (4.4). To assess the con-364

vergence behavior of the MG method, we solve a linear system using the coefficient365

matrix defined by (4.1). We conduct these tests on larger-sized grids and use the366

two-grid MG methods employing Ag, Ac, and Ann as the coarse-level operators, re-367

spectively. The right-hand-side vector is generated randomly. The stopping criterion368

of MG iterations with respect to the relative residual norm is set to be 10−6. The369

results are shown in Table 2, from which we can observe that all three methods require370

the same number of iterations.371

Table 2
The number of iterations required by the two-level MG methods for solving a linear system

corresponding to the coefficient matrix stencil (4.1) to 10−6 accuracy in terms of the relative residual
and the α and β in (2.1) for different grid sizes. The MG methods utilize Ag, Ac, and Ann as the
coarse-level operator respectively. The tests are carried out on grid sizes up to 511× 511.

grid size
63 95 127 191 255 383 511

Ac
α 1.0073 1.0021 1.0018 1.0013 1.0011 1.0004 1.0002
β 1.9990 1.9996 1.9998 2.0000 2.0001 2.0001 2.0002

Ann
α 0.9771 0.9804 0.9796 0.9780 0.9778 0.9776 0.9776
β 1.9556 1.9563 1.9566 1.9567 1.9568 1.9569 1.9568

grid size
63 95 127 191 255 383 511

Ag 11 10 10 10 10 10 10
Ac 11 10 10 10 10 10 10
Ann 11 10 10 10 10 10 10

4.3. 2-D rotated Laplacian problem. In this section, we consider the 2-D372

anisotropic rotated Laplacian problem373

(4.6) −∇ · (Tθ,ξ∇u(x, y)) = f(x, y),374

where the 2× 2 vector field Tθ,ξ parameterized by θ and ξ is defined as375

Tθ,ξ =

[
cos2 θ + ξ sin2 θ cos θ sin θ(1− ξ)
cos θ sin θ(1− ξ) sin2 θ + ξ cos2 θ

]
376

with θ being the angle of the anisotropy and ξ being the conductivity.377
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We show that the proposed approach is not limited to a particular set of parame-378

ters but remains effective across a range of values for both ξ and θ. In the first set of379

experiments, we fix the value ξ while allowing θ to follow a uniform distribution within380

a specified interval. We conduct 12 experiments where each ξ ∈ {100, 200, 300, 400} is381

paired up with θ sampled from intervals {(π/4, π/3), (π/3, 5π/12), (π/2, 7π/12)}. The382

MG methods for solving these problems use full-coarsening, full-weighting restriction,383

and the Gauss-Seidel method for both pre-smoothing and post-smoothing. MG V-384

cycles are executed until the residual norm is reduced by 6 orders of magnitude. The385

number of the nonzero elements is 9 in the Galerkin coarse-grid stencil across the MG386

levels, whereas we choose to reduce the number to 5 for the non-Galerkin operator.387

During the training phase of each experiment, the model is provided with 5 in-388

stances for a given ξ with different θ values evenly distributed within a chosen interval.389

For example, for ξ = 100 and θ ∈ (π/4, π/3), the parameters for the 5 instances of390

(ξ, θ) are selected as follows:391

(4.7) {(100, π/4), (100, 3.25π/12), (100, 3.5π/12), (100, 3.75π/12), (100, π/3)} .392

The size of the fine-level matrix in the training instances is set to be 31× 31. In the393

testing phase, 10 distinct θ values are randomly selected from the chosen interval. The394

MG parameters are the same as those used in the training phase. In the testing, it395

should be noted that the fine-level problem size is 511× 511, which is approximately396

256 times larger than that in the training instances. This larger problem size in397

the testing allows for a more rigorous evaluation of the performance of MG and the398

ability to handle larger-scale problems. We record the number of iterations required399

by the 3-level MG method to converge with the Galerkin and non-Galerkin operators,400

shown in Table 3. These results indicate that the convergence behavior of the MG401

method remains largely unchanged when the alternative sparser non-Galerkin coarse-402

grid operators are used as replacements.403

Table 3
The average number of iterations required by the 3-level MG to converge with the Galerkin and

non-Galerkin coarse-grid operators for solving (4.6) with different PDE parameter ξ and θ. The
mesh size is 511× 511. The parameters are selected so that ξ ∈ {100, 200, 300, 400} is fixed and θ is
randomly sampled from a uniform distribution in each interval. The iteration number is averaged
over 10 different sampled θ values.

ξ
θ

(π/6, π/4) (π/4,π/3) (π/2, 7π/12)
Ag 100

92.1 102.8 126.9
Ann 89.0 93.0 135.2

Ag 200
191.7 196.6 203.1

Ann 174.2 177.8 204.9

Ag 300
248.0 269.7 342.3

Ann 246.5 231.4 356.2

Ag 400
337.1 351.1 438.2

Ann 326.3 327.7 441.5

In the second set of experiments, we keep the parameter θ fixed and vary ξ fol-404

lowing a uniform distribution within the selected intervals. A total of 12 experiments405

were conducted where each θ ∈ {π/6, π/4, π/3, 5π/12} is paired with ξ sampled from406

the intervals {(5, 10), (80, 100), (100, 200)}. The MG configurations used in these ex-407

periments remain the same as in the previous set. The training and testing processes408
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are also similar. For each experiment, we train the model using 5 different instances409

evenly distributed within the selected intervals and then test it with 10 randomly410

sampled ξ values from the same interval. The size of the fine-level linear system in411

the training instances is set to be 31 × 31, while in each testing instance, it has a412

much larger size that is 511 × 511. The averaged numbers of iterations from all the413

experiments are presented in Table 4.414

Table 4
The average number of iterations required by the 3-level MG to converge with the Galerkin and

non-Galerkin coarse-grid operators for solving (4.6) with different PDE parameter ξ and θ. The
mesh size is 511 × 511. The parameters are selected such that θ ∈ {π/6, π/4, π/3, 5π/12} is fixed
and ξ is randomly sampled from a uniform distribution in each interval. The iteration number is
averaged over 10 different sampled ξ values.

θ
ξ

(100, 200) (80, 100) (5, 10)
Ag π/6

90.4 72.1 13.5
Ann 100.2 84.4 13.8

Ag π/4
172.5 105.2 14.1

Ann 123.1 79.0 15.9

Ag π/3
99.4 80.9 14.3

Ann 79.1 88.8 15.4

Ag 5π/12
92.5 76.4 16.5

Ann 107.4 88.2 16.6

In the subsequent experiment, we specifically consider the Laplacian problem with415

parameters θ = π/6 and ξ = 0.1 as an example to demonstrate the measurement of416

spectral equivalence as defined in (2.1). We examine the eigenvalues of A−1
nnAg on417

meshes of varying sizes. The real parts of the eigenvalues are depicted in Figure 3.418

We observe that all the eigenvalues are bounded by α = 0.65, β = 0.9 in Definition 2.4,419

and the distribution of eigenvalues remains consistent regardless of the mesh size. This420

observation suggests the presence of spectral equivalence between the two coarse-grid421

operators across meshes of different sizes.422

Fig. 3. The real parts of the eigenvalues of A−1
nnAg on meshes of different sizes (n × n) for

solving the rotated Laplacian problem with θ = π/6 and ξ = 0.1.

The target stencil complexity k in Algorithm 3.1 is a parameter left to be chosen by423

the users. It is an adjustable parameter that allows users to control the sparsity level424

in the trained NN-model and of the resulting coarse-grid operator. The appropriate425
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value of k typically depends on the problem domain and the desired balance between426

accuracy and computational efficiency. It may be necessary to perform experiments to427

determine the optimal value of k for a particular application. In the final experiment,428

we perform this study for the rotated Laplacian problem with ξ = 10 and θ = π/4.429

Note that the Galerkin operator has a 9-point stencil, so we vary the stencil complexity430

from 4 to 6 in the non-Galerkin operator and record the convergence behavior of the431

corresponding MG method. The results, as depicted in Figure 4, show the findings432

regarding the convergence behavior of the MG method with different values of k in433

the sparsified stencil Ann. Notably, when k = 4, the MG method fails to converge.434

However, for k = 5 and k = 6, the convergence behavior closely resembles that of435

the 9-point Galerkin operator. This observation suggests that a minimum number of436

nonzeros in the stencil of k = 5 appears to be required for Ann to achieve convergence,437

which coincides with the operator complexity of the fine-grid operator.438

Fig. 4. The convergence in terms of the residual norm of the two-grid MG methods using the
coarse-grid operator from the NN model of stencil complexity k = 4, 5, 6 and the Galerkin operator
for solving the rotated Laplacian problem with ξ = 10 and θ = π/4.

4.4. 2-D linear elasticity problem. In this section, we consider the 2-D time-439

independent linear elasticity problem in an isotropic homogeneous medium:440

µ∇2u+ (µ+ λ)

(
∂2u

∂x2
+

∂2v

∂x∂y

)
+ fx = 0,(4.8)441

µ∇2v + (µ+ λ)

(
∂2v

∂x2
+

∂2u

∂x∂y

)
+ fy = 0,(4.9)442

443

where u and v are the solution in the direction of x- and y-axis respectively, fx and fy444

are forcing terms, and µ and λ are Lame coefficients that are determined by Young’s445

modulus E and Poisson’s ratio ν as446

(4.10) µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
.447

In our tests, we set E = 10−5 and vary the value of ν. For the discretization, we adopt448

the optimal 2-D 9-point stencil in terms of local truncation errors [22] on rectangular449
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Cartesian grid with the mesh step sizes h and byh, respectively, along the x- and450

y-axes (by is the aspect ratio of the mesh),451

Auu =

anwuu anuu aneuu
awuu 1 aeuu
aswuu asuu aseuu

 , Auv =

anwuv 0 aneuv
0 0 0

aswuv 0 aseuv

 ,(4.11)452

453

where the coefficients are given by454

anuu = asuu =
(b2y − 1)λ+ 2(b2y − 2)µ

2(2λb2y + λ+ 4(b2y + 1)µ)
,(4.12)455

awuu = aeuu = −
2λb2y + 4µb2y + λ+ µ

2(2λb2y + λ+ 4(b2y + 1)µ)
,(4.13)456

anwuu = aneuu = aswuu = aseuu =
−λb2y − 2µb2y + λ+ µ

4(2λb2y + λ+ 4(b2y + 1)µ)
,(4.14)457

anwuv = aseuv = −aneuv = −aswuv =
3by(λ+ µ)

8(2λb2y + λ+ 4(b2y + 1)µ)
.(4.15)458

459

These stencils define the 2× 2 block linear system460

(4.16)

[
Auu Auv

Avu Avv

] [
u
v

]
=

[
fx
fy

]
,461

where Auu = Avv and Avu = AT
uv. A node-based MG approach is used to solve462

(4.16), where the same red-black coarsening is used in u-u and v-v blocks and the463

interpolation and restriction operators have the same block form464

(4.17) R =

[
Ruu Ruv

Rvu Rvv

]
, P =

[
Puu Puv

Pvu Pvv

]
,465

which interpolate and restrict within and across the two types of variables u and v.466

The stencils of the operators in (4.17) are given by, respectively,467

Ruu = Rvv =
1

8

 1
1 4 1
1

 , Puu = Pvv =
1

4

 1
1 4 1
1

 ,(4.18)468

Ruv =
1

8

 1
−1 0 −1

1

 , Puv =
1

4

 1
−1 0 −1

1

 ,(4.19)469

Rvu =
1

8

 −1
1 0 1
−1

 , Pvu =
1

4

 −1
1 0 1
−1

 .(4.20)470

471

Here we use the reversed bracket notation [34] to represent column stencils as a fan-472

out operation as opposed to the fan-in operation of row stencils. As stated in [8],473

to interpolate exactly the smoothest function that is locally constant, it requires the474

interpolation weights for u-u and v-v to sum to 1 and for the u-v and v-u weights to475

sum to 0. The Gauss-Seidel smoother is used with the MG V-cycle and the iterations476

are stopped when the relative residual norm is below 10−6.477
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We train the NN model on 4 different instances with ν ∈ {0.1, 0.2, 0.3, 0.4} to478

reduce the complexity of the Galerkin operator by 50%. The coarse-grid Galerkin479

operator has the same block structure as (4.16) and only 2 distinct stencils due to the480

symmetry of the matrix. In the training, we combine these 2 stencils and pass them481

to the NNs as the input. It turns out that the NN model trained in this way yields482

better coarse-grid operators than learning the stencils of u-u and u-v separately.483

The mesh size used in the training set is set to be 9 × 9. We test the model on484

instances with ν randomly drawn from each interval of {(0.1, 0.2), (0.2, 0.3), (0.3, 0.4)}.485

The size of the mesh used in the testing is 65×65. The average numbers of iterations486

are presented in Table 5. Similar to the results observed in the rotated Laplacian487

problems, the convergence behavior of the two-grid MG method is not negatively488

affected by the replacement with the non-Galerkin coarse-grid operator obtained from489

the NN model.490

Table 5
The average number of iterations required by the 2-grid MG to converge with the Galerkin and

non-Galerkin coarse-grid operators for solving (4.8) with 10 different Poisson’s ratios ν randomly
sampled from each interval. The mesh size is set to be 65× 65.

ν (0.1, 0.2) (0.2, 0.3) (0.3, 0.4)
Ag 10.1 10.2 10.6
Ann 11.0 10.7 11.5

4.5. Comparison with existing non-Galerkin methods. In this section,491

we compare the performance of the proposed NN-based algorithm with the Spar-492

sified Smooth Aggregation (SpSA) method proposed in [32] for solving the rotated493

Laplacian problem. The SpSA method is based on Smooth Aggregation (SA) AMG494

methods. In these methods, a tentative aggregation-based interpolation operator Pt495

is first constructed, followed by a few steps of smoothing of Pt that generate the final496

interpolation operator P , which is typically considerably denser than Pt. The SpSA497

algorithm aims to reduce the complexity of the Galerkin operator PTAP to have the498

same sparsity pattern as PT
t APt. Given that we utilize the standard Ruge-Stüben MG499

(as opposed to SA AMG) combined with the NN-based approach, conducting a direct500

comparison between the two approaches becomes challenging due to the different MG501

hierarchies obtained. To ensure an equitable comparison, we impose a requirement502

that the number of nonzero entries per row in the coarse-level operator generated503

by SpSA should not be smaller than the operator produced by our algorithm. Con-504

sequently, any observed disparities in performance can be attributed to the specific505

characteristics of the selected sparsity pattern and numerical values of the coarse-506

grid operator, rather than the variations in the level of the sparsity. The number of507

iterations required by the GMRES method preconditioned by 3-level MG methods508

with different coarse-grid operators for solving the rotated Laplacian problem (4.6)509

are presented in Table 6 and Table 7, with varied PDE coefficients. For more than510

70% of cases, the MG method with NN-based coarse-grid operators exhibits better511

performance compared to SpSA, as it requires fewer iterations to converge to the512

10−6 stopping tolerance and achieves a convergence rate that is much closer to that513

using the Galerkin operator. There are a few exceptions where SpSA outperforms the514

NN-based method, and in some cases, it performs even better than the MG method515

using the Galerkin operator.516
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Table 6
The average number of iterations required by the GMRES method preconditioned by 3-level MG

methods with different coarse-grid operators for solving (4.6) with different sets of PDE parameters.
The mesh size is 511× 511. The parameters are selected so that θ ∈ {π/6, π/4, π/3, 5π/12} is fixed
and ξ is randomly sampled from a uniform distribution in each interval. The iteration number is
averaged over 10 different sampled θ’s. Ag denotes the Galerkin coarse-grid operator, Ann is the
coarse-grid operator obtained from Algorithm 3.3, and SpSA refers to the coarse-grid operator from
the Sparsified Smooth Aggregation (SpSA) algorithm [32]. The numbers in the brackets are the
operator complexities.

ξ
θ

(π/6, π/4) (π/4,π/3) (π/2, 7π/12)
Ag

100

11.3 (1.31) 11.1 (1.31) 11.5 (1.31)
Ann 16.5 (1.17) 16.9 (1.17) 19.9 (1.17)
SA 35.5 (1.65) 35.0 (1.70) 10.2 (2.14)

SpSA 41.7 (1.29) 38.7 (1.21) 13.2 (1.42)

Ag

200

15.9 (1.31) 15.3 (1.31) 14.5 (1.31)
Ann 20.5 (1.17) 19.6 (1.17) 29.8 (1.17)
SA 44.1 (1.65) 44.8 (1.66) 9.6 (2.31)

SpSA 51.8 (1.19) 47.9 (1.19) 14.9 (1.42)

Ag

300

18.1 (1.31) 21.5 (1.31) 17.9 (1.31)
Ann 25.4 (1.17) 33.1 (1.17) 25.6 (1.17)
SA 45.7 (1.72) 51.3 (1.63) 11.2 (2.08)

SpSA 54.7 (1.23) 53.5 (1.17) 16.7 (1.43)

Ag

400

21.1 (1.31) 20.2 (1.31) 19.9 (1.31)
Ann 27.2 (1.17) 30.9 (1.17) 26.2 (1.17)
SA 52.7 (1.63) 53.5 (1.66) 11.0 (2.11)

SpSA 61.3 (1.19) 57.6 (1.19) 18.2 (1.42)

5. Conclusion. In this work, we propose an ML-based approach for computing517

non-Galerkin coarse-grid operators to address the issue of increasing operator com-518

plexity in MG methods by sparsifying the Galerkin operator in different MG levels.519

The algorithm consists of two main steps: choosing the sparsity pattern of the stencil520

and computing the numerical values. We employ NNs in both steps and combine521

their results to construct a non-Galerkin coarse-grid operator with the desired lower522

complexity. The NN training algorithm is guided by the MG convergence theory, en-523

suring the spectral equivalence of coarse-grid operators with respect to the Galerkin524

operator. We showed that spectrally equivalent sparser stencils can be learned by525

advanced ML techniques that exploit multi-head attention.526

The NN model is trained on parametric PDE problems that cover a wide range527

of parameters. The training dataset consists of small-size problems, while the testing528

problems are significantly larger. Empirical studies conducted on rotated Laplacian529

and linear elasticity problems provide evidence that the proposed ML method can con-530

struct non-Galerkin operators with reduced complexity while maintaining the overall531

convergence behavior of MG. A key feature of our method is its ability to generalize to532

problems of larger sizes and with different PDE parameters that were not encountered533

in the training for in-distribution test sets. This means that the algorithm can effec-534

tively handle a wide range of problem settings, expanding its practical applicability.535

By generalizing to new problem instances, the algorithm amortizes the training cost536

and reduces the need for retraining for every specific problem scenario. It is impor-537
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Table 7
The average number of iterations required by the GMRES method preconditioned by 3-level MG

methods with different coarse-grid operators for solving (4.6) with different sets of PDE parameters.
The mesh size is 511× 511. The parameters are selected so that θ ∈ {π/6, π/4, π/3, 5π/12} is fixed
and ξ is randomly sampled from a uniform distribution in each interval. The iteration number is
averaged over 10 different sampled ξ’s. Ag denotes the Galerkin coarse-grid operator, Ann is the
coarse-grid operator obtained from Algorithm 3.3, and SpSA refers to the coarse-grid operator from
the Sparsified Smooth Aggregation (SpSA) algorithm [32]. The numbers in the brackets are the
operator complexities.

θ
ξ

(100, 200) (80, 100) (5, 10)
Ag

π/6

11.6 (1.31) 10.4 (1.31) 4.4 (1.31)
Ann 19.9 (1.17) 16.4 (1.17) 7.1 (1.17)
SA 24.8 (1.98) 22.4 (1.98) 11.5 (1.98)

SpSA 32.2 (1.38) 29.0 (1.38) 13.7 (1.38)

Ag

π/4

14.2 (1.31) 11.3 (1.31) 4.6 (1.31)
Ann 18.2 (1.17) 15.5 (1.17) 10.0 (1.17)
SA 39.2 (1.63) 33.1 (1.63) 13.3 (1.62)

SpSA 42.8 (1.17) 35.8 (1.17) 14.2 (1.17)

Ag

π/3

11.2 (1.31) 10.2 (1.31) 4.7 (1.31)
Ann 18.8 (1.17) 16.4 (1.17) 7.1 (1.17)
SA 26.5 (1.98) 24.2 (1.98) 12.1 (1.98)

SpSA 34.1 (1.38) 30.9 (1.38) 14.5 (1.38)

Ag

5π/12

11.2 (1.31) 10.1 (1.31) 4.8 (1.31)
Ann 28.8 (1.17) 19.1 (1.17) 9.1 (1.17)
SA 13.9 (1.93) 12.8 (1.93) 10.0 (1.91)

SpSA 18.5 (1.38) 17.1 (1.38) 10.8 (1.37)

tant to note that the true generalizability capability (out-of distribution test sets) for538

deep learning approaches requires the development of large-scale foundation models, a539

large-scale pretrained-model that can be used to conduct unseen tasks. This work is540

an initial step towards that goal.541

In the future, we plan to extend this work to sparsify unstructured coarse grid542

operators by exploiting the Graph Convolution Networks (GCNs). We also plan to543

explore the Equivariant Neural Networks [10] to enforce the symmetry in the sparsified544

coarse-grid operators if the fine level operator is symmetric. In addition, we plan545

to investigate the real-world applications including saddle point system[18], efficient546

tensor algebra [16, 20, 14], modern generative models [9, 19, 17], multi-time series547

analysis techniques [15, 30] to solve time-dependent PDEs.548
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